Coverage Report

Created: 2025-11-16 07:22

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libjxl/lib/jxl/enc_huffman_tree.cc
Line
Count
Source
1
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
2
//
3
// Use of this source code is governed by a BSD-style
4
// license that can be found in the LICENSE file.
5
6
#include "lib/jxl/enc_huffman_tree.h"
7
8
#include <algorithm>
9
#include <cstddef>
10
#include <cstdint>
11
#include <limits>
12
#include <vector>
13
14
#include "lib/jxl/base/compiler_specific.h"
15
#include "lib/jxl/base/status.h"
16
17
namespace jxl {
18
19
void SetDepth(const HuffmanTree& p, HuffmanTree* pool, uint8_t* depth,
20
471k
              uint8_t level) {
21
471k
  if (p.index_left >= 0) {
22
208k
    ++level;
23
208k
    SetDepth(pool[p.index_left], pool, depth, level);
24
208k
    SetDepth(pool[p.index_right_or_value], pool, depth, level);
25
262k
  } else {
26
262k
    depth[p.index_right_or_value] = level;
27
262k
  }
28
471k
}
29
30
// Compare the root nodes, least popular first; indices are in decreasing order
31
// before sorting is applied.
32
494k
static JXL_INLINE bool Compare(const HuffmanTree& v0, const HuffmanTree& v1) {
33
494k
  return v0.total_count != v1.total_count
34
494k
             ? v0.total_count < v1.total_count
35
494k
             : v0.index_right_or_value > v1.index_right_or_value;
36
494k
}
37
38
// This function will create a Huffman tree.
39
//
40
// The catch here is that the tree cannot be arbitrarily deep.
41
// Brotli specifies a maximum depth of 15 bits for "code trees"
42
// and 7 bits for "code length code trees."
43
//
44
// count_limit is the value that is to be faked as the minimum value
45
// and this minimum value is raised until the tree matches the
46
// maximum length requirement.
47
//
48
// This algorithm is not of excellent performance for very long data blocks,
49
// especially when population counts are longer than 2**tree_limit, but
50
// we are not planning to use this with extremely long blocks.
51
//
52
// See http://en.wikipedia.org/wiki/Huffman_coding
53
void CreateHuffmanTree(const uint32_t* data, const size_t length,
54
54.6k
                       const int tree_limit, uint8_t* depth) {
55
  // For block sizes below 64 kB, we never need to do a second iteration
56
  // of this loop. Probably all of our block sizes will be smaller than
57
  // that, so this loop is mostly of academic interest. If we actually
58
  // would need this, we would be better off with the Katajainen algorithm.
59
54.6k
  for (uint32_t count_limit = 1;; count_limit *= 2) {
60
54.6k
    std::vector<HuffmanTree> tree;
61
54.6k
    tree.reserve(2 * length + 1);
62
63
668k
    for (size_t i = length; i != 0;) {
64
613k
      --i;
65
613k
      if (data[i]) {
66
263k
        const uint32_t count = std::max(data[i], count_limit - 1);
67
263k
        tree.emplace_back(count, -1, static_cast<int16_t>(i));
68
263k
      }
69
613k
    }
70
71
54.6k
    const size_t n = tree.size();
72
54.6k
    if (n == 1) {
73
      // Fake value; will be fixed on upper level.
74
128
      depth[tree[0].index_right_or_value] = 1;
75
128
      break;
76
128
    }
77
78
54.5k
    std::sort(tree.begin(), tree.end(), Compare);
79
80
    // The nodes are:
81
    // [0, n): the sorted leaf nodes that we start with.
82
    // [n]: we add a sentinel here.
83
    // [n + 1, 2n): new parent nodes are added here, starting from
84
    //              (n+1). These are naturally in ascending order.
85
    // [2n]: we add a sentinel at the end as well.
86
    // There will be (2n+1) elements at the end.
87
54.5k
    const HuffmanTree sentinel(std::numeric_limits<uint32_t>::max(), -1, -1);
88
54.5k
    tree.push_back(sentinel);
89
54.5k
    tree.push_back(sentinel);
90
91
54.5k
    size_t i = 0;      // Points to the next leaf node.
92
54.5k
    size_t j = n + 1;  // Points to the next non-leaf node.
93
262k
    for (size_t k = n - 1; k != 0; --k) {
94
208k
      size_t left;
95
208k
      size_t right;
96
208k
      if (tree[i].total_count <= tree[j].total_count) {
97
140k
        left = i;
98
140k
        ++i;
99
140k
      } else {
100
67.6k
        left = j;
101
67.6k
        ++j;
102
67.6k
      }
103
208k
      if (tree[i].total_count <= tree[j].total_count) {
104
122k
        right = i;
105
122k
        ++i;
106
122k
      } else {
107
86.3k
        right = j;
108
86.3k
        ++j;
109
86.3k
      }
110
111
      // The sentinel node becomes the parent node.
