/src/openjpeg/src/lib/openjp2/ht_dec.c
Line | Count | Source (jump to first uncovered line) |
1 | | //***************************************************************************/ |
2 | | // This software is released under the 2-Clause BSD license, included |
3 | | // below. |
4 | | // |
5 | | // Copyright (c) 2021, Aous Naman |
6 | | // Copyright (c) 2021, Kakadu Software Pty Ltd, Australia |
7 | | // Copyright (c) 2021, The University of New South Wales, Australia |
8 | | // |
9 | | // Redistribution and use in source and binary forms, with or without |
10 | | // modification, are permitted provided that the following conditions are |
11 | | // met: |
12 | | // |
13 | | // 1. Redistributions of source code must retain the above copyright |
14 | | // notice, this list of conditions and the following disclaimer. |
15 | | // |
16 | | // 2. Redistributions in binary form must reproduce the above copyright |
17 | | // notice, this list of conditions and the following disclaimer in the |
18 | | // documentation and/or other materials provided with the distribution. |
19 | | // |
20 | | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
21 | | // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
22 | | // TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
23 | | // PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
24 | | // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
25 | | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED |
26 | | // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
27 | | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
28 | | // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
29 | | // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
30 | | // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
31 | | //***************************************************************************/ |
32 | | // This file is part of the OpenJpeg software implementation. |
33 | | // File: ht_dec.c |
34 | | // Author: Aous Naman |
35 | | // Date: 01 September 2021 |
36 | | //***************************************************************************/ |
37 | | |
38 | | //***************************************************************************/ |
39 | | /** @file ht_dec.c |
40 | | * @brief implements HTJ2K block decoder |
41 | | */ |
42 | | |
43 | | #include <assert.h> |
44 | | #include <string.h> |
45 | | #include "opj_includes.h" |
46 | | |
47 | | #include "t1_ht_luts.h" |
48 | | |
49 | | ///////////////////////////////////////////////////////////////////////////// |
50 | | // compiler detection |
51 | | ///////////////////////////////////////////////////////////////////////////// |
52 | | #ifdef _MSC_VER |
53 | | #define OPJ_COMPILER_MSVC |
54 | | #elif (defined __GNUC__) |
55 | | #define OPJ_COMPILER_GNUC |
56 | | #endif |
57 | | |
58 | | #if defined(OPJ_COMPILER_MSVC) && defined(_M_ARM64) \ |
59 | | && !defined(_M_ARM64EC) && !defined(_M_CEE_PURE) && !defined(__CUDACC__) \ |
60 | | && !defined(__INTEL_COMPILER) && !defined(__clang__) |
61 | | #define MSVC_NEON_INTRINSICS |
62 | | #endif |
63 | | |
64 | | #ifdef MSVC_NEON_INTRINSICS |
65 | | #include <arm64_neon.h> |
66 | | #endif |
67 | | |
68 | | //************************************************************************/ |
69 | | /** @brief Displays the error message for disabling the decoding of SPP and |
70 | | * MRP passes |
71 | | */ |
72 | | static OPJ_BOOL only_cleanup_pass_is_decoded = OPJ_FALSE; |
73 | | |
74 | | //************************************************************************/ |
75 | | /** @brief Generates population count (i.e., the number of set bits) |
76 | | * |
77 | | * @param [in] val is the value for which population count is sought |
78 | | */ |
79 | | static INLINE |
80 | | OPJ_UINT32 population_count(OPJ_UINT32 val) |
81 | 0 | { |
82 | | #if defined(OPJ_COMPILER_MSVC) && (defined(_M_IX86) || defined(_M_AMD64)) |
83 | | return (OPJ_UINT32)__popcnt(val); |
84 | | #elif defined(OPJ_COMPILER_MSVC) && defined(MSVC_NEON_INTRINSICS) |
85 | | const __n64 temp = neon_cnt(__uint64ToN64_v(val)); |
86 | | return neon_addv8(temp).n8_i8[0]; |
87 | | #elif (defined OPJ_COMPILER_GNUC) |
88 | | return (OPJ_UINT32)__builtin_popcount(val); |
89 | | #else |
90 | | val -= ((val >> 1) & 0x55555555); |
91 | | val = (((val >> 2) & 0x33333333) + (val & 0x33333333)); |
92 | | val = (((val >> 4) + val) & 0x0f0f0f0f); |
93 | | val += (val >> 8); |
94 | | val += (val >> 16); |
95 | | return (OPJ_UINT32)(val & 0x0000003f); |
96 | | #endif |
97 | 0 | } |
98 | | |
99 | | //************************************************************************/ |
100 | | /** @brief Counts the number of leading zeros |
101 | | * |
102 | | * @param [in] val is the value for which leading zero count is sought |
103 | | */ |
104 | | #ifdef OPJ_COMPILER_MSVC |
105 | | #pragma intrinsic(_BitScanReverse) |
106 | | #endif |
107 | | static INLINE |
108 | | OPJ_UINT32 count_leading_zeros(OPJ_UINT32 val) |
109 | 0 | { |
110 | | #ifdef OPJ_COMPILER_MSVC |
111 | | unsigned long result = 0; |
112 | | _BitScanReverse(&result, val); |
113 | | return 31U ^ (OPJ_UINT32)result; |
114 | | #elif (defined OPJ_COMPILER_GNUC) |
115 | | return (OPJ_UINT32)__builtin_clz(val); |
116 | | #else |
117 | | val |= (val >> 1); |
118 | | val |= (val >> 2); |
119 | | val |= (val >> 4); |
120 | | val |= (val >> 8); |
121 | | val |= (val >> 16); |
122 | | return 32U - population_count(val); |
123 | | #endif |
124 | 0 | } |
125 | | |
126 | | //************************************************************************/ |
127 | | /** @brief Read a little-endian serialized UINT32. |
128 | | * |
129 | | * @param [in] dataIn pointer to byte stream to read from |
130 | | */ |
131 | | static INLINE OPJ_UINT32 read_le_uint32(const void* dataIn) |
132 | 0 | { |
133 | | #if defined(OPJ_BIG_ENDIAN) |
134 | | const OPJ_UINT8* data = (const OPJ_UINT8*)dataIn; |
135 | | return ((OPJ_UINT32)data[0]) | (OPJ_UINT32)(data[1] << 8) | (OPJ_UINT32)( |
136 | | data[2] << 16) | ((( |
137 | | OPJ_UINT32)data[3]) << |
138 | | 24U); |
139 | | #else |
140 | 0 | return *(OPJ_UINT32*)dataIn; |
141 | 0 | #endif |
142 | 0 | } |
143 | | |
144 | | //************************************************************************/ |
145 | | /** @brief MEL state structure for reading and decoding the MEL bitstream |
146 | | * |
147 | | * A number of events is decoded from the MEL bitstream ahead of time |
148 | | * and stored in run/num_runs. |
149 | | * Each run represents the number of zero events before a one event. |
150 | | */ |
151 | | typedef struct dec_mel { |
152 | | // data decoding machinery |
153 | | OPJ_UINT8* data; //!<the address of data (or bitstream) |
154 | | OPJ_UINT64 tmp; //!<temporary buffer for read data |
155 | | int bits; //!<number of bits stored in tmp |
156 | | int size; //!<number of bytes in MEL code |
157 | | OPJ_BOOL unstuff; //!<true if the next bit needs to be unstuffed |
158 | | int k; //!<state of MEL decoder |
159 | | |
160 | | // queue of decoded runs |
161 | | int num_runs; //!<number of decoded runs left in runs (maximum 8) |
162 | | OPJ_UINT64 runs; //!<runs of decoded MEL codewords (7 bits/run) |
163 | | } dec_mel_t; |
164 | | |
165 | | //************************************************************************/ |
166 | | /** @brief Reads and unstuffs the MEL bitstream |
167 | | * |
168 | | * This design needs more bytes in the codeblock buffer than the length |
169 | | * of the cleanup pass by up to 2 bytes. |
170 | | * |
171 | | * Unstuffing removes the MSB of the byte following a byte whose |
172 | | * value is 0xFF; this prevents sequences larger than 0xFF7F in value |
173 | | * from appearing the bitstream. |
174 | | * |
175 | | * @param [in] melp is a pointer to dec_mel_t structure |
176 | | */ |
177 | | static INLINE |
178 | | void mel_read(dec_mel_t *melp) |
179 | 0 | { |
180 | 0 | OPJ_UINT32 val; |
181 | 0 | int bits; |
182 | 0 | OPJ_UINT32 t; |
183 | 0 | OPJ_BOOL unstuff; |
184 | |
|
185 | 0 | if (melp->bits > 32) { //there are enough bits in the tmp variable |
186 | 0 | return; // return without reading new data |
187 | 0 | } |
188 | | |
189 | 0 | val = 0xFFFFFFFF; // feed in 0xFF if buffer is exhausted |
190 | 0 | if (melp->size > 4) { // if there is more than 4 bytes the MEL segment |
191 | 0 | val = read_le_uint32(melp->data); // read 32 bits from MEL data |
192 | 0 | melp->data += 4; // advance pointer |
193 | 0 | melp->size -= 4; // reduce counter |
194 | 0 | } else if (melp->size > 0) { // 4 or less |
195 | 0 | OPJ_UINT32 m, v; |
196 | 0 | int i = 0; |
197 | 0 | while (melp->size > 1) { |
198 | 0 | OPJ_UINT32 v = *melp->data++; // read one byte at a time |
199 | 0 | OPJ_UINT32 m = ~(0xFFu << i); // mask of location |
200 | 0 | val = (val & m) | (v << i); // put byte in its correct location |
201 | 0 | --melp->size; |
202 | 0 | i += 8; |
203 | 0 | } |
204 | | // size equal to 1 |
205 | 0 | v = *melp->data++; // the one before the last is different |
206 | 0 | v |= 0xF; // MEL and VLC segments can overlap |
207 | 0 | m = ~(0xFFu << i); |
208 | 0 | val = (val & m) | (v << i); |
209 | 0 | --melp->size; |
210 | 0 | } |
211 | | |
212 | | // next we unstuff them before adding them to the buffer |
213 | 0 | bits = 32 - melp->unstuff; // number of bits in val, subtract 1 if |
214 | | // the previously read byte requires |
215 | | // unstuffing |
216 | | |
217 | | // data is unstuffed and accumulated in t |
218 | | // bits has the number of bits in t |
219 | 0 | t = val & 0xFF; |
220 | 0 | unstuff = ((val & 0xFF) == 0xFF); // true if the byte needs unstuffing |
221 | 0 | bits -= unstuff; // there is one less bit in t if unstuffing is needed |
222 | 0 | t = t << (8 - unstuff); // move up to make room for the next byte |
223 | | |
224 | | //this is a repeat of the above |
225 | 0 | t |= (val >> 8) & 0xFF; |
226 | 0 | unstuff = (((val >> 8) & 0xFF) == 0xFF); |
227 | 0 | bits -= unstuff; |
228 | 0 | t = t << (8 - unstuff); |
229 | |
|
230 | 0 | t |= (val >> 16) & 0xFF; |
231 | 0 | unstuff = (((val >> 16) & 0xFF) == 0xFF); |
232 | 0 | bits -= unstuff; |
233 | 0 | t = t << (8 - unstuff); |
234 | |
|
235 | 0 | t |= (val >> 24) & 0xFF; |
236 | 0 | melp->unstuff = (((val >> 24) & 0xFF) == 0xFF); |
237 | | |
238 | | // move t to tmp, and push the result all the way up, so we read from |
239 | | // the MSB |
240 | 0 | melp->tmp |= ((OPJ_UINT64)t) << (64 - bits - melp->bits); |
241 | 0 | melp->bits += bits; //increment the number of bits in tmp |
242 | 0 | } |
243 | | |
244 | | //************************************************************************/ |
245 | | /** @brief Decodes unstuffed MEL segment bits stored in tmp to runs |
246 | | * |
247 | | * Runs are stored in "runs" and the number of runs in "num_runs". |
248 | | * Each run represents a number of zero events that may or may not |
249 | | * terminate in a 1 event. |
250 | | * Each run is stored in 7 bits. The LSB is 1 if the run terminates in |
251 | | * a 1 event, 0 otherwise. The next 6 bits, for the case terminating |
252 | | * with 1, contain the number of consecutive 0 zero events * 2; for the |
253 | | * case terminating with 0, they store (number of consecutive 0 zero |
254 | | * events - 1) * 2. |
255 | | * A total of 6 bits (made up of 1 + 5) should have been enough. |
256 | | * |
257 | | * @param [in] melp is a pointer to dec_mel_t structure |
258 | | */ |
259 | | static INLINE |
260 | | void mel_decode(dec_mel_t *melp) |
261 | 0 | { |
262 | 0 | static const int mel_exp[13] = { //MEL exponents |
263 | 0 | 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5 |
264 | 0 | }; |
265 | |
|
266 | 0 | if (melp->bits < 6) { // if there are less than 6 bits in tmp |
267 | 0 | mel_read(melp); // then read from the MEL bitstream |
268 | 0 | } |
269 | | // 6 bits is the largest decodable MEL cwd |
270 | | |
271 | | //repeat so long that there is enough decodable bits in tmp, |
272 | | // and the runs store is not full (num_runs < 8) |
273 | 0 | while (melp->bits >= 6 && melp->num_runs < 8) { |
274 | 0 | int eval = mel_exp[melp->k]; // number of bits associated with state |
275 | 0 | int run = 0; |
276 | 0 | if (melp->tmp & (1ull << 63)) { //The next bit to decode (stored in MSB) |
277 | | //one is found |
278 | 0 | run = 1 << eval; |
279 | 0 | run--; // consecutive runs of 0 events - 1 |
280 | 0 | melp->k = melp->k + 1 < 12 ? melp->k + 1 : 12;//increment, max is 12 |
281 | 0 | melp->tmp <<= 1; // consume one bit from tmp |
282 | 0 | melp->bits -= 1; |
283 | 0 | run = run << 1; // a stretch of zeros not terminating in one |
284 | 0 | } else { |
285 | | //0 is found |
286 | 0 | run = (int)(melp->tmp >> (63 - eval)) & ((1 << eval) - 1); |
287 | 0 | melp->k = melp->k - 1 > 0 ? melp->k - 1 : 0; //decrement, min is 0 |
288 | 0 | melp->tmp <<= eval + 1; //consume eval + 1 bits (max is 6) |
289 | 0 | melp->bits -= eval + 1; |
290 | 0 | run = (run << 1) + 1; // a stretch of zeros terminating with one |
291 | 0 | } |
292 | 0 | eval = melp->num_runs * 7; // 7 bits per run |
293 | 0 | melp->runs &= ~((OPJ_UINT64)0x3F << eval); // 6 bits are sufficient |
294 | 0 | melp->runs |= ((OPJ_UINT64)run) << eval; // store the value in runs |
295 | 0 | melp->num_runs++; // increment count |
296 | 0 | } |
297 | 0 | } |
298 | | |
299 | | //************************************************************************/ |
300 | | /** @brief Initiates a dec_mel_t structure for MEL decoding and reads |
301 | | * some bytes in order to get the read address to a multiple |
302 | | * of 4 |
303 | | * |
304 | | * @param [in] melp is a pointer to dec_mel_t structure |
305 | | * @param [in] bbuf is a pointer to byte buffer |
306 | | * @param [in] lcup is the length of MagSgn+MEL+VLC segments |
307 | | * @param [in] scup is the length of MEL+VLC segments |
308 | | */ |
309 | | static INLINE |
310 | | OPJ_BOOL mel_init(dec_mel_t *melp, OPJ_UINT8* bbuf, int lcup, int scup) |
