Coverage Report

Created: 2025-12-31 07:53

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aom/av1/common/reconintra.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <math.h>
13
14
#include "config/aom_config.h"
15
#include "config/aom_dsp_rtcd.h"
16
#include "config/av1_rtcd.h"
17
18
#include "aom_dsp/aom_dsp_common.h"
19
#include "aom_mem/aom_mem.h"
20
#include "aom_ports/aom_once.h"
21
#include "aom_ports/mem.h"
22
#include "av1/common/av1_common_int.h"
23
#include "av1/common/cfl.h"
24
#include "av1/common/reconintra.h"
25
26
enum {
27
  NEED_LEFT = 1 << 1,
28
  NEED_ABOVE = 1 << 2,
29
  NEED_ABOVERIGHT = 1 << 3,
30
  NEED_ABOVELEFT = 1 << 4,
31
  NEED_BOTTOMLEFT = 1 << 5,
32
};
33
34
#define INTRA_EDGE_FILT 3
35
572M
#define INTRA_EDGE_TAPS 5
36
#define MAX_UPSAMPLE_SZ 16
37
83.5M
#define NUM_INTRA_NEIGHBOUR_PIXELS (MAX_TX_SIZE * 2 + 32)
38
39
static const uint8_t extend_modes[INTRA_MODES] = {
40
  NEED_ABOVE | NEED_LEFT,                   // DC
41
  NEED_ABOVE,                               // V
42
  NEED_LEFT,                                // H
43
  NEED_ABOVE | NEED_ABOVERIGHT,             // D45
44
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // D135
45
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // D113
46
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // D157
47
  NEED_LEFT | NEED_BOTTOMLEFT,              // D203
48
  NEED_ABOVE | NEED_ABOVERIGHT,             // D67
49
  NEED_LEFT | NEED_ABOVE,                   // SMOOTH
50
  NEED_LEFT | NEED_ABOVE,                   // SMOOTH_V
51
  NEED_LEFT | NEED_ABOVE,                   // SMOOTH_H
52
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // PAETH
53
};
54
55
// Tables to store if the top-right reference pixels are available. The flags
56
// are represented with bits, packed into 8-bit integers. E.g., for the 32x32
57
// blocks in a 128x128 superblock, the index of the "o" block is 10 (in raster
58
// order), so its flag is stored at the 3rd bit of the 2nd entry in the table,
59
// i.e. (table[10 / 8] >> (10 % 8)) & 1.
60
//       . . . .
61
//       . . . .
62
//       . . o .
63
//       . . . .
64
static uint8_t has_tr_4x4[128] = {
65
  255, 255, 255, 255, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
66
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
67
  255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
68
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
69
  255, 255, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
70
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
71
  255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
72
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
73
};
74
static uint8_t has_tr_4x8[64] = {
75
  255, 255, 255, 255, 119, 119, 119, 119, 127, 127, 127, 127, 119,
76
  119, 119, 119, 255, 127, 255, 127, 119, 119, 119, 119, 127, 127,
77
  127, 127, 119, 119, 119, 119, 255, 255, 255, 127, 119, 119, 119,
78
  119, 127, 127, 127, 127, 119, 119, 119, 119, 255, 127, 255, 127,
79
  119, 119, 119, 119, 127, 127, 127, 127, 119, 119, 119, 119,
80
};
81
static uint8_t has_tr_8x4[64] = {
82
  255, 255, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
83
  127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
84
  255, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
85
  127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
86
};
87
static uint8_t has_tr_8x8[32] = {
88
  255, 255, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85,
89
  255, 127, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85,
90
};
91
static uint8_t has_tr_8x16[16] = {
92
  255, 255, 119, 119, 127, 127, 119, 119,
93
  255, 127, 119, 119, 127, 127, 119, 119,
94
};
95
static uint8_t has_tr_16x8[16] = {
96
  255, 0, 85, 0, 119, 0, 85, 0, 127, 0, 85, 0, 119, 0, 85, 0,
97
};
98
static uint8_t has_tr_16x16[8] = {
99
  255, 85, 119, 85, 127, 85, 119, 85,
100
};
101
static uint8_t has_tr_16x32[4] = { 255, 119, 127, 119 };
102
static uint8_t has_tr_32x16[4] = { 15, 5, 7, 5 };
103
static uint8_t has_tr_32x32[2] = { 95, 87 };
104
static uint8_t has_tr_32x64[1] = { 127 };
105
static uint8_t has_tr_64x32[1] = { 19 };
106
static uint8_t has_tr_64x64[1] = { 7 };
107
static uint8_t has_tr_64x128[1] = { 3 };
108
static uint8_t has_tr_128x64[1] = { 1 };
109
static uint8_t has_tr_128x128[1] = { 1 };
110
static uint8_t has_tr_4x16[32] = {
111
  255, 255, 255, 255, 127, 127, 127, 127, 255, 127, 255,
112
  127, 127, 127, 127, 127, 255, 255, 255, 127, 127, 127,
113
  127, 127, 255, 127, 255, 127, 127, 127, 127, 127,
114
};
115
static uint8_t has_tr_16x4[32] = {
116
  255, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0,
117
  127, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0,
118
};
119
static uint8_t has_tr_8x32[8] = {
120
  255, 255, 127, 127, 255, 127, 127, 127,
121
};
122
static uint8_t has_tr_32x8[8] = {
123
  15, 0, 5, 0, 7, 0, 5, 0,
124
};
125
static uint8_t has_tr_16x64[2] = { 255, 127 };
126
static uint8_t has_tr_64x16[2] = { 3, 1 };
127
128
static const uint8_t *const has_tr_tables[BLOCK_SIZES_ALL] = {
129
  // 4X4
130
  has_tr_4x4,
131
  // 4X8,       8X4,            8X8
132
  has_tr_4x8, has_tr_8x4, has_tr_8x8,
133
  // 8X16,      16X8,           16X16
134
  has_tr_8x16, has_tr_16x8, has_tr_16x16,
135
  // 16X32,     32X16,          32X32
136
  has_tr_16x32, has_tr_32x16, has_tr_32x32,
137
  // 32X64,     64X32,          64X64
138
  has_tr_32x64, has_tr_64x32, has_tr_64x64,
139
  // 64x128,    128x64,         128x128
140
  has_tr_64x128, has_tr_128x64, has_tr_128x128,
141
  // 4x16,      16x4,            8x32
142
  has_tr_4x16, has_tr_16x4, has_tr_8x32,
143
  // 32x8,      16x64,           64x16
144
  has_tr_32x8, has_tr_16x64, has_tr_64x16
145
};
146
147
static uint8_t has_tr_vert_8x8[32] = {
148
  255, 255, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0,
149
  255, 127, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0,
150
};
151
static uint8_t has_tr_vert_16x16[8] = {
152
  255, 0, 119, 0, 127, 0, 119, 0,
153
};
154
static uint8_t has_tr_vert_32x32[2] = { 15, 7 };
155
static uint8_t has_tr_vert_64x64[1] = { 3 };
156
157
// The _vert_* tables are like the ordinary tables above, but describe the
158
// order we visit square blocks when doing a PARTITION_VERT_A or
159
// PARTITION_VERT_B. This is the same order as normal except for on the last
160
// split where we go vertically (TL, BL, TR, BR). We treat the rectangular block
161
// as a pair of squares, which means that these tables work correctly for both
162
// mixed vertical partition types.
163
//
164
// There are tables for each of the square sizes. Vertical rectangles (like
165
// BLOCK_16X32) use their respective "non-vert" table
166
static const uint8_t *const has_tr_vert_tables[BLOCK_SIZES] = {
167
  // 4X4
168
  NULL,
169
  // 4X8,      8X4,         8X8
170
  has_tr_4x8, NULL, has_tr_vert_8x8,
171
  // 8X16,     16X8,        16X16
172
  has_tr_8x16, NULL, has_tr_vert_16x16,
173
  // 16X32,    32X16,       32X32
174
  has_tr_16x32, NULL, has_tr_vert_32x32,
175
  // 32X64,    64X32,       64X64
176
  has_tr_32x64, NULL, has_tr_vert_64x64,
177
  // 64x128,   128x64,      128x128
178
  has_tr_64x128, NULL, has_tr_128x128
179
};
180
181
static const uint8_t *get_has_tr_table(PARTITION_TYPE partition,
182
15.9M
                                       BLOCK_SIZE bsize) {
183
15.9M
  const uint8_t *ret = NULL;
184
  // If this is a mixed vertical partition, look up bsize in orders_vert.
185
15.9M
  if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) {
186
1.24M
    assert(bsize < BLOCK_SIZES);
187
1.24M
    ret = has_tr_vert_tables[bsize];
188
14.7M
  } else {
189
14.7M
    ret = has_tr_tables[bsize];
190
14.7M
  }
191
15.9M
  assert(ret);
192
15.9M
  return ret;
193
15.9M
}
194
195
static int has_top_right(BLOCK_SIZE sb_size, BLOCK_SIZE bsize, int mi_row,
196
                         int mi_col, int top_available, int right_available,
197
                         PARTITION_TYPE partition, TX_SIZE txsz, int row_off,
198
41.7M
                         int col_off, int ss_x, int ss_y) {
199
41.7M
  if (!top_available || !right_available) return 0;
200
201
37.4M
  const int bw_unit = mi_size_wide[bsize];
202
37.4M
  const int plane_bw_unit = AOMMAX(bw_unit >> ss_x, 1);
203
37.4M
  const int top_right_count_unit = tx_size_wide_unit[txsz];
204
205
37.4M
  if (row_off > 0) {  // Just need to check if enough pixels on the right.
206
12.0M
    if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64]) {
207
      // Special case: For 128x128 blocks, the transform unit whose
208
      // top-right corner is at the center of the block does in fact have
209
      // pixels available at its top-right corner.
210
5.47M
      if (row_off == mi_size_high[BLOCK_64X64] >> ss_y &&
211
747k
          col_off + top_right_count_unit == mi_size_wide[BLOCK_64X64] >> ss_x) {
212
216k
        return 1;
213
216k
      }
214
5.25M
      const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x;
215
5.25M
      const int col_off_64 = col_off % plane_bw_unit_64;
216
5.25M
      return col_off_64 + top_right_count_unit < plane_bw_unit_64;
217
5.47M
    }
218
6.55M
    return col_off + top_right_count_unit < plane_bw_unit;
219
25.4M
  } else {
220
    // All top-right pixels are in the block above, which is already available.
221
25.4M
    if (col_off + top_right_count_unit < plane_bw_unit) return 1;
222
223
23.2M
    const int bw_in_mi_log2 = mi_size_wide_log2[bsize];
224
23.2M
    const int bh_in_mi_log2 = mi_size_high_log2[bsize];
225
23.2M
    const int sb_mi_size = mi_size_high[sb_size];
226
23.2M
    const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2;
227
23.2M
    const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2;
228
229
    // Top row of superblock: so top-right pixels are in the top and/or
230
    // top-right superblocks, both of which are already available.
231
23.2M
    if (blk_row_in_sb == 0) return 1;
232
233
    // Rightmost column of superblock (and not the top row): so top-right pixels
234
    // fall in the right superblock, which is not available yet.
235
18.6M
    if (((blk_col_in_sb + 1) << bw_in_mi_log2) >= sb_mi_size) {
236
2.65M
      return 0;
237
2.65M
    }
238
239
    // General case (neither top row nor rightmost column): check if the
240
    // top-right block is coded before the current block.
