Coverage Report

Created: 2025-12-31 07:53

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aom/av1/common/restoration.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 *
11
 */
12
13
#include <math.h>
14
15
#include "config/aom_config.h"
16
#include "config/aom_dsp_rtcd.h"
17
#include "config/aom_scale_rtcd.h"
18
19
#include "aom_mem/aom_mem.h"
20
#include "av1/common/av1_common_int.h"
21
#include "av1/common/resize.h"
22
#include "av1/common/restoration.h"
23
#include "aom_dsp/aom_dsp_common.h"
24
#include "aom_mem/aom_mem.h"
25
26
#include "aom_ports/mem.h"
27
28
// The 's' values are calculated based on original 'r' and 'e' values in the
29
// spec using GenSgrprojVtable().
30
// Note: Setting r = 0 skips the filter; with corresponding s = -1 (invalid).
31
const sgr_params_type av1_sgr_params[SGRPROJ_PARAMS] = {
32
  { { 2, 1 }, { 140, 3236 } }, { { 2, 1 }, { 112, 2158 } },
33
  { { 2, 1 }, { 93, 1618 } },  { { 2, 1 }, { 80, 1438 } },
34
  { { 2, 1 }, { 70, 1295 } },  { { 2, 1 }, { 58, 1177 } },
35
  { { 2, 1 }, { 47, 1079 } },  { { 2, 1 }, { 37, 996 } },
36
  { { 2, 1 }, { 30, 925 } },   { { 2, 1 }, { 25, 863 } },
37
  { { 0, 1 }, { -1, 2589 } },  { { 0, 1 }, { -1, 1618 } },
38
  { { 0, 1 }, { -1, 1177 } },  { { 0, 1 }, { -1, 925 } },
39
  { { 2, 0 }, { 56, -1 } },    { { 2, 0 }, { 22, -1 } },
40
};
41
42
521k
AV1PixelRect av1_whole_frame_rect(const AV1_COMMON *cm, int is_uv) {
43
521k
  AV1PixelRect rect;
44
45
521k
  int ss_x = is_uv && cm->seq_params->subsampling_x;
46
521k
  int ss_y = is_uv && cm->seq_params->subsampling_y;
47
48
521k
  rect.top = 0;
49
521k
  rect.bottom = ROUND_POWER_OF_TWO(cm->height, ss_y);
50
521k
  rect.left = 0;
51
521k
  rect.right = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x);
52
521k
  return rect;
53
521k
}
54
55
// Count horizontal or vertical units per tile (use a width or height for
56
// tile_size, respectively). We basically want to divide the tile size by the
57
// size of a restoration unit. Rather than rounding up unconditionally as you
58
// might expect, we round to nearest, which models the way a right or bottom
59
// restoration unit can extend to up to 150% its normal width or height. The
60
// max with 1 is to deal with tiles that are smaller than half of a restoration
61
// unit.
62
939k
int av1_lr_count_units_in_tile(int unit_size, int tile_size) {
63
939k
  return AOMMAX((tile_size + (unit_size >> 1)) / unit_size, 1);
64
939k
}
65
66
void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi,
67
37.0k
                                  int is_uv) {
68
  // We need to allocate enough space for restoration units to cover the
69
  // largest tile. Without CONFIG_MAX_TILE, this is always the tile at the
70
  // top-left and we can use av1_get_tile_rect(). With CONFIG_MAX_TILE, we have
71
  // to do the computation ourselves, iterating over the tiles and keeping
72
  // track of the largest width and height, then upscaling.
73
37.0k
  const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
74
37.0k
  const int max_tile_w = tile_rect.right - tile_rect.left;
75
37.0k
  const int max_tile_h = tile_rect.bottom - tile_rect.top;
76
77
  // To calculate hpertile and vpertile (horizontal and vertical units per
78
  // tile), we basically want to divide the largest tile width or height by the
79
  // size of a restoration unit. Rather than rounding up unconditionally as you
80
  // might expect, we round to nearest, which models the way a right or bottom
81
  // restoration unit can extend to up to 150% its normal width or height. The
82
  // max with 1 is to deal with tiles that are smaller than half of a
83
  // restoration unit.