311 | 0 | { |
312 | 0 | int num; |
313 | 0 | int i; |
314 | |
|
315 | 0 | melp->data = bbuf + lcup - scup; // move the pointer to the start of MEL |
316 | 0 | melp->bits = 0; // 0 bits in tmp |
317 | 0 | melp->tmp = 0; // |
318 | 0 | melp->unstuff = OPJ_FALSE; // no unstuffing |
319 | 0 | melp->size = scup - 1; // size is the length of MEL+VLC-1 |
320 | 0 | melp->k = 0; // 0 for state |
321 | 0 | melp->num_runs = 0; // num_runs is 0 |
322 | 0 | melp->runs = 0; // |
323 | | |
324 | | //This code is borrowed; original is for a different architecture |
325 | | //These few lines take care of the case where data is not at a multiple |
326 | | // of 4 boundary. It reads 1,2,3 up to 4 bytes from the MEL segment |
327 | 0 | num = 4 - (int)((intptr_t)(melp->data) & 0x3); |
328 | 0 | for (i = 0; i < num; ++i) { // this code is similar to mel_read |
329 | 0 | OPJ_UINT64 d; |
330 | 0 | int d_bits; |
331 | |
|
332 | 0 | if (melp->unstuff == OPJ_TRUE && melp->data[0] > 0x8F) { |
333 | 0 | return OPJ_FALSE; |
334 | 0 | } |
335 | 0 | d = (melp->size > 0) ? *melp->data : 0xFF; // if buffer is consumed |
336 | | // set data to 0xFF |
337 | 0 | if (melp->size == 1) { |
338 | 0 | d |= 0xF; //if this is MEL+VLC-1, set LSBs to 0xF |
339 | 0 | } |
340 | | // see the standard |
341 | 0 | melp->data += melp->size-- > 0; //increment if the end is not reached |
342 | 0 | d_bits = 8 - melp->unstuff; //if unstuffing is needed, reduce by 1 |
343 | 0 | melp->tmp = (melp->tmp << d_bits) | d; //store bits in tmp |
344 | 0 | melp->bits += d_bits; //increment tmp by number of bits |
345 | 0 | melp->unstuff = ((d & 0xFF) == 0xFF); //true of next byte needs |
346 | | //unstuffing |
347 | 0 | } |
348 | 0 | melp->tmp <<= (64 - melp->bits); //push all the way up so the first bit |
349 | | // is the MSB |
350 | 0 | return OPJ_TRUE; |
351 | 0 | } |
352 | | |
353 | | //************************************************************************/ |
354 | | /** @brief Retrieves one run from dec_mel_t; if there are no runs stored |
355 | | * MEL segment is decoded |
356 | | * |
357 | | * @param [in] melp is a pointer to dec_mel_t structure |
358 | | */ |
359 | | static INLINE |
360 | | int mel_get_run(dec_mel_t *melp) |
361 | 0 | { |
362 | 0 | int t; |
363 | 0 | if (melp->num_runs == 0) { //if no runs, decode more bit from MEL segment |
364 | 0 | mel_decode(melp); |
365 | 0 | } |
366 | |
|
367 | 0 | t = melp->runs & 0x7F; //retrieve one run |
368 | 0 | melp->runs >>= 7; // remove the retrieved run |
369 | 0 | melp->num_runs--; |
370 | 0 | return t; // return run |
371 | 0 | } |
372 | | |
373 | | //************************************************************************/ |
374 | | /** @brief A structure for reading and unstuffing a segment that grows |
375 | | * backward, such as VLC and MRP |
376 | | */ |
377 | | typedef struct rev_struct { |
378 | | //storage |
379 | | OPJ_UINT8* data; //!<pointer to where to read data |
380 | | OPJ_UINT64 tmp; //!<temporary buffer of read data |
381 | | OPJ_UINT32 bits; //!<number of bits stored in tmp |
382 | | int size; //!<number of bytes left |
383 | | OPJ_BOOL unstuff; //!<true if the last byte is more than 0x8F |
384 | | //!<then the current byte is unstuffed if it is 0x7F |
385 | | } rev_struct_t; |
386 | | |
387 | | //************************************************************************/ |
388 | | /** @brief Read and unstuff data from a backwardly-growing segment |
389 | | * |
390 | | * This reader can read up to 8 bytes from before the VLC segment. |
391 | | * Care must be taken not read from unreadable memory, causing a |
392 | | * segmentation fault. |
393 | | * |
394 | | * Note that there is another subroutine rev_read_mrp that is slightly |
395 | | * different. The other one fills zeros when the buffer is exhausted. |
396 | | * This one basically does not care if the bytes are consumed, because |
397 | | * any extra data should not be used in the actual decoding. |
398 | | * |
399 | | * Unstuffing is needed to prevent sequences more than 0xFF8F from |
400 | | * appearing in the bits stream; since we are reading backward, we keep |
401 | | * watch when a value larger than 0x8F appears in the bitstream. |
402 | | * If the byte following this is 0x7F, we unstuff this byte (ignore the |
403 | | * MSB of that byte, which should be 0). |
404 | | * |
405 | | * @param [in] vlcp is a pointer to rev_struct_t structure |
406 | | */ |
407 | | static INLINE |
408 | | void rev_read(rev_struct_t *vlcp) |
409 | 0 | { |
410 | 0 | OPJ_UINT32 val; |
411 | 0 | OPJ_UINT32 tmp; |
412 | 0 | OPJ_UINT32 bits; |
413 | 0 | OPJ_BOOL unstuff; |
414 | | |
415 | | //process 4 bytes at a time |
416 | 0 | if (vlcp->bits > 32) { // if there are more than 32 bits in tmp, then |
417 | 0 | return; // reading 32 bits can overflow vlcp->tmp |
418 | 0 | } |
419 | 0 | val = 0; |
420 | | //the next line (the if statement) needs to be tested first |
421 | 0 | if (vlcp->size > 3) { // if there are more than 3 bytes left in VLC |
422 | | // (vlcp->data - 3) move pointer back to read 32 bits at once |
423 | 0 | val = read_le_uint32(vlcp->data - 3); // then read 32 bits |
424 | 0 | vlcp->data -= 4; // move data pointer back by 4 |
425 | 0 | vlcp->size -= 4; // reduce available byte by 4 |
426 | 0 | } else if (vlcp->size > 0) { // 4 or less |
427 | 0 | int i = 24; |
428 | 0 | while (vlcp->size > 0) { |
429 | 0 | OPJ_UINT32 v = *vlcp->data--; // read one byte at a time |
430 | 0 | val |= (v << i); // put byte in its correct location |
431 | 0 | --vlcp->size; |
432 | 0 | i -= 8; |
433 | 0 | } |
434 | 0 | } |
435 | | |
436 | | //accumulate in tmp, number of bits in tmp are stored in bits |
437 | 0 | tmp = val >> 24; //start with the MSB byte |
438 | | |
439 | | // test unstuff (previous byte is >0x8F), and this byte is 0x7F |
440 | 0 | bits = 8u - ((vlcp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u); |
441 | 0 | unstuff = (val >> 24) > 0x8F; //this is for the next byte |
442 | |
|
443 | 0 | tmp |= ((val >> 16) & 0xFF) << bits; //process the next byte |
444 | 0 | bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u); |
445 | 0 | unstuff = ((val >> 16) & 0xFF) > 0x8F; |
446 | |
|
447 | 0 | tmp |= ((val >> 8) & 0xFF) << bits; |
448 | 0 | bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u); |
449 | 0 | unstuff = ((val >> 8) & 0xFF) > 0x8F; |
450 | |
|
451 | 0 | tmp |= (val & 0xFF) << bits; |
452 | 0 | bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u); |
453 | 0 | unstuff = (val & 0xFF) > 0x8F; |
454 | | |
455 | | // now move the read and unstuffed bits into vlcp->tmp |
456 | 0 | vlcp->tmp |= (OPJ_UINT64)tmp << vlcp->bits; |
457 | 0 | vlcp->bits += bits; |
458 | 0 | vlcp->unstuff = unstuff; // this for the next read |
459 | 0 | } |
460 | | |
461 | | //************************************************************************/ |
462 | | /** @brief Initiates the rev_struct_t structure and reads a few bytes to |
463 | | * move the read address to multiple of 4 |
464 | | * |
465 | | * There is another similar rev_init_mrp subroutine. The difference is |
466 | | * that this one, rev_init, discards the first 12 bits (they have the |
467 | | * sum of the lengths of VLC and MEL segments), and first unstuff depends |
468 | | * on first 4 bits. |
469 | | * |
470 | | * @param [in] vlcp is a pointer to rev_struct_t structure |
471 | | * @param [in] data is a pointer to byte at the start of the cleanup pass |
472 | | * @param [in] lcup is the length of MagSgn+MEL+VLC segments |
473 | | * @param [in] scup is the length of MEL+VLC segments |
474 | | */ |
475 | | static INLINE |
476 | | void rev_init(rev_struct_t *vlcp, OPJ_UINT8* data, int lcup, int scup) |
477 | 0 | { |
478 | 0 | OPJ_UINT32 d; |
479 | 0 | int num, tnum, i; |
480 | | |
481 | | //first byte has only the upper 4 bits |
482 | 0 | vlcp->data = data + lcup - 2; |
483 | | |
484 | | //size can not be larger than this, in fact it should be smaller |
485 | 0 | vlcp->size = scup - 2; |
486 | |
|
487 | 0 | d = *vlcp->data--; // read one byte (this is a half byte) |
488 | 0 | vlcp->tmp = d >> 4; // both initialize and set |
489 | 0 | vlcp->bits = 4 - ((vlcp->tmp & 7) == 7); //check standard |
490 | 0 | vlcp->unstuff = (d | 0xF) > 0x8F; //this is useful for the next byte |
491 | | |
492 | | //This code is designed for an architecture that read address should |
493 | | // align to the read size (address multiple of 4 if read size is 4) |
494 | | //These few lines take care of the case where data is not at a multiple |
495 | | // of 4 boundary. It reads 1,2,3 up to 4 bytes from the VLC bitstream. |
496 | | // To read 32 bits, read from (vlcp->data - 3) |
497 | 0 | num = 1 + (int)((intptr_t)(vlcp->data) & 0x3); |
498 | 0 | tnum = num < vlcp->size ? num : vlcp->size; |
499 | 0 | for (i = 0; i < tnum; ++i) { |
500 | 0 | OPJ_UINT64 d; |
501 | 0 | OPJ_UINT32 d_bits; |
502 | 0 | d = *vlcp->data--; // read one byte and move read pointer |
503 | | //check if the last byte was >0x8F (unstuff == true) and this is 0x7F |
504 | 0 | d_bits = 8u - ((vlcp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u); |
505 | 0 | vlcp->tmp |= d << vlcp->bits; // move data to vlcp->tmp |
506 | 0 | vlcp->bits += d_bits; |
507 | 0 | vlcp->unstuff = d > 0x8F; // for next byte |
508 | 0 | } |
509 | 0 | vlcp->size -= tnum; |
510 | 0 | rev_read(vlcp); // read another 32 buts |
511 | 0 | } |
512 | | |
513 | | //************************************************************************/ |
514 | | /** @brief Retrieves 32 bits from the head of a rev_struct structure |
515 | | * |
516 | | * By the end of this call, vlcp->tmp must have no less than 33 bits |
517 | | * |
518 | | * @param [in] vlcp is a pointer to rev_struct structure |
519 | | */ |
520 | | static INLINE |
521 | | OPJ_UINT32 rev_fetch(rev_struct_t *vlcp) |
522 | 0 | { |
523 | 0 | if (vlcp->bits < 32) { // if there are less then 32 bits, read more |
524 | 0 | rev_read(vlcp); // read 32 bits, but unstuffing might reduce this |
525 | 0 | if (vlcp->bits < 32) { // if there is still space in vlcp->tmp for 32 bits |
526 | 0 | rev_read(vlcp); // read another 32 |
527 | 0 | } |
528 | 0 | } |
529 | 0 | return (OPJ_UINT32)vlcp->tmp; // return the head (bottom-most) of vlcp->tmp |
530 | 0 | } |
531 | | |
532 | | //************************************************************************/ |
533 | | /** @brief Consumes num_bits from a rev_struct structure |
534 | | * |
535 | | * @param [in] vlcp is a pointer to rev_struct structure |
536 | | * @param [in] num_bits is the number of bits to be removed |
537 | | */ |
538 | | static INLINE |
539 | | OPJ_UINT32 rev_advance(rev_struct_t *vlcp, OPJ_UINT32 num_bits) |
540 | 0 | { |
541 | 0 | assert(num_bits <= vlcp->bits); // vlcp->tmp must have more than num_bits |
542 | 0 | vlcp->tmp >>= num_bits; // remove bits |
543 | 0 | vlcp->bits -= num_bits; // decrement the number of bits |
544 | 0 | return (OPJ_UINT32)vlcp->tmp; |
545 | 0 | } |
546 | | |
547 | | //************************************************************************/ |
548 | | /** @brief Reads and unstuffs from rev_struct |
549 | | * |
550 | | * This is different than rev_read in that this fills in zeros when the |
551 | | * the available data is consumed. The other does not care about the |
552 | | * values when all data is consumed. |
553 | | * |
554 | | * See rev_read for more information about unstuffing |
555 | | * |
556 | | * @param [in] mrp is a pointer to rev_struct structure |
557 | | */ |
558 | | static INLINE |
559 | | void rev_read_mrp(rev_struct_t *mrp) |
560 | 0 | { |
561 | 0 | OPJ_UINT32 val; |
562 | 0 | OPJ_UINT32 tmp; |
563 | 0 | OPJ_UINT32 bits; |
564 | 0 | OPJ_BOOL unstuff; |
565 | | |
566 | | //process 4 bytes at a time |
567 | 0 | if (mrp->bits > 32) { |
568 | 0 | return; |
569 | 0 | } |
570 | 0 | val = 0; |
571 | 0 | if (mrp->size > 3) { // If there are 3 byte or more |
572 | | // (mrp->data - 3) move pointer back to read 32 bits at once |
573 | 0 | val = read_le_uint32(mrp->data - 3); // read 32 bits |
574 | 0 | mrp->data -= 4; // move back pointer |
575 | 0 | mrp->size -= 4; // reduce count |
576 | 0 | } else if (mrp->size > 0) { |
577 | 0 | int i = 24; |
578 | 0 | while (mrp->size > 0) { |
579 | 0 | OPJ_UINT32 v = *mrp->data--; // read one byte at a time |
580 | 0 | val |= (v << i); // put byte in its correct location |
581 | 0 | --mrp->size; |
582 | 0 | i -= 8; |
583 | 0 | } |
584 | 0 | } |
585 | | |
586 | | |
587 | | //accumulate in tmp, and keep count in bits |
588 | 0 | tmp = val >> 24; |
589 | | |
590 | | //test if the last byte > 0x8F (unstuff must be true) and this is 0x7F |
591 | 0 | bits = 8u - ((mrp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u); |
592 | 0 | unstuff = (val >> 24) > 0x8F; |
593 | | |
594 | | //process the next byte |
595 | 0 | tmp |= ((val >> 16) & 0xFF) << bits; |
596 | 0 | bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u); |
597 | 0 | unstuff = ((val >> 16) & 0xFF) > 0x8F; |
598 | |
|
599 | 0 | tmp |= ((val >> 8) & 0xFF) << bits; |
600 | 0 | bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u); |
601 | 0 | unstuff = ((val >> 8) & 0xFF) > 0x8F; |
602 | |
|
603 | 0 | tmp |= (val & 0xFF) << bits; |
604 | 0 | bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u); |
605 | 0 | unstuff = (val & 0xFF) > 0x8F; |
606 | |
|
607 | 0 | mrp->tmp |= (OPJ_UINT64)tmp << mrp->bits; // move data to mrp pointer |
608 | 0 | mrp->bits += bits; |
609 | 0 | mrp->unstuff = unstuff; // next byte |
610 | 0 | } |
611 | | |
612 | | //************************************************************************/ |
613 | | /** @brief Initialized rev_struct structure for MRP segment, and reads |
614 | | * a number of bytes such that the next 32 bits read are from |
615 | | * an address that is a multiple of 4. Note this is designed for |
616 | | * an architecture that read size must be compatible with the |