241
15.9M
    const int this_blk_index =
242
15.9M
        ((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) +
243
15.9M
        blk_col_in_sb + 0;
244
15.9M
    const int idx1 = this_blk_index / 8;
245
15.9M
    const int idx2 = this_blk_index % 8;
246
15.9M
    const uint8_t *has_tr_table = get_has_tr_table(partition, bsize);
247
15.9M
    return (has_tr_table[idx1] >> idx2) & 1;
248
18.6M
  }
249
37.4M
}
250
251
// Similar to the has_tr_* tables, but store if the bottom-left reference
252
// pixels are available.
253
static uint8_t has_bl_4x4[128] = {
254
  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  1,  1,  1,  84, 85, 85,
255
  85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  0,  1,  0,  84, 85, 85, 85, 16, 17,
256
  17, 17, 84, 85, 85, 85, 0,  1,  1,  1,  84, 85, 85, 85, 16, 17, 17, 17, 84,
257
  85, 85, 85, 0,  0,  0,  0,  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85,
258
  0,  1,  1,  1,  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  0,  1,
259
  0,  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  1,  1,  1,  84, 85,
260
  85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  0,  0,  0,
261
};
262
static uint8_t has_bl_4x8[64] = {
263
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 1, 0,
264
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 0, 0,
265
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 1, 0,
266
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 0, 0,
267
};
268
static uint8_t has_bl_8x4[64] = {
269
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 1,
270
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 0,
271
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 1,
272
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 0,
273
};
274
static uint8_t has_bl_8x8[32] = {
275
  84, 85, 16, 17, 84, 85, 0, 1, 84, 85, 16, 17, 84, 85, 0, 0,
276
  84, 85, 16, 17, 84, 85, 0, 1, 84, 85, 16, 17, 84, 85, 0, 0,
277
};
278
static uint8_t has_bl_8x16[16] = {
279
  16, 17, 0, 1, 16, 17, 0, 0, 16, 17, 0, 1, 16, 17, 0, 0,
280
};
281
static uint8_t has_bl_16x8[16] = {
282
  254, 84, 254, 16, 254, 84, 254, 0, 254, 84, 254, 16, 254, 84, 254, 0,
283
};
284
static uint8_t has_bl_16x16[8] = {
285
  84, 16, 84, 0, 84, 16, 84, 0,
286
};
287
static uint8_t has_bl_16x32[4] = { 16, 0, 16, 0 };
288
static uint8_t has_bl_32x16[4] = { 78, 14, 78, 14 };
289
static uint8_t has_bl_32x32[2] = { 4, 4 };
290
static uint8_t has_bl_32x64[1] = { 0 };
291
static uint8_t has_bl_64x32[1] = { 34 };
292
static uint8_t has_bl_64x64[1] = { 0 };
293
static uint8_t has_bl_64x128[1] = { 0 };
294
static uint8_t has_bl_128x64[1] = { 0 };
295
static uint8_t has_bl_128x128[1] = { 0 };
296
static uint8_t has_bl_4x16[32] = {
297
  0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,
298
  0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,
299
};
300
static uint8_t has_bl_16x4[32] = {
301
  254, 254, 254, 84, 254, 254, 254, 16, 254, 254, 254, 84, 254, 254, 254, 0,
302
  254, 254, 254, 84, 254, 254, 254, 16, 254, 254, 254, 84, 254, 254, 254, 0,
303
};
304
static uint8_t has_bl_8x32[8] = {
305
  0, 1, 0, 0, 0, 1, 0, 0,
306
};
307
static uint8_t has_bl_32x8[8] = {
308
  238, 78, 238, 14, 238, 78, 238, 14,
309
};
310
static uint8_t has_bl_16x64[2] = { 0, 0 };
311
static uint8_t has_bl_64x16[2] = { 42, 42 };
312
313
static const uint8_t *const has_bl_tables[BLOCK_SIZES_ALL] = {
314
  // 4X4
315
  has_bl_4x4,
316
  // 4X8,         8X4,         8X8
317
  has_bl_4x8, has_bl_8x4, has_bl_8x8,
318
  // 8X16,        16X8,        16X16
319
  has_bl_8x16, has_bl_16x8, has_bl_16x16,
320
  // 16X32,       32X16,       32X32
321
  has_bl_16x32, has_bl_32x16, has_bl_32x32,
322
  // 32X64,       64X32,       64X64
323
  has_bl_32x64, has_bl_64x32, has_bl_64x64,
324
  // 64x128,      128x64,      128x128
325
  has_bl_64x128, has_bl_128x64, has_bl_128x128,
326
  // 4x16,        16x4,        8x32
327
  has_bl_4x16, has_bl_16x4, has_bl_8x32,
328
  // 32x8,        16x64,       64x16
329
  has_bl_32x8, has_bl_16x64, has_bl_64x16
330
};
331
332
static uint8_t has_bl_vert_8x8[32] = {
333
  254, 255, 16, 17, 254, 255, 0, 1, 254, 255, 16, 17, 254, 255, 0, 0,
334
  254, 255, 16, 17, 254, 255, 0, 1, 254, 255, 16, 17, 254, 255, 0, 0,
335
};
336
static uint8_t has_bl_vert_16x16[8] = {
337
  254, 16, 254, 0, 254, 16, 254, 0,
338
};
339
static uint8_t has_bl_vert_32x32[2] = { 14, 14 };
340
static uint8_t has_bl_vert_64x64[1] = { 2 };
341
342
// The _vert_* tables are like the ordinary tables above, but describe the
343
// order we visit square blocks when doing a PARTITION_VERT_A or
344
// PARTITION_VERT_B. This is the same order as normal except for on the last
345
// split where we go vertically (TL, BL, TR, BR). We treat the rectangular block
346
// as a pair of squares, which means that these tables work correctly for both
347
// mixed vertical partition types.
348
//
349
// There are tables for each of the square sizes. Vertical rectangles (like
350
// BLOCK_16X32) use their respective "non-vert" table
351
static const uint8_t *const has_bl_vert_tables[BLOCK_SIZES] = {
352
  // 4X4
353
  NULL,
354
  // 4X8,     8X4,         8X8
355
  has_bl_4x8, NULL, has_bl_vert_8x8,
356
  // 8X16,    16X8,        16X16
357
  has_bl_8x16, NULL, has_bl_vert_16x16,
358
  // 16X32,   32X16,       32X32
359
  has_bl_16x32, NULL, has_bl_vert_32x32,
360
  // 32X64,   64X32,       64X64
361
  has_bl_32x64, NULL, has_bl_vert_64x64,
362
  // 64x128,  128x64,      128x128
363
  has_bl_64x128, NULL, has_bl_128x128
364
};
365
366
static const uint8_t *get_has_bl_table(PARTITION_TYPE partition,
367
16.1M
                                       BLOCK_SIZE bsize) {
368
16.1M
  const uint8_t *ret = NULL;
369
  // If this is a mixed vertical partition, look up bsize in orders_vert.
370
16.1M
  if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) {
371
1.28M
    assert(bsize < BLOCK_SIZES);
372
1.28M
    ret = has_bl_vert_tables[bsize];
373
14.8M
  } else {
374
14.8M
    ret = has_bl_tables[bsize];
375
14.8M
  }
376
16.1M
  assert(ret);
377
16.1M
  return ret;
378
16.1M
}
379
380
static int has_bottom_left(BLOCK_SIZE sb_size, BLOCK_SIZE bsize, int mi_row,
381
                           int mi_col, int bottom_available, int left_available,
382
                           PARTITION_TYPE partition, TX_SIZE txsz, int row_off,
383
41.7M
                           int col_off, int ss_x, int ss_y) {
384
41.7M
  if (!bottom_available || !left_available) return 0;
385
386
  // Special case for 128x* blocks, when col_off is half the block width.
387
  // This is needed because 128x* superblocks are divided into 64x* blocks in
388
  // raster order
389
38.2M
  if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64] && col_off > 0) {
390
5.59M
    const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x;
391
5.59M
    const int col_off_64 = col_off % plane_bw_unit_64;
392
5.59M
    if (col_off_64 == 0) {
393
      // We are at the left edge of top-right or bottom-right 64x* block.
394
833k
      const int plane_bh_unit_64 = mi_size_high[BLOCK_64X64] >> ss_y;
395
833k
      const int row_off_64 = row_off % plane_bh_unit_64;
396
833k
      const int plane_bh_unit =
397
833k
          AOMMIN(mi_size_high[bsize] >> ss_y, plane_bh_unit_64);
398
      // Check if all bottom-left pixels are in the left 64x* block (which is
399
      // already coded).
400
833k
      return row_off_64 + tx_size_high_unit[txsz] < plane_bh_unit;
401
833k
    }
402
5.59M
  }
403
404
37.4M
  if (col_off > 0) {
405
    // Bottom-left pixels are in the bottom-left block, which is not available.
406
10.6M
    return 0;
407
26.7M
  } else {
408
26.7M
    const int bh_unit = mi_size_high[bsize];
409
26.7M
    const int plane_bh_unit = AOMMAX(bh_unit >> ss_y, 1);
410
26.7M
    const int bottom_left_count_unit = tx_size_high_unit[txsz];
411
412
    // All bottom-left pixels are in the left block, which is already available.
413
26.7M
    if (row_off + bottom_left_count_unit < plane_bh_unit) return 1;
414
415
23.8M
    const int bw_in_mi_log2 = mi_size_wide_log2[bsize];
416
23.8M
    const int bh_in_mi_log2 = mi_size_high_log2[bsize];
417
23.8M
    const int sb_mi_size = mi_size_high[sb_size];
418
23.8M
    const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2;
419
23.8M
    const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2;
420
421
    // Leftmost column of superblock: so bottom-left pixels maybe in the left
422
    // and/or bottom-left superblocks. But only the left superblock is
423
    // available, so check if all required pixels fall in that superblock.
424
23.8M
    if (blk_col_in_sb == 0) {
425
3.83M
      const int blk_start_row_off =
426
3.83M
          blk_row_in_sb << (bh_in_mi_log2 + MI_SIZE_LOG2 - MI_SIZE_LOG2) >>
427
3.83M
          ss_y;
428
3.83M
      const int row_off_in_sb = blk_start_row_off + row_off;
429
3.83M
      const int sb_height_unit = sb_mi_size >> ss_y;
430
3.83M
      return row_off_in_sb + bottom_left_count_unit < sb_height_unit;
431
3.83M
    }
432
433
    // Bottom row of superblock (and not the leftmost column): so bottom-left
434
    // pixels fall in the bottom superblock, which is not available yet.
435
20.0M
    if (((blk_row_in_sb + 1) << bh_in_mi_log2) >= sb_mi_size) return 0;
436
437
    // General case (neither leftmost column nor bottom row): check if the
438
    // bottom-left block is coded before the current block.
