Coverage Report

Created: 2025-11-16 07:22

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjpeg-turbo/src/jdhuff.c
Line
Count
Source
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
102k
{
81
102k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
102k
  int ci, blkn, dctbl, actbl;
83
102k
  d_derived_tbl **pdtbl;
84
102k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
102k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
17.0k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
95.2k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
216k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
113k
    compptr = cinfo->cur_comp_info[ci];
96
113k
    dctbl = compptr->dc_tbl_no;
97
113k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
113k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
113k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
113k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
113k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
113k
    entropy->saved.last_dc_val[ci] = 0;
106
113k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
229k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
127k
    ci = cinfo->MCU_membership[blkn];
111
127k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
127k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
127k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
127k
    if (compptr->component_needed) {
117
127k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
127k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
127k
    } else {
121
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
0
    }
123
127k
  }
124
125
  /* Initialize bitread state variables */
126
102k
  entropy->bitstate.bits_left = 0;
127
102k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
102k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
102k
  entropy->restarts_to_go = cinfo->restart_interval;
132
102k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
398k
{
146
398k
  JHUFF_TBL *htbl;
147
398k
  d_derived_tbl *dtbl;
148
398k
  int p, i, l, si, numsymbols;
149
398k
  int lookbits, ctr;
150
398k
  char huffsize[257];
151
398k
  unsigned int huffcode[257];
152
398k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
398k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
1.12k
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
398k
  htbl =
162
398k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
398k
  if (htbl == NULL)
164
3.03k
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
398k
  if (*pdtbl == NULL)
168
215k
    *pdtbl = (d_derived_tbl *)
169
215k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
215k
                                  sizeof(d_derived_tbl));
171
398k
  dtbl = *pdtbl;
172
398k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
398k
  p = 0;
177
6.71M
  for (l = 1; l <= 16; l++) {
178
6.31M
    i = (int)htbl->bits[l];
179
6.31M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
25.6M
    while (i--)
182
19.3M
      huffsize[p++] = (char)l;
183
6.31M
  }
184
398k
  huffsize[p] = 0;
185
398k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
398k
  code = 0;
191
398k
  si = huffsize[0];
192
398k
  p = 0;
193
3.49M
  while (huffsize[p]) {
194
22.4M
    while (((int)huffsize[p]) == si) {
195
19.3M
      huffcode[p++] = code;
196
19.3M
      code++;
197
19.3M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
3.09M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
828
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
3.09M
    code <<= 1;
204
3.09M
    si++;
205
3.09M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
398k
  p = 0;
210
6.69M
  for (l = 1; l <= 16; l++) {
211
6.29M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
2.63M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
2.63M
      p += htbl->bits[l];
217
2.63M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
3.66M
    } else {
219
3.66M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
3.66M
    }
221
6.29M
  }
222
398k
  dtbl->valoffset[17] = 0;
223
398k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
101M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
100M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
398k
  p = 0;
236
3.54M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
7.02M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
3.87M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
73.6M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
69.7M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
69.7M
        lookbits++;
244
69.7M
      }
245
3.87M
    }
246
3.14M
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
398k
  if (isDC) {
255
2.16M
    for (i = 0; i < numsymbols; i++) {
256
1.91M
      int sym = htbl->huffval[i];
257
1.91M
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
451
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
1.91M
    }
260
253k
  }
261
398k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
12.0M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
6.41M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
6.41M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
6.41M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
6.41M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
6.41M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
7.80M
    while (bits_left < MIN_GET_BITS) {
303
6.93M
      register int c;
304
305
      /* Attempt to read a byte */
306
6.93M
      if (bytes_in_buffer == 0) {
307
77.2k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
77.2k