112
208k
      size_t j_end = tree.size() - 1;
113
208k
      tree[j_end].total_count =
114
208k
          tree[left].total_count + tree[right].total_count;
115
208k
      tree[j_end].index_left = static_cast<int16_t>(left);
116
208k
      tree[j_end].index_right_or_value = static_cast<int16_t>(right);
117
118
      // Add back the last sentinel node.
119
208k
      tree.push_back(sentinel);
120
208k
    }
121
54.5k
    JXL_DASSERT(tree.size() == 2 * n + 1);
122
54.5k
    SetDepth(tree[2 * n - 1], tree.data(), depth, 0);
123
124
    // We need to pack the Huffman tree in tree_limit bits.
125
    // If this was not successful, add fake entities to the lowest values
126
    // and retry.
127
54.5k
    if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) {
128
54.5k
      break;
129
54.5k
    }
130
54.5k
  }
131
54.6k
}
132
133
1.89k
void Reverse(uint8_t* v, size_t start, size_t end) {
134
1.89k
  --end;
135
2.54k
  while (start < end) {
136
644
    uint8_t tmp = v[start];
137
644
    v[start] = v[end];
138
644
    v[end] = tmp;
139
644
    ++start;
140
644
    --end;
141
644
  }
142
1.89k
}
143
144
void WriteHuffmanTreeRepetitions(const uint8_t previous_value,
145
                                 const uint8_t value, size_t repetitions,
146
                                 size_t* tree_size, uint8_t* tree,
147
150k
                                 uint8_t* extra_bits_data) {
148
150k
  JXL_DASSERT(repetitions > 0);
149
150k
  if (previous_value != value) {
150
91.6k
    tree[*tree_size] = value;
151
91.6k
    extra_bits_data[*tree_size] = 0;
152
91.6k
    ++(*tree_size);
153
91.6k
    --repetitions;
154
91.6k
  }
155
150k
  if (repetitions == 7) {
156
14
    tree[*tree_size] = value;
157
14
    extra_bits_data[*tree_size] = 0;
158
14
    ++(*tree_size);
159
14
    --repetitions;
160
14
  }
161
150k
  if (repetitions < 3) {
162
209k
    for (size_t i = 0; i < repetitions; ++i) {
163
59.1k
      tree[*tree_size] = value;
164
59.1k
      extra_bits_data[*tree_size] = 0;
165
59.1k
      ++(*tree_size);
166
59.1k
    }
167
150k
  } else {
168
156
    repetitions -= 3;
169
156
    size_t start = *tree_size;
170
163
    while (true) {
171
163
      tree[*tree_size] = 16;
172
163
      extra_bits_data[*tree_size] = repetitions & 0x3;
173
163
      ++(*tree_size);
174
163
      repetitions >>= 2;
175
163
      if (repetitions == 0) {
176
156
        break;
177
156
      }
178
7
      --repetitions;
179
7
    }
180
156
    Reverse(tree, start, *tree_size);
181
156
    Reverse(extra_bits_data, start, *tree_size);
182
156
  }
183
150k
}
184
185
void WriteHuffmanTreeRepetitionsZeros(size_t repetitions, size_t* tree_size,
186
4.53k
                                      uint8_t* tree, uint8_t* extra_bits_data) {
187
4.53k
  if (repetitions == 11) {
188
13
    tree[*tree_size] = 0;
189
13
    extra_bits_data[*tree_size] = 0;
190
13
    ++(*tree_size);
191
13
    --repetitions;
192
13
  }
193
4.53k
  if (repetitions < 3) {
194
8.04k
    for (size_t i = 0; i < repetitions; ++i) {
195
4.29k
      tree[*tree_size] = 0;
196
4.29k
      extra_bits_data[*tree_size] = 0;
197
4.29k
      ++(*tree_size);
198
4.29k
    }
199
3.74k
  } else {
200
792
    repetitions -= 3;
201
792
    size_t start = *tree_size;
202
1.37k
    while (true) {
203
1.37k
      tree[*tree_size] = 17;
204
1.37k
      extra_bits_data[*tree_size] = repetitions & 0x7;
205
1.37k
      ++(*tree_size);
206
1.37k
      repetitions >>= 3;
207
1.37k
      if (repetitions == 0) {
208
792
        break;
209
792
      }
210
581
      --repetitions;
211
581
    }
212
792
    Reverse(tree, start, *tree_size);
213
792
    Reverse(extra_bits_data, start, *tree_size);
214
792
  }
215
4.53k
}
216
217
static void DecideOverRleUse(const uint8_t* depth, const size_t length,
218
                             bool* use_rle_for_non_zero,
219
363
                             bool* use_rle_for_zero) {
220
363
  size_t total_reps_zero = 0;
221
363
  size_t total_reps_non_zero = 0;
222
363
  size_t count_reps_zero = 1;
223
363
  size_t count_reps_non_zero = 1;
224
5.70k
  for (size_t i = 0; i < length;) {
225
5.33k
    const uint8_t value = depth[i];
226
5.33k
    size_t reps = 1;
227
67.4k
    for (size_t k = i + 1; k < length && depth[k] == value; ++k) {
228
62.1k
      ++reps;
229
62.1k
    }
230
5.33k
    if (reps >= 3 && value == 0) {
231
795
      total_reps_zero += reps;
232
795
      ++count_reps_zero;
233
795
    }
234
5.33k
    if (reps >= 4 && value != 0) {
235
154
      total_reps_non_zero += reps;
236
154
      ++count_reps_non_zero;
237
154
    }
238
5.33k
    i += reps;
239
5.33k
  }
240
363
  *use_rle_for_non_zero = total_reps_non_zero > count_reps_non_zero * 2;
241
363
  *use_rle_for_zero = total_reps_zero > count_reps_zero * 2;
242
363
}
243
244
void WriteHuffmanTree(const uint8_t* depth, size_t length, size_t* tree_size,
245
19.5k
                      uint8_t* tree, uint8_t* extra_bits_data) {
246
19.5k
  uint8_t previous_value = 8;
247
248
  // Throw away trailing zeros.