439
16.1M
    const int this_blk_index =
440
16.1M
        ((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) +
441
16.1M
        blk_col_in_sb + 0;
442
16.1M
    const int idx1 = this_blk_index / 8;
443
16.1M
    const int idx2 = this_blk_index % 8;
444
16.1M
    const uint8_t *has_bl_table = get_has_bl_table(partition, bsize);
445
16.1M
    return (has_bl_table[idx1] >> idx2) & 1;
446
20.0M
  }
447
37.4M
}
448
449
typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride,
450
                              const uint8_t *above, const uint8_t *left);
451
452
static intra_pred_fn pred[INTRA_MODES][TX_SIZES_ALL];
453
static intra_pred_fn dc_pred[2][2][TX_SIZES_ALL];
454
455
#if CONFIG_AV1_HIGHBITDEPTH
456
typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride,
457
                                   const uint16_t *above, const uint16_t *left,
458
                                   int bd);
459
static intra_high_pred_fn pred_high[INTRA_MODES][TX_SIZES_ALL];
460
static intra_high_pred_fn dc_pred_high[2][2][TX_SIZES_ALL];
461
#endif
462
463
5
static void init_intra_predictors_internal(void) {
464
5
  assert(NELEMENTS(mode_to_angle_map) == INTRA_MODES);
465
466
#if CONFIG_REALTIME_ONLY
467
#define INIT_RECTANGULAR(p, type)             \
468
  p[TX_4X8] = aom_##type##_predictor_4x8;     \
469
  p[TX_8X4] = aom_##type##_predictor_8x4;     \
470
  p[TX_8X16] = aom_##type##_predictor_8x16;   \
471
  p[TX_16X8] = aom_##type##_predictor_16x8;   \
472
  p[TX_16X32] = aom_##type##_predictor_16x32; \
473
  p[TX_32X16] = aom_##type##_predictor_32x16; \
474
  p[TX_32X64] = aom_##type##_predictor_32x64; \
475
  p[TX_64X32] = aom_##type##_predictor_64x32;
476
#else
477
5
#define INIT_RECTANGULAR(p, type)             \
478
100
  p[TX_4X8] = aom_##type##_predictor_4x8;     \
479
100
  p[TX_8X4] = aom_##type##_predictor_8x4;     \
480
100
  p[TX_8X16] = aom_##type##_predictor_8x16;   \
481
100
  p[TX_16X8] = aom_##type##_predictor_16x8;   \
482
100
  p[TX_16X32] = aom_##type##_predictor_16x32; \
483
100
  p[TX_32X16] = aom_##type##_predictor_32x16; \
484
100
  p[TX_32X64] = aom_##type##_predictor_32x64; \
485
100
  p[TX_64X32] = aom_##type##_predictor_64x32; \
486
100
  p[TX_4X16] = aom_##type##_predictor_4x16;   \
487
100
  p[TX_16X4] = aom_##type##_predictor_16x4;   \
488
100
  p[TX_8X32] = aom_##type##_predictor_8x32;   \
489
100
  p[TX_32X8] = aom_##type##_predictor_32x8;   \
490
100
  p[TX_16X64] = aom_##type##_predictor_16x64; \
491
100
  p[TX_64X16] = aom_##type##_predictor_64x16;
492
5
#endif
493
494
5
#define INIT_NO_4X4(p, type)                  \
495
100
  p[TX_8X8] = aom_##type##_predictor_8x8;     \
496
100
  p[TX_16X16] = aom_##type##_predictor_16x16; \
497
100
  p[TX_32X32] = aom_##type##_predictor_32x32; \
498
100
  p[TX_64X64] = aom_##type##_predictor_64x64; \
499
100
  INIT_RECTANGULAR(p, type)
500
501
5
#define INIT_ALL_SIZES(p, type)           \
502
100
  p[TX_4X4] = aom_##type##_predictor_4x4; \
503
100
  INIT_NO_4X4(p, type)
504
505
5
  INIT_ALL_SIZES(pred[V_PRED], v);
506
5
  INIT_ALL_SIZES(pred[H_PRED], h);
507
5
  INIT_ALL_SIZES(pred[PAETH_PRED], paeth);
508
5
  INIT_ALL_SIZES(pred[SMOOTH_PRED], smooth);
509
5
  INIT_ALL_SIZES(pred[SMOOTH_V_PRED], smooth_v);
510
5
  INIT_ALL_SIZES(pred[SMOOTH_H_PRED], smooth_h);
511
5
  INIT_ALL_SIZES(dc_pred[0][0], dc_128);
512
5
  INIT_ALL_SIZES(dc_pred[0][1], dc_top);
513
5
  INIT_ALL_SIZES(dc_pred[1][0], dc_left);
514
5
  INIT_ALL_SIZES(dc_pred[1][1], dc);
515
5
#if CONFIG_AV1_HIGHBITDEPTH
516
5
  INIT_ALL_SIZES(pred_high[V_PRED], highbd_v);
517
5
  INIT_ALL_SIZES(pred_high[H_PRED], highbd_h);
518
5
  INIT_ALL_SIZES(pred_high[PAETH_PRED], highbd_paeth);
519
5
  INIT_ALL_SIZES(pred_high[SMOOTH_PRED], highbd_smooth);
520
5
  INIT_ALL_SIZES(pred_high[SMOOTH_V_PRED], highbd_smooth_v);
521
5
  INIT_ALL_SIZES(pred_high[SMOOTH_H_PRED], highbd_smooth_h);
522
5
  INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128);
523
5
  INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top);
524
5
  INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left);
525
5
  INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc);
526
5
#endif
527
5
#undef intra_pred_allsizes
528
5
}
529
530
// Directional prediction, zone 1: 0 < angle < 90
531
void av1_dr_prediction_z1_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
532
                            const uint8_t *above, const uint8_t *left,
533
984k
                            int upsample_above, int dx, int dy) {
534
984k
  int r, c, x, base, shift, val;
535
536
984k
  (void)left;
537
984k
  (void)dy;
538
984k
  assert(dy == 1);
539
984k
  assert(dx > 0);
540
541
984k
  const int max_base_x = ((bw + bh) - 1) << upsample_above;
542
984k
  const int frac_bits = 6 - upsample_above;
543
984k
  const int base_inc = 1 << upsample_above;
544
984k
  x = dx;
545
12.2M
  for (r = 0; r < bh; ++r, dst += stride, x += dx) {
546
11.2M
    base = x >> frac_bits;
547
11.2M
    shift = ((x << upsample_above) & 0x3F) >> 1;
548
549
11.2M
    if (base >= max_base_x) {
550
17.1k
      for (int i = r; i < bh; ++i) {
551
11.5k
        memset(dst, above[max_base_x], bw * sizeof(dst[0]));
552
11.5k
        dst += stride;
553
11.5k
      }
554
5.57k
      return;
555
5.57k
    }
556
557
223M
    for (c = 0; c < bw; ++c, base += base_inc) {
558
212M
      if (base < max_base_x) {
559
210M
        val = above[base] * (32 - shift) + above[base + 1] * shift;
560
210M
        dst[c] = ROUND_POWER_OF_TWO(val, 5);
561
210M
      } else {
562
1.30M
        dst[c] = above[max_base_x];
563
1.30M
      }
564
212M
    }
565
11.2M
  }
566
984k
}
567
568
// Directional prediction, zone 2: 90 < angle < 180
569
void av1_dr_prediction_z2_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
570
                            const uint8_t *above, const uint8_t *left,
571
                            int upsample_above, int upsample_left, int dx,
572
1.69M
                            int dy) {
573
1.69M
  assert(dx > 0);
574
1.69M
  assert(dy > 0);
575
576
1.69M
  const int min_base_x = -(1 << upsample_above);
577
1.69M
  const int min_base_y = -(1 << upsample_left);
578
1.69M
  (void)min_base_y;
579
1.69M
  const int frac_bits_x = 6 - upsample_above;
580
1.69M
  const int frac_bits_y = 6 - upsample_left;
581
582
22.1M
  for (int r = 0; r < bh; ++r) {
583
408M
    for (int c = 0; c < bw; ++c) {
584
388M
      int val;
585
388M
      int y = r + 1;
586
388M
      int x = (c << 6) - y * dx;
587
388M
      const int base_x = x >> frac_bits_x;
588
388M
      if (base_x >= min_base_x) {
589
186M
        const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1;
590
186M
        val = above[base_x] * (32 - shift) + above[base_x + 1] * shift;
591
186M
        val = ROUND_POWER_OF_TWO(val, 5);
592
201M
      } else {
593
201M
        x = c + 1;
594
201M
        y = (r << 6) - x * dy;
595
201M
        const int base_y = y >> frac_bits_y;
596
201M
        assert(base_y >= min_base_y);
597
201M
        const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1;
598
201M
        val = left[base_y] * (32 - shift) + left[base_y + 1] * shift;
599
201M
        val = ROUND_POWER_OF_TWO(val, 5);
600
201M
      }
601
388M
      dst[c] = val;
602
388M
    }
603
20.4M
    dst += stride;
604
20.4M
  }
605
1.69M
}
606
607
// Directional prediction, zone 3: 180 < angle < 270
608
void av1_dr_prediction_z3_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
609
                            const uint8_t *above, const uint8_t *left,
610
1.01M
                            int upsample_left, int dx, int dy) {
611
1.01M
  int r, c, y, base, shift, val;
612
613
1.01M
  (void)above;
614
1.01M
  (void)dx;
615
616
1.01M
  assert(dx == 1);
617
1.01M
  assert(dy > 0);
618
619
1.01M
  const int max_base_y = (bw + bh - 1) << upsample_left;
620
1.01M
  const int frac_bits = 6 - upsample_left;
621
1.01M
  const int base_inc = 1 << upsample_left;
622
1.01M
  y = dy;
623
13.6M
  for (c = 0; c < bw; ++c, y += dy) {
624
12.6M
    base = y >> frac_bits;
625
12.6M
    shift = ((y << upsample_left) & 0x3F) >> 1;
626
627
234M
    for (r = 0; r < bh; ++r, base += base_inc) {
628
221M
      if (base < max_base_y) {
629
221M
        val = left[base] * (32 - shift) + left[base + 1] * shift;
630
221M
        dst[r * stride + c] = val = ROUND_POWER_OF_TWO(val, 5);
631
221M
      } else {
632
0
        for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y];
633
0
        break;
634
0
      }
635
221M
    }
636
12.6M
  }
637
1.01M
}
638
639
static void dr_predictor(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size,
640
                         const uint8_t *above, const uint8_t *left,
641
5.18M
                         int upsample_above, int upsample_left, int angle) {
642
5.18M
  const int dx = av1_get_dx(angle);
643
5.18M
  const int dy = av1_get_dy(angle);
644
5.18M
  const int bw = tx_size_wide[tx_size];
645
5.18M
  const int bh = tx_size_high[tx_size];
646
5.18M
  assert(angle > 0 && angle < 270);
647
648
5.18M
  if (angle > 0 && angle < 90) {
649
984k
    av1_dr_prediction_z1(dst, stride, bw, bh, above, left, upsample_above, dx,
650
984k
                         dy);
651
4.19M
  } else if (angle > 90 && angle < 180) {
652
1.69M
    av1_dr_prediction_z2(dst, stride, bw, bh, above, left, upsample_above,
653
1.69M
                         upsample_left, dx, dy);
654
2.50M
  } else if (angle > 180 && angle < 270) {
655
1.01M
    av1_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left, dx,
656
1.01M
                         dy);
657
1.48M
  } else if (angle == 90) {
658
625k
    pred[V_PRED][tx_size](dst, stride, above, left);
659
855k
  } else if (angle == 180) {
660