84
37.0k
  const int unit_size = rsi->restoration_unit_size;
85
37.0k
  const int hpertile = av1_lr_count_units_in_tile(unit_size, max_tile_w);
86
37.0k
  const int vpertile = av1_lr_count_units_in_tile(unit_size, max_tile_h);
87
88
37.0k
  rsi->units_per_tile = hpertile * vpertile;
89
37.0k
  rsi->horz_units_per_tile = hpertile;
90
37.0k
  rsi->vert_units_per_tile = vpertile;
91
92
37.0k
  const int ntiles = 1;
93
37.0k
  const int nunits = ntiles * rsi->units_per_tile;
94
95
37.0k
  aom_free(rsi->unit_info);
96
37.0k
  CHECK_MEM_ERROR(cm, rsi->unit_info,
97
37.0k
                  (RestorationUnitInfo *)aom_memalign(
98
37.0k
                      16, sizeof(*rsi->unit_info) * nunits));
99
37.0k
}
100
101
108k
void av1_free_restoration_struct(RestorationInfo *rst_info) {
102
108k
  aom_free(rst_info->unit_info);
103
108k
  rst_info->unit_info = NULL;
104
108k
}
105
106
#if 0
107
// Pair of values for each sgrproj parameter:
108
// Index 0 corresponds to r[0], e[0]
109
// Index 1 corresponds to r[1], e[1]
110
int sgrproj_mtable[SGRPROJ_PARAMS][2];
111
112
static void GenSgrprojVtable() {
113
  for (int i = 0; i < SGRPROJ_PARAMS; ++i) {
114
    const sgr_params_type *const params = &av1_sgr_params[i];
115
    for (int j = 0; j < 2; ++j) {
116
      const int e = params->e[j];
117
      const int r = params->r[j];
118
      if (r == 0) {                 // filter is disabled
119
        sgrproj_mtable[i][j] = -1;  // mark invalid
120
      } else {                      // filter is enabled
121
        const int n = (2 * r + 1) * (2 * r + 1);
122
        const int n2e = n * n * e;
123
        assert(n2e != 0);
124
        sgrproj_mtable[i][j] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e);
125
      }
126
    }
127
  }
128
}
129
#endif
130
131
36.1k
void av1_loop_restoration_precal() {
132
#if 0
133
  GenSgrprojVtable();
134
#endif
135
36.1k
}
136
137
static void extend_frame_lowbd(uint8_t *data, int width, int height, int stride,
138
4.17k
                               int border_horz, int border_vert) {
139
4.17k
  uint8_t *data_p;
140
4.17k
  int i;
141
1.51M
  for (i = 0; i < height; ++i) {
142
1.51M
    data_p = data + i * stride;
143
1.51M
    memset(data_p - border_horz, data_p[0], border_horz);
144
1.51M
    memset(data_p + width, data_p[width - 1], border_horz);
145
1.51M
  }
146
4.17k
  data_p = data - border_horz;
147
16.6k
  for (i = -border_vert; i < 0; ++i) {
148
12.5k
    memcpy(data_p + i * stride, data_p, width + 2 * border_horz);
149
12.5k
  }
150
16.6k
  for (i = height; i < height + border_vert; ++i) {
151
12.5k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
152
12.5k
           width + 2 * border_horz);
153
12.5k
  }
154
4.17k
}
155
156
#if CONFIG_AV1_HIGHBITDEPTH
157
static void extend_frame_highbd(uint16_t *data, int width, int height,
158
8.69k
                                int stride, int border_horz, int border_vert) {
159
8.69k
  uint16_t *data_p;
160
8.69k
  int i, j;
161
2.26M
  for (i = 0; i < height; ++i) {
162
2.26M
    data_p = data + i * stride;
163
9.04M
    for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0];
164
9.04M
    for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1];
165
2.26M
  }
166
8.69k
  data_p = data - border_horz;
167
34.7k
  for (i = -border_vert; i < 0; ++i) {
168
26.0k
    memcpy(data_p + i * stride, data_p,
169
26.0k
           (width + 2 * border_horz) * sizeof(uint16_t));
170
26.0k
  }
171
34.7k
  for (i = height; i < height + border_vert; ++i) {
172
26.0k
    memcpy(data_p + i * stride, data_p + (height - 1) * stride,
173
26.0k
           (width + 2 * border_horz) * sizeof(uint16_t));
174
26.0k
  }
175
8.69k
}
176
177
static void copy_tile_highbd(int width, int height, const uint16_t *src,
178
11.4k
                             int src_stride, uint16_t *dst, int dst_stride) {
179
966k
  for (int i = 0; i < height; ++i)
180
954k
    memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst));
181
11.4k
}
182
#endif
183
184
void av1_extend_frame(uint8_t *data, int width, int height, int stride,
185
12.8k
                      int border_horz, int border_vert, int highbd) {
186
12.8k
#if CONFIG_AV1_HIGHBITDEPTH
187
12.8k
  if (highbd) {
188
8.69k
    extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride,
189
8.69k
                        border_horz, border_vert);
190
8.69k
    return;
191
8.69k
  }
192
4.17k
#endif
193
4.17k
  (void)highbd;
194
4.17k