617 | | * alignment of the read address |
618 | | * |
619 | | * There is another similar subroutine rev_init. This subroutine does |
620 | | * NOT skip the first 12 bits, and starts with unstuff set to true. |
621 | | * |
622 | | * @param [in] mrp is a pointer to rev_struct structure |
623 | | * @param [in] data is a pointer to byte at the start of the cleanup pass |
624 | | * @param [in] lcup is the length of MagSgn+MEL+VLC segments |
625 | | * @param [in] len2 is the length of SPP+MRP segments |
626 | | */ |
627 | | static INLINE |
628 | | void rev_init_mrp(rev_struct_t *mrp, OPJ_UINT8* data, int lcup, int len2) |
629 | 0 | { |
630 | 0 | int num, i; |
631 | |
|
632 | 0 | mrp->data = data + lcup + len2 - 1; |
633 | 0 | mrp->size = len2; |
634 | 0 | mrp->unstuff = OPJ_TRUE; |
635 | 0 | mrp->bits = 0; |
636 | 0 | mrp->tmp = 0; |
637 | | |
638 | | //This code is designed for an architecture that read address should |
639 | | // align to the read size (address multiple of 4 if read size is 4) |
640 | | //These few lines take care of the case where data is not at a multiple |
641 | | // of 4 boundary. It reads 1,2,3 up to 4 bytes from the MRP stream |
642 | 0 | num = 1 + (int)((intptr_t)(mrp->data) & 0x3); |
643 | 0 | for (i = 0; i < num; ++i) { |
644 | 0 | OPJ_UINT64 d; |
645 | 0 | OPJ_UINT32 d_bits; |
646 | | |
647 | | //read a byte, 0 if no more data |
648 | 0 | d = (mrp->size-- > 0) ? *mrp->data-- : 0; |
649 | | //check if unstuffing is needed |
650 | 0 | d_bits = 8u - ((mrp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u); |
651 | 0 | mrp->tmp |= d << mrp->bits; // move data to vlcp->tmp |
652 | 0 | mrp->bits += d_bits; |
653 | 0 | mrp->unstuff = d > 0x8F; // for next byte |
654 | 0 | } |
655 | 0 | rev_read_mrp(mrp); |
656 | 0 | } |
657 | | |
658 | | //************************************************************************/ |
659 | | /** @brief Retrieves 32 bits from the head of a rev_struct structure |
660 | | * |
661 | | * By the end of this call, mrp->tmp must have no less than 33 bits |
662 | | * |
663 | | * @param [in] mrp is a pointer to rev_struct structure |
664 | | */ |
665 | | static INLINE |
666 | | OPJ_UINT32 rev_fetch_mrp(rev_struct_t *mrp) |
667 | 0 | { |
668 | 0 | if (mrp->bits < 32) { // if there are less than 32 bits in mrp->tmp |
669 | 0 | rev_read_mrp(mrp); // read 30-32 bits from mrp |
670 | 0 | if (mrp->bits < 32) { // if there is a space of 32 bits |
671 | 0 | rev_read_mrp(mrp); // read more |
672 | 0 | } |
673 | 0 | } |
674 | 0 | return (OPJ_UINT32)mrp->tmp; // return the head of mrp->tmp |
675 | 0 | } |
676 | | |
677 | | //************************************************************************/ |
678 | | /** @brief Consumes num_bits from a rev_struct structure |
679 | | * |
680 | | * @param [in] mrp is a pointer to rev_struct structure |
681 | | * @param [in] num_bits is the number of bits to be removed |
682 | | */ |
683 | | static INLINE |
684 | | OPJ_UINT32 rev_advance_mrp(rev_struct_t *mrp, OPJ_UINT32 num_bits) |
685 | 0 | { |
686 | 0 | assert(num_bits <= mrp->bits); // we must not consume more than mrp->bits |
687 | 0 | mrp->tmp >>= num_bits; // discard the lowest num_bits bits |
688 | 0 | mrp->bits -= num_bits; |
689 | 0 | return (OPJ_UINT32)mrp->tmp; // return data after consumption |
690 | 0 | } |
691 | | |
692 | | //************************************************************************/ |
693 | | /** @brief Decode initial UVLC to get the u value (or u_q) |
694 | | * |
695 | | * @param [in] vlc is the head of the VLC bitstream |
696 | | * @param [in] mode is 0, 1, 2, 3, or 4. Values in 0 to 3 are composed of |
697 | | * u_off of 1st quad and 2nd quad of a quad pair. The value |
698 | | * 4 occurs when both bits are 1, and the event decoded |
699 | | * from MEL bitstream is also 1. |
700 | | * @param [out] u is the u value (or u_q) + 1. Note: we produce u + 1; |
701 | | * this value is a partial calculation of u + kappa. |
702 | | */ |
703 | | static INLINE |
704 | | OPJ_UINT32 decode_init_uvlc(OPJ_UINT32 vlc, OPJ_UINT32 mode, OPJ_UINT32 *u) |
705 | 0 | { |
706 | | //table stores possible decoding three bits from vlc |
707 | | // there are 8 entries for xx1, x10, 100, 000, where x means do not care |
708 | | // table value is made up of |
709 | | // 2 bits in the LSB for prefix length |
710 | | // 3 bits for suffix length |
711 | | // 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814) |
712 | 0 | static const OPJ_UINT8 dec[8] = { // the index is the prefix codeword |
713 | 0 | 3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000" |
714 | 0 | 1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1" |
715 | 0 | 2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01" |
716 | 0 | 1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1" |
717 | 0 | 3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001" |
718 | 0 | 1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1" |
719 | 0 | 2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01" |
720 | 0 | 1 | (0 << 2) | (1 << 5) //111 == xx1, prefix codeword "1" |
721 | 0 | }; |
722 | |
|
723 | 0 | OPJ_UINT32 consumed_bits = 0; |
724 | 0 | if (mode == 0) { // both u_off are 0 |
725 | 0 | u[0] = u[1] = 1; //Kappa is 1 for initial line |
726 | 0 | } else if (mode <= 2) { // u_off are either 01 or 10 |
727 | 0 | OPJ_UINT32 d; |
728 | 0 | OPJ_UINT32 suffix_len; |
729 | |
|
730 | 0 | d = dec[vlc & 0x7]; //look at the least significant 3 bits |
731 | 0 | vlc >>= d & 0x3; //prefix length |
732 | 0 | consumed_bits += d & 0x3; |
733 | |
|
734 | 0 | suffix_len = ((d >> 2) & 0x7); |
735 | 0 | consumed_bits += suffix_len; |
736 | |
|
737 | 0 | d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
738 | 0 | u[0] = (mode == 1) ? d + 1 : 1; // kappa is 1 for initial line |
739 | 0 | u[1] = (mode == 1) ? 1 : d + 1; // kappa is 1 for initial line |
740 | 0 | } else if (mode == 3) { // both u_off are 1, and MEL event is 0 |
741 | 0 | OPJ_UINT32 d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword |
742 | 0 | vlc >>= d1 & 0x3; // Consume bits |
743 | 0 | consumed_bits += d1 & 0x3; |
744 | |
|
745 | 0 | if ((d1 & 0x3) > 2) { |
746 | 0 | OPJ_UINT32 suffix_len; |
747 | | |
748 | | //u_{q_2} prefix |
749 | 0 | u[1] = (vlc & 1) + 1 + 1; //Kappa is 1 for initial line |
750 | 0 | ++consumed_bits; |
751 | 0 | vlc >>= 1; |
752 | |
|
753 | 0 | suffix_len = ((d1 >> 2) & 0x7); |
754 | 0 | consumed_bits += suffix_len; |
755 | 0 | d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
756 | 0 | u[0] = d1 + 1; //Kappa is 1 for initial line |
757 | 0 | } else { |
758 | 0 | OPJ_UINT32 d2; |
759 | 0 | OPJ_UINT32 suffix_len; |
760 | |
|
761 | 0 | d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword |
762 | 0 | vlc >>= d2 & 0x3; // Consume bits |
763 | 0 | consumed_bits += d2 & 0x3; |
764 | |
|
765 | 0 | suffix_len = ((d1 >> 2) & 0x7); |
766 | 0 | consumed_bits += suffix_len; |
767 | |
|
768 | 0 | d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
769 | 0 | u[0] = d1 + 1; //Kappa is 1 for initial line |
770 | 0 | vlc >>= suffix_len; |
771 | |
|
772 | 0 | suffix_len = ((d2 >> 2) & 0x7); |
773 | 0 | consumed_bits += suffix_len; |
774 | |
|
775 | 0 | d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
776 | 0 | u[1] = d2 + 1; //Kappa is 1 for initial line |
777 | 0 | } |
778 | 0 | } else if (mode == 4) { // both u_off are 1, and MEL event is 1 |
779 | 0 | OPJ_UINT32 d1; |
780 | 0 | OPJ_UINT32 d2; |
781 | 0 | OPJ_UINT32 suffix_len; |
782 | |
|
783 | 0 | d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword |
784 | 0 | vlc >>= d1 & 0x3; // Consume bits |
785 | 0 | consumed_bits += d1 & 0x3; |
786 | |
|
787 | 0 | d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword |
788 | 0 | vlc >>= d2 & 0x3; // Consume bits |
789 | 0 | consumed_bits += d2 & 0x3; |
790 | |
|
791 | 0 | suffix_len = ((d1 >> 2) & 0x7); |
792 | 0 | consumed_bits += suffix_len; |
793 | |
|
794 | 0 | d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
795 | 0 | u[0] = d1 + 3; // add 2+kappa |
796 | 0 | vlc >>= suffix_len; |
797 | |
|
798 | 0 | suffix_len = ((d2 >> 2) & 0x7); |
799 | 0 | consumed_bits += suffix_len; |
800 | |
|
801 | 0 | d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
802 | 0 | u[1] = d2 + 3; // add 2+kappa |
803 | 0 | } |
804 | 0 | return consumed_bits; |
805 | 0 | } |
806 | | |
807 | | //************************************************************************/ |
808 | | /** @brief Decode non-initial UVLC to get the u value (or u_q) |
809 | | * |
810 | | * @param [in] vlc is the head of the VLC bitstream |
811 | | * @param [in] mode is 0, 1, 2, or 3. The 1st bit is u_off of 1st quad |
812 | | * and 2nd for 2nd quad of a quad pair |
813 | | * @param [out] u is the u value (or u_q) + 1. Note: we produce u + 1; |
814 | | * this value is a partial calculation of u + kappa. |
815 | | */ |
816 | | static INLINE |
817 | | OPJ_UINT32 decode_noninit_uvlc(OPJ_UINT32 vlc, OPJ_UINT32 mode, OPJ_UINT32 *u) |
818 | 0 | { |
819 | | //table stores possible decoding three bits from vlc |
820 | | // there are 8 entries for xx1, x10, 100, 000, where x means do not care |
821 | | // table value is made up of |
822 | | // 2 bits in the LSB for prefix length |
823 | | // 3 bits for suffix length |
824 | | // 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814) |
825 | 0 | static const OPJ_UINT8 dec[8] = { |
826 | 0 | 3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000" |
827 | 0 | 1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1" |
828 | 0 | 2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01" |
829 | 0 | 1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1" |
830 | 0 | 3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001" |
831 | 0 | 1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1" |
832 | 0 | 2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01" |
833 | 0 | 1 | (0 << 2) | (1 << 5) //111 == xx1, prefix codeword "1" |
834 | 0 | }; |
835 | |
|
836 | 0 | OPJ_UINT32 consumed_bits = 0; |
837 | 0 | if (mode == 0) { |
838 | 0 | u[0] = u[1] = 1; //for kappa |
839 | 0 | } else if (mode <= 2) { //u_off are either 01 or 10 |
840 | 0 | OPJ_UINT32 d; |
841 | 0 | OPJ_UINT32 suffix_len; |
842 | |
|
843 | 0 | d = dec[vlc & 0x7]; //look at the least significant 3 bits |
844 | 0 | vlc >>= d & 0x3; //prefix length |
845 | 0 | consumed_bits += d & 0x3; |
846 | |
|
847 | 0 | suffix_len = ((d >> 2) & 0x7); |
848 | 0 | consumed_bits += suffix_len; |
849 | |
|
850 | 0 | d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
851 | 0 | u[0] = (mode == 1) ? d + 1 : 1; //for kappa |
852 | 0 | u[1] = (mode == 1) ? 1 : d + 1; //for kappa |
853 | 0 | } else if (mode == 3) { // both u_off are 1 |
854 | 0 | OPJ_UINT32 d1; |
855 | 0 | OPJ_UINT32 d2; |
856 | 0 | OPJ_UINT32 suffix_len; |
857 | |
|
858 | 0 | d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword |
859 | 0 | vlc >>= d1 & 0x3; // Consume bits |
860 | 0 | consumed_bits += d1 & 0x3; |
861 | |
|
862 | 0 | d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword |
863 | 0 | vlc >>= d2 & 0x3; // Consume bits |
864 | 0 | consumed_bits += d2 & 0x3; |
865 | |
|
866 | 0 | suffix_len = ((d1 >> 2) & 0x7); |
867 | 0 | consumed_bits += suffix_len; |
868 | |
|
869 | 0 | d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
870 | 0 | u[0] = d1 + 1; //1 for kappa |
871 | 0 | vlc >>= suffix_len; |
872 | |
|
873 | 0 | suffix_len = ((d2 >> 2) & 0x7); |
874 | 0 | consumed_bits += suffix_len; |
875 | |
|
876 | 0 | d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value |
877 | 0 | u[1] = d2 + 1; //1 for kappa |
878 | 0 | } |
879 | 0 | return consumed_bits; |
880 | 0 | } |
881 | | |
882 | | //************************************************************************/ |
883 | | /** @brief State structure for reading and unstuffing of forward-growing |
884 | | * bitstreams; these are: MagSgn and SPP bitstreams |
885 | | */ |
886 | | typedef struct frwd_struct { |
887 | | const OPJ_UINT8* data; //!<pointer to bitstream |
888 | | OPJ_UINT64 tmp; //!<temporary buffer of read data |
889 | | OPJ_UINT32 bits; //!<number of bits stored in tmp |
890 | | OPJ_BOOL unstuff; //!<true if a bit needs to be unstuffed from next byte |
891 | | int size; //!<size of data |
892 | | OPJ_UINT32 X; //!<0 or 0xFF, X's are inserted at end of bitstream |
893 | | } frwd_struct_t; |
894 | | |
895 | | //************************************************************************/ |
896 | | /** @brief Read and unstuffs 32 bits from forward-growing bitstream |
897 | | * |
898 | | * A subroutine to read from both the MagSgn or SPP bitstreams; |
899 | | * in particular, when MagSgn bitstream is consumed, 0xFF's are fed, |
900 | | * while when SPP is exhausted 0's are fed in. |
901 | | * X controls this value. |
902 | | * |
903 | | * Unstuffing prevent sequences that are more than 0xFF7F from appearing |
904 | | * in the compressed sequence. So whenever a value of 0xFF is coded, the |
905 | | * MSB of the next byte is set 0 and must be ignored during decoding. |
906 | | * |
907 | | * Reading can go beyond the end of buffer by up to 3 bytes. |
908 | | * |
909 | | * @param [in] msp is a pointer to frwd_struct_t structure |
910 | | * |
911 | | */ |
912 | | static INLINE |
913 | | void frwd_read(frwd_struct_t *msp) |
914 | 0 | { |
915 | 0 | OPJ_UINT32 val; |
916 | 0 | OPJ_UINT32 bits; |
917 | 0 | OPJ_UINT32 t; |
918 | 0 | OPJ_BOOL unstuff; |
919 | |
|
920 | 0 | assert(msp->bits <= 32); // assert that there is a space for 32 bits |
921 | | |
922 | 0 | val = 0u; |
923 | 0 | if (msp->size > 3) { |
924 | 0 | val = read_le_uint32(msp->data); // read 32 bits |
925 | 0 | msp->data += 4; // increment pointer |
926 | 0 | msp->size -= 4; // reduce size |
927 | 0 | } else if (msp->size > 0) { |
928 | 0 | int i = 0; |
929 | 0 | val = msp->X != 0 ? 0xFFFFFFFFu : 0; |
930 | 0 | while (msp->size > 0) { |