855k
    pred[H_PRED][tx_size](dst, stride, above, left);
661
855k
  }
662
5.18M
}
663
664
#if CONFIG_AV1_HIGHBITDEPTH
665
// Directional prediction, zone 1: 0 < angle < 90
666
void av1_highbd_dr_prediction_z1_c(uint16_t *dst, ptrdiff_t stride, int bw,
667
                                   int bh, const uint16_t *above,
668
                                   const uint16_t *left, int upsample_above,
669
799k
                                   int dx, int dy, int bd) {
670
799k
  int r, c, x, base, shift, val;
671
672
799k
  (void)left;
673
799k
  (void)dy;
674
799k
  (void)bd;
675
799k
  assert(dy == 1);
676
799k
  assert(dx > 0);
677
678
799k
  const int max_base_x = ((bw + bh) - 1) << upsample_above;
679
799k
  const int frac_bits = 6 - upsample_above;
680
799k
  const int base_inc = 1 << upsample_above;
681
799k
  x = dx;
682
9.67M
  for (r = 0; r < bh; ++r, dst += stride, x += dx) {
683
8.88M
    base = x >> frac_bits;
684
8.88M
    shift = ((x << upsample_above) & 0x3F) >> 1;
685
686
8.88M
    if (base >= max_base_x) {
687
12.6k
      for (int i = r; i < bh; ++i) {
688
8.15k
        aom_memset16(dst, above[max_base_x], bw);
689
8.15k
        dst += stride;
690
8.15k
      }
691
4.44k
      return;
692
4.44k
    }
693
694
180M
    for (c = 0; c < bw; ++c, base += base_inc) {
695
171M
      if (base < max_base_x) {
696
170M
        val = above[base] * (32 - shift) + above[base + 1] * shift;
697
170M
        dst[c] = ROUND_POWER_OF_TWO(val, 5);
698
170M
      } else {
699
1.10M
        dst[c] = above[max_base_x];
700
1.10M
      }
701
171M
    }
702
8.87M
  }
703
799k
}
704
705
// Directional prediction, zone 2: 90 < angle < 180
706
void av1_highbd_dr_prediction_z2_c(uint16_t *dst, ptrdiff_t stride, int bw,
707
                                   int bh, const uint16_t *above,
708
                                   const uint16_t *left, int upsample_above,
709
1.56M
                                   int upsample_left, int dx, int dy, int bd) {
710
1.56M
  (void)bd;
711
1.56M
  assert(dx > 0);
712
1.56M
  assert(dy > 0);
713
714
1.56M
  const int min_base_x = -(1 << upsample_above);
715
1.56M
  const int min_base_y = -(1 << upsample_left);
716
1.56M
  (void)min_base_y;
717
1.56M
  const int frac_bits_x = 6 - upsample_above;
718
1.56M
  const int frac_bits_y = 6 - upsample_left;
719
720
18.3M
  for (int r = 0; r < bh; ++r) {
721
344M
    for (int c = 0; c < bw; ++c) {
722
328M
      int val;
723
328M
      int y = r + 1;
724
328M
      int x = (c << 6) - y * dx;
725
328M
      const int base_x = x >> frac_bits_x;
726
328M
      if (base_x >= min_base_x) {
727
152M
        const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1;
728
152M
        val = above[base_x] * (32 - shift) + above[base_x + 1] * shift;
729
152M
        val = ROUND_POWER_OF_TWO(val, 5);
730
175M
      } else {
731
175M
        x = c + 1;
732
175M
        y = (r << 6) - x * dy;
733
175M
        const int base_y = y >> frac_bits_y;
734
175M
        assert(base_y >= min_base_y);
735
175M
        const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1;
736
175M
        val = left[base_y] * (32 - shift) + left[base_y + 1] * shift;
737
175M
        val = ROUND_POWER_OF_TWO(val, 5);
738
175M
      }
739
328M
      dst[c] = val;
740
328M
    }
741
16.7M
    dst += stride;
742
16.7M
  }
743
1.56M
}
744
745
// Directional prediction, zone 3: 180 < angle < 270
746
void av1_highbd_dr_prediction_z3_c(uint16_t *dst, ptrdiff_t stride, int bw,
747
                                   int bh, const uint16_t *above,
748
                                   const uint16_t *left, int upsample_left,
749
947k
                                   int dx, int dy, int bd) {
750
947k
  int r, c, y, base, shift, val;
751
752
947k
  (void)above;
753
947k
  (void)dx;
754
947k
  (void)bd;
755
947k
  assert(dx == 1);
756
947k
  assert(dy > 0);
757
758
947k
  const int max_base_y = (bw + bh - 1) << upsample_left;
759
947k
  const int frac_bits = 6 - upsample_left;
760
947k
  const int base_inc = 1 << upsample_left;
761
947k
  y = dy;
762
11.5M
  for (c = 0; c < bw; ++c, y += dy) {
763
10.6M
    base = y >> frac_bits;
764
10.6M
    shift = ((y << upsample_left) & 0x3F) >> 1;
765
766
204M
    for (r = 0; r < bh; ++r, base += base_inc) {
767
193M
      if (base < max_base_y) {
768
193M
        val = left[base] * (32 - shift) + left[base + 1] * shift;
769
193M
        dst[r * stride + c] = ROUND_POWER_OF_TWO(val, 5);
770
193M
      } else {
771
0
        for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y];
772
0
        break;
773
0
      }
774
193M
    }
775
10.6M
  }
776
947k
}
777
778
static void highbd_dr_predictor(uint16_t *dst, ptrdiff_t stride,
779
                                TX_SIZE tx_size, const uint16_t *above,
780
                                const uint16_t *left, int upsample_above,
781
4.52M
                                int upsample_left, int angle, int bd) {
782
4.52M
  const int dx = av1_get_dx(angle);
783
4.52M
  const int dy = av1_get_dy(angle);
784
4.52M
  const int bw = tx_size_wide[tx_size];
785
4.52M
  const int bh = tx_size_high[tx_size];
786
4.52M
  assert(angle > 0 && angle < 270);
787
788
4.52M
  if (angle > 0 && angle < 90) {
789
799k
    av1_highbd_dr_prediction_z1(dst, stride, bw, bh, above, left,
790
799k
                                upsample_above, dx, dy, bd);
791
3.72M
  } else if (angle > 90 && angle < 180) {
792
1.56M
    av1_highbd_dr_prediction_z2(dst, stride, bw, bh, above, left,
793
1.56M
                                upsample_above, upsample_left, dx, dy, bd);
794
2.15M
  } else if (angle > 180 && angle < 270) {
795
947k
    av1_highbd_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left,
796
947k
                                dx, dy, bd);
797
1.20M
  } else if (angle == 90) {
798
470k
    pred_high[V_PRED][tx_size](dst, stride, above, left, bd);
799
736k
  } else if (angle == 180) {
800
736k
    pred_high[H_PRED][tx_size](dst, stride, above, left, bd);
801
736k
  }
802
4.52M
}
803
#endif  // CONFIG_AV1_HIGHBITDEPTH
804
805
DECLARE_ALIGNED(16, const int8_t,
806
                av1_filter_intra_taps[FILTER_INTRA_MODES][8][8]) = {
807
  {
808
      { -6, 10, 0, 0, 0, 12, 0, 0 },
809
      { -5, 2, 10, 0, 0, 9, 0, 0 },
810
      { -3, 1, 1, 10, 0, 7, 0, 0 },
811
      { -3, 1, 1, 2, 10, 5, 0, 0 },
812
      { -4, 6, 0, 0, 0, 2, 12, 0 },
813
      { -3, 2, 6, 0, 0, 2, 9, 0 },
814
      { -3, 2, 2, 6, 0, 2, 7, 0 },
815
      { -3, 1, 2, 2, 6, 3, 5, 0 },
816
  },
817
  {
818
      { -10, 16, 0, 0, 0, 10, 0, 0 },
819
      { -6, 0, 16, 0, 0, 6, 0, 0 },
820
      { -4, 0, 0, 16, 0, 4, 0, 0 },
821
      { -2, 0, 0, 0, 16, 2, 0, 0 },
822
      { -10, 16, 0, 0, 0, 0, 10, 0 },
823
      { -6, 0, 16, 0, 0, 0, 6, 0 },
824
      { -4, 0, 0, 16, 0, 0, 4, 0 },
825
      { -2, 0, 0, 0, 16, 0, 2, 0 },
826
  },
827
  {
828
      { -8, 8, 0, 0, 0, 16, 0, 0 },
829
      { -8, 0, 8, 0, 0, 16, 0, 0 },
830
      { -8, 0, 0, 8, 0, 16, 0, 0 },
831
      { -8, 0, 0, 0, 8, 16, 0, 0 },
832
      { -4, 4, 0, 0, 0, 0, 16, 0 },
833
      { -4, 0, 4, 0, 0, 0, 16, 0 },
834
      { -4, 0, 0, 4, 0, 0, 16, 0 },
835
      { -4, 0, 0, 0, 4, 0, 16, 0 },
836
  },
837
  {
838
      { -2, 8, 0, 0, 0, 10, 0, 0 },
839
      { -1, 3, 8, 0, 0, 6, 0, 0 },
840
      { -1, 2, 3, 8, 0, 4, 0, 0 },
841
      { 0, 1, 2, 3, 8, 2, 0, 0 },
842
      { -1, 4, 0, 0, 0, 3, 10, 0 },
843
      { -1, 3, 4, 0, 0, 4, 6, 0 },
844
      { -1, 2, 3, 4, 0, 4, 4, 0 },
845
      { -1, 2, 2, 3, 4, 3, 3, 0 },
846
  },
847
  {
848
      { -12, 14, 0, 0, 0, 14, 0, 0 },
849
      { -10, 0, 14, 0, 0, 12, 0, 0 },
850
      { -9, 0, 0, 14, 0, 11, 0, 0 },
851
      { -8, 0, 0, 0, 14, 10, 0, 0 },
852
      { -10, 12, 0, 0, 0, 0, 14, 0 },
853
      { -9, 1, 12, 0, 0, 0, 12, 0 },
854
      { -8, 0, 0, 12, 0, 1, 11, 0 },
855
      { -7, 0, 0, 1, 12, 1, 9, 0 },
856
  },
857
};
858
859
void av1_filter_intra_predictor_c(uint8_t *dst, ptrdiff_t stride,
860
                                  TX_SIZE tx_size, const uint8_t *above,
861
1.04M
                                  const uint8_t *left, int mode) {
862
1.04M
  int r, c;
863
1.04M
  uint8_t buffer[33][33];
864
1.04M
  const int bw = tx_size_wide[tx_size];
865
1.04M
  const int bh = tx_size_high[tx_size];
866
867
1.04M
  assert(bw <= 32 && bh <= 32);
868
869
10.0M
  for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r];
870
1.04M
  memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(uint8_t));
871
872
5.53M
  for (r = 1; r < bh + 1; r += 2)
873
17.2M
    for (c = 1; c < bw + 1; c += 4) {
874
12.7M
      const uint8_t p0 = buffer[r - 1][c - 1];
875
12.7M
      const uint8_t p1 = buffer[r - 1][c];
876
12.7M
      const uint8_t p2 = buffer[r - 1][c + 1];
877
12.7M
      const uint8_t p3 = buffer[r - 1][c + 2];
878
12.7M
      const uint8_t p4 = buffer[r - 1][c + 3];
879
12.7M
      const uint8_t p5 = buffer[r][c - 1];
880
12.7M
      const uint8_t p6 = buffer[r + 1][c - 1];
881
114M
      for (int k = 0; k < 8; ++k) {
882
101M
        int r_offset = k >> 2;
883
101M
        int c_offset = k & 0x03;
884
101M
        int pr = av1_filter_intra_taps[mode][k][0] * p0 +
885
101M
                 av1_filter_intra_taps[mode][k][1] * p1 +
886
101M
                 av1_filter_intra_taps[mode][k][2] * p2 +
887
101M
                 av1_filter_intra_taps[mode][k][3] * p3 +
888
101M
                 av1_filter_intra_taps[mode][k][4] * p4 +
889
101M
                 av1_filter_intra_taps[mode][k][5] * p5 +
890
101M
                 av1_filter_intra_taps[mode][k][6] * p6;
891
        // Section 7.11.2.3 specifies the right-hand side of the assignment as
892
        //   Clip1( Round2Signed( pr, INTRA_FILTER_SCALE_BITS ) ).