        next_input_byte = cinfo->src->next_input_byte;
310
77.2k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
77.2k
      }
312
6.93M
      bytes_in_buffer--;
313
6.93M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
6.93M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
4.93M
        do {
323
4.93M
          if (bytes_in_buffer == 0) {
324
4.40k
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
4.40k
            next_input_byte = cinfo->src->next_input_byte;
327
4.40k
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
4.40k
          }
329
4.93M
          bytes_in_buffer--;
330
4.93M
          c = *next_input_byte++;
331
4.93M
        } while (c == 0xFF);
332
333
452k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
278k
          c = 0xFF;
336
278k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
173k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
173k
          goto no_more_bytes;
348
173k
        }
349
452k
      }
350
351
      /* OK, load c into get_buffer */
352
6.75M
      get_buffer = (get_buffer << 8) | c;
353
6.75M
      bits_left += 8;
354
6.75M
    } /* end while */
355
5.37M
  } else {
356
5.54M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
5.54M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
2.12M
      if (!cinfo->entropy->insufficient_data) {
368
150k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
150k
        cinfo->entropy->insufficient_data = TRUE;
370
150k
      }
371
      /* Fill the buffer with zero bits */
372
2.12M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
2.12M
      bits_left = MIN_GET_BITS;
374
2.12M
    }
375
5.54M
  }
376
377
  /* Unload the local registers */
378
6.41M
  state->next_input_byte = next_input_byte;
379
6.41M
  state->bytes_in_buffer = bytes_in_buffer;
380
6.41M
  state->get_buffer = get_buffer;
381
6.41M
  state->bits_left = bits_left;
382
383
6.41M
  return TRUE;
384
6.41M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
15.6M
#define GET_BYTE { \
392
15.6M
  register int c0, c1; \
393
15.6M
  c0 = *buffer++; \
394
15.6M
  c1 = *buffer; \
395
15.6M
  /* Pre-execute most common case */ \
396
15.6M
  get_buffer = (get_buffer << 8) | c0; \
397
15.6M
  bits_left += 8; \
398
15.6M
  if (c0 == 0xFF) { \
399
1.58M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
1.58M
    buffer++; \
401
1.58M
    if (c1 != 0) { \
402
1.09M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
1.09M
      cinfo->unread_marker = c1; \
404
1.09M
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
1.09M
      buffer -= 2; \
406
1.09M
      get_buffer &= ~0xFF; \
407
1.09M
    } \
408
1.58M
  } \
409
15.6M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
59.1M
  if (bits_left <= 16) { \
416
2.60M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
2.60M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
3.78M
{
440
3.78M
  register int l = min_bits;
441
3.78M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
3.78M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
3.78M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
10.0M
  while (code > htbl->maxcode[l]) {
453
6.24M
    code <<= 1;
454
6.24M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
6.24M
    code |= GET_BITS(1);
456
6.24M
    l++;
457
6.24M
  }
458
459
  /* Unload the local registers */
460
3.78M
  state->get_buffer = get_buffer;
461
3.78M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
3.78M
  if (l > 16) {
466
176k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
176k
    return 0;                   /* fake a zero as the safest result */
468
176k
  }
469
470
3.60M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
3.78M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
39.1M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
39.1M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
135k
{
514
135k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
135k
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
135k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
135k
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
135k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
438k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
302k
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
135k
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
135k
  if (cinfo->unread_marker == 0)
539
1.51k
    entropy->pub.insufficient_data = FALSE;
540
541
135k
  return TRUE;
542
135k
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
604k
{
554
604k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
604k
  BITREAD_STATE_VARS;
556
604k
  int blkn;
557
604k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
604k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
604k
  state = entropy->saved;
563
564
1.32M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
721k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
721k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
721k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
721k
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
721k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
721k
    if (s) {
575
283k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
283k
      r = GET_BITS(s);
577
283k
      s = HUFF_EXTEND(r, s);
578
283k
    }
579
580
721k
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
721k
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
721k
      s += state.last_dc_val[ci];
592
721k
      state.last_dc_val[ci] = s;
593
721k
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
721k
        (*block)[0] = (JCOEF)s;
596
721k