931 | 0 | OPJ_UINT32 v = *msp->data++; // read one byte at a time |
932 | 0 | OPJ_UINT32 m = ~(0xFFu << i); // mask of location |
933 | 0 | val = (val & m) | (v << i); // put one byte in its correct location |
934 | 0 | --msp->size; |
935 | 0 | i += 8; |
936 | 0 | } |
937 | 0 | } else { |
938 | 0 | val = msp->X != 0 ? 0xFFFFFFFFu : 0; |
939 | 0 | } |
940 | | |
941 | | // we accumulate in t and keep a count of the number of bits in bits |
942 | 0 | bits = 8u - (msp->unstuff ? 1u : 0u); |
943 | 0 | t = val & 0xFF; |
944 | 0 | unstuff = ((val & 0xFF) == 0xFF); // Do we need unstuffing next? |
945 | |
|
946 | 0 | t |= ((val >> 8) & 0xFF) << bits; |
947 | 0 | bits += 8u - (unstuff ? 1u : 0u); |
948 | 0 | unstuff = (((val >> 8) & 0xFF) == 0xFF); |
949 | |
|
950 | 0 | t |= ((val >> 16) & 0xFF) << bits; |
951 | 0 | bits += 8u - (unstuff ? 1u : 0u); |
952 | 0 | unstuff = (((val >> 16) & 0xFF) == 0xFF); |
953 | |
|
954 | 0 | t |= ((val >> 24) & 0xFF) << bits; |
955 | 0 | bits += 8u - (unstuff ? 1u : 0u); |
956 | 0 | msp->unstuff = (((val >> 24) & 0xFF) == 0xFF); // for next byte |
957 | |
|
958 | 0 | msp->tmp |= ((OPJ_UINT64)t) << msp->bits; // move data to msp->tmp |
959 | 0 | msp->bits += bits; |
960 | 0 | } |
961 | | |
962 | | //************************************************************************/ |
963 | | /** @brief Initialize frwd_struct_t struct and reads some bytes |
964 | | * |
965 | | * @param [in] msp is a pointer to frwd_struct_t |
966 | | * @param [in] data is a pointer to the start of data |
967 | | * @param [in] size is the number of byte in the bitstream |
968 | | * @param [in] X is the value fed in when the bitstream is exhausted. |
969 | | * See frwd_read. |
970 | | */ |
971 | | static INLINE |
972 | | void frwd_init(frwd_struct_t *msp, const OPJ_UINT8* data, int size, |
973 | | OPJ_UINT32 X) |
974 | 0 | { |
975 | 0 | int num, i; |
976 | |
|
977 | 0 | msp->data = data; |
978 | 0 | msp->tmp = 0; |
979 | 0 | msp->bits = 0; |
980 | 0 | msp->unstuff = OPJ_FALSE; |
981 | 0 | msp->size = size; |
982 | 0 | msp->X = X; |
983 | 0 | assert(msp->X == 0 || msp->X == 0xFF); |
984 | | |
985 | | //This code is designed for an architecture that read address should |
986 | | // align to the read size (address multiple of 4 if read size is 4) |
987 | | //These few lines take care of the case where data is not at a multiple |
988 | | // of 4 boundary. It reads 1,2,3 up to 4 bytes from the bitstream |
989 | 0 | num = 4 - (int)((intptr_t)(msp->data) & 0x3); |
990 | 0 | for (i = 0; i < num; ++i) { |
991 | 0 | OPJ_UINT64 d; |
992 | | //read a byte if the buffer is not exhausted, otherwise set it to X |
993 | 0 | d = msp->size-- > 0 ? *msp->data++ : msp->X; |
994 | 0 | msp->tmp |= (d << msp->bits); // store data in msp->tmp |
995 | 0 | msp->bits += 8u - (msp->unstuff ? 1u : 0u); // number of bits added to msp->tmp |
996 | 0 | msp->unstuff = ((d & 0xFF) == 0xFF); // unstuffing for next byte |
997 | 0 | } |
998 | 0 | frwd_read(msp); // read 32 bits more |
999 | 0 | } |
1000 | | |
1001 | | //************************************************************************/ |
1002 | | /** @brief Consume num_bits bits from the bitstream of frwd_struct_t |
1003 | | * |
1004 | | * @param [in] msp is a pointer to frwd_struct_t |
1005 | | * @param [in] num_bits is the number of bit to consume |
1006 | | */ |
1007 | | static INLINE |
1008 | | void frwd_advance(frwd_struct_t *msp, OPJ_UINT32 num_bits) |
1009 | 0 | { |
1010 | 0 | assert(num_bits <= msp->bits); |
1011 | 0 | msp->tmp >>= num_bits; // consume num_bits |
1012 | 0 | msp->bits -= num_bits; |
1013 | 0 | } |
1014 | | |
1015 | | //************************************************************************/ |
1016 | | /** @brief Fetches 32 bits from the frwd_struct_t bitstream |
1017 | | * |
1018 | | * @param [in] msp is a pointer to frwd_struct_t |
1019 | | */ |
1020 | | static INLINE |
1021 | | OPJ_UINT32 frwd_fetch(frwd_struct_t *msp) |
1022 | 0 | { |
1023 | 0 | if (msp->bits < 32) { |
1024 | 0 | frwd_read(msp); |
1025 | 0 | if (msp->bits < 32) { //need to test |
1026 | 0 | frwd_read(msp); |
1027 | 0 | } |
1028 | 0 | } |
1029 | 0 | return (OPJ_UINT32)msp->tmp; |
1030 | 0 | } |
1031 | | |
1032 | | //************************************************************************/ |
1033 | | /** @brief Allocates T1 buffers |
1034 | | * |
1035 | | * @param [in, out] t1 is codeblock coefficients storage |
1036 | | * @param [in] w is codeblock width |
1037 | | * @param [in] h is codeblock height |
1038 | | */ |
1039 | | static OPJ_BOOL opj_t1_allocate_buffers( |
1040 | | opj_t1_t *t1, |
1041 | | OPJ_UINT32 w, |
1042 | | OPJ_UINT32 h) |
1043 | 0 | { |
1044 | 0 | OPJ_UINT32 flagssize; |
1045 | | |
1046 | | /* No risk of overflow. Prior checks ensure those assert are met */ |
1047 | | /* They are per the specification */ |
1048 | 0 | assert(w <= 1024); |
1049 | 0 | assert(h <= 1024); |
1050 | 0 | assert(w * h <= 4096); |
1051 | | |
1052 | | /* encoder uses tile buffer, so no need to allocate */ |
1053 | 0 | { |
1054 | 0 | OPJ_UINT32 datasize = w * h; |
1055 | |
|
1056 | 0 | if (datasize > t1->datasize) { |
1057 | 0 | opj_aligned_free(t1->data); |
1058 | 0 | t1->data = (OPJ_INT32*) |
1059 | 0 | opj_aligned_malloc(datasize * sizeof(OPJ_INT32)); |
1060 | 0 | if (!t1->data) { |
1061 | | /* FIXME event manager error callback */ |
1062 | 0 | return OPJ_FALSE; |
1063 | 0 | } |
1064 | 0 | t1->datasize = datasize; |
1065 | 0 | } |
1066 | | /* memset first arg is declared to never be null by gcc */ |
1067 | 0 | if (t1->data != NULL) { |
1068 | 0 | memset(t1->data, 0, datasize * sizeof(OPJ_INT32)); |
1069 | 0 | } |
1070 | 0 | } |
1071 | | |
1072 | | // We expand these buffers to multiples of 16 bytes. |
1073 | | // We need 4 buffers of 129 integers each, expanded to 132 integers each |
1074 | | // We also need 514 bytes of buffer, expanded to 528 bytes |
1075 | 0 | flagssize = 132U * sizeof(OPJ_UINT32) * 4U; // expanded to multiple of 16 |
1076 | 0 | flagssize += 528U; // 514 expanded to multiples of 16 |
1077 | |
|
1078 | 0 | { |
1079 | 0 | if (flagssize > t1->flagssize) { |
1080 | |
|
1081 | 0 | opj_aligned_free(t1->flags); |
1082 | 0 | t1->flags = (opj_flag_t*) opj_aligned_malloc(flagssize * sizeof(opj_flag_t)); |
1083 | 0 | if (!t1->flags) { |
1084 | | /* FIXME event manager error callback */ |
1085 | 0 | return OPJ_FALSE; |
1086 | 0 | } |
1087 | 0 | } |
1088 | 0 | t1->flagssize = flagssize; |
1089 | |
|
1090 | 0 | memset(t1->flags, 0, flagssize * sizeof(opj_flag_t)); |
1091 | 0 | } |
1092 | | |
1093 | 0 | t1->w = w; |
1094 | 0 | t1->h = h; |
1095 | |
|
1096 | 0 | return OPJ_TRUE; |
1097 | 0 | } |
1098 | | |
1099 | | /** |
1100 | | Decode 1 HT code-block |
1101 | | @param t1 T1 handle |
1102 | | @param cblk Code-block coding parameters |
1103 | | @param orient |
1104 | | @param roishift Region of interest shifting value |
1105 | | @param cblksty Code-block style |
1106 | | @param p_manager the event manager |
1107 | | @param p_manager_mutex mutex for the event manager |
1108 | | @param check_pterm whether PTERM correct termination should be checked |
1109 | | */ |
1110 | | OPJ_BOOL opj_t1_ht_decode_cblk(opj_t1_t *t1, |
1111 | | opj_tcd_cblk_dec_t* cblk, |
1112 | | OPJ_UINT32 orient, |
1113 | | OPJ_UINT32 roishift, |
1114 | | OPJ_UINT32 cblksty, |
1115 | | opj_event_mgr_t *p_manager, |
1116 | | opj_mutex_t* p_manager_mutex, |
1117 | | OPJ_BOOL check_pterm); |
1118 | | |
1119 | | //************************************************************************/ |
1120 | | /** @brief Decodes one codeblock, processing the cleanup, siginificance |
1121 | | * propagation, and magnitude refinement pass |
1122 | | * |
1123 | | * @param [in, out] t1 is codeblock coefficients storage |
1124 | | * @param [in] cblk is codeblock properties |
1125 | | * @param [in] orient is the subband to which the codeblock belongs (not needed) |
1126 | | * @param [in] roishift is region of interest shift |
1127 | | * @param [in] cblksty is codeblock style |
1128 | | * @param [in] p_manager is events print manager |
1129 | | * @param [in] p_manager_mutex a mutex to control access to p_manager |
1130 | | * @param [in] check_pterm: check termination (not used) |
1131 | | */ |
1132 | | OPJ_BOOL opj_t1_ht_decode_cblk(opj_t1_t *t1, |
1133 | | opj_tcd_cblk_dec_t* cblk, |
1134 | | OPJ_UINT32 orient, |
1135 | | OPJ_UINT32 roishift, |
1136 | | OPJ_UINT32 cblksty, |
1137 | | opj_event_mgr_t *p_manager, |
1138 | | opj_mutex_t* p_manager_mutex, |
1139 | | OPJ_BOOL check_pterm) |
1140 | 0 | { |
1141 | 0 | OPJ_BYTE* cblkdata = NULL; |
1142 | 0 | OPJ_UINT8* coded_data; |
1143 | 0 | OPJ_UINT32* decoded_data; |
1144 | 0 | OPJ_UINT32 zero_bplanes; |
1145 | 0 | OPJ_UINT32 num_passes; |
1146 | 0 | OPJ_UINT32 lengths1; |
1147 | 0 | OPJ_UINT32 lengths2; |
1148 | 0 | OPJ_INT32 width; |
1149 | 0 | OPJ_INT32 height; |
1150 | 0 | OPJ_INT32 stride; |
1151 | 0 | OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift; |
1152 | 0 | OPJ_UINT32 p; |
1153 | 0 | OPJ_UINT32 zero_bplanes_p1; |
1154 | 0 | int lcup, scup; |
1155 | 0 | dec_mel_t mel; |
1156 | 0 | rev_struct_t vlc; |
1157 | 0 | frwd_struct_t magsgn; |
1158 | 0 | frwd_struct_t sigprop; |
1159 | 0 | rev_struct_t magref; |
1160 | 0 | OPJ_UINT8 *lsp, *line_state; |
1161 | 0 | int run; |
1162 | 0 | OPJ_UINT32 vlc_val; // fetched data from VLC bitstream |
1163 | 0 | OPJ_UINT32 qinf[2]; |
1164 | 0 | OPJ_UINT32 c_q; |
1165 | 0 | OPJ_UINT32* sp; |
1166 | 0 | OPJ_INT32 x, y; // loop indices |
1167 | 0 | OPJ_BOOL stripe_causal = (cblksty & J2K_CCP_CBLKSTY_VSC) != 0; |
1168 | 0 | OPJ_UINT32 cblk_len = 0; |
1169 | |
|
1170 | 0 | (void)(orient); // stops unused parameter message |
1171 | 0 | (void)(check_pterm); // stops unused parameter message |
1172 | | |
1173 | | // We ignor orient, because the same decoder is used for all subbands |
1174 | | // We also ignore check_pterm, because I am not sure how it applies |
1175 | 0 | if (roishift != 0) { |
1176 | 0 | if (p_manager_mutex) { |
1177 | 0 | opj_mutex_lock(p_manager_mutex); |
1178 | 0 | } |
1179 | 0 | opj_event_msg(p_manager, EVT_ERROR, "We do not support ROI in decoding " |
1180 | 0 | "HT codeblocks\n"); |
1181 | 0 | if (p_manager_mutex) { |
1182 | 0 | opj_mutex_unlock(p_manager_mutex); |
1183 | 0 | } |
1184 | 0 | return OPJ_FALSE; |
1185 | 0 | } |
1186 | | |
1187 | 0 | if (!opj_t1_allocate_buffers( |
1188 | 0 | t1, |
1189 | 0 | (OPJ_UINT32)(cblk->x1 - cblk->x0), |
1190 | 0 | (OPJ_UINT32)(cblk->y1 - cblk->y0))) { |
1191 | 0 | return OPJ_FALSE; |
1192 | 0 | } |
1193 | | |
1194 | 0 | if (cblk->Mb == 0) { |
1195 | 0 | return OPJ_TRUE; |
1196 | 0 | } |
1197 | | |
1198 | | /* numbps = Mb + 1 - zero_bplanes, Mb = Kmax, zero_bplanes = missing_msbs */ |
1199 | 0 | zero_bplanes = (cblk->Mb + 1) - cblk->numbps; |
1200 | | |
1201 | | /* Compute whole codeblock length from chunk lengths */ |
1202 | 0 | cblk_len = 0; |
1203 | 0 | { |
1204 | 0 | OPJ_UINT32 i; |
1205 | 0 | for (i = 0; i < cblk->numchunks; i++) { |
1206 | 0 | cblk_len += cblk->chunks[i].len; |
1207 | 0 | } |
1208 | 0 | } |
1209 | |
|
1210 | 0 | if (cblk->numchunks > 1 || t1->mustuse_cblkdatabuffer) { |
1211 | 0 | OPJ_UINT32 i; |
1212 | | |
1213 | | /* Allocate temporary memory if needed */ |
1214 | 0 | if (cblk_len > t1->cblkdatabuffersize) { |
1215 | 0 | cblkdata = (OPJ_BYTE*)opj_realloc( |
1216 | 0 | t1->cblkdatabuffer, cblk_len); |
1217 | 0 | if (cblkdata == NULL) { |
1218 | 0 | return OPJ_FALSE; |
1219 | 0 | } |
1220 | 0 | t1->cblkdatabuffer = cblkdata; |
1221 | 0 | t1->cblkdatabuffersize = cblk_len; |
1222 | 0 | } |
1223 | | |
1224 | | /* Concatenate all chunks */ |
1225 | 0 | cblkdata = t1->cblkdatabuffer; |
1226 | 0 | if (cblkdata == NULL) { |
1227 | 0 | return OPJ_FALSE; |
1228 | 0 | } |
1229 | 0 | cblk_len = 0; |
1230 | 0 | for (i = 0; i < cblk->numchunks; i++) { |
1231 | 0 | memcpy(cblkdata + cblk_len, cblk->chunks[i].data, cblk->chunks[i].len); |
1232 | 0 | cblk_len += cblk->chunks[i].len; |
1233 | 0 | } |
1234 | 0 | } else if (cblk->numchunks == 1) { |
1235 | 0 | cblkdata = cblk->chunks[0].data; |
1236 | 0 | } else { |
1237 | | /* Not sure if that can happen in practice, but avoid Coverity to */ |
1238 | | /* think we will dereference a null cblkdta pointer */ |
1239 | 0 | return OPJ_TRUE; |
1240 | 0 | } |
1241 | | |
1242 | | // OPJ_BYTE* coded_data is a pointer to bitstream |
1243 | 0 | coded_data = cblkdata; |
1244 | | // OPJ_UINT32* decoded_data is a pointer to decoded codeblock data buf. |
1245 | 0 | decoded_data = (OPJ_UINT32*)t1->data; |
1246 | | // OPJ_UINT32 num_passes is the number of passes: 1 if CUP only, 2 for |
1247 | | // CUP+SPP, and 3 for CUP+SPP+MRP |
1248 | 0 | num_passes = cblk->numsegs > 0 ? cblk->segs[0].real_num_passes : 0; |
1249 | 0 | num_passes += cblk->numsegs > 1 ? cblk->segs[1].real_num_passes : 0; |
1250 | | // OPJ_UINT32 lengths1 is the length of cleanup pass |
1251 | 0 | lengths1 = num_passes > 0 ? cblk->segs[0].len : 0; |
1252 | | // OPJ_UINT32 lengths2 is the length of refinement passes (either SPP only or SPP+MRP) |
1253 | 0 | lengths2 = num_passes > 1 ? cblk->segs[1].len : 0; |
1254 | | // OPJ_INT32 width is the decoded codeblock width |
1255 | 0 | width = cblk->x1 - cblk->x0; |
1256 | | // OPJ_INT32 height is the decoded codeblock height |
1257 | 0 | height = cblk->y1 - cblk->y0; |
1258 | | // OPJ_INT32 stride is the decoded codeblock buffer stride |
1259 | 0 | stride = width; |
1260 | | |
1261 | | /* sigma1 and sigma2 contains significant (i.e., non-zero) pixel |
1262 | | * locations. The buffers are used interchangeably, because we need |
1263 | | * more than 4 rows of significance information at a given time. |
1264 | | * Each 32 bits contain significance information for 4 rows of 8 |
1265 | | * columns each. If we denote 32 bits by 0xaaaaaaaa, the each "a" is |
1266 | | * called a nibble and has significance information for 4 rows. |