893
        // Since Clip1() clips a negative value to 0, it is safe to replace
894
        // Round2Signed() with Round2().
895
101M
        buffer[r + r_offset][c + c_offset] =
896
101M
            clip_pixel(ROUND_POWER_OF_TWO(pr, FILTER_INTRA_SCALE_BITS));
897
101M
      }
898
12.7M
    }
899
900
10.0M
  for (r = 0; r < bh; ++r) {
901
8.98M
    memcpy(dst, &buffer[r + 1][1], bw * sizeof(uint8_t));
902
8.98M
    dst += stride;
903
8.98M
  }
904
1.04M
}
905
906
#if CONFIG_AV1_HIGHBITDEPTH
907
static void highbd_filter_intra_predictor(uint16_t *dst, ptrdiff_t stride,
908
                                          TX_SIZE tx_size,
909
                                          const uint16_t *above,
910
                                          const uint16_t *left, int mode,
911
1.01M
                                          int bd) {
912
1.01M
  int r, c;
913
1.01M
  uint16_t buffer[33][33];
914
1.01M
  const int bw = tx_size_wide[tx_size];
915
1.01M
  const int bh = tx_size_high[tx_size];
916
917
1.01M
  assert(bw <= 32 && bh <= 32);
918
919
9.44M
  for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r];
920
1.01M
  memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(buffer[0][0]));
921
922
5.23M
  for (r = 1; r < bh + 1; r += 2)
923
15.8M
    for (c = 1; c < bw + 1; c += 4) {
924
11.6M
      const uint16_t p0 = buffer[r - 1][c - 1];
925
11.6M
      const uint16_t p1 = buffer[r - 1][c];
926
11.6M
      const uint16_t p2 = buffer[r - 1][c + 1];
927
11.6M
      const uint16_t p3 = buffer[r - 1][c + 2];
928
11.6M
      const uint16_t p4 = buffer[r - 1][c + 3];
929
11.6M
      const uint16_t p5 = buffer[r][c - 1];
930
11.6M
      const uint16_t p6 = buffer[r + 1][c - 1];
931
104M
      for (int k = 0; k < 8; ++k) {
932
93.0M
        int r_offset = k >> 2;
933
93.0M
        int c_offset = k & 0x03;
934
93.0M
        int pr = av1_filter_intra_taps[mode][k][0] * p0 +
935
93.0M
                 av1_filter_intra_taps[mode][k][1] * p1 +
936
93.0M
                 av1_filter_intra_taps[mode][k][2] * p2 +
937
93.0M
                 av1_filter_intra_taps[mode][k][3] * p3 +
938
93.0M
                 av1_filter_intra_taps[mode][k][4] * p4 +
939
93.0M
                 av1_filter_intra_taps[mode][k][5] * p5 +
940
93.0M
                 av1_filter_intra_taps[mode][k][6] * p6;
941
        // Section 7.11.2.3 specifies the right-hand side of the assignment as
942
        //   Clip1( Round2Signed( pr, INTRA_FILTER_SCALE_BITS ) ).
943
        // Since Clip1() clips a negative value to 0, it is safe to replace
944
        // Round2Signed() with Round2().
945
93.0M
        buffer[r + r_offset][c + c_offset] = clip_pixel_highbd(
946
93.0M
            ROUND_POWER_OF_TWO(pr, FILTER_INTRA_SCALE_BITS), bd);
947
93.0M
      }
948
11.6M
    }
949
950
9.44M
  for (r = 0; r < bh; ++r) {
951
8.43M
    memcpy(dst, &buffer[r + 1][1], bw * sizeof(dst[0]));
952
8.43M
    dst += stride;
953
8.43M
  }
954
1.01M
}
955
#endif  // CONFIG_AV1_HIGHBITDEPTH
956
957
72.7M
static int is_smooth(const MB_MODE_INFO *mbmi, int plane) {
958
72.7M
  if (plane == 0) {
959
30.0M
    const PREDICTION_MODE mode = mbmi->mode;
960
30.0M
    return (mode == SMOOTH_PRED || mode == SMOOTH_V_PRED ||
961
26.7M
            mode == SMOOTH_H_PRED);
962
42.6M
  } else {
963
    // uv_mode is not set for inter blocks, so need to explicitly
964
    // detect that case.
965
42.6M
    if (is_inter_block(mbmi)) return 0;
966
967
42.5M
    const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
968
42.5M
    return (uv_mode == UV_SMOOTH_PRED || uv_mode == UV_SMOOTH_V_PRED ||
969
38.4M
            uv_mode == UV_SMOOTH_H_PRED);
970
42.6M
  }
971
72.7M
}
972
973
41.7M
static int get_intra_edge_filter_type(const MACROBLOCKD *xd, int plane) {
974
41.7M
  int ab_sm, le_sm;
975
976
41.7M
  if (plane == 0) {
977
17.4M
    const MB_MODE_INFO *ab = xd->above_mbmi;
978
17.4M
    const MB_MODE_INFO *le = xd->left_mbmi;
979
17.4M
    ab_sm = ab ? is_smooth(ab, plane) : 0;
980
17.4M
    le_sm = le ? is_smooth(le, plane) : 0;
981
24.3M
  } else {
982
24.3M
    const MB_MODE_INFO *ab = xd->chroma_above_mbmi;
983
24.3M
    const MB_MODE_INFO *le = xd->chroma_left_mbmi;
984
24.3M
    ab_sm = ab ? is_smooth(ab, plane) : 0;
985
24.3M
    le_sm = le ? is_smooth(le, plane) : 0;
986
24.3M
  }
987
988
41.7M
  return (ab_sm || le_sm) ? 1 : 0;
989
41.7M
}
990
991
8.28M
static int intra_edge_filter_strength(int bs0, int bs1, int delta, int type) {
992
8.28M
  const int d = abs(delta);
993
8.28M
  int strength = 0;
994
995
8.28M
  const int blk_wh = bs0 + bs1;
996
8.28M
  if (type == 0) {
997
6.17M
    if (blk_wh <= 8) {
998
2.10M
      if (d >= 56) strength = 1;
999
4.07M
    } else if (blk_wh <= 12) {
1000
580k
      if (d >= 40) strength = 1;
1001
3.49M
    } else if (blk_wh <= 16) {
1002
1.06M
      if (d >= 40) strength = 1;
1003
2.42M
    } else if (blk_wh <= 24) {
1004
999k
      if (d >= 8) strength = 1;
1005
999k
      if (d >= 16) strength = 2;
1006
999k
      if (d >= 32) strength = 3;
1007
1.42M
    } else if (blk_wh <= 32) {
1008
526k
      if (d >= 1) strength = 1;
1009
526k
      if (d >= 4) strength = 2;
1010
526k
      if (d >= 32) strength = 3;
1011
900k
    } else {
1012
900k
      if (d >= 1) strength = 3;
1013
900k
    }
1014
6.17M
  } else {
1015
2.11M
    if (blk_wh <= 8) {
1016
474k
      if (d >= 40) strength = 1;
1017
474k
      if (d >= 64) strength = 2;
1018
1.63M
    } else if (blk_wh <= 16) {
1019
676k
      if (d >= 20) strength = 1;
1020
676k
      if (d >= 48) strength = 2;
1021
962k
    } else if (blk_wh <= 24) {
1022
424k
      if (d >= 4) strength = 3;
1023
537k
    } else {
1024
537k
      if (d >= 1) strength = 3;
1025
537k
    }
1026
2.11M
  }
1027
8.28M
  return strength;
1028
8.28M
}
1029
1030
3.92M
void av1_filter_intra_edge_c(uint8_t *p, int sz, int strength) {
1031
3.92M
  if (!strength) return;
1032
1033
2.53M
  const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 },
1034
2.53M
                                                         { 0, 5, 6, 5, 0 },
1035
2.53M
                                                         { 2, 4, 4, 4, 2 } };
1036
2.53M
  const int filt = strength - 1;
1037
2.53M
  uint8_t edge[129];
1038
1039
2.53M
  memcpy(edge, p, sz * sizeof(*p));
1040
53.4M
  for (int i = 1; i < sz; i++) {
1041
50.9M
    int s = 0;
1042
305M
    for (int j = 0; j < INTRA_EDGE_TAPS; j++) {
1043
254M
      int k = i - 2 + j;
1044
254M
      k = (k < 0) ? 0 : k;
1045
254M
      k = (k > sz - 1) ? sz - 1 : k;
1046
254M
      s += edge[k] * kernel[filt][j];
1047
254M
    }
1048
50.9M
    s = (s + 8) >> 4;
1049
50.9M
    p[i] = s;
1050
50.9M
  }
1051
2.53M
}
1052
1053
501k
static void filter_intra_edge_corner(uint8_t *p_above, uint8_t *p_left) {
1054
501k
  const int kernel[3] = { 5, 6, 5 };
1055
1056
501k
  int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) +
1057
501k
          (p_above[0] * kernel[2]);
1058
501k
  s = (s + 8) >> 4;
1059
501k
  p_above[-1] = s;
1060
501k
  p_left[-1] = s;
1061
501k
}
1062
1063
4.36M
void av1_filter_intra_edge_high_c(uint16_t *p, int sz, int strength) {
1064
4.36M
  if (!strength) return;
1065
1066
2.36M
  const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 },
1067
2.36M
                                                         { 0, 5, 6, 5, 0 },
1068
2.36M
                                                         { 2, 4, 4, 4, 2 } };
1069
2.36M
  const int filt = strength - 1;
1070
2.36M
  uint16_t edge[129];
1071
1072
2.36M
  memcpy(edge, p, sz * sizeof(*p));
1073
46.8M
  for (int i = 1; i < sz; i++) {
1074
44.4M
    int s = 0;
1075
266M
    for (int j = 0; j < INTRA_EDGE_TAPS; j++) {
1076
222M
      int k = i - 2 + j;
1077
222M
      k = (k < 0) ? 0 : k;
1078
222M
      k = (k > sz - 1) ? sz - 1 : k;
1079
222M
      s += edge[k] * kernel[filt][j];
1080
222M
    }
1081
44.4M
    s = (s + 8) >> 4;
1082
44.4M
    p[i] = s;
1083
44.4M
  }
1084
2.36M
}
1085
1086
#if CONFIG_AV1_HIGHBITDEPTH
1087
393k
static void filter_intra_edge_corner_high(uint16_t *p_above, uint16_t *p_left) {
1088
393k
  const int kernel[3] = { 5, 6, 5 };
1089
1090
393k
  int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) +
1091
393k
          (p_above[0] * kernel[2]);
1092
393k
  s = (s + 8) >> 4;
1093
393k
  p_above[-1] = s;
1094
393k
  p_left[-1] = s;
1095
393k
}
1096
#endif
1097
1098
1.07M
void av1_upsample_intra_edge_c(uint8_t *p, int sz) {
1099
  // interpolate half-sample positions
1100
1.07M
  assert(sz <= MAX_UPSAMPLE_SZ);
1101
1102
1.07M
  uint8_t in[MAX_UPSAMPLE_SZ + 3];
1103
  // copy p[-1..(sz-1)] and extend first and last samples
1104
1.07M
  in[0] = p[-1];
1105
1.07M
  in[1] = p[-1];
1106
10.2M
  for (int i = 0; i < sz; i++) {
1107
9.16M
    in[i + 2] = p[i];
1108
9.16M
  }
1109
1.07M
  in[sz + 2] = p[sz - 1];
1110
1111
  // interpolate half-sample edge positions
1112
1.07M
  p[-2] = in[0];
1113
10.2M
  for (int i = 0; i < sz; i++) {
1114
9.16M
    int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3];
1115
9.16M
    s = clip_pixel((s + 8) >> 4);
1116
9.16M
    p[2 * i - 1] = s;
1117
9.16M
    p[2 * i] = in[i + 2];
1118
9.16M
  }
1119
1.07M
}
1120
1121
1.45M
void av1_upsample_intra_edge_high_c(uint16_t *p, int sz, int bd) {
1122
  // interpolate half-sample positions
1123
1.45M
  assert(sz <= MAX_UPSAMPLE_SZ);
1124
1125
1.45M
  uint16_t in[MAX_UPSAMPLE_SZ + 3];
1126
  // copy p[-1..(sz-1)] and extend first and last samples
1127
1.45M
  in[0] = p[-1];
1128
1.45M
  in[1] = p[-1];
1129
13.1M
  for (int i = 0; i < sz; i++) {
1130
11.6M
    in[i + 2] = p[i];
1131
11.6M
  }
1132
1.45M
  in[sz + 2] = p[sz - 1];
1133
1134
  // interpolate half-sample edge positions
1135
1.45M
  p[-2] = in[0];
1136
13.1M
  for (int i = 0; i < sz; i++) {
1137
11.6M
    int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3];
1138
11.6M
    s = (s + 8) >> 4;
1139
11.6M
    s = clip_pixel_highbd(s, bd);
1140
11.6M
    p[2 * i - 1] = s;
1141
11.6M
    p[2 * i] = in[i + 2];
1142
11.6M
  }
1143
1.45M
}
1144
#if CONFIG_AV1_HIGHBITDEPTH
1145
static void build_intra_predictors_high(
1146
    const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride,
1147
    PREDICTION_MODE mode, int angle_delta, FILTER_INTRA_MODE filter_intra_mode,
1148
    TX_SIZE tx_size, int disable_edge_filter, int n_top_px, int n_topright_px,