      }
597
721k
    }
598
599
721k
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
11.6M
      for (k = 1; k < DCTSIZE2; k++) {
604
11.4M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
11.4M
        r = s >> 4;
607
11.4M
        s &= 15;
608
609
11.4M
        if (s) {
610
10.8M
          k += r;
611
10.8M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
10.8M
          r = GET_BITS(s);
613
10.8M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
10.8M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
10.8M
        } else {
620
559k
          if (r != 15)
621
523k
            break;
622
35.3k
          k += 15;
623
35.3k
        }
624
11.4M
      }
625
626
721k
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
176
      for (k = 1; k < DCTSIZE2; k++) {
631
0
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
0
        r = s >> 4;
634
0
        s &= 15;
635
636
0
        if (s) {
637
0
          k += r;
638
0
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
0
          DROP_BITS(s);
640
0
        } else {
641
0
          if (r != 15)
642
0
            break;
643
0
          k += 15;
644
0
        }
645
0
      }
646
176
    }
647
721k
  }
648
649
  /* Completed MCU, so update state */
650
604k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
604k
  entropy->saved = state;
652
604k
  return TRUE;
653
604k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
2.13M
{
665
2.13M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
2.13M
  BITREAD_STATE_VARS;
667
2.13M
  JOCTET *buffer;
668
2.13M
  int blkn;
669
2.13M
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
2.13M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
2.13M
  buffer = (JOCTET *)br_state.next_input_byte;
675
2.13M
  state = entropy->saved;
676
677
4.30M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
2.16M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
2.16M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
2.16M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
2.16M
    register int s, k, r, l;
682
683
2.16M
    HUFF_DECODE_FAST(s, l, dctbl);
684
2.16M
    if (s) {
685
748k
      FILL_BIT_BUFFER_FAST
686
748k
      r = GET_BITS(s);
687
748k
      s = HUFF_EXTEND(r, s);
688
748k
    }
689
690
2.16M
    if (entropy->dc_needed[blkn]) {
691
2.16M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
2.16M
      s += state.last_dc_val[ci];
696
2.16M
      state.last_dc_val[ci] = s;
697
2.16M
      if (block)
698
2.16M
        (*block)[0] = (JCOEF)s;
699
2.16M
    }
700
701
2.16M
    if (entropy->ac_needed[blkn] && block) {
702
703
29.5M
      for (k = 1; k < DCTSIZE2; k++) {
704
28.9M
        HUFF_DECODE_FAST(s, l, actbl);
705
28.9M
        r = s >> 4;
706
28.9M
        s &= 15;
707
708
28.9M
        if (s) {
709
27.2M
          k += r;
710
27.2M
          FILL_BIT_BUFFER_FAST
711
27.2M
          r = GET_BITS(s);
712
27.2M
          s = HUFF_EXTEND(r, s);
713
27.2M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
27.2M
        } else {
715
1.65M
          if (r != 15) break;
716
125k
          k += 15;
717
125k
        }
718
28.9M
      }
719
720
2.16M
    } else {
721
722
0
      for (k = 1; k < DCTSIZE2; k++) {
723
0
        HUFF_DECODE_FAST(s, l, actbl);
724
0
        r = s >> 4;
725
0
        s &= 15;
726
727
0
        if (s) {
728
0
          k += r;
729
0
          FILL_BIT_BUFFER_FAST
730
0
          DROP_BITS(s);
731
0
        } else {
732
0
          if (r != 15) break;
733
0
          k += 15;
734
0
        }
735
0
      }
736
0
    }
737
2.16M
  }
738
739
2.13M
  if (cinfo->unread_marker != 0) {
740
152k
    cinfo->unread_marker = 0;
741
152k
    return FALSE;
742
152k
  }
743
744
1.98M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
1.98M
  br_state.next_input_byte = buffer;
746
1.98M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
1.98M
  entropy->saved = state;
748
1.98M
  return TRUE;
749
2.13M
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
15.9M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
15.9M
{
772
15.9M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
15.9M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
15.9M
  if (cinfo->restart_interval) {
777
1.11M
    if (entropy->restarts_to_go == 0)
778
135k
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
1.11M
    usefast = 0;
781
1.11M
  }
782
783
15.9M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
8.12M
      cinfo->unread_marker != 0)
785
13.7M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
15.9M
  if (!entropy->pub.insufficient_data) {
791
792
2.59M
    if (usefast) {
793
2.13M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
2.13M
    } else {
795
604k
use_slow:
796
604k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
604k
    }
798
799
2.59M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
15.9M
  if (cinfo->restart_interval)
803
1.11M
    entropy->restarts_to_go--;
804
805
15.9M
  return TRUE;
806
15.9M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
82.7k
{
816
82.7k
  huff_entropy_ptr entropy;
817
82.7k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
82.7k
  std_huff_tables((j_common_ptr)cinfo);
824
825
82.7k
  entropy = (huff_entropy_ptr)
826
82.7k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
82.7k
                                sizeof(huff_entropy_decoder));
828
82.7k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
82.7k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
82.7k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
413k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
330k
  }
836
82.7k
}