1267 | | * The least significant nibble has information for the first column, |
1268 | | * and so on. The nibble's LSB is for the first row, and so on. |
1269 | | * Since, at most, we can have 1024 columns in a quad, we need 128 |
1270 | | * entries; we added 1 for convenience when propagation of signifcance |
1271 | | * goes outside the structure |
1272 | | * To work in OpenJPEG these buffers has been expanded to 132. |
1273 | | */ |
1274 | | // OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift; |
1275 | 0 | pflags = (OPJ_UINT32 *)t1->flags; |
1276 | 0 | sigma1 = pflags; |
1277 | 0 | sigma2 = sigma1 + 132; |
1278 | | // mbr arrangement is similar to sigma; mbr contains locations |
1279 | | // that become significant during significance propagation pass |
1280 | 0 | mbr1 = sigma2 + 132; |
1281 | 0 | mbr2 = mbr1 + 132; |
1282 | | //a pointer to sigma |
1283 | 0 | sip = sigma1; //pointers to arrays to be used interchangeably |
1284 | 0 | sip_shift = 0; //the amount of shift needed for sigma |
1285 | |
|
1286 | 0 | if (num_passes > 1 && lengths2 == 0) { |
1287 | 0 | if (p_manager_mutex) { |
1288 | 0 | opj_mutex_lock(p_manager_mutex); |
1289 | 0 | } |
1290 | 0 | opj_event_msg(p_manager, EVT_WARNING, "A malformed codeblock that has " |
1291 | 0 | "more than one coding pass, but zero length for " |
1292 | 0 | "2nd and potentially the 3rd pass in an HT codeblock.\n"); |
1293 | 0 | if (p_manager_mutex) { |
1294 | 0 | opj_mutex_unlock(p_manager_mutex); |
1295 | 0 | } |
1296 | 0 | num_passes = 1; |
1297 | 0 | } |
1298 | 0 | if (num_passes > 3) { |
1299 | 0 | if (p_manager_mutex) { |
1300 | 0 | opj_mutex_lock(p_manager_mutex); |
1301 | 0 | } |
1302 | 0 | opj_event_msg(p_manager, EVT_ERROR, "We do not support more than 3 " |
1303 | 0 | "coding passes in an HT codeblock; This codeblocks has " |
1304 | 0 | "%d passes.\n", num_passes); |
1305 | 0 | if (p_manager_mutex) { |
1306 | 0 | opj_mutex_unlock(p_manager_mutex); |
1307 | 0 | } |
1308 | 0 | return OPJ_FALSE; |
1309 | 0 | } |
1310 | | |
1311 | 0 | if (cblk->Mb > 30) { |
1312 | | /* This check is better moved to opj_t2_read_packet_header() in t2.c |
1313 | | We do not have enough precision to decode any passes |
1314 | | The design of openjpeg assumes that the bits of a 32-bit integer are |
1315 | | assigned as follows: |
1316 | | bit 31 is for sign |
1317 | | bits 30-1 are for magnitude |
1318 | | bit 0 is for the center of the quantization bin |
1319 | | Therefore we can only do values of cblk->Mb <= 30 |
1320 | | */ |
1321 | 0 | if (p_manager_mutex) { |
1322 | 0 | opj_mutex_lock(p_manager_mutex); |
1323 | 0 | } |
1324 | 0 | opj_event_msg(p_manager, EVT_ERROR, "32 bits are not enough to " |
1325 | 0 | "decode this codeblock, since the number of " |
1326 | 0 | "bitplane, %d, is larger than 30.\n", cblk->Mb); |
1327 | 0 | if (p_manager_mutex) { |
1328 | 0 | opj_mutex_unlock(p_manager_mutex); |
1329 | 0 | } |
1330 | 0 | return OPJ_FALSE; |
1331 | 0 | } |
1332 | 0 | if (zero_bplanes > cblk->Mb) { |
1333 | | /* This check is better moved to opj_t2_read_packet_header() in t2.c, |
1334 | | in the line "l_cblk->numbps = (OPJ_UINT32)l_band->numbps + 1 - i;" |
1335 | | where i is the zero bitplanes, and should be no larger than cblk->Mb |
1336 | | We cannot have more zero bitplanes than there are planes. */ |
1337 | 0 | if (p_manager_mutex) { |
1338 | 0 | opj_mutex_lock(p_manager_mutex); |
1339 | 0 | } |
1340 | 0 | opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " |
1341 | 0 | "Decoding this codeblock is stopped. There are " |
1342 | 0 | "%d zero bitplanes in %d bitplanes.\n", |
1343 | 0 | zero_bplanes, cblk->Mb); |
1344 | |
|
1345 | 0 | if (p_manager_mutex) { |
1346 | 0 | opj_mutex_unlock(p_manager_mutex); |
1347 | 0 | } |
1348 | 0 | return OPJ_FALSE; |
1349 | 0 | } else if (zero_bplanes == cblk->Mb && num_passes > 1) { |
1350 | | /* When the number of zero bitplanes is equal to the number of bitplanes, |
1351 | | only the cleanup pass makes sense*/ |
1352 | 0 | if (only_cleanup_pass_is_decoded == OPJ_FALSE) { |
1353 | 0 | if (p_manager_mutex) { |
1354 | 0 | opj_mutex_lock(p_manager_mutex); |
1355 | 0 | } |
1356 | | /* We have a second check to prevent the possibility of an overrun condition, |
1357 | | in the very unlikely event of a second thread discovering that |
1358 | | only_cleanup_pass_is_decoded is false before the first thread changing |
1359 | | the condition. */ |
1360 | 0 | if (only_cleanup_pass_is_decoded == OPJ_FALSE) { |
1361 | 0 | only_cleanup_pass_is_decoded = OPJ_TRUE; |
1362 | 0 | opj_event_msg(p_manager, EVT_WARNING, "Malformed HT codeblock. " |
1363 | 0 | "When the number of zero planes bitplanes is " |
1364 | 0 | "equal to the number of bitplanes, only the cleanup " |
1365 | 0 | "pass makes sense, but we have %d passes in this " |
1366 | 0 | "codeblock. Therefore, only the cleanup pass will be " |
1367 | 0 | "decoded. This message will not be displayed again.\n", |
1368 | 0 | num_passes); |
1369 | 0 | } |
1370 | 0 | if (p_manager_mutex) { |
1371 | 0 | opj_mutex_unlock(p_manager_mutex); |
1372 | 0 | } |
1373 | 0 | } |
1374 | 0 | num_passes = 1; |
1375 | 0 | } |
1376 | | |
1377 | | /* OPJ_UINT32 */ |
1378 | 0 | p = cblk->numbps; |
1379 | | |
1380 | | // OPJ_UINT32 zero planes plus 1 |
1381 | 0 | zero_bplanes_p1 = zero_bplanes + 1; |
1382 | |
|
1383 | 0 | if (lengths1 < 2 || (OPJ_UINT32)lengths1 > cblk_len || |
1384 | 0 | (OPJ_UINT32)(lengths1 + lengths2) > cblk_len) { |
1385 | 0 | if (p_manager_mutex) { |
1386 | 0 | opj_mutex_lock(p_manager_mutex); |
1387 | 0 | } |
1388 | 0 | opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " |
1389 | 0 | "Invalid codeblock length values.\n"); |
1390 | |
|
1391 | 0 | if (p_manager_mutex) { |
1392 | 0 | opj_mutex_unlock(p_manager_mutex); |
1393 | 0 | } |
1394 | 0 | return OPJ_FALSE; |
1395 | 0 | } |
1396 | | // read scup and fix the bytes there |
1397 | 0 | lcup = (int)lengths1; // length of CUP |
1398 | | //scup is the length of MEL + VLC |
1399 | 0 | scup = (((int)coded_data[lcup - 1]) << 4) + (coded_data[lcup - 2] & 0xF); |
1400 | 0 | if (scup < 2 || scup > lcup || scup > 4079) { //something is wrong |
1401 | | /* The standard stipulates 2 <= Scup <= min(Lcup, 4079) */ |
1402 | 0 | if (p_manager_mutex) { |
1403 | 0 | opj_mutex_lock(p_manager_mutex); |
1404 | 0 | } |
1405 | 0 | opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " |
1406 | 0 | "One of the following condition is not met: " |
1407 | 0 | "2 <= Scup <= min(Lcup, 4079)\n"); |
1408 | |
|
1409 | 0 | if (p_manager_mutex) { |
1410 | 0 | opj_mutex_unlock(p_manager_mutex); |
1411 | 0 | } |
1412 | 0 | return OPJ_FALSE; |
1413 | 0 | } |
1414 | | |
1415 | | // init structures |
1416 | 0 | if (mel_init(&mel, coded_data, lcup, scup) == OPJ_FALSE) { |
1417 | 0 | if (p_manager_mutex) { |
1418 | 0 | opj_mutex_lock(p_manager_mutex); |
1419 | 0 | } |
1420 | 0 | opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " |
1421 | 0 | "Incorrect MEL segment sequence.\n"); |
1422 | 0 | if (p_manager_mutex) { |
1423 | 0 | opj_mutex_unlock(p_manager_mutex); |
1424 | 0 | } |
1425 | 0 | return OPJ_FALSE; |
1426 | 0 | } |
1427 | 0 | rev_init(&vlc, coded_data, lcup, scup); |
1428 | 0 | frwd_init(&magsgn, coded_data, lcup - scup, 0xFF); |
1429 | 0 | if (num_passes > 1) { // needs to be tested |
1430 | 0 | frwd_init(&sigprop, coded_data + lengths1, (int)lengths2, 0); |
1431 | 0 | } |
1432 | 0 | if (num_passes > 2) { |
1433 | 0 | rev_init_mrp(&magref, coded_data, (int)lengths1, (int)lengths2); |
1434 | 0 | } |
1435 | | |
1436 | | /** State storage |
1437 | | * One byte per quad; for 1024 columns, or 512 quads, we need |
1438 | | * 512 bytes. We are using 2 extra bytes one on the left and one on |
1439 | | * the right for convenience. |
1440 | | * |
1441 | | * The MSB bit in each byte is (\sigma^nw | \sigma^n), and the 7 LSBs |
1442 | | * contain max(E^nw | E^n) |
1443 | | */ |
1444 | | |
1445 | | // 514 is enough for a block width of 1024, +2 extra |
1446 | | // here expanded to 528 |
1447 | 0 | line_state = (OPJ_UINT8 *)(mbr2 + 132); |
1448 | | |
1449 | | //initial 2 lines |
1450 | | ///////////////// |
1451 | 0 | lsp = line_state; // point to line state |
1452 | 0 | lsp[0] = 0; // for initial row of quad, we set to 0 |
1453 | 0 | run = mel_get_run(&mel); // decode runs of events from MEL bitstrm |
1454 | | // data represented as runs of 0 events |
1455 | | // See mel_decode description |
1456 | 0 | qinf[0] = qinf[1] = 0; // quad info decoded from VLC bitstream |
1457 | 0 | c_q = 0; // context for quad q |
1458 | 0 | sp = decoded_data; // decoded codeblock samples |
1459 | | // vlc_val; // fetched data from VLC bitstream |
1460 | |
|
1461 | 0 | for (x = 0; x < width; x += 4) { // one iteration per quad pair |
1462 | 0 | OPJ_UINT32 U_q[2]; // u values for the quad pair |
1463 | 0 | OPJ_UINT32 uvlc_mode; |
1464 | 0 | OPJ_UINT32 consumed_bits; |
1465 | 0 | OPJ_UINT32 m_n, v_n; |
1466 | 0 | OPJ_UINT32 ms_val; |
1467 | 0 | OPJ_UINT32 locs; |
1468 | | |
1469 | | // decode VLC |
1470 | | ///////////// |
1471 | | |
1472 | | //first quad |
1473 | | // Get the head of the VLC bitstream. One fetch is enough for two |
1474 | | // quads, since the largest VLC code is 7 bits, and maximum number of |
1475 | | // bits used for u is 8. Therefore for two quads we need 30 bits |
1476 | | // (if we include unstuffing, then 32 bits are enough, since we have |
1477 | | // a maximum of one stuffing per two bytes) |
1478 | 0 | vlc_val = rev_fetch(&vlc); |
1479 | | |
1480 | | //decode VLC using the context c_q and the head of the VLC bitstream |
1481 | 0 | qinf[0] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F) ]; |
1482 | |
|
1483 | 0 | if (c_q == 0) { // if zero context, we need to use one MEL event |
1484 | 0 | run -= 2; //the number of 0 events is multiplied by 2, so subtract 2 |
1485 | | |
1486 | | // Is the run terminated in 1? if so, use decoded VLC code, |
1487 | | // otherwise, discard decoded data, since we will decoded again |
1488 | | // using a different context |
1489 | 0 | qinf[0] = (run == -1) ? qinf[0] : 0; |
1490 | | |
1491 | | // is run -1 or -2? this means a run has been consumed |
1492 | 0 | if (run < 0) { |
1493 | 0 | run = mel_get_run(&mel); // get another run |
1494 | 0 | } |
1495 | 0 | } |
1496 | | |
1497 | | // prepare context for the next quad; eqn. 1 in ITU T.814 |
1498 | 0 | c_q = ((qinf[0] & 0x10) >> 4) | ((qinf[0] & 0xE0) >> 5); |
1499 | | |
1500 | | //remove data from vlc stream (0 bits are removed if qinf is not used) |
1501 | 0 | vlc_val = rev_advance(&vlc, qinf[0] & 0x7); |
1502 | | |
1503 | | //update sigma |
1504 | | // The update depends on the value of x; consider one OPJ_UINT32 |
1505 | | // if x is 0, 8, 16 and so on, then this line update c locations |
1506 | | // nibble (4 bits) number 0 1 2 3 4 5 6 7 |
1507 | | // LSB c c 0 0 0 0 0 0 |
1508 | | // c c 0 0 0 0 0 0 |
1509 | | // 0 0 0 0 0 0 0 0 |
1510 | | // 0 0 0 0 0 0 0 0 |
1511 | | // if x is 4, 12, 20, then this line update locations c |
1512 | | // nibble (4 bits) number 0 1 2 3 4 5 6 7 |
1513 | | // LSB 0 0 0 0 c c 0 0 |
1514 | | // 0 0 0 0 c c 0 0 |
1515 | | // 0 0 0 0 0 0 0 0 |
1516 | | // 0 0 0 0 0 0 0 0 |
1517 | 0 | *sip |= (((qinf[0] & 0x30) >> 4) | ((qinf[0] & 0xC0) >> 2)) << sip_shift; |
1518 | | |
1519 | | //second quad |
1520 | 0 | qinf[1] = 0; |
1521 | 0 | if (x + 2 < width) { // do not run if codeblock is narrower |
1522 | | //decode VLC using the context c_q and the head of the VLC bitstream |
1523 | 0 | qinf[1] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F)]; |
1524 | | |
1525 | | // if context is zero, use one MEL event |
1526 | 0 | if (c_q == 0) { //zero context |
1527 | 0 | run -= 2; //subtract 2, since events number if multiplied by 2 |
1528 | | |
1529 | | // if event is 0, discard decoded qinf |
1530 | 0 | qinf[1] = (run == -1) ? qinf[1] : 0; |
1531 | |
|
1532 | 0 | if (run < 0) { // have we consumed all events in a run |
1533 | 0 | run = mel_get_run(&mel); // if yes, then get another run |
1534 | 0 | } |
1535 | 0 | } |
1536 | | |
1537 | | //prepare context for the next quad, eqn. 1 in ITU T.814 |
1538 | 0 | c_q = ((qinf[1] & 0x10) >> 4) | ((qinf[1] & 0xE0) >> 5); |
1539 | | |
1540 | | //remove data from vlc stream, if qinf is not used, cwdlen is 0 |
1541 | 0 | vlc_val = rev_advance(&vlc, qinf[1] & 0x7); |
1542 | 0 | } |
1543 | | |
1544 | | //update sigma |
1545 | | // The update depends on the value of x; consider one OPJ_UINT32 |
1546 | | // if x is 0, 8, 16 and so on, then this line update c locations |
1547 | | // nibble (4 bits) number 0 1 2 3 4 5 6 7 |
1548 | | // LSB 0 0 c c 0 0 0 0 |
1549 | | // 0 0 c c 0 0 0 0 |
1550 | | // 0 0 0 0 0 0 0 0 |
1551 | | // 0 0 0 0 0 0 0 0 |
1552 | | // if x is 4, 12, 20, then this line update locations c |
1553 | | // nibble (4 bits) number 0 1 2 3 4 5 6 7 |
1554 | | // LSB 0 0 0 0 0 0 c c |
1555 | | // 0 0 0 0 0 0 c c |
1556 | | // 0 0 0 0 0 0 0 0 |
1557 | | // 0 0 0 0 0 0 0 0 |
1558 | 0 | *sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0) << 2))) << (4 + sip_shift); |
1559 | |
|
1560 | 0 | sip += x & 0x7 ? 1 : 0; // move sigma pointer to next entry |
1561 | 0 | sip_shift ^= 0x10; // increment/decrement sip_shift by 16 |
1562 | | |
1563 | | // retrieve u |
1564 | | ///////////// |
1565 | | |
1566 | | // uvlc_mode is made up of u_offset bits from the quad pair |
1567 | 0 | uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2); |
1568 | 0 | if (uvlc_mode == 3) { // if both u_offset are set, get an event from |
1569 | | // the MEL run of events |
1570 | 0 | run -= 2; //subtract 2, since events number if multiplied by 2 |
1571 | 0 | uvlc_mode += (run == -1) ? 1 : 0; //increment uvlc_mode if event is 1 |
1572 | 0 | if (run < 0) { // if run is consumed (run is -1 or -2), get another run |
1573 | 0 | run = mel_get_run(&mel); |
1574 | 0 | } |
1575 | 0 | } |
1576 | | //decode uvlc_mode to get u for both quads |