1149
    int n_left_px, int n_bottomleft_px, int intra_edge_filter_type,
1150
19.2M
    int bit_depth) {
1151
19.2M
  int i;
1152
19.2M
  uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
1153
19.2M
  uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
1154
19.2M
  DECLARE_ALIGNED(16, uint16_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1155
19.2M
  DECLARE_ALIGNED(16, uint16_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1156
19.2M
  uint16_t *const above_row = above_data + 16;
1157
19.2M
  uint16_t *const left_col = left_data + 16;
1158
19.2M
  const int txwpx = tx_size_wide[tx_size];
1159
19.2M
  const int txhpx = tx_size_high[tx_size];
1160
19.2M
  int need_left = extend_modes[mode] & NEED_LEFT;
1161
19.2M
  int need_above = extend_modes[mode] & NEED_ABOVE;
1162
19.2M
  int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
1163
19.2M
  const uint16_t *above_ref = ref - ref_stride;
1164
19.2M
  const uint16_t *left_ref = ref - 1;
1165
19.2M
  int p_angle = 0;
1166
19.2M
  const int is_dr_mode = av1_is_directional_mode(mode);
1167
19.2M
  const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES;
1168
19.2M
  int base = 128 << (bit_depth - 8);
1169
  // The left_data, above_data buffers must be zeroed to fix some intermittent
1170
  // valgrind errors. Uninitialized reads in intra pred modules (e.g. width = 4
1171
  // path in av1_highbd_dr_prediction_z2_avx2()) from left_data, above_data are
1172
  // seen to be the potential reason for this issue.
1173
19.2M
  aom_memset16(left_data, base + 1, NUM_INTRA_NEIGHBOUR_PIXELS);
1174
19.2M
  aom_memset16(above_data, base - 1, NUM_INTRA_NEIGHBOUR_PIXELS);
1175
1176
  // The default values if ref pixels are not available:
1177
  // base   base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1
1178
  // base+1   A      B  ..     Y      Z
1179
  // base+1   C      D  ..     W      X
1180
  // base+1   E      F  ..     U      V
1181
  // base+1   G      H  ..     S      T      T      T      T      T
1182
1183
19.2M
  if (is_dr_mode) {
1184
4.64M
    p_angle = mode_to_angle_map[mode] + angle_delta;
1185
4.64M
    if (p_angle <= 90)
1186
1.31M
      need_above = 1, need_left = 0, need_above_left = 1;
1187
3.32M
    else if (p_angle < 180)
1188
1.56M
      need_above = 1, need_left = 1, need_above_left = 1;
1189
1.75M
    else
1190
1.75M
      need_above = 0, need_left = 1, need_above_left = 1;
1191
4.64M
  }
1192
19.2M
  if (use_filter_intra) need_left = need_above = need_above_left = 1;
1193
1194
19.2M
  assert(n_top_px >= 0);
1195
19.2M
  assert(n_topright_px >= 0);
1196
19.2M
  assert(n_left_px >= 0);
1197
19.2M
  assert(n_bottomleft_px >= 0);
1198
1199
19.2M
  if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
1200
121k
    int val;
1201
121k
    if (need_left) {
1202
76.0k
      val = (n_top_px > 0) ? above_ref[0] : base + 1;
1203
76.0k
    } else {
1204
45.1k
      val = (n_left_px > 0) ? left_ref[0] : base - 1;
1205
45.1k
    }
1206
3.16M
    for (i = 0; i < txhpx; ++i) {
1207
3.04M
      aom_memset16(dst, val, txwpx);
1208
3.04M
      dst += dst_stride;
1209
3.04M
    }
1210
121k
    return;
1211
121k
  }
1212
1213
  // NEED_LEFT
1214
19.1M
  if (need_left) {
1215
17.8M
    int need_bottom = extend_modes[mode] & NEED_BOTTOMLEFT;
1216
17.8M
    if (use_filter_intra) need_bottom = 0;
1217
17.8M
    if (is_dr_mode) need_bottom = p_angle > 180;
1218
17.8M
    const int num_left_pixels_needed = txhpx + (need_bottom ? txwpx : 0);
1219
17.8M
    i = 0;
1220
17.8M
    if (n_left_px > 0) {
1221
229M
      for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
1222
16.7M
      if (need_bottom && n_bottomleft_px > 0) {
1223
291k
        assert(i == txhpx);
1224
3.10M
        for (; i < txhpx + n_bottomleft_px; i++)
1225
2.81M
          left_col[i] = left_ref[i * ref_stride];
1226
291k
      }
1227
16.7M
      if (i < num_left_pixels_needed)
1228
857k
        aom_memset16(&left_col[i], left_col[i - 1], num_left_pixels_needed - i);
1229
16.7M
    } else if (n_top_px > 0) {
1230
1.10M
      aom_memset16(left_col, above_ref[0], num_left_pixels_needed);
1231
1.10M
    }
1232
17.8M
  }
1233
1234
  // NEED_ABOVE
1235
19.1M
  if (need_above) {
1236
17.4M
    int need_right = extend_modes[mode] & NEED_ABOVERIGHT;
1237
17.4M
    if (use_filter_intra) need_right = 0;
1238
17.4M
    if (is_dr_mode) need_right = p_angle < 90;
1239
17.4M
    const int num_top_pixels_needed = txwpx + (need_right ? txhpx : 0);
1240
17.4M
    if (n_top_px > 0) {
1241
16.7M
      memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0]));
1242
16.7M
      i = n_top_px;
1243
16.7M
      if (need_right && n_topright_px > 0) {
1244
515k
        assert(n_top_px == txwpx);
1245
515k
        memcpy(above_row + txwpx, above_ref + txwpx,
1246
515k
               n_topright_px * sizeof(above_ref[0]));
1247
515k
        i += n_topright_px;
1248
515k
      }
1249
16.7M
      if (i < num_top_pixels_needed)
1250
702k
        aom_memset16(&above_row[i], above_row[i - 1],
1251
702k
                     num_top_pixels_needed - i);
1252
16.7M
    } else if (n_left_px > 0) {
1253
645k
      aom_memset16(above_row, left_ref[0], num_top_pixels_needed);
1254
645k
    }
1255
17.4M
  }
1256
1257
19.1M
  if (need_above_left) {
1258
8.81M
    if (n_top_px > 0 && n_left_px > 0) {
1259
8.14M
      above_row[-1] = above_ref[-1];
1260
8.14M
    } else if (n_top_px > 0) {
1261
396k
      above_row[-1] = above_ref[0];
1262
396k
    } else if (n_left_px > 0) {
1263
267k
      above_row[-1] = left_ref[0];
1264
267k
    } else {
1265
12.1k
      above_row[-1] = base;
1266
12.1k
    }
1267
8.81M
    left_col[-1] = above_row[-1];
1268
8.81M
  }
1269
1270
19.1M
  if (use_filter_intra) {
1271
1.01M
    highbd_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col,
1272
1.01M
                                  filter_intra_mode, bit_depth);
1273
1.01M
    return;
1274
1.01M
  }
1275
1276
18.1M
  if (is_dr_mode) {
1277
4.52M
    int upsample_above = 0;
1278
4.52M
    int upsample_left = 0;
1279
4.52M
    if (!disable_edge_filter) {
1280
4.11M
      const int need_right = p_angle < 90;
1281
4.11M
      const int need_bottom = p_angle > 180;
1282
4.11M
      if (p_angle != 90 && p_angle != 180) {
1283
3.01M
        const int ab_le = need_above_left ? 1 : 0;
1284
3.01M
        if (need_above && need_left && (txwpx + txhpx >= 24)) {
1285
393k
          filter_intra_edge_corner_high(above_row, left_col);
1286
393k
        }
1287
3.01M
        if (need_above && n_top_px > 0) {
1288
2.09M
          const int strength = intra_edge_filter_strength(
1289
2.09M
              txwpx, txhpx, p_angle - 90, intra_edge_filter_type);
1290
2.09M
          const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0);
1291
2.09M
          av1_filter_intra_edge_high(above_row - ab_le, n_px, strength);
1292
2.09M
        }
1293
3.01M
        if (need_left && n_left_px > 0) {
1294
2.26M
          const int strength = intra_edge_filter_strength(
1295
2.26M
              txhpx, txwpx, p_angle - 180, intra_edge_filter_type);
1296
2.26M
          const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0);
1297
2.26M
          av1_filter_intra_edge_high(left_col - ab_le, n_px, strength);
1298
2.26M
        }
1299
3.01M
      }
1300
4.11M
      upsample_above = av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90,
1301
4.11M
                                                   intra_edge_filter_type);
1302
4.11M
      if (need_above && upsample_above) {
1303
577k
        const int n_px = txwpx + (need_right ? txhpx : 0);
1304
577k
        av1_upsample_intra_edge_high(above_row, n_px, bit_depth);
1305
577k
      }
1306
4.11M
      upsample_left = av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180,
1307
4.11M
                                                  intra_edge_filter_type);
1308
4.11M
      if (need_left && upsample_left) {
1309
875k
        const int n_px = txhpx + (need_bottom ? txwpx : 0);
1310
875k
        av1_upsample_intra_edge_high(left_col, n_px, bit_depth);
1311
875k
      }
1312
4.11M
    }
1313
4.52M
    highbd_dr_predictor(dst, dst_stride, tx_size, above_row, left_col,
1314
4.52M
                        upsample_above, upsample_left, p_angle, bit_depth);
1315
4.52M
    return;
1316
4.52M
  }
1317
1318
  // predict
1319
13.6M
  if (mode == DC_PRED) {
1320
7.75M
    dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size](
1321
7.75M
        dst, dst_stride, above_row, left_col, bit_depth);
1322
7.75M
  } else {
1323
5.86M
    pred_high[mode][tx_size](dst, dst_stride, above_row, left_col, bit_depth);
1324
5.86M
  }
1325
13.6M
}
1326
#endif  // CONFIG_AV1_HIGHBITDEPTH
1327
1328
static void build_intra_predictors(
1329
    const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride,
1330
    PREDICTION_MODE mode, int angle_delta, FILTER_INTRA_MODE filter_intra_mode,
1331
    TX_SIZE tx_size, int disable_edge_filter, int n_top_px, int n_topright_px,
1332
22.5M
    int n_left_px, int n_bottomleft_px, int intra_edge_filter_type) {
1333
22.5M
  int i;
1334
22.5M
  const uint8_t *above_ref = ref - ref_stride;
1335
22.5M
  const uint8_t *left_ref = ref - 1;
1336
22.5M
  DECLARE_ALIGNED(16, uint8_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1337
22.5M
  DECLARE_ALIGNED(16, uint8_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1338
22.5M
  uint8_t *const above_row = above_data + 16;
1339
22.5M
  uint8_t *const left_col = left_data + 16;
1340
22.5M
  const int txwpx = tx_size_wide[tx_size];
1341
22.5M
  const int txhpx = tx_size_high[tx_size];
1342
22.5M
  int need_left = extend_modes[mode] & NEED_LEFT;
1343
22.5M
  int need_above = extend_modes[mode] & NEED_ABOVE;
1344
22.5M
  int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
1345
22.5M
  int p_angle = 0;
1346
22.5M
  const int is_dr_mode = av1_is_directional_mode(mode);
1347
22.5M
  const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES;
1348
  // The left_data, above_data buffers must be zeroed to fix some intermittent
1349
  // valgrind errors. Uninitialized reads in intra pred modules (e.g. width = 4
1350
  // path in av1_dr_prediction_z1_avx2()) from left_data, above_data are seen to
1351
  // be the potential reason for this issue.