  extend_frame_lowbd(data, width, height, stride, border_horz, border_vert);
195
4.17k
}
196
197
static void copy_tile_lowbd(int width, int height, const uint8_t *src,
198
7.53k
                            int src_stride, uint8_t *dst, int dst_stride) {
199
676k
  for (int i = 0; i < height; ++i)
200
669k
    memcpy(dst + i * dst_stride, src + i * src_stride, width);
201
7.53k
}
202
203
static void copy_tile(int width, int height, const uint8_t *src, int src_stride,
204
18.9k
                      uint8_t *dst, int dst_stride, int highbd) {
205
18.9k
#if CONFIG_AV1_HIGHBITDEPTH
206
18.9k
  if (highbd) {
207
11.4k
    copy_tile_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride,
208
11.4k
                     CONVERT_TO_SHORTPTR(dst), dst_stride);
209
11.4k
    return;
210
11.4k
  }
211
7.53k
#endif
212
7.53k
  (void)highbd;
213
7.53k
  copy_tile_lowbd(width, height, src, src_stride, dst, dst_stride);
214
7.53k
}
215
216
1.02M
#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d))
217
218
// With striped loop restoration, the filtering for each 64-pixel stripe gets
219
// most of its input from the output of CDEF (stored in data8), but we need to
220
// fill out a border of 3 pixels above/below the stripe according to the
221
// following
222
// rules:
223
//
224
// * At a frame boundary, we copy the outermost row of CDEF pixels three times.
225
//   This extension is done by a call to av1_extend_frame() at the start of the
226
//   loop restoration process, so the value of copy_above/copy_below doesn't
227
//   strictly matter. However, by setting *copy_above = *copy_below = 1 whenever
228
//   loop filtering across tiles is disabled, we can allow
229
//   {setup,restore}_processing_stripe_boundary to assume that the top/bottom
230
//   data has always been copied, simplifying the behaviour at the left and
231
//   right edges of tiles.
232
//
233
// * If we're at a tile boundary and loop filtering across tiles is enabled,
234
//   then there is a logical stripe which is 64 pixels high, but which is split
235
//   into an 8px high and a 56px high stripe so that the processing (and
236
//   coefficient set usage) can be aligned to tiles.
237
//   In this case, we use the 3 rows of CDEF output across the boundary for
238
//   context; this corresponds to leaving the frame buffer as-is.
239
//
240
// * If we're at a tile boundary and loop filtering across tiles is disabled,
241
//   then we take the outermost row of CDEF pixels *within the current tile*
242
//   and copy it three times. Thus we behave exactly as if the tile were a full
243
//   frame.
244
//
245
// * Otherwise, we're at a stripe boundary within a tile. In that case, we
246
//   take 2 rows of deblocked pixels and extend them to 3 rows of context.
247
//
248
// The distinction between the latter two cases is handled by the
249
// av1_loop_restoration_save_boundary_lines() function, so here we just need
250
// to decide if we're overwriting the above/below boundary pixels or not.
251
static void get_stripe_boundary_info(const RestorationTileLimits *limits,
252
                                     const AV1PixelRect *tile_rect, int ss_y,
253
61.2k
                                     int *copy_above, int *copy_below) {
254
61.2k
  *copy_above = 1;
255
61.2k
  *copy_below = 1;
256
257
61.2k
  const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
258
61.2k
  const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
259
260
61.2k
  const int first_stripe_in_tile = (limits->v_start == tile_rect->top);
261
61.2k
  const int this_stripe_height =
262
61.2k
      full_stripe_height - (first_stripe_in_tile ? runit_offset : 0);
263
61.2k
  const int last_stripe_in_tile =
264
61.2k
      (limits->v_start + this_stripe_height >= tile_rect->bottom);
265
266
61.2k
  if (first_stripe_in_tile) *copy_above = 0;
267
61.2k
  if (last_stripe_in_tile) *copy_below = 0;
268
61.2k
}
269
270
// Overwrite the border pixels around a processing stripe so that the conditions
271
// listed above get_stripe_boundary_info() are preserved.
272
// We save the pixels which get overwritten into a temporary buffer, so that
273
// they can be restored by restore_processing_stripe_boundary() after we've
274
// processed the stripe.
275
//
276
// limits gives the rectangular limits of the remaining stripes for the current
277
// restoration unit. rsb is the stored stripe boundaries (taken from either
278
// deblock or CDEF output as necessary).