1577 | 0 | consumed_bits = decode_init_uvlc(vlc_val, uvlc_mode, U_q); |
1578 | 0 | if (U_q[0] > zero_bplanes_p1 || U_q[1] > zero_bplanes_p1) { |
1579 | 0 | if (p_manager_mutex) { |
1580 | 0 | opj_mutex_lock(p_manager_mutex); |
1581 | 0 | } |
1582 | 0 | opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. Decoding " |
1583 | 0 | "this codeblock is stopped. U_q is larger than zero " |
1584 | 0 | "bitplanes + 1 \n"); |
1585 | 0 | if (p_manager_mutex) { |
1586 | 0 | opj_mutex_unlock(p_manager_mutex); |
1587 | 0 | } |
1588 | 0 | return OPJ_FALSE; |
1589 | 0 | } |
1590 | | |
1591 | | //consume u bits in the VLC code |
1592 | 0 | vlc_val = rev_advance(&vlc, consumed_bits); |
1593 | | |
1594 | | //decode magsgn and update line_state |
1595 | | ///////////////////////////////////// |
1596 | | |
1597 | | //We obtain a mask for the samples locations that needs evaluation |
1598 | 0 | locs = 0xFF; |
1599 | 0 | if (x + 4 > width) { |
1600 | 0 | locs >>= (x + 4 - width) << 1; // limits width |
1601 | 0 | } |
1602 | 0 | locs = height > 1 ? locs : (locs & 0x55); // limits height |
1603 | |
|
1604 | 0 | if ((((qinf[0] & 0xF0) >> 4) | (qinf[1] & 0xF0)) & ~locs) { |
1605 | 0 | if (p_manager_mutex) { |
1606 | 0 | opj_mutex_lock(p_manager_mutex); |
1607 | 0 | } |
1608 | 0 | opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " |
1609 | 0 | "VLC code produces significant samples outside " |
1610 | 0 | "the codeblock area.\n"); |
1611 | 0 | if (p_manager_mutex) { |
1612 | 0 | opj_mutex_unlock(p_manager_mutex); |
1613 | 0 | } |
1614 | 0 | return OPJ_FALSE; |
1615 | 0 | } |
1616 | | |
1617 | | //first quad, starting at first sample in quad and moving on |
1618 | 0 | if (qinf[0] & 0x10) { //is it significant? (sigma_n) |
1619 | 0 | OPJ_UINT32 val; |
1620 | |
|
1621 | 0 | ms_val = frwd_fetch(&magsgn); //get 32 bits of magsgn data |
1622 | 0 | m_n = U_q[0] - ((qinf[0] >> 12) & 1); //evaluate m_n (number of bits |
1623 | | // to read from bitstream), using EMB e_k |
1624 | 0 | frwd_advance(&magsgn, m_n); //consume m_n |
1625 | 0 | val = ms_val << 31; //get sign bit |
1626 | 0 | v_n = ms_val & ((1U << m_n) - 1); //keep only m_n bits |
1627 | 0 | v_n |= ((qinf[0] & 0x100) >> 8) << m_n; //add EMB e_1 as MSB |
1628 | 0 | v_n |= 1; //add center of bin |
1629 | | //v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit |
1630 | | //add 2 to make it 2*\mu+0.5, shift it up to missing MSBs |
1631 | 0 | sp[0] = val | ((v_n + 2) << (p - 1)); |
1632 | 0 | } else if (locs & 0x1) { // if this is inside the codeblock, set the |
1633 | 0 | sp[0] = 0; // sample to zero |
1634 | 0 | } |
1635 | |
|
1636 | 0 | if (qinf[0] & 0x20) { //sigma_n |
1637 | 0 | OPJ_UINT32 val, t; |
1638 | |
|
1639 | 0 | ms_val = frwd_fetch(&magsgn); //get 32 bits |
1640 | 0 | m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n, uses EMB e_k |
1641 | 0 | frwd_advance(&magsgn, m_n); //consume m_n |
1642 | 0 | val = ms_val << 31; //get sign bit |
1643 | 0 | v_n = ms_val & ((1U << m_n) - 1); //keep only m_n bits |
1644 | 0 | v_n |= ((qinf[0] & 0x200) >> 9) << m_n; //add EMB e_1 |
1645 | 0 | v_n |= 1; //bin center |
1646 | | //v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit |
1647 | | //add 2 to make it 2*\mu+0.5, shift it up to missing MSBs |
1648 | 0 | sp[stride] = val | ((v_n + 2) << (p - 1)); |
1649 | | |
1650 | | //update line_state: bit 7 (\sigma^N), and E^N |
1651 | 0 | t = lsp[0] & 0x7F; // keep E^NW |
1652 | 0 | v_n = 32 - count_leading_zeros(v_n); |
1653 | 0 | lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s |
1654 | 0 | } else if (locs & 0x2) { // if this is inside the codeblock, set the |
1655 | 0 | sp[stride] = 0; // sample to zero |
1656 | 0 | } |
1657 | |
|
1658 | 0 | ++lsp; // move to next quad information |
1659 | 0 | ++sp; // move to next column of samples |
1660 | | |
1661 | | //this is similar to the above two samples |
1662 | 0 | if (qinf[0] & 0x40) { |
1663 | 0 | OPJ_UINT32 val; |
1664 | |
|
1665 | 0 | ms_val = frwd_fetch(&magsgn); |
1666 | 0 | m_n = U_q[0] - ((qinf[0] >> 14) & 1); |
1667 | 0 | frwd_advance(&magsgn, m_n); |
1668 | 0 | val = ms_val << 31; |
1669 | 0 | v_n = ms_val & ((1U << m_n) - 1); |
1670 | 0 | v_n |= (((qinf[0] & 0x400) >> 10) << m_n); |
1671 | 0 | v_n |= 1; |
1672 | 0 | sp[0] = val | ((v_n + 2) << (p - 1)); |
1673 | 0 | } else if (locs & 0x4) { |
1674 | 0 | sp[0] = 0; |
1675 | 0 | } |
1676 | |
|
1677 | 0 | lsp[0] = 0; |
1678 | 0 | if (qinf[0] & 0x80) { |
1679 | 0 | OPJ_UINT32 val; |
1680 | 0 | ms_val = frwd_fetch(&magsgn); |
1681 | 0 | m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n |
1682 | 0 | frwd_advance(&magsgn, m_n); |
1683 | 0 | val = ms_val << 31; |
1684 | 0 | v_n = ms_val & ((1U << m_n) - 1); |
1685 | 0 | v_n |= ((qinf[0] & 0x800) >> 11) << m_n; |
1686 | 0 | v_n |= 1; //center of bin |
1687 | 0 | sp[stride] = val | ((v_n + 2) << (p - 1)); |
1688 | | |
1689 | | //line_state: bit 7 (\sigma^NW), and E^NW for next quad |
1690 | 0 | lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); |
1691 | 0 | } else if (locs & 0x8) { //if outside set to 0 |
1692 | 0 | sp[stride] = 0; |
1693 | 0 | } |
1694 | |
|
1695 | 0 | ++sp; //move to next column |
1696 | | |
1697 | | //second quad |
1698 | 0 | if (qinf[1] & 0x10) { |
1699 | 0 | OPJ_UINT32 val; |
1700 | |
|
1701 | 0 | ms_val = frwd_fetch(&magsgn); |
1702 | 0 | m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n |
1703 | 0 | frwd_advance(&magsgn, m_n); |
1704 | 0 | val = ms_val << 31; |
1705 | 0 | v_n = ms_val & ((1U << m_n) - 1); |
1706 | 0 | v_n |= (((qinf[1] & 0x100) >> 8) << m_n); |
1707 | 0 | v_n |= 1; |
1708 | 0 | sp[0] = val | ((v_n + 2) << (p - 1)); |
1709 | 0 | } else if (locs & 0x10) { |
1710 | 0 | sp[0] = 0; |
1711 | 0 | } |
1712 | |
|
1713 | 0 | if (qinf[1] & 0x20) { |
1714 | 0 | OPJ_UINT32 val, t; |
1715 | |
|
1716 | 0 | ms_val = frwd_fetch(&magsgn); |
1717 | 0 | m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n |
1718 | 0 | frwd_advance(&magsgn, m_n); |
1719 | 0 | val = ms_val << 31; |
1720 | 0 | v_n = ms_val & ((1U << m_n) - 1); |
1721 | 0 | v_n |= (((qinf[1] & 0x200) >> 9) << m_n); |
1722 | 0 | v_n |= 1; |
1723 | 0 | sp[stride] = val | ((v_n + 2) << (p - 1)); |
1724 | | |
1725 | | //update line_state: bit 7 (\sigma^N), and E^N |
1726 | 0 | t = lsp[0] & 0x7F; //E^NW |
1727 | 0 | v_n = 32 - count_leading_zeros(v_n); //E^N |
1728 | 0 | lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s |
1729 | 0 | } else if (locs & 0x20) { |
1730 | 0 | sp[stride] = 0; //no need to update line_state |
1731 | 0 | } |
1732 | |
|
1733 | 0 | ++lsp; //move line state to next quad |
1734 | 0 | ++sp; //move to next sample |
1735 | |
|
1736 | 0 | if (qinf[1] & 0x40) { |
1737 | 0 | OPJ_UINT32 val; |
1738 | |
|
1739 | 0 | ms_val = frwd_fetch(&magsgn); |
1740 | 0 | m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n |
1741 | 0 | frwd_advance(&magsgn, m_n); |
1742 | 0 | val = ms_val << 31; |
1743 | 0 | v_n = ms_val & ((1U << m_n) - 1); |
1744 | 0 | v_n |= (((qinf[1] & 0x400) >> 10) << m_n); |
1745 | 0 | v_n |= 1; |
1746 | 0 | sp[0] = val | ((v_n + 2) << (p - 1)); |
1747 | 0 | } else if (locs & 0x40) { |
1748 | 0 | sp[0] = 0; |
1749 | 0 | } |
1750 | |
|
1751 | 0 | lsp[0] = 0; |
1752 | 0 | if (qinf[1] & 0x80) { |
1753 | 0 | OPJ_UINT32 val; |
1754 | |
|
1755 | 0 | ms_val = frwd_fetch(&magsgn); |
1756 | 0 | m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n |
1757 | 0 | frwd_advance(&magsgn, m_n); |
1758 | 0 | val = ms_val << 31; |
1759 | 0 | v_n = ms_val & ((1U << m_n) - 1); |
1760 | 0 | v_n |= (((qinf[1] & 0x800) >> 11) << m_n); |
1761 | 0 | v_n |= 1; //center of bin |
1762 | 0 | sp[stride] = val | ((v_n + 2) << (p - 1)); |
1763 | | |
1764 | | //line_state: bit 7 (\sigma^NW), and E^NW for next quad |
1765 | 0 | lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); |
1766 | 0 | } else if (locs & 0x80) { |
1767 | 0 | sp[stride] = 0; |
1768 | 0 | } |
1769 | |
|
1770 | 0 | ++sp; |
1771 | 0 | } |
1772 | | |
1773 | | //non-initial lines |
1774 | | ////////////////////////// |
1775 | 0 | for (y = 2; y < height; /*done at the end of loop*/) { |
1776 | 0 | OPJ_UINT32 *sip; |
1777 | 0 | OPJ_UINT8 ls0; |
1778 | 0 | OPJ_INT32 x; |
1779 | |
|
1780 | 0 | sip_shift ^= 0x2; // shift sigma to the upper half od the nibble |
1781 | 0 | sip_shift &= 0xFFFFFFEFU; //move back to 0 (it might have been at 0x10) |
1782 | 0 | sip = y & 0x4 ? sigma2 : sigma1; //choose sigma array |
1783 | |
|
1784 | 0 | lsp = line_state; |
1785 | 0 | ls0 = lsp[0]; // read the line state value |
1786 | 0 | lsp[0] = 0; // and set it to zero |
1787 | 0 | sp = decoded_data + y * stride; // generated samples |
1788 | 0 | c_q = 0; // context |
1789 | 0 | for (x = 0; x < width; x += 4) { |
1790 | 0 | OPJ_UINT32 U_q[2]; |
1791 | 0 | OPJ_UINT32 uvlc_mode, consumed_bits; |
1792 | 0 | OPJ_UINT32 m_n, v_n; |
1793 | 0 | OPJ_UINT32 ms_val; |
1794 | 0 | OPJ_UINT32 locs; |
1795 | | |
1796 | | // decode vlc |
1797 | | ///////////// |
1798 | | |
1799 | | //first quad |
1800 | | // get context, eqn. 2 ITU T.814 |
1801 | | // c_q has \sigma^W | \sigma^SW |
1802 | 0 | c_q |= (ls0 >> 7); //\sigma^NW | \sigma^N |
1803 | 0 | c_q |= (lsp[1] >> 5) & 0x4; //\sigma^NE | \sigma^NF |
1804 | | |
1805 | | //the following is very similar to previous code, so please refer to |
1806 | | // that |
1807 | 0 | vlc_val = rev_fetch(&vlc); |
1808 | 0 | qinf[0] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)]; |
1809 | 0 | if (c_q == 0) { //zero context |
1810 | 0 | run -= 2; |
1811 | 0 | qinf[0] = (run == -1) ? qinf[0] : 0; |
1812 | 0 | if (run < 0) { |
1813 | 0 | run = mel_get_run(&mel); |
1814 | 0 | } |
1815 | 0 | } |
1816 | | //prepare context for the next quad, \sigma^W | \sigma^SW |
1817 | 0 | c_q = ((qinf[0] & 0x40) >> 5) | ((qinf[0] & 0x80) >> 6); |
1818 | | |
1819 | | //remove data from vlc stream |
1820 | 0 | vlc_val = rev_advance(&vlc, qinf[0] & 0x7); |
1821 | | |
1822 | | //update sigma |
1823 | | // The update depends on the value of x and y; consider one OPJ_UINT32 |
1824 | | // if x is 0, 8, 16 and so on, and y is 2, 6, etc., then this |
1825 | | // line update c locations |
1826 | | // nibble (4 bits) number 0 1 2 3 4 5 6 7 |
1827 | | // LSB 0 0 0 0 0 0 0 0 |
1828 | | // 0 0 0 0 0 0 0 0 |
1829 | | // c c 0 0 0 0 0 0 |
1830 | | // c c 0 0 0 0 0 0 |
1831 | 0 | *sip |= (((qinf[0] & 0x30) >> 4) | ((qinf[0] & 0xC0) >> 2)) << sip_shift; |
1832 | | |
1833 | | //second quad |
1834 | 0 | qinf[1] = 0; |
1835 | 0 | if (x + 2 < width) { |
1836 | 0 | c_q |= (lsp[1] >> 7); |
1837 | 0 | c_q |= (lsp[2] >> 5) & 0x4; |
1838 | 0 | qinf[1] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)]; |
1839 | 0 | if (c_q == 0) { //zero context |
1840 | 0 | run -= 2; |
1841 | 0 | qinf[1] = (run == -1) ? qinf[1] : 0; |
1842 | 0 | if (run < 0) { |
1843 | 0 | run = mel_get_run(&mel); |
1844 | 0 | } |
1845 | 0 | } |
1846 | | //prepare context for the next quad |
1847 | 0 | c_q = ((qinf[1] & 0x40) >> 5) | ((qinf[1] & 0x80) >> 6); |
1848 | | //remove data from vlc stream |
1849 | 0 | vlc_val = rev_advance(&vlc, qinf[1] & 0x7); |
1850 | 0 | } |
1851 | | |
1852 | | //update sigma |
1853 | 0 | *sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0) << 2))) << (4 + sip_shift); |
1854 | |
|
1855 | 0 | sip += x & 0x7 ? 1 : 0; |
1856 | 0 | sip_shift ^= 0x10; |
1857 | | |
1858 | | //retrieve u |
1859 | | //////////// |
1860 | 0 | uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2); |
1861 | 0 | consumed_bits = decode_noninit_uvlc(vlc_val, uvlc_mode, U_q); |
1862 | 0 | vlc_val = rev_advance(&vlc, consumed_bits); |
1863 | | |
1864 | | //calculate E^max and add it to U_q, eqns 5 and 6 in ITU T.814 |
1865 | 0 | if ((qinf[0] & 0xF0) & ((qinf[0] & 0xF0) - 1)) { // is \gamma_q 1? |
1866 | 0 | OPJ_UINT32 E = (ls0 & 0x7Fu); |
1867 | 0 | E = E > (lsp[1] & 0x7Fu) ? E : (lsp[1] & 0x7Fu); //max(E, E^NE, E^NF) |
1868 | | //since U_q already has u_q + 1, we subtract 2 instead of 1 |
1869 | 0 | U_q[0] += E > 2 ? E - 2 : 0; |
1870 | 0 | } |
1871 | |
|
1872 | 0 | if ((qinf[1] & 0xF0) & ((qinf[1] & 0xF0) - 1)) { //is \gamma_q 1? |
1873 | 0 | OPJ_UINT32 E = (lsp[1] & 0x7Fu); |
1874 | 0 | E = E > (lsp[2] & 0x7Fu) ? E : (lsp[2] & 0x7Fu); //max(E, E^NE, E^NF) |
1875 | | //since U_q already has u_q + 1, we subtract 2 instead of 1 |
1876 | 0 | U_q[1] += E > 2 ? E - 2 : 0; |
1877 | 0 | } |
1878 | |
|
1879 | 0 | if (U_q[0] > zero_bplanes_p1 || U_q[1] > zero_bplanes_p1) { |
1880 | 0 | if (p_manager_mutex) { |
1881 | 0 | opj_mutex_lock(p_manager_mutex); |
1882 | 0 | } |
1883 | 0 | opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " |
1884 | 0 | "Decoding this codeblock is stopped. U_q is" |
1885 | 0 | "larger than bitplanes + 1 \n"); |
1886 | 0 | if (p_manager_mutex) { |
1887 | 0 | opj_mutex_unlock(p_manager_mutex); |
1888 | 0 | } |
1889 | 0 | return OPJ_FALSE; |
1890 | 0 | } |
1891 | | |
1892 | 0 | ls0 = lsp[2]; //for next double quad |
1893 | 0 | lsp[1] = lsp[2] = 0; |
1894 | | |
1895 | | //decode magsgn and update line_state |
1896 | | ///////////////////////////////////// |
1897 | | |
1898 | | //locations where samples need update |
1899 | 0 | locs = 0xFF; |
1900 | 0 | if (x + 4 > width) { |
1901 | 0 | locs >>= (x + 4 - width) << 1; |
1902 | 0 | } |
1903 | 0 | locs = y + 2 <= height ? locs : (locs & 0x55); |
1904 | |
|
1905 | 0 | if ((((qinf[0] & 0xF0) >> 4) | (qinf[1] & 0xF0)) & ~locs) { |
1906 | 0 | if (p_manager_mutex) { |
1907 | 0 | opj_mutex_lock(p_manager_mutex); |
1908 | 0 | } |
1909 | 0 | opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " |
1910 | 0 | "VLC code produces significant samples outside " |
1911 | 0 | "the codeblock area.\n"); |
1912 | 0 | if (p_manager_mutex) { |
1913 | 0 | opj_mutex_unlock(p_manager_mutex); |
1914 | 0 | } |
1915 | 0 | return OPJ_FALSE; |
1916 | 0 | } |
1917 | | |
1918 | | |
1919 | | |
1920 | 0 | if (qinf[0] & 0x10) { //sigma_n |
1921 | 0 | OPJ_UINT32 val; |
1922 | |
|
1923 | 0 | ms_val = frwd_fetch(&magsgn); |