1352
22.5M
  memset(left_data, 129, NUM_INTRA_NEIGHBOUR_PIXELS);
1353
22.5M
  memset(above_data, 127, NUM_INTRA_NEIGHBOUR_PIXELS);
1354
1355
  // The default values if ref pixels are not available:
1356
  // 128 127 127 .. 127 127 127 127 127 127
1357
  // 129  A   B  ..  Y   Z
1358
  // 129  C   D  ..  W   X
1359
  // 129  E   F  ..  U   V
1360
  // 129  G   H  ..  S   T   T   T   T   T
1361
  // ..
1362
1363
22.5M
  if (is_dr_mode) {
1364
5.28M
    p_angle = mode_to_angle_map[mode] + angle_delta;
1365
5.28M
    if (p_angle <= 90)
1366
1.64M
      need_above = 1, need_left = 0, need_above_left = 1;
1367
3.63M
    else if (p_angle < 180)
1368
1.69M
      need_above = 1, need_left = 1, need_above_left = 1;
1369
1.93M
    else
1370
1.93M
      need_above = 0, need_left = 1, need_above_left = 1;
1371
5.28M
  }
1372
22.5M
  if (use_filter_intra) need_left = need_above = need_above_left = 1;
1373
1374
22.5M
  assert(n_top_px >= 0);
1375
22.5M
  assert(n_topright_px >= 0);
1376
22.5M
  assert(n_left_px >= 0);
1377
22.5M
  assert(n_bottomleft_px >= 0);
1378
1379
22.5M
  if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
1380
99.1k
    int val;
1381
99.1k
    if (need_left) {
1382
63.8k
      val = (n_top_px > 0) ? above_ref[0] : 129;
1383
63.8k
    } else {
1384
35.2k
      val = (n_left_px > 0) ? left_ref[0] : 127;
1385
35.2k
    }
1386
2.20M
    for (i = 0; i < txhpx; ++i) {
1387
2.10M
      memset(dst, val, txwpx);
1388
2.10M
      dst += dst_stride;
1389
2.10M
    }
1390
99.1k
    return;
1391
99.1k
  }
1392
1393
  // NEED_LEFT
1394
22.4M
  if (need_left) {
1395
20.7M
    int need_bottom = extend_modes[mode] & NEED_BOTTOMLEFT;
1396
20.7M
    if (use_filter_intra) need_bottom = 0;
1397
20.7M
    if (is_dr_mode) need_bottom = p_angle > 180;
1398
20.7M
    const int num_left_pixels_needed = txhpx + (need_bottom ? txwpx : 0);
1399
20.7M
    i = 0;
1400
20.7M
    if (n_left_px > 0) {
1401
271M
      for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
1402
19.5M
      if (need_bottom && n_bottomleft_px > 0) {
1403
353k
        assert(i == txhpx);
1404
3.91M
        for (; i < txhpx + n_bottomleft_px; i++)
1405
3.55M
          left_col[i] = left_ref[i * ref_stride];
1406
353k
      }
1407
19.5M
      if (i < num_left_pixels_needed)
1408
930k
        memset(&left_col[i], left_col[i - 1], num_left_pixels_needed - i);
1409
19.5M
    } else if (n_top_px > 0) {
1410
1.15M
      memset(left_col, above_ref[0], num_left_pixels_needed);
1411
1.15M
    }
1412
20.7M
  }
1413
1414
  // NEED_ABOVE
1415
22.4M
  if (need_above) {
1416
20.5M
    int need_right = extend_modes[mode] & NEED_ABOVERIGHT;
1417
20.5M
    if (use_filter_intra) need_right = 0;
1418
20.5M
    if (is_dr_mode) need_right = p_angle < 90;
1419
20.5M
    const int num_top_pixels_needed = txwpx + (need_right ? txhpx : 0);
1420
20.5M
    if (n_top_px > 0) {
1421
19.8M
      memcpy(above_row, above_ref, n_top_px);
1422
19.8M
      i = n_top_px;
1423
19.8M
      if (need_right && n_topright_px > 0) {
1424
629k
        assert(n_top_px == txwpx);
1425
629k
        memcpy(above_row + txwpx, above_ref + txwpx, n_topright_px);
1426
629k
        i += n_topright_px;
1427
629k
      }
1428
19.8M
      if (i < num_top_pixels_needed)
1429
900k
        memset(&above_row[i], above_row[i - 1], num_top_pixels_needed - i);
1430
19.8M
    } else if (n_left_px > 0) {
1431
602k
      memset(above_row, left_ref[0], num_top_pixels_needed);
1432
602k
    }
1433
20.5M
  }
1434
1435
22.4M
  if (need_above_left) {
1436
10.2M
    if (n_top_px > 0 && n_left_px > 0) {
1437
9.53M
      above_row[-1] = above_ref[-1];
1438
9.53M
    } else if (n_top_px > 0) {
1439
420k
      above_row[-1] = above_ref[0];
1440
420k
    } else if (n_left_px > 0) {
1441
302k
      above_row[-1] = left_ref[0];
1442
302k
    } else {
1443
7.40k
      above_row[-1] = 128;
1444
7.40k
    }
1445
10.2M
    left_col[-1] = above_row[-1];
1446
10.2M
  }
1447
1448
22.4M
  if (use_filter_intra) {
1449
1.04M
    av1_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col,
1450
1.04M
                               filter_intra_mode);
1451
1.04M
    return;
1452
1.04M
  }
1453
1454
21.3M
  if (is_dr_mode) {
1455
5.18M
    int upsample_above = 0;
1456
5.18M
    int upsample_left = 0;
1457
5.18M
    if (!disable_edge_filter) {
1458
3.87M
      const int need_right = p_angle < 90;
1459
3.87M
      const int need_bottom = p_angle > 180;
1460
3.87M
      if (p_angle != 90 && p_angle != 180) {
1461
2.75M
        const int ab_le = need_above_left ? 1 : 0;
1462
2.75M
        if (need_above && need_left && (txwpx + txhpx >= 24)) {
1463
501k
          filter_intra_edge_corner(above_row, left_col);
1464
501k
        }
1465
2.75M
        if (need_above && n_top_px > 0) {
1466
1.95M
          const int strength = intra_edge_filter_strength(
1467
1.95M
              txwpx, txhpx, p_angle - 90, intra_edge_filter_type);
1468
1.95M
          const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0);
1469
1.95M
          av1_filter_intra_edge(above_row - ab_le, n_px, strength);
1470
1.95M
        }
1471
2.75M
        if (need_left && n_left_px > 0) {
1472
1.97M
          const int strength = intra_edge_filter_strength(
1473
1.97M
              txhpx, txwpx, p_angle - 180, intra_edge_filter_type);
1474
1.97M
          const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0);
1475
1.97M
          av1_filter_intra_edge(left_col - ab_le, n_px, strength);
1476
1.97M
        }
1477
2.75M
      }
1478
3.87M
      upsample_above = av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90,
1479
3.87M
                                                   intra_edge_filter_type);
1480
3.87M
      if (need_above && upsample_above) {
1481
507k
        const int n_px = txwpx + (need_right ? txhpx : 0);
1482
507k
        av1_upsample_intra_edge(above_row, n_px);
1483
507k
      }
1484
3.87M
      upsample_left = av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180,
1485
3.87M
                                                  intra_edge_filter_type);
1486
3.87M
      if (need_left && upsample_left) {
1487
569k
        const int n_px = txhpx + (need_bottom ? txwpx : 0);
1488
569k
        av1_upsample_intra_edge(left_col, n_px);
1489
569k
      }
1490
3.87M
    }
1491
5.18M
    dr_predictor(dst, dst_stride, tx_size, above_row, left_col, upsample_above,
1492
5.18M
                 upsample_left, p_angle);
1493
5.18M
    return;
1494
5.18M
  }
1495
1496
  // predict
1497
16.1M
  if (mode == DC_PRED) {
1498
9.01M
    dc_pred[n_left_px > 0][n_top_px > 0][tx_size](dst, dst_stride, above_row,
1499
9.01M
                                                  left_col);
1500
9.01M
  } else {
1501
7.16M
    pred[mode][tx_size](dst, dst_stride, above_row, left_col);
1502
7.16M
  }
1503
16.1M
}
1504
1505
static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x,
1506
7.27M
                                            int subsampling_y) {
1507
7.27M
  assert(subsampling_x >= 0 && subsampling_x < 2);
1508
7.27M
  assert(subsampling_y >= 0 && subsampling_y < 2);
1509
7.27M
  BLOCK_SIZE bs = bsize;
1510
7.27M
  switch (bsize) {
1511
138k
    case BLOCK_4X4:
1512
138k
      if (subsampling_x == 1 && subsampling_y == 1)
1513
137k
        bs = BLOCK_8X8;
1514
1.45k
      else if (subsampling_x == 1)
1515
1.45k
        bs = BLOCK_8X4;
1516
0
      else if (subsampling_y == 1)
1517
0
        bs = BLOCK_4X8;
1518
138k
      break;
1519
189k
    case BLOCK_4X8:
1520
189k
      if (subsampling_x == 1 && subsampling_y == 1)
1521
189k
        bs = BLOCK_8X8;
1522
0
      else if (subsampling_x == 1)
1523
0
        bs = BLOCK_8X8;
1524
0
      else if (subsampling_y == 1)
1525
0
        bs = BLOCK_4X8;
1526
189k
      break;
1527
234k
    case BLOCK_8X4:
1528
234k
      if (subsampling_x == 1 && subsampling_y == 1)
1529
231k
        bs = BLOCK_8X8;
1530
2.16k
      else if (subsampling_x == 1)
1531
2.16k
        bs = BLOCK_8X4;
1532
0
      else if (subsampling_y == 1)
1533
0
        bs = BLOCK_8X8;
1534
234k
      break;
1535
286k
    case BLOCK_4X16:
1536
286k
      if (subsampling_x == 1 && subsampling_y == 1)
1537
286k
        bs = BLOCK_8X16;
1538
0
      else if (subsampling_x == 1)
1539
0
        bs = BLOCK_8X16;
1540
0
      else if (subsampling_y == 1)
1541
0
        bs = BLOCK_4X16;
1542
286k
      break;
1543
303k
    case BLOCK_16X4:
1544
303k
      if (subsampling_x == 1 && subsampling_y == 1)
1545
298k
        bs = BLOCK_16X8;
1546
4.55k
      else if (subsampling_x == 1)