249
19.5k
  size_t new_length = length;
250
19.5k
  for (size_t i = 0; i < length; ++i) {
251
19.5k
    if (depth[length - i - 1] == 0) {
252
0
      --new_length;
253
19.5k
    } else {
254
19.5k
      break;
255
19.5k
    }
256
19.5k
  }
257
258
  // First gather statistics on if it is a good idea to do rle.
259
19.5k
  bool use_rle_for_non_zero = false;
260
19.5k
  bool use_rle_for_zero = false;
261
19.5k
  if (length > 50) {
262
    // Find rle coding for longer codes.
263
    // Shorter codes seem not to benefit from rle.
264
363
    DecideOverRleUse(depth, new_length, &use_rle_for_non_zero,
265
363
                     &use_rle_for_zero);
266
363
  }
267
268
  // Actual rle coding.
269
174k
  for (size_t i = 0; i < new_length;) {
270
155k
    const uint8_t value = depth[i];
271
155k
    size_t reps = 1;
272
155k
    if ((value != 0 && use_rle_for_non_zero) ||
273
154k
        (value == 0 && use_rle_for_zero)) {
274
63.4k
      for (size_t k = i + 1; k < new_length && depth[k] == value; ++k) {
275
61.1k
        ++reps;
276
61.1k
      }
277
2.28k
    }
278
155k
    if (value == 0) {
279
4.53k
      WriteHuffmanTreeRepetitionsZeros(reps, tree_size, tree, extra_bits_data);
280
150k
    } else {
281
150k
      WriteHuffmanTreeRepetitions(previous_value, value, reps, tree_size, tree,
282
150k
                                  extra_bits_data);
283
150k
      previous_value = value;
284
150k
    }
285
155k
    i += reps;
286
155k
  }
287
19.5k
}
288
289
namespace {
290
291
263k
uint16_t ReverseBits(int num_bits, uint16_t bits) {
292
263k
  static const size_t kLut[16] = {// Pre-reversed 4-bit values.
293
263k
                                  0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
294
263k
                                  0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf};
295
263k
  size_t retval = kLut[bits & 0xf];
296
299k
  for (int i = 4; i < num_bits; i += 4) {
297
36.1k
    retval <<= 4;
298
36.1k
    bits = static_cast<uint16_t>(bits >> 4);
299
36.1k
    retval |= kLut[bits & 0xf];
300
36.1k
  }
301
263k
  retval >>= (-num_bits & 0x3);
302
263k
  return static_cast<uint16_t>(retval);
303
263k
}
304
305
}  // namespace
306
307
void ConvertBitDepthsToSymbols(const uint8_t* depth, size_t len,
308
54.6k
                               uint16_t* bits) {
309
  // In Brotli, all bit depths are [1..15]
310
  // 0 bit depth means that the symbol does not exist.
311
54.6k
  const int kMaxBits = 16;  // 0..15 are values for bits
312
54.6k
  uint16_t bl_count[kMaxBits] = {0};
313
54.6k
  {
314
668k
    for (size_t i = 0; i < len; ++i) {
315
613k
      ++bl_count[depth[i]];
316
613k
    }
317
54.6k
    bl_count[0] = 0;
318
54.6k
  }
319
54.6k
  uint16_t next_code[kMaxBits];
320
54.6k
  next_code[0] = 0;
321
54.6k
  {
322
54.6k
    int code = 0;
323
874k
    for (size_t i = 1; i < kMaxBits; ++i) {
324
819k
      code = (code + bl_count[i - 1]) << 1;
325
819k
      next_code[i] = static_cast<uint16_t>(code);
326
819k
    }
327
54.6k
  }
328
668k
  for (size_t i = 0; i < len; ++i) {
329
613k
    if (depth[i]) {
330
263k
      bits[i] = ReverseBits(depth[i], next_code[depth[i]]++);
331
263k
    }
332
613k
  }
333
54.6k
}
334
335
}  // namespace jxl