1924 | 0 | m_n = U_q[0] - ((qinf[0] >> 12) & 1); //m_n |
1925 | 0 | frwd_advance(&magsgn, m_n); |
1926 | 0 | val = ms_val << 31; |
1927 | 0 | v_n = ms_val & ((1U << m_n) - 1); |
1928 | 0 | v_n |= ((qinf[0] & 0x100) >> 8) << m_n; |
1929 | 0 | v_n |= 1; //center of bin |
1930 | 0 | sp[0] = val | ((v_n + 2) << (p - 1)); |
1931 | 0 | } else if (locs & 0x1) { |
1932 | 0 | sp[0] = 0; |
1933 | 0 | } |
1934 | |
|
1935 | 0 | if (qinf[0] & 0x20) { //sigma_n |
1936 | 0 | OPJ_UINT32 val, t; |
1937 | |
|
1938 | 0 | ms_val = frwd_fetch(&magsgn); |
1939 | 0 | m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n |
1940 | 0 | frwd_advance(&magsgn, m_n); |
1941 | 0 | val = ms_val << 31; |
1942 | 0 | v_n = ms_val & ((1U << m_n) - 1); |
1943 | 0 | v_n |= ((qinf[0] & 0x200) >> 9) << m_n; |
1944 | 0 | v_n |= 1; //center of bin |
1945 | 0 | sp[stride] = val | ((v_n + 2) << (p - 1)); |
1946 | | |
1947 | | //update line_state: bit 7 (\sigma^N), and E^N |
1948 | 0 | t = lsp[0] & 0x7F; //E^NW |
1949 | 0 | v_n = 32 - count_leading_zeros(v_n); |
1950 | 0 | lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); |
1951 | 0 | } else if (locs & 0x2) { |
1952 | 0 | sp[stride] = 0; //no need to update line_state |
1953 | 0 | } |
1954 | |
|
1955 | 0 | ++lsp; |
1956 | 0 | ++sp; |
1957 | |
|
1958 | 0 | if (qinf[0] & 0x40) { //sigma_n |
1959 | 0 | OPJ_UINT32 val; |
1960 | |
|
1961 | 0 | ms_val = frwd_fetch(&magsgn); |
1962 | 0 | m_n = U_q[0] - ((qinf[0] >> 14) & 1); //m_n |
1963 | 0 | frwd_advance(&magsgn, m_n); |
1964 | 0 | val = ms_val << 31; |
1965 | 0 | v_n = ms_val & ((1U << m_n) - 1); |
1966 | 0 | v_n |= (((qinf[0] & 0x400) >> 10) << m_n); |
1967 | 0 | v_n |= 1; //center of bin |
1968 | 0 | sp[0] = val | ((v_n + 2) << (p - 1)); |
1969 | 0 | } else if (locs & 0x4) { |
1970 | 0 | sp[0] = 0; |
1971 | 0 | } |
1972 | |
|
1973 | 0 | if (qinf[0] & 0x80) { //sigma_n |
1974 | 0 | OPJ_UINT32 val; |
1975 | |
|
1976 | 0 | ms_val = frwd_fetch(&magsgn); |
1977 | 0 | m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n |
1978 | 0 | frwd_advance(&magsgn, m_n); |
1979 | 0 | val = ms_val << 31; |
1980 | 0 | v_n = ms_val & ((1U << m_n) - 1); |
1981 | 0 | v_n |= ((qinf[0] & 0x800) >> 11) << m_n; |
1982 | 0 | v_n |= 1; //center of bin |
1983 | 0 | sp[stride] = val | ((v_n + 2) << (p - 1)); |
1984 | | |
1985 | | //update line_state: bit 7 (\sigma^NW), and E^NW for next quad |
1986 | 0 | lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); |
1987 | 0 | } else if (locs & 0x8) { |
1988 | 0 | sp[stride] = 0; |
1989 | 0 | } |
1990 | |
|
1991 | 0 | ++sp; |
1992 | |
|
1993 | 0 | if (qinf[1] & 0x10) { //sigma_n |
1994 | 0 | OPJ_UINT32 val; |
1995 | |
|
1996 | 0 | ms_val = frwd_fetch(&magsgn); |
1997 | 0 | m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n |
1998 | 0 | frwd_advance(&magsgn, m_n); |
1999 | 0 | val = ms_val << 31; |
2000 | 0 | v_n = ms_val & ((1U << m_n) - 1); |
2001 | 0 | v_n |= (((qinf[1] & 0x100) >> 8) << m_n); |
2002 | 0 | v_n |= 1; //center of bin |
2003 | 0 | sp[0] = val | ((v_n + 2) << (p - 1)); |
2004 | 0 | } else if (locs & 0x10) { |
2005 | 0 | sp[0] = 0; |
2006 | 0 | } |
2007 | |
|
2008 | 0 | if (qinf[1] & 0x20) { //sigma_n |
2009 | 0 | OPJ_UINT32 val, t; |
2010 | |
|
2011 | 0 | ms_val = frwd_fetch(&magsgn); |
2012 | 0 | m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n |
2013 | 0 | frwd_advance(&magsgn, m_n); |
2014 | 0 | val = ms_val << 31; |
2015 | 0 | v_n = ms_val & ((1U << m_n) - 1); |
2016 | 0 | v_n |= (((qinf[1] & 0x200) >> 9) << m_n); |
2017 | 0 | v_n |= 1; //center of bin |
2018 | 0 | sp[stride] = val | ((v_n + 2) << (p - 1)); |
2019 | | |
2020 | | //update line_state: bit 7 (\sigma^N), and E^N |
2021 | 0 | t = lsp[0] & 0x7F; //E^NW |
2022 | 0 | v_n = 32 - count_leading_zeros(v_n); |
2023 | 0 | lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); |
2024 | 0 | } else if (locs & 0x20) { |
2025 | 0 | sp[stride] = 0; //no need to update line_state |
2026 | 0 | } |
2027 | |
|
2028 | 0 | ++lsp; |
2029 | 0 | ++sp; |
2030 | |
|
2031 | 0 | if (qinf[1] & 0x40) { //sigma_n |
2032 | 0 | OPJ_UINT32 val; |
2033 | |
|
2034 | 0 | ms_val = frwd_fetch(&magsgn); |
2035 | 0 | m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n |
2036 | 0 | frwd_advance(&magsgn, m_n); |
2037 | 0 | val = ms_val << 31; |
2038 | 0 | v_n = ms_val & ((1U << m_n) - 1); |
2039 | 0 | v_n |= (((qinf[1] & 0x400) >> 10) << m_n); |
2040 | 0 | v_n |= 1; //center of bin |
2041 | 0 | sp[0] = val | ((v_n + 2) << (p - 1)); |
2042 | 0 | } else if (locs & 0x40) { |
2043 | 0 | sp[0] = 0; |
2044 | 0 | } |
2045 | |
|
2046 | 0 | if (qinf[1] & 0x80) { //sigma_n |
2047 | 0 | OPJ_UINT32 val; |
2048 | |
|
2049 | 0 | ms_val = frwd_fetch(&magsgn); |
2050 | 0 | m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n |
2051 | 0 | frwd_advance(&magsgn, m_n); |
2052 | 0 | val = ms_val << 31; |
2053 | 0 | v_n = ms_val & ((1U << m_n) - 1); |
2054 | 0 | v_n |= (((qinf[1] & 0x800) >> 11) << m_n); |
2055 | 0 | v_n |= 1; //center of bin |
2056 | 0 | sp[stride] = val | ((v_n + 2) << (p - 1)); |
2057 | | |
2058 | | //update line_state: bit 7 (\sigma^NW), and E^NW for next quad |
2059 | 0 | lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); |
2060 | 0 | } else if (locs & 0x80) { |
2061 | 0 | sp[stride] = 0; |
2062 | 0 | } |
2063 | |
|
2064 | 0 | ++sp; |
2065 | 0 | } |
2066 | | |
2067 | 0 | y += 2; |
2068 | 0 | if (num_passes > 1 && (y & 3) == 0) { //executed at multiples of 4 |
2069 | | // This is for SPP and potentially MRP |
2070 | |
|
2071 | 0 | if (num_passes > 2) { //do MRP |
2072 | | // select the current stripe |
2073 | 0 | OPJ_UINT32 *cur_sig = y & 0x4 ? sigma1 : sigma2; |
2074 | | // the address of the data that needs updating |
2075 | 0 | OPJ_UINT32 *dpp = decoded_data + (y - 4) * stride; |
2076 | 0 | OPJ_UINT32 half = 1u << (p - 2); // half the center of the bin |
2077 | 0 | OPJ_INT32 i; |
2078 | 0 | for (i = 0; i < width; i += 8) { |
2079 | | //Process one entry from sigma array at a time |
2080 | | // Each nibble (4 bits) in the sigma array represents 4 rows, |
2081 | | // and the 32 bits contain 8 columns |
2082 | 0 | OPJ_UINT32 cwd = rev_fetch_mrp(&magref); // get 32 bit data |
2083 | 0 | OPJ_UINT32 sig = *cur_sig++; // 32 bit that will be processed now |
2084 | 0 | OPJ_UINT32 col_mask = 0xFu; // a mask for a column in sig |
2085 | 0 | OPJ_UINT32 *dp = dpp + i; // next column in decode samples |
2086 | 0 | if (sig) { // if any of the 32 bits are set |
2087 | 0 | int j; |
2088 | 0 | for (j = 0; j < 8; ++j, dp++) { //one column at a time |
2089 | 0 | if (sig & col_mask) { // lowest nibble |
2090 | 0 | OPJ_UINT32 sample_mask = 0x11111111u & col_mask; //LSB |
2091 | |
|
2092 | 0 | if (sig & sample_mask) { //if LSB is set |
2093 | 0 | OPJ_UINT32 sym; |
2094 | |
|
2095 | 0 | assert(dp[0] != 0); // decoded value cannot be zero |
2096 | 0 | sym = cwd & 1; // get it value |
2097 | | // remove center of bin if sym is 0 |
2098 | 0 | dp[0] ^= (1 - sym) << (p - 1); |
2099 | 0 | dp[0] |= half; // put half the center of bin |
2100 | 0 | cwd >>= 1; //consume word |
2101 | 0 | } |
2102 | 0 | sample_mask += sample_mask; //next row |
2103 | |
|
2104 | 0 | if (sig & sample_mask) { |
2105 | 0 | OPJ_UINT32 sym; |
2106 | |
|
2107 | 0 | assert(dp[stride] != 0); |
2108 | 0 | sym = cwd & 1; |
2109 | 0 | dp[stride] ^= (1 - sym) << (p - 1); |
2110 | 0 | dp[stride] |= half; |
2111 | 0 | cwd >>= 1; |
2112 | 0 | } |
2113 | 0 | sample_mask += sample_mask; |
2114 | |
|
2115 | 0 | if (sig & sample_mask) { |
2116 | 0 | OPJ_UINT32 sym; |
2117 | |
|
2118 | 0 | assert(dp[2 * stride] != 0); |
2119 | 0 | sym = cwd & 1; |
2120 | 0 | dp[2 * stride] ^= (1 - sym) << (p - 1); |
2121 | 0 | dp[2 * stride] |= half; |
2122 | 0 | cwd >>= 1; |
2123 | 0 | } |
2124 | 0 | sample_mask += sample_mask; |
2125 | |
|
2126 | 0 | if (sig & sample_mask) { |
2127 | 0 | OPJ_UINT32 sym; |
2128 | |
|
2129 | 0 | assert(dp[3 * stride] != 0); |
2130 | 0 | sym = cwd & 1; |
2131 | 0 | dp[3 * stride] ^= (1 - sym) << (p - 1); |
2132 | 0 | dp[3 * stride] |= half; |
2133 | 0 | cwd >>= 1; |
2134 | 0 | } |
2135 | 0 | sample_mask += sample_mask; |
2136 | 0 | } |
2137 | 0 | col_mask <<= 4; //next column |
2138 | 0 | } |
2139 | 0 | } |
2140 | | // consume data according to the number of bits set |
2141 | 0 | rev_advance_mrp(&magref, population_count(sig)); |
2142 | 0 | } |
2143 | 0 | } |
2144 | | |
2145 | 0 | if (y >= 4) { // update mbr array at the end of each stripe |
2146 | | //generate mbr corresponding to a stripe |
2147 | 0 | OPJ_UINT32 *sig = y & 0x4 ? sigma1 : sigma2; |
2148 | 0 | OPJ_UINT32 *mbr = y & 0x4 ? mbr1 : mbr2; |
2149 | | |
2150 | | //data is processed in patches of 8 columns, each |
2151 | | // each 32 bits in sigma1 or mbr1 represent 4 rows |
2152 | | |
2153 | | //integrate horizontally |
2154 | 0 | OPJ_UINT32 prev = 0; // previous columns |
2155 | 0 | OPJ_INT32 i; |
2156 | 0 | for (i = 0; i < width; i += 8, mbr++, sig++) { |
2157 | 0 | OPJ_UINT32 t, z; |
2158 | |
|
2159 | 0 | mbr[0] = sig[0]; //start with significant samples |
2160 | 0 | mbr[0] |= prev >> 28; //for first column, left neighbors |
2161 | 0 | mbr[0] |= sig[0] << 4; //left neighbors |
2162 | 0 | mbr[0] |= sig[0] >> 4; //right neighbors |
2163 | 0 | mbr[0] |= sig[1] << 28; //for last column, right neighbors |
2164 | 0 | prev = sig[0]; // for next group of columns |
2165 | | |
2166 | | //integrate vertically |
2167 | 0 | t = mbr[0], z = mbr[0]; |
2168 | 0 | z |= (t & 0x77777777) << 1; //above neighbors |
2169 | 0 | z |= (t & 0xEEEEEEEE) >> 1; //below neighbors |
2170 | 0 | mbr[0] = z & ~sig[0]; //remove already significance samples |
2171 | 0 | } |
2172 | 0 | } |
2173 | |
|
2174 | 0 | if (y >= 8) { //wait until 8 rows has been processed |
2175 | 0 | OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr; |
2176 | 0 | OPJ_UINT32 prev; |
2177 | 0 | OPJ_UINT32 val; |
2178 | 0 | OPJ_INT32 i; |
2179 | | |
2180 | | // add membership from the next stripe, obtained above |
2181 | 0 | cur_sig = y & 0x4 ? sigma2 : sigma1; |
2182 | 0 | cur_mbr = y & 0x4 ? mbr2 : mbr1; |
2183 | 0 | nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples |
2184 | 0 | prev = 0; // the columns before these group of 8 columns |
2185 | 0 | for (i = 0; i < width; i += 8, cur_mbr++, cur_sig++, nxt_sig++) { |
2186 | 0 | OPJ_UINT32 t = nxt_sig[0]; |
2187 | 0 | t |= prev >> 28; //for first column, left neighbors |
2188 | 0 | t |= nxt_sig[0] << 4; //left neighbors |
2189 | 0 | t |= nxt_sig[0] >> 4; //right neighbors |
2190 | 0 | t |= nxt_sig[1] << 28; //for last column, right neighbors |
2191 | 0 | prev = nxt_sig[0]; // for next group of columns |
2192 | |
|
2193 | 0 | if (!stripe_causal) { |
2194 | 0 | cur_mbr[0] |= (t & 0x11111111u) << 3; //propagate up to cur_mbr |
2195 | 0 | } |
2196 | 0 | cur_mbr[0] &= ~cur_sig[0]; //remove already significance samples |
2197 | 0 | } |
2198 | | |
2199 | | //find new locations and get signs |
2200 | 0 | cur_sig = y & 0x4 ? sigma2 : sigma1; |
2201 | 0 | cur_mbr = y & 0x4 ? mbr2 : mbr1; |
2202 | 0 | nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples |
2203 | 0 | nxt_mbr = y & 0x4 ? mbr1 : mbr2; //future samples |
2204 | 0 | val = 3u << (p - 2); // sample values for newly discovered |
2205 | | // significant samples including the bin center |
2206 | 0 | for (i = 0; i < width; |
2207 | 0 | i += 8, cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) { |
2208 | 0 | OPJ_UINT32 ux, tx; |
2209 | 0 | OPJ_UINT32 mbr = *cur_mbr; |
2210 | 0 | OPJ_UINT32 new_sig = 0; |
2211 | 0 | if (mbr) { //are there any samples that might be significant |
2212 | 0 | OPJ_INT32 n; |
2213 | 0 | for (n = 0; n < 8; n += 4) { |
2214 | 0 | OPJ_UINT32 col_mask; |
2215 | 0 | OPJ_UINT32 inv_sig; |
2216 | 0 | OPJ_INT32 end; |
2217 | 0 | OPJ_INT32 j; |
2218 | |
|
2219 | 0 | OPJ_UINT32 cwd = frwd_fetch(&sigprop); //get 32 bits |
2220 | 0 | OPJ_UINT32 cnt = 0; |
2221 | |
|
2222 | 0 | OPJ_UINT32 *dp = decoded_data + (y - 8) * stride; |
2223 | 0 | dp += i + n; //address for decoded samples |
2224 | |
|
2225 | 0 | col_mask = 0xFu << (4 * n); //a mask to select a column |
2226 | |
|
2227 | 0 | inv_sig = ~cur_sig[0]; // insignificant samples |
2228 | | |
2229 | | //find the last sample we operate on |
2230 | 0 | end = n + 4 + i < width ? n + 4 : width - i; |
2231 | |
|
2232 | 0 | for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { |
2233 | 0 | OPJ_UINT32 sample_mask; |
2234 | |
|
2235 | 0 | if ((col_mask & mbr) == 0) { //no samples need checking |
2236 | 0 | continue; |
2237 | 0 | } |
2238 | | |
2239 | | //scan mbr to find a new significant sample |
2240 | 0 | sample_mask = 0x11111111u & col_mask; // LSB |
2241 | 0 | if (mbr & sample_mask) { |
2242 | 0 | assert(dp[0] == 0); // the sample must have been 0 |
2243 | 0 | if (cwd & 1) { //if this sample has become significant |
2244 | | // must propagate it to nearby samples |
2245 | 0 | OPJ_UINT32 t; |
2246 | 0 | new_sig |= sample_mask; // new significant samples |
2247 | 0 | t = 0x32u << (j * 4);// propagation to neighbors |
2248 | 0 | mbr |= t & inv_sig; //remove already significant samples |
2249 | 0 | } |
2250 | 0 | cwd >>= 1; |
2251 | 0 | ++cnt; //consume bit and increment number of |
2252 | | //consumed bits |
2253 | 0 | } |
2254 | | |
2255 | 0 | sample_mask += sample_mask; // next row |
2256 | 0 | if (mbr & sample_mask) { |
2257 | 0 | assert(dp[stride] == 0); |
2258 | 0 | if (cwd & 1) { |
2259 | 0 | OPJ_UINT32 t; |
2260 | 0 | new_sig |= sample_mask; |
2261 | 0 | t = 0x74u << (j * 4); |
2262 | 0 | mbr |= t & inv_sig; |
2263 | 0 | } |
2264 | 0 | cwd >>= 1; |
2265 | 0 | ++cnt; |
2266 | 0 | } |
2267 | | |
2268 | 0 | sample_mask += sample_mask; |
2269 | 0 | if (mbr & sample_mask) { |
2270 | 0 | assert(dp[2 * stride] == 0); |
2271 | 0 | if (cwd & 1) { |
2272 | 0 | OPJ_UINT32 t; |
2273 | 0 | new_sig |= sample_mask; |
2274 | 0 | t = 0xE8u << (j * 4); |
2275 | 0 | mbr |= t & inv_sig; |
2276 | 0 | } |