1547
4.55k
        bs = BLOCK_16X4;
1548
0
      else if (subsampling_y == 1)
1549
0
        bs = BLOCK_16X8;
1550
303k
      break;
1551
6.12M
    default: break;
1552
7.27M
  }
1553
7.27M
  return bs;
1554
7.27M
}
1555
1556
void av1_predict_intra_block(const MACROBLOCKD *xd, BLOCK_SIZE sb_size,
1557
                             int enable_intra_edge_filter, int wpx, int hpx,
1558
                             TX_SIZE tx_size, PREDICTION_MODE mode,
1559
                             int angle_delta, int use_palette,
1560
                             FILTER_INTRA_MODE filter_intra_mode,
1561
                             const uint8_t *ref, int ref_stride, uint8_t *dst,
1562
                             int dst_stride, int col_off, int row_off,
1563
42.4M
                             int plane) {
1564
42.4M
  const MB_MODE_INFO *const mbmi = xd->mi[0];
1565
42.4M
  const int txwpx = tx_size_wide[tx_size];
1566
42.4M
  const int txhpx = tx_size_high[tx_size];
1567
42.4M
  const int x = col_off << MI_SIZE_LOG2;
1568
42.4M
  const int y = row_off << MI_SIZE_LOG2;
1569
1570
42.4M
  if (use_palette) {
1571
665k
    int r, c;
1572
665k
    const uint8_t *const map = xd->plane[plane != 0].color_index_map +
1573
665k
                               xd->color_index_map_offset[plane != 0];
1574
665k
    const uint16_t *const palette =
1575
665k
        mbmi->palette_mode_info.palette_colors + plane * PALETTE_MAX_SIZE;
1576
665k
    if (is_cur_buf_hbd(xd)) {
1577
56.8k
      uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
1578
463k
      for (r = 0; r < txhpx; ++r) {
1579
5.19M
        for (c = 0; c < txwpx; ++c) {
1580
4.78M
          dst16[r * dst_stride + c] = palette[map[(r + y) * wpx + c + x]];
1581
4.78M
        }
1582
406k
      }
1583
609k
    } else {
1584
6.36M
      for (r = 0; r < txhpx; ++r) {
1585
88.5M
        for (c = 0; c < txwpx; ++c) {
1586
82.7M
          dst[r * dst_stride + c] =
1587
82.7M
              (uint8_t)palette[map[(r + y) * wpx + c + x]];
1588
82.7M
        }
1589
5.75M
      }
1590
609k
    }
1591
665k
    return;
1592
665k
  }
1593
1594
41.7M
  const struct macroblockd_plane *const pd = &xd->plane[plane];
1595
41.7M
  const int txw = tx_size_wide_unit[tx_size];
1596
41.7M
  const int txh = tx_size_high_unit[tx_size];
1597
41.7M
  const int ss_x = pd->subsampling_x;
1598
41.7M
  const int ss_y = pd->subsampling_y;
1599
41.7M
  const int have_top =
1600
41.7M
      row_off || (ss_y ? xd->chroma_up_available : xd->up_available);
1601
41.7M
  const int have_left =
1602
41.7M
      col_off || (ss_x ? xd->chroma_left_available : xd->left_available);
1603
41.7M
  const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
1604
41.7M
  const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
1605
1606
  // Distance between the right edge of this prediction block to
1607
  // the frame right edge
1608
41.7M
  const int xr = (xd->mb_to_right_edge >> (3 + ss_x)) + wpx - x - txwpx;
1609
  // Distance between the bottom edge of this prediction block to
1610
  // the frame bottom edge
1611
41.7M
  const int yd = (xd->mb_to_bottom_edge >> (3 + ss_y)) + hpx - y - txhpx;
1612
41.7M
  const int right_available =
1613
41.7M
      mi_col + ((col_off + txw) << ss_x) < xd->tile.mi_col_end;
1614
41.7M
  const int bottom_available =
1615
41.7M
      (yd > 0) && (mi_row + ((row_off + txh) << ss_y) < xd->tile.mi_row_end);
1616
1617
41.7M
  const PARTITION_TYPE partition = mbmi->partition;
1618
1619
41.7M
  BLOCK_SIZE bsize = mbmi->bsize;
1620
  // force 4x4 chroma component block size.
1621
41.7M
  if (ss_x || ss_y) {
1622
7.27M
    bsize = scale_chroma_bsize(bsize, ss_x, ss_y);
1623
7.27M
  }
1624
1625
41.7M
  const int have_top_right =
1626
41.7M
      has_top_right(sb_size, bsize, mi_row, mi_col, have_top, right_available,
1627
41.7M
                    partition, tx_size, row_off, col_off, ss_x, ss_y);
1628
41.7M
  const int have_bottom_left = has_bottom_left(
1629
41.7M
      sb_size, bsize, mi_row, mi_col, bottom_available, have_left, partition,
1630
41.7M
      tx_size, row_off, col_off, ss_x, ss_y);
1631
1632
41.7M
  const int disable_edge_filter = !enable_intra_edge_filter;
1633
41.7M
  const int intra_edge_filter_type = get_intra_edge_filter_type(xd, plane);
1634
41.7M
#if CONFIG_AV1_HIGHBITDEPTH
1635
41.7M
  if (is_cur_buf_hbd(xd)) {
1636
19.2M
    build_intra_predictors_high(
1637
19.2M
        ref, ref_stride, dst, dst_stride, mode, angle_delta, filter_intra_mode,
1638
19.2M
        tx_size, disable_edge_filter, have_top ? AOMMIN(txwpx, xr + txwpx) : 0,
1639
19.2M
        have_top_right ? AOMMIN(txwpx, xr) : 0,
1640
19.2M
        have_left ? AOMMIN(txhpx, yd + txhpx) : 0,
1641
19.2M
        have_bottom_left ? AOMMIN(txhpx, yd) : 0, intra_edge_filter_type,
1642
19.2M
        xd->bd);
1643
19.2M
    return;
1644
19.2M
  }
1645
22.5M
#endif
1646
22.5M
  build_intra_predictors(
1647
22.5M
      ref, ref_stride, dst, dst_stride, mode, angle_delta, filter_intra_mode,
1648
22.5M
      tx_size, disable_edge_filter, have_top ? AOMMIN(txwpx, xr + txwpx) : 0,
1649
22.5M
      have_top_right ? AOMMIN(txwpx, xr) : 0,
1650
22.5M
      have_left ? AOMMIN(txhpx, yd + txhpx) : 0,
1651
22.5M
      have_bottom_left ? AOMMIN(txhpx, yd) : 0, intra_edge_filter_type);
1652
22.5M
}
1653
1654
void av1_predict_intra_block_facade(const AV1_COMMON *cm, MACROBLOCKD *xd,
1655
                                    int plane, int blk_col, int blk_row,
1656
42.4M
                                    TX_SIZE tx_size) {
1657
42.4M
  const MB_MODE_INFO *const mbmi = xd->mi[0];
1658
42.4M
  struct macroblockd_plane *const pd = &xd->plane[plane];
1659
42.4M
  const int dst_stride = pd->dst.stride;
1660
42.4M
  uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
1661
42.4M
  const PREDICTION_MODE mode =
1662
42.4M
      (plane == AOM_PLANE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
1663
42.4M
  const int use_palette = mbmi->palette_mode_info.palette_size[plane != 0] > 0;
1664
42.4M
  const FILTER_INTRA_MODE filter_intra_mode =
1665
42.4M
      (plane == AOM_PLANE_Y && mbmi->filter_intra_mode_info.use_filter_intra)
1666
42.4M
          ? mbmi->filter_intra_mode_info.filter_intra_mode
1667
42.4M
          : FILTER_INTRA_MODES;
1668
42.4M
  const int angle_delta = mbmi->angle_delta[plane != AOM_PLANE_Y] * ANGLE_STEP;
1669
42.4M
  const SequenceHeader *seq_params = cm->seq_params;
1670
1671
42.4M
  if (plane != AOM_PLANE_Y && mbmi->uv_mode == UV_CFL_PRED) {
1672
4.41M
#if CONFIG_DEBUG
1673
4.41M
    assert(is_cfl_allowed(xd));
1674
4.41M
    const BLOCK_SIZE plane_bsize =
1675
4.41M
        get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
1676
4.41M
    (void)plane_bsize;
1677
4.41M
    assert(plane_bsize < BLOCK_SIZES_ALL);
1678
4.41M
    if (!xd->lossless[mbmi->segment_id]) {
1679
4.40M
      assert(blk_col == 0);
1680
4.40M
      assert(blk_row == 0);
1681
4.40M
      assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]);
1682
4.40M
      assert(block_size_high[plane_bsize] == tx_size_high[tx_size]);
1683
4.40M
    }
1684
4.41M
#endif
1685
4.41M
    CFL_CTX *const cfl = &xd->cfl;
1686
4.41M
    CFL_PRED_TYPE pred_plane = get_cfl_pred_type(plane);
1687
4.41M
    if (cfl->dc_pred_is_cached[pred_plane] == 0) {
1688
4.41M
      av1_predict_intra_block(xd, seq_params->sb_size,
1689
4.41M
                              seq_params->enable_intra_edge_filter, pd->width,
1690
4.41M
                              pd->height, tx_size, mode, angle_delta,
1691
4.41M
                              use_palette, filter_intra_mode, dst, dst_stride,
1692
4.41M
                              dst, dst_stride, blk_col, blk_row, plane);
1693
4.41M
      if (cfl->use_dc_pred_cache) {
1694
0
        cfl_store_dc_pred(xd, dst, pred_plane, tx_size_wide[tx_size]);
1695
0
        cfl->dc_pred_is_cached[pred_plane] = 1;
1696
0
      }
1697
4.41M
    } else {
1698
0
      cfl_load_dc_pred(xd, dst, dst_stride, tx_size, pred_plane);
1699
0
    }
1700
4.41M
    cfl_predict_block(xd, dst, dst_stride, tx_size, plane);
1701
4.41M
    return;
1702
4.41M
  }
1703
38.0M
  av1_predict_intra_block(
1704
38.0M
      xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, pd->width,
1705
38.0M
      pd->height, tx_size, mode, angle_delta, use_palette, filter_intra_mode,
1706
38.0M
      dst, dst_stride, dst, dst_stride, blk_col, blk_row, plane);
1707
38.0M
}
1708
1709
5
void av1_init_intra_predictors(void) {
1710
5
  aom_once(init_intra_predictors_internal);
1711
5
}