279
//
280
// tile_rect is the limits of the current tile and tile_stripe0 is the index of
281
// the first stripe in this tile (needed to convert the tile-relative stripe
282
// index we get from limits into something we can look up in rsb).
283
static void setup_processing_stripe_boundary(
284
    const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb,
285
    int rsb_row, int use_highbd, int h, uint8_t *data8, int data_stride,
286
61.2k
    RestorationLineBuffers *rlbs, int copy_above, int copy_below, int opt) {
287
  // Offsets within the line buffers. The buffer logically starts at column
288
  // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ)
289
  // has column x0 in the buffer.
290
61.2k
  const int buf_stride = rsb->stripe_boundary_stride;
291
61.2k
  const int buf_x0_off = limits->h_start;
292
61.2k
  const int line_width =
293
61.2k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
294
61.2k
  const int line_size = line_width << use_highbd;
295
296
61.2k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
297
298
  // Replace RESTORATION_BORDER pixels above the top of the stripe
299
  // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above
300
  // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by
301
  // duplicating the topmost of the 2 lines (see the AOMMAX call when
302
  // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1).
303
  //
304
  // Special case: If we're at the top of a tile, which isn't on the topmost
305
  // tile row, and we're allowed to loop filter across tiles, then we have a
306
  // logical 64-pixel-high stripe which has been split into an 8-pixel high
307
  // stripe and a 56-pixel high stripe (the current one). So, in this case,
308
  // we want to leave the boundary alone!
309
61.2k
  if (!opt) {
310
46.6k
    if (copy_above) {
311
40.0k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
312
313
160k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
314
120k
        const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0);
315
120k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
316
120k
        const uint8_t *buf =
317
120k
            rsb->stripe_boundary_above + (buf_off << use_highbd);
318
120k
        uint8_t *dst8 = data8_tl + i * data_stride;
319
        // Save old pixels, then replace with data from stripe_boundary_above
320
120k
        memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER],
321
120k
               REAL_PTR(use_highbd, dst8), line_size);
322
120k
        memcpy(REAL_PTR(use_highbd, dst8), buf, line_size);
323
120k
      }
324
40.0k
    }
325
326
    // Replace RESTORATION_BORDER pixels below the bottom of the stripe.
327
    // The second buffer row is repeated, so src_row gets the values 0, 1, 1
328
    // for i = 0, 1, 2.
329
46.6k
    if (copy_below) {
330
36.8k
      const int stripe_end = limits->v_start + h;
331
36.8k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
332
333
147k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
334
110k
        const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1);
335
110k
        const int buf_off = buf_x0_off + buf_row * buf_stride;
336
110k
        const uint8_t *src =
337
110k
            rsb->stripe_boundary_below + (buf_off << use_highbd);
338
339
110k
        uint8_t *dst8 = data8_bl + i * data_stride;
340
        // Save old pixels, then replace with data from stripe_boundary_below
341
110k
        memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size);
342
110k
        memcpy(REAL_PTR(use_highbd, dst8), src, line_size);
343
110k
      }
344
36.8k
    }
345
46.6k
  } else {
346
14.5k
    if (copy_above) {
347
13.2k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
348
349
      // Only save and overwrite i=-RESTORATION_BORDER line.
350
13.2k
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
351
      // Save old pixels, then replace with data from stripe_boundary_above
352
13.2k
      memcpy(rlbs->tmp_save_above[0], REAL_PTR(use_highbd, dst8), line_size);
353
13.2k
      memcpy(REAL_PTR(use_highbd, dst8),
354
13.2k
             REAL_PTR(use_highbd,
355
13.2k
                      data8_tl + (-RESTORATION_BORDER + 1) * data_stride),
356
13.2k
             line_size);
357
13.2k
    }
358
359
14.5k
    if (copy_below) {
360
13.2k
      const int stripe_end = limits->v_start + h;
361
13.2k
      uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride;
362
363
      // Only save and overwrite i=2 line.
364
13.2k
      uint8_t *dst8 = data8_bl + 2 * data_stride;
365
      // Save old pixels, then replace with data from stripe_boundary_below
366
13.2k
      memcpy(rlbs->tmp_save_below[2], REAL_PTR(use_highbd, dst8), line_size);
367
13.2k
      memcpy(REAL_PTR(use_highbd, dst8),
368
13.2k
             REAL_PTR(use_highbd, data8_bl + (2 - 1) * data_stride), line_size);
369
13.2k
    }
370
14.5k
  }
371
61.2k
}
372
373
// This function restores the boundary lines modified by
374
// setup_processing_stripe_boundary.
375
//
376
// Note: We need to be careful when handling the corners of the processing
377
// unit, because (eg.) the top-left corner is considered to be part of
378
// both the left and top borders. This means that, depending on the
379
// loop_filter_across_tiles_enabled flag, the corner pixels might get
380
// overwritten twice, once as part of the "top" border and once as part
381
// of the "left" border (or similar for other corners).
382
//
383
// Everything works out fine as long as we make sure to reverse the order
384
// when restoring, ie. we need to restore the left/right borders followed
385
// by the top/bottom borders.
386
static void restore_processing_stripe_boundary(
387
    const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs,
388
    int use_highbd, int h, uint8_t *data8, int data_stride, int copy_above,
389
61.2k
    int copy_below, int opt) {
390
61.2k
  const int line_width =
391
61.2k
      (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ;
392
61.2k
  const int line_size = line_width << use_highbd;
393
394
61.2k
  const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ;
395
396
61.2k
  if (!opt) {
397
46.6k
    if (copy_above) {
398
40.0k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
399
160k
      for (int i = -RESTORATION_BORDER; i < 0; ++i) {
400
120k
        uint8_t *dst8 = data8_tl + i * data_stride;
401
120k
        memcpy(REAL_PTR(use_highbd, dst8),
402
120k
               rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size);
403
120k
      }
404
40.0k
    }
405
406
46.6k
    if (copy_below) {
407
36.8k
      const int stripe_bottom = limits->v_start + h;
408
36.8k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
409
410
147k
      for (int i = 0; i < RESTORATION_BORDER; ++i) {
411
110k
        if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break;
412
413
110k
        uint8_t *dst8 = data8_bl + i * data_stride;
414
110k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size);
415
110k
      }
416
36.8k
    }
417
46.6k
  } else {
418
14.5k
    if (copy_above) {
419
13.2k
      uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride;
420
421
      // Only restore i=-RESTORATION_BORDER line.
422
13.2k
      uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride;
423
13.2k
      memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_above[0], line_size);
424
13.2k
    }
425
426
14.5k
    if (copy_below) {
427
13.2k
      const int stripe_bottom = limits->v_start + h;
428
13.2k
      uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride;
429
430
      // Only restore i=2 line.
431
13.2k
      if (stripe_bottom + 2 < limits->v_end + RESTORATION_BORDER) {
432
13.2k
        uint8_t *dst8 = data8_bl + 2 * data_stride;
433
13.2k
        memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[2], line_size);
434
13.2k
      }
435
13.2k
    }
436
14.5k
  }
437
61.2k
}
438
439
static void wiener_filter_stripe(const RestorationUnitInfo *rui,
440
                                 int stripe_width, int stripe_height,
441
                                 int procunit_width, const uint8_t *src,
442
                                 int src_stride, uint8_t *dst, int dst_stride,
443
13.9k
                                 int32_t *tmpbuf, int bit_depth) {
444
13.9k
  (void)tmpbuf;
445
13.9k
  (void)bit_depth;
446
13.9k
  assert(bit_depth == 8);
447
13.9k
  const ConvolveParams conv_params = get_conv_params_wiener(8);
448
449
37.3k
  for (int j = 0; j < stripe_width; j += procunit_width) {
450
23.4k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
451
23.4k
    const uint8_t *src_p = src + j;
452
23.4k
    uint8_t *dst_p = dst + j;
453
23.4k
    av1_wiener_convolve_add_src(
454
23.4k
        src_p, src_stride, dst_p, dst_stride, rui->wiener_info.hfilter, 16,
455
23.4k
        rui->wiener_info.vfilter, 16, w, stripe_height, &conv_params);
456
23.4k
  }
457
13.9k
}
458
459
/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1)
460
   over the input. The window is of size (2r + 1)x(2r + 1), and we
461
   specialize to r = 1, 2, 3. A default function is used for r > 3.
462
463
   Each loop follows the same format: We keep a window's worth of input
464
   in individual variables and select data out of that as appropriate.
465
*/
466
static void boxsum1(int32_t *src, int width, int height, int src_stride,
467
66.1k
                    int sqr, int32_t *dst, int dst_stride) {
468
66.1k
  int i, j, a, b, c;
469
66.1k
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
470
66.1k
  assert(height > 2 * SGRPROJ_BORDER_VERT);
471
472
  // Vertical sum over 3-pixel regions, from src into dst.
473
66.1k
  if (!sqr) {
474
1.57M
    for (j = 0; j < width; ++j) {
475
1.53M
      a = src[j];
476
1.53M
      b = src[src_stride + j];
477
1.53M
      c = src[2 * src_stride + j];
478
479
1.53M
      dst[j] = a + b;
480
82.2M
      for (i = 1; i < height - 2; ++i) {
481
        // Loop invariant: At the start of each iteration,
482
        // a = src[(i - 1) * src_stride + j]
483
        // b = src[(i    ) * src_stride + j]
484
        // c = src[(i + 1) * src_stride + j]
485
80.7M
        dst[i * dst_stride + j] = a + b + c;
486
80.7M
        a = b;
487
80.7M
        b = c;
488
80.7M
        c = src[(i + 2) * src_stride + j];
489
80.7M
      }
490
1.53M
      dst[i * dst_stride + j] = a + b + c;
491
1.53M
      dst[(i + 1) * dst_stride + j] = b + c;
492
1.53M
    }
493
33.0k
  } else {
494
1.57M
    for (j = 0; j < width; ++j) {
495
1.53M
      a = src[j] * src[j];
496
1.53M
      b = src[src_stride + j] * src[src_stride + j];
497
1.53M
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
498
499
1.53M
      dst[j] = a + b;
500
82.2M
      for (i = 1; i < height - 2; ++i) {
501
80.7M
        dst[i * dst_stride + j] = a + b + c;
502
80.7M
        a = b;
503
80.7M
        b = c;
504
80.7M
        c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j];
505
80.7M
      }
506
1.53M
      dst[i * dst_stride + j] = a + b + c;
507
1.53M
      dst[(i + 1) * dst_stride + j] = b + c;
508
1.53M
    }
509
33.0k
  }
510
511
  // Horizontal sum over 3-pixel regions of dst
512
3.74M
  for (i = 0; i < height; ++i) {
513
3.67M
    a = dst[i * dst_stride];
514
3.67M
    b = dst[i * dst_stride + 1];
515
3.67M
    c = dst[i * dst_stride + 2];
516
517
3.67M
    dst[i * dst_stride] = a + b;
518
163M
    for (j = 1; j < width - 2; ++j) {
519
      // Loop invariant: At the start of each iteration,
520
      // a = src[i * src_stride + (j - 1)]
521
      // b = src[i * src_stride + (j    )]
522
      // c = src[i * src_stride + (j + 1)]
523
159M
      dst[i * dst_stride + j] = a + b + c;
524
159M
      a = b;
525
159M
      b = c;
526
159M
      c = dst[i * dst_stride + (j + 2)];
527
159M
    }
528
3.67M
    dst[i * dst_stride + j] = a + b + c;
529
3.67M
    dst[i * dst_stride + (j + 1)] = b + c;
530
3.67M
  }
531
66.1k
}
532
533
static void boxsum2(int32_t *src, int width, int height, int src_stride,
534
59.0k
                    int sqr, int32_t *dst, int dst_stride) {
535
59.0k
  int i, j, a, b, c, d, e;
536
59.0k
  assert(width > 2 * SGRPROJ_BORDER_HORZ);
537
59.0k
  assert(height > 2 * SGRPROJ_BORDER_VERT);
538
539
  // Vertical sum over 5-pixel regions, from src into dst.
540
59.0k
  if (!sqr) {
541
1.37M
    for (j = 0; j < width; ++j) {
542
1.34M
      a = src[j];
543
1.34M
      b = src[src_stride + j];
544
1.34M
      c = src[2 * src_stride + j];
545
1.34M
      d = src[3 * src_stride + j];
546
1.34M
      e = src[4 * src_stride + j];
547
548
1.34M
      dst[j] = a + b + c;
549
1.34M
      dst[dst_stride + j] = a + b + c + d;
550
68.8M
      for (i = 2; i < height - 3; ++i) {
551
        // Loop invariant: At the start of each iteration,
552
        // a = src[(i - 2) * src_stride + j]
553
        // b = src[(i - 1) * src_stride + j]
554
        // c = src[(i    ) * src_stride + j]
555
        // d = src[(i + 1) * src_stride + j]
556
        // e = src[(i + 2) * src_stride + j]
557
67.5M
        dst[i * dst_stride + j] = a + b + c + d + e;
558
67.5M
        a = b;
559
67.5M
        b = c;
560
67.5M
        c = d;
561
67.5M
        d = e;
562
67.5M
        e = src[(i + 3) * src_stride + j];
563
67.5M
      }
564
1.34M
      dst[i * dst_stride + j] = a + b + c + d + e;
565
1.34M
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
566
1.34M
      dst[(i + 2) * dst_stride + j] = c + d + e;
567
1.34M
    }
568
29.5k
  } else {
569
1.37M
    for (j = 0; j < width; ++j) {
570
1.34M
      a = src[j] * src[j];
571
1.34M
      b = src[src_stride + j] * src[src_stride + j];
572
1.34M
      c = src[2 * src_stride + j] * src[2 * src_stride + j];
573
1.34M
      d = src[3 * src_stride + j] * src[3 * src_stride + j];
574
1.34M
      e = src[4 * src_stride + j] * src[4 * src_stride + j];
575
576
1.34M
      dst[j] = a + b + c;
577
1.34M
      dst[dst_stride + j] = a + b + c + d;
578
68.8M
      for (i = 2; i < height - 3; ++i) {
579
67.5M
        dst[i * dst_stride + j] = a + b + c + d + e;
580
67.5M
        a = b;
581
67.5M
        b = c;
582
67.5M
        c = d;
583
67.5M
        d = e;
584
67.5M
        e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j];
585
67.5M
      }
586
1.34M
      dst[i * dst_stride + j] = a + b + c + d + e;
587
1.34M
      dst[(i + 1) * dst_stride + j] = b + c + d + e;
588
1.34M
      dst[(i + 2) * dst_stride + j] = c + d + e;
589
1.34M
    }
590
29.5k
  }
591
592
  // Horizontal sum over 5-pixel regions of dst
593
3.33M
  for (i = 0; i < height; ++i) {
594
3.27M
    a = dst[i * dst_stride];
595
3.27M
    b = dst[i * dst_stride + 1];
596
3.27M
    c = dst[i * dst_stride + 2];
597
3.27M
    d = dst[i * dst_stride + 3];
598
3.27M
    e = dst[i * dst_stride + 4];
599
600
3.27M
    dst[i * dst_stride] = a + b + c;
601
3.27M
    dst[i * dst_stride + 1] = a + b + c + d;
602
135M
    for (j = 2; j < width - 3; ++j) {
603
      // Loop invariant: At the start of each iteration,
604
      // a = src[i * src_stride + (j - 2)]
605
      // b = src[i * src_stride + (j - 1)]
606
      // c = src[i * src_stride + (j    )]
607
      // d = src[i * src_stride + (j + 1)]
608
      // e = src[i * src_stride + (j + 2)]
609
132M
      dst[i * dst_stride + j] = a + b + c + d + e;
610
132M
      a = b;
611
132M
      b = c;
612
132M
      c = d;
613
132M
      d = e;
614
132M
      e = dst[i * dst_stride + (j + 3)];
615
132M
    }
616
3.27M
    dst[i * dst_stride + j] = a + b + c + d + e;
617
3.27M
    dst[i * dst_stride + (j + 1)] = b + c + d + e;
618
3.27M
    dst[i * dst_stride + (j + 2)] = c + d + e;
619
3.27M
  }
620
59.0k
}
621
622
static void boxsum(int32_t *src, int width, int height, int src_stride, int r,
623
125k
                   int sqr, int32_t *dst, int dst_stride) {
624
125k
  if (r == 1)
625
66.1k
    boxsum1(src, width, height, src_stride, sqr, dst, dst_stride);
626
59.0k
  else if (r == 2)
627
59.0k
    boxsum2(src, width, height, src_stride, sqr, dst, dst_stride);
628
0
  else
629
59.0k
    assert(0 && "Invalid value of r in self-guided filter");
630
125k
}
631
632
39.7k
void av1_decode_xq(const int *xqd, int *xq, const sgr_params_type *params) {
633
39.7k
  if (params->r[0] == 0) {
634
10.2k
    xq[0] = 0;
635
10.2k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[1];
636
29.5k
  } else if (params->r[1] == 0) {
637
6.71k
    xq[0] = xqd[0];
638
6.71k
    xq[1] = 0;
639
22.7k
  } else {
640
22.7k
    xq[0] = xqd[0];
641
22.7k
    xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1];
642
22.7k
  }
643
39.7k
}
644
645
const int32_t av1_x_by_xplus1[256] = {
646
  // Special case: Map 0 -> 1 (corresponding to a value of 1/256)
647
  // instead of 0. See comments in selfguided_restoration_internal() for why
648
  1,   128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239,
649
  240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247,
650
  248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250,
651
  250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252,
652
  252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253,
653
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253,
654
  253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254,
655
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
656
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
657
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
658
  254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
659
  254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
660
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
661
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
662
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
663
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
664
  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
665
  256,
666
};
667
668
const int32_t av1_one_by_x[MAX_NELEM] = {
669
  4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315,
670
  293,  273,  256,  241,  228, 216, 205, 195, 186, 178, 171, 164,
671
};
672
673
static void calculate_intermediate_result(int32_t *dgd, int width, int height,
674
                                          int dgd_stride, int bit_depth,
675
                                          int sgr_params_idx, int radius_idx,
676
62.5k
                                          int pass, int32_t *A, int32_t *B) {
677
62.5k
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
678
62.5k
  const int r = params->r[radius_idx];
679
62.5k
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
680
62.5k
  const int height_ext = height + 2 * SGRPROJ_BORDER_VERT;
681
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
682
  // leading to a significant speed improvement.
683
  // We also align the stride to a multiple of 16 bytes, for consistency
684
  // with the SIMD version of this function.
685
62.5k
  int buf_stride = ((width_ext + 3) & ~3) + 16;
686
62.5k
  const int step = pass == 0 ? 1 : 2;
687
62.5k
  int i, j;
688
689
62.5k
  assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r");
690
62.5k
  assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 &&
691
62.5k
         "Need SGRPROJ_BORDER_* >= r+1");
692
693
62.5k
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
694
62.5k
         width_ext, height_ext, dgd_stride, r, 0, B, buf_stride);
695
62.5k
  boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ,
696
62.5k
         width_ext, height_ext, dgd_stride, r, 1, A, buf_stride);
697
62.5k
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
698
62.5k
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
699
  // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie,
700
  // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[].
701
2.52M
  for (i = -1; i < height + 1; i += step) {
702
106M
    for (j = -1; j < width + 1; ++j) {
703
103M
      const int k = i * buf_stride + j;
704
103M
      const int n = (2 * r + 1) * (2 * r + 1);
705
706
      // a < 2^16 * n < 2^22 regardless of bit depth
707
103M
      uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8));
708
      // b < 2^8 * n < 2^14 regardless of bit depth
709
103M
      uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8);
710
711
      // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28,
712
      // and p itself satisfies p < 2^14 * n^2 < 2^26.
713
      // This bound on p is due to:
714
      // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances
715
      //
716
      // Note: Sometimes, in high bit depth, we can end up with a*n < b*b.
717
      // This is an artefact of rounding, and can only happen if all pixels
718
      // are (almost) identical, so in this case we saturate to p=0.
719
103M
      uint32_t p = (a * n < b * b) ? 0 : a * n - b * b;
720
721
103M
      const uint32_t s = params->s[radius_idx];
722
723
      // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32
724
      // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12
725
      // (this holds even after accounting for the rounding in s)
726
103M
      const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS);
727
728
      // Note: We have to be quite careful about the value of A[k].
729
      // This is used as a blend factor between individual pixel values and the
730
      // local mean. So it logically has a range of [0, 256], including both
731
      // endpoints.
732
      //
733
      // This is a pain for hardware, as we'd like something which can be stored
734
      // in exactly 8 bits.
735
      // Further, in the calculation of B[k] below, if z == 0 and r == 2,
736
      // then A[k] "should be" 0. But then we can end up setting B[k] to a value
737
      // slightly above 2^(8 + bit depth), due to rounding in the value of
738
      // av1_one_by_x[25-1].
739
      //
740
      // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0.
741
      // This fixes the above issues (256 - A[k] fits in a uint8, and we can't
742
      // overflow), without significantly affecting the final result: z == 0
743
      // implies that the image is essentially "flat", so the local mean and
744
      // individual pixel values are very similar.
745
      //
746
      // Note that saturating on the other side, ie. requring A[k] <= 255,
747
      // would be a bad idea, as that corresponds to the case where the image
748
      // is very variable, when we want to preserve the local pixel value as
749
      // much as possible.
750
103M
      A[k] = av1_x_by_xplus1[AOMMIN(z, 255)];  // in range [1, 256]
751
752
      // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n,
753
      // av1_one_by_x[n - 1] = round(2^12 / n)
754
      // => the product here is < 2^(20 + bit_depth) <= 2^32,
755
      // and B[k] is set to a value < 2^(8 + bit depth)
756
      // This holds even with the rounding in av1_one_by_x and in the overall
757
      // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8.
758
103M
      B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) *
759
103M
                                             (uint32_t)B[k] *
760
103M
                                             (uint32_t)av1_one_by_x[n - 1],
761
103M
                                         SGRPROJ_RECIP_BITS);
762
103M
    }
763
2.46M
  }
764
62.5k
}
765
766
static void selfguided_restoration_fast_internal(
767
    int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst,
768
29.5k
    int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) {
769
29.5k
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
770
29.5k
  const int r = params->r[radius_idx];
771
29.5k
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
772
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
773
  // leading to a significant speed improvement.
774
  // We also align the stride to a multiple of 16 bytes, for consistency