2277 | 0 | cwd >>= 1; |
2278 | 0 | ++cnt; |
2279 | 0 | } |
2280 | | |
2281 | 0 | sample_mask += sample_mask; |
2282 | 0 | if (mbr & sample_mask) { |
2283 | 0 | assert(dp[3 * stride] == 0); |
2284 | 0 | if (cwd & 1) { |
2285 | 0 | OPJ_UINT32 t; |
2286 | 0 | new_sig |= sample_mask; |
2287 | 0 | t = 0xC0u << (j * 4); |
2288 | 0 | mbr |= t & inv_sig; |
2289 | 0 | } |
2290 | 0 | cwd >>= 1; |
2291 | 0 | ++cnt; |
2292 | 0 | } |
2293 | 0 | } |
2294 | | |
2295 | | //obtain signs here |
2296 | 0 | if (new_sig & (0xFFFFu << (4 * n))) { //if any |
2297 | 0 | OPJ_UINT32 col_mask; |
2298 | 0 | OPJ_INT32 j; |
2299 | 0 | OPJ_UINT32 *dp = decoded_data + (y - 8) * stride; |
2300 | 0 | dp += i + n; // decoded samples address |
2301 | 0 | col_mask = 0xFu << (4 * n); //mask to select a column |
2302 | |
|
2303 | 0 | for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { |
2304 | 0 | OPJ_UINT32 sample_mask; |
2305 | |
|
2306 | 0 | if ((col_mask & new_sig) == 0) { //if non is significant |
2307 | 0 | continue; |
2308 | 0 | } |
2309 | | |
2310 | | //scan 4 signs |
2311 | 0 | sample_mask = 0x11111111u & col_mask; |
2312 | 0 | if (new_sig & sample_mask) { |
2313 | 0 | assert(dp[0] == 0); |
2314 | 0 | dp[0] |= ((cwd & 1) << 31) | val; //put value and sign |
2315 | 0 | cwd >>= 1; |
2316 | 0 | ++cnt; //consume bit and increment number |
2317 | | //of consumed bits |
2318 | 0 | } |
2319 | | |
2320 | 0 | sample_mask += sample_mask; |
2321 | 0 | if (new_sig & sample_mask) { |
2322 | 0 | assert(dp[stride] == 0); |
2323 | 0 | dp[stride] |= ((cwd & 1) << 31) | val; |
2324 | 0 | cwd >>= 1; |
2325 | 0 | ++cnt; |
2326 | 0 | } |
2327 | | |
2328 | 0 | sample_mask += sample_mask; |
2329 | 0 | if (new_sig & sample_mask) { |
2330 | 0 | assert(dp[2 * stride] == 0); |
2331 | 0 | dp[2 * stride] |= ((cwd & 1) << 31) | val; |
2332 | 0 | cwd >>= 1; |
2333 | 0 | ++cnt; |
2334 | 0 | } |
2335 | | |
2336 | 0 | sample_mask += sample_mask; |
2337 | 0 | if (new_sig & sample_mask) { |
2338 | 0 | assert(dp[3 * stride] == 0); |
2339 | 0 | dp[3 * stride] |= ((cwd & 1) << 31) | val; |
2340 | 0 | cwd >>= 1; |
2341 | 0 | ++cnt; |
2342 | 0 | } |
2343 | 0 | } |
2344 | |
|
2345 | 0 | } |
2346 | 0 | frwd_advance(&sigprop, cnt); //consume the bits from bitstrm |
2347 | 0 | cnt = 0; |
2348 | | |
2349 | | //update the next 8 columns |
2350 | 0 | if (n == 4) { |
2351 | | //horizontally |
2352 | 0 | OPJ_UINT32 t = new_sig >> 28; |
2353 | 0 | t |= ((t & 0xE) >> 1) | ((t & 7) << 1); |
2354 | 0 | cur_mbr[1] |= t & ~cur_sig[1]; |
2355 | 0 | } |
2356 | 0 | } |
2357 | 0 | } |
2358 | | //update the next stripe (vertically propagation) |
2359 | 0 | new_sig |= cur_sig[0]; |
2360 | 0 | ux = (new_sig & 0x88888888) >> 3; |
2361 | 0 | tx = ux | (ux << 4) | (ux >> 4); //left and right neighbors |
2362 | 0 | if (i > 0) { |
2363 | 0 | nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1]; |
2364 | 0 | } |
2365 | 0 | nxt_mbr[0] |= tx & ~nxt_sig[0]; |
2366 | 0 | nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1]; |
2367 | 0 | } |
2368 | | |
2369 | | //clear current sigma |
2370 | | //mbr need not be cleared because it is overwritten |
2371 | 0 | cur_sig = y & 0x4 ? sigma2 : sigma1; |
2372 | 0 | memset(cur_sig, 0, ((((OPJ_UINT32)width + 7u) >> 3) + 1u) << 2); |
2373 | 0 | } |
2374 | 0 | } |
2375 | 0 | } |
2376 | | |
2377 | | //terminating |
2378 | 0 | if (num_passes > 1) { |
2379 | 0 | OPJ_INT32 st, y; |
2380 | |
|
2381 | 0 | if (num_passes > 2 && ((height & 3) == 1 || (height & 3) == 2)) { |
2382 | | //do magref |
2383 | 0 | OPJ_UINT32 *cur_sig = height & 0x4 ? sigma2 : sigma1; //reversed |
2384 | 0 | OPJ_UINT32 *dpp = decoded_data + (height & 0xFFFFFC) * stride; |
2385 | 0 | OPJ_UINT32 half = 1u << (p - 2); |
2386 | 0 | OPJ_INT32 i; |
2387 | 0 | for (i = 0; i < width; i += 8) { |
2388 | 0 | OPJ_UINT32 cwd = rev_fetch_mrp(&magref); |
2389 | 0 | OPJ_UINT32 sig = *cur_sig++; |
2390 | 0 | OPJ_UINT32 col_mask = 0xF; |
2391 | 0 | OPJ_UINT32 *dp = dpp + i; |
2392 | 0 | if (sig) { |
2393 | 0 | int j; |
2394 | 0 | for (j = 0; j < 8; ++j, dp++) { |
2395 | 0 | if (sig & col_mask) { |
2396 | 0 | OPJ_UINT32 sample_mask = 0x11111111 & col_mask; |
2397 | |
|
2398 | 0 | if (sig & sample_mask) { |
2399 | 0 | OPJ_UINT32 sym; |
2400 | 0 | assert(dp[0] != 0); |
2401 | 0 | sym = cwd & 1; |
2402 | 0 | dp[0] ^= (1 - sym) << (p - 1); |
2403 | 0 | dp[0] |= half; |
2404 | 0 | cwd >>= 1; |
2405 | 0 | } |
2406 | 0 | sample_mask += sample_mask; |
2407 | |
|
2408 | 0 | if (sig & sample_mask) { |
2409 | 0 | OPJ_UINT32 sym; |
2410 | 0 | assert(dp[stride] != 0); |
2411 | 0 | sym = cwd & 1; |
2412 | 0 | dp[stride] ^= (1 - sym) << (p - 1); |
2413 | 0 | dp[stride] |= half; |
2414 | 0 | cwd >>= 1; |
2415 | 0 | } |
2416 | 0 | sample_mask += sample_mask; |
2417 | |
|
2418 | 0 | if (sig & sample_mask) { |
2419 | 0 | OPJ_UINT32 sym; |
2420 | 0 | assert(dp[2 * stride] != 0); |
2421 | 0 | sym = cwd & 1; |
2422 | 0 | dp[2 * stride] ^= (1 - sym) << (p - 1); |
2423 | 0 | dp[2 * stride] |= half; |
2424 | 0 | cwd >>= 1; |
2425 | 0 | } |
2426 | 0 | sample_mask += sample_mask; |
2427 | |
|
2428 | 0 | if (sig & sample_mask) { |
2429 | 0 | OPJ_UINT32 sym; |
2430 | 0 | assert(dp[3 * stride] != 0); |
2431 | 0 | sym = cwd & 1; |
2432 | 0 | dp[3 * stride] ^= (1 - sym) << (p - 1); |
2433 | 0 | dp[3 * stride] |= half; |
2434 | 0 | cwd >>= 1; |
2435 | 0 | } |
2436 | 0 | sample_mask += sample_mask; |
2437 | 0 | } |
2438 | 0 | col_mask <<= 4; |
2439 | 0 | } |
2440 | 0 | } |
2441 | 0 | rev_advance_mrp(&magref, population_count(sig)); |
2442 | 0 | } |
2443 | 0 | } |
2444 | | |
2445 | | //do the last incomplete stripe |
2446 | | // for cases of (height & 3) == 0 and 3 |
2447 | | // the should have been processed previously |
2448 | 0 | if ((height & 3) == 1 || (height & 3) == 2) { |
2449 | | //generate mbr of first stripe |
2450 | 0 | OPJ_UINT32 *sig = height & 0x4 ? sigma2 : sigma1; |
2451 | 0 | OPJ_UINT32 *mbr = height & 0x4 ? mbr2 : mbr1; |
2452 | | //integrate horizontally |
2453 | 0 | OPJ_UINT32 prev = 0; |
2454 | 0 | OPJ_INT32 i; |
2455 | 0 | for (i = 0; i < width; i += 8, mbr++, sig++) { |
2456 | 0 | OPJ_UINT32 t, z; |
2457 | |
|
2458 | 0 | mbr[0] = sig[0]; |
2459 | 0 | mbr[0] |= prev >> 28; //for first column, left neighbors |
2460 | 0 | mbr[0] |= sig[0] << 4; //left neighbors |
2461 | 0 | mbr[0] |= sig[0] >> 4; //left neighbors |
2462 | 0 | mbr[0] |= sig[1] << 28; //for last column, right neighbors |
2463 | 0 | prev = sig[0]; |
2464 | | |
2465 | | //integrate vertically |
2466 | 0 | t = mbr[0], z = mbr[0]; |
2467 | 0 | z |= (t & 0x77777777) << 1; //above neighbors |
2468 | 0 | z |= (t & 0xEEEEEEEE) >> 1; //below neighbors |
2469 | 0 | mbr[0] = z & ~sig[0]; //remove already significance samples |
2470 | 0 | } |
2471 | 0 | } |
2472 | |
|
2473 | 0 | st = height; |
2474 | 0 | st -= height > 6 ? (((height + 1) & 3) + 3) : height; |
2475 | 0 | for (y = st; y < height; y += 4) { |
2476 | 0 | OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr; |
2477 | 0 | OPJ_UINT32 val; |
2478 | 0 | OPJ_INT32 i; |
2479 | |
|
2480 | 0 | OPJ_UINT32 pattern = 0xFFFFFFFFu; // a pattern needed samples |
2481 | 0 | if (height - y == 3) { |
2482 | 0 | pattern = 0x77777777u; |
2483 | 0 | } else if (height - y == 2) { |
2484 | 0 | pattern = 0x33333333u; |
2485 | 0 | } else if (height - y == 1) { |
2486 | 0 | pattern = 0x11111111u; |
2487 | 0 | } |
2488 | | |
2489 | | //add membership from the next stripe, obtained above |
2490 | 0 | if (height - y > 4) { |
2491 | 0 | OPJ_UINT32 prev = 0; |
2492 | 0 | OPJ_INT32 i; |
2493 | 0 | cur_sig = y & 0x4 ? sigma2 : sigma1; |
2494 | 0 | cur_mbr = y & 0x4 ? mbr2 : mbr1; |
2495 | 0 | nxt_sig = y & 0x4 ? sigma1 : sigma2; |
2496 | 0 | for (i = 0; i < width; i += 8, cur_mbr++, cur_sig++, nxt_sig++) { |
2497 | 0 | OPJ_UINT32 t = nxt_sig[0]; |
2498 | 0 | t |= prev >> 28; //for first column, left neighbors |
2499 | 0 | t |= nxt_sig[0] << 4; //left neighbors |
2500 | 0 | t |= nxt_sig[0] >> 4; //left neighbors |
2501 | 0 | t |= nxt_sig[1] << 28; //for last column, right neighbors |
2502 | 0 | prev = nxt_sig[0]; |
2503 | |
|
2504 | 0 | if (!stripe_causal) { |
2505 | 0 | cur_mbr[0] |= (t & 0x11111111u) << 3; |
2506 | 0 | } |
2507 | | //remove already significance samples |
2508 | 0 | cur_mbr[0] &= ~cur_sig[0]; |
2509 | 0 | } |
2510 | 0 | } |
2511 | | |
2512 | | //find new locations and get signs |
2513 | 0 | cur_sig = y & 0x4 ? sigma2 : sigma1; |
2514 | 0 | cur_mbr = y & 0x4 ? mbr2 : mbr1; |
2515 | 0 | nxt_sig = y & 0x4 ? sigma1 : sigma2; |
2516 | 0 | nxt_mbr = y & 0x4 ? mbr1 : mbr2; |
2517 | 0 | val = 3u << (p - 2); |
2518 | 0 | for (i = 0; i < width; i += 8, |
2519 | 0 | cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) { |
2520 | 0 | OPJ_UINT32 mbr = *cur_mbr & pattern; //skip unneeded samples |
2521 | 0 | OPJ_UINT32 new_sig = 0; |
2522 | 0 | OPJ_UINT32 ux, tx; |
2523 | 0 | if (mbr) { |
2524 | 0 | OPJ_INT32 n; |
2525 | 0 | for (n = 0; n < 8; n += 4) { |
2526 | 0 | OPJ_UINT32 col_mask; |
2527 | 0 | OPJ_UINT32 inv_sig; |
2528 | 0 | OPJ_INT32 end; |
2529 | 0 | OPJ_INT32 j; |
2530 | |
|
2531 | 0 | OPJ_UINT32 cwd = frwd_fetch(&sigprop); |
2532 | 0 | OPJ_UINT32 cnt = 0; |
2533 | |
|
2534 | 0 | OPJ_UINT32 *dp = decoded_data + y * stride; |
2535 | 0 | dp += i + n; |
2536 | |
|
2537 | 0 | col_mask = 0xFu << (4 * n); |
2538 | |
|
2539 | 0 | inv_sig = ~cur_sig[0] & pattern; |
2540 | |
|
2541 | 0 | end = n + 4 + i < width ? n + 4 : width - i; |
2542 | 0 | for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { |
2543 | 0 | OPJ_UINT32 sample_mask; |
2544 | |
|
2545 | 0 | if ((col_mask & mbr) == 0) { |
2546 | 0 | continue; |
2547 | 0 | } |
2548 | | |
2549 | | //scan 4 mbr |
2550 | 0 | sample_mask = 0x11111111u & col_mask; |
2551 | 0 | if (mbr & sample_mask) { |
2552 | 0 | assert(dp[0] == 0); |
2553 | 0 | if (cwd & 1) { |
2554 | 0 | OPJ_UINT32 t; |
2555 | 0 | new_sig |= sample_mask; |
2556 | 0 | t = 0x32u << (j * 4); |
2557 | 0 | mbr |= t & inv_sig; |
2558 | 0 | } |
2559 | 0 | cwd >>= 1; |
2560 | 0 | ++cnt; |
2561 | 0 | } |
2562 | | |
2563 | 0 | sample_mask += sample_mask; |
2564 | 0 | if (mbr & sample_mask) { |
2565 | 0 | assert(dp[stride] == 0); |
2566 | 0 | if (cwd & 1) { |
2567 | 0 | OPJ_UINT32 t; |
2568 | 0 | new_sig |= sample_mask; |
2569 | 0 | t = 0x74u << (j * 4); |
2570 | 0 | mbr |= t & inv_sig; |
2571 | 0 | } |
2572 | 0 | cwd >>= 1; |
2573 | 0 | ++cnt; |
2574 | 0 | } |
2575 | | |
2576 | 0 | sample_mask += sample_mask; |
2577 | 0 | if (mbr & sample_mask) { |
2578 | 0 | assert(dp[2 * stride] == 0); |
2579 | 0 | if (cwd & 1) { |
2580 | 0 | OPJ_UINT32 t; |
2581 | 0 | new_sig |= sample_mask; |
2582 | 0 | t = 0xE8u << (j * 4); |
2583 | 0 | mbr |= t & inv_sig; |
2584 | 0 | } |
2585 | 0 | cwd >>= 1; |
2586 | 0 | ++cnt; |
2587 | 0 | } |
2588 | | |
2589 | 0 | sample_mask += sample_mask; |
2590 | 0 | if (mbr & sample_mask) { |
2591 | 0 | assert(dp[3 * stride] == 0); |
2592 | 0 | if (cwd & 1) { |
2593 | 0 | OPJ_UINT32 t; |
2594 | 0 | new_sig |= sample_mask; |
2595 | 0 | t = 0xC0u << (j * 4); |
2596 | 0 | mbr |= t & inv_sig; |
2597 | 0 | } |
2598 | 0 | cwd >>= 1; |
2599 | 0 | ++cnt; |
2600 | 0 | } |
2601 | 0 | } |
2602 | | |
2603 | | //signs here |
2604 | 0 | if (new_sig & (0xFFFFu << (4 * n))) { |
2605 | 0 | OPJ_UINT32 col_mask; |
2606 | 0 | OPJ_INT32 j; |
2607 | 0 | OPJ_UINT32 *dp = decoded_data + y * stride; |
2608 | 0 | dp += i + n; |
2609 | 0 | col_mask = 0xFu << (4 * n); |
2610 | |
|
2611 | 0 | for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { |
2612 | 0 | OPJ_UINT32 sample_mask; |
2613 | 0 | if ((col_mask & new_sig) == 0) { |
2614 | 0 | continue; |
2615 | 0 | } |
2616 | | |
2617 | | //scan 4 signs |
2618 | 0 | sample_mask = 0x11111111u & col_mask; |
2619 | 0 | if (new_sig & sample_mask) { |
2620 | 0 | assert(dp[0] == 0); |
2621 | 0 | dp[0] |= ((cwd & 1) << 31) | val; |
2622 | 0 | cwd >>= 1; |
2623 | 0 | ++cnt; |
2624 | 0 | } |
2625 | | |
2626 | 0 | sample_mask += sample_mask; |
2627 | 0 | if (new_sig & sample_mask) { |
2628 | 0 | assert(dp[stride] == 0); |
2629 | 0 | dp[stride] |= ((cwd & 1) << 31) | val; |
2630 | 0 | cwd >>= 1; |
2631 | 0 | ++cnt; |
2632 | 0 | } |
2633 | | |
2634 | 0 | sample_mask += sample_mask; |
2635 | 0 | if (new_sig & sample_mask) { |
2636 | 0 | assert(dp[2 * stride] == 0); |
2637 | 0 | dp[2 * stride] |= ((cwd & 1) << 31) | val; |
2638 | 0 | cwd >>= 1; |
2639 | 0 | ++cnt; |
2640 | 0 | } |
2641 | | |
2642 | 0 | sample_mask += sample_mask; |
2643 | 0 | if (new_sig & sample_mask) { |
2644 | 0 | assert(dp[3 * stride] == 0); |
2645 | 0 | dp[3 * stride] |= ((cwd & 1) << 31) | val; |
2646 | 0 | cwd >>= 1; |
2647 | 0 | ++cnt; |
2648 | 0 | } |
2649 | 0 | } |
2650 | |
|
2651 | 0 | } |
2652 | 0 | frwd_advance(&sigprop, cnt); |
2653 | 0 | cnt = 0; |
2654 | | |
2655 | | //update next columns |
2656 | 0 | if (n == 4) { |
2657 | | //horizontally |
2658 | 0 | OPJ_UINT32 t = new_sig >> 28; |
2659 | 0 | t |= ((t & 0xE) >> 1) | ((t & 7) << 1); |
2660 | 0 | cur_mbr[1] |= t & ~cur_sig[1]; |
2661 | 0 | } |
2662 | 0 | } |
2663 | 0 | } |
2664 | | //propagate down (vertically propagation) |
2665 | 0 | new_sig |= cur_sig[0]; |
2666 | 0 | ux = (new_sig & 0x88888888) >> 3; |
2667 | 0 | tx = ux | (ux << 4) | (ux >> 4); |
2668 | 0 | if (i > 0) { |
2669 | 0 | nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1]; |
2670 | 0 | } |
2671 | 0 | nxt_mbr[0] |= tx & ~nxt_sig[0]; |
2672 | 0 | nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1]; |
2673 | 0 | } |
2674 | 0 | } |
2675 | 0 | } |
2676 | | |
2677 | 0 | { |
2678 | 0 | OPJ_INT32 x, y; |
2679 | 0 | for (y = 0; y < height; ++y) { |
2680 | 0 | OPJ_INT32* sp = (OPJ_INT32*)decoded_data + y * stride; |
2681 | 0 | for (x = 0; x < width; ++x, ++sp) { |
2682 | 0 | OPJ_INT32 val = (*sp & 0x7FFFFFFF); |
2683 | 0 | *sp = ((OPJ_UINT32) * sp & 0x80000000) ? -val : val; |
2684 | 0 | } |
2685 | 0 | } |
2686 | 0 | } |
2687 | |
|
2688 | 0 | return OPJ_TRUE; |
2689 | 0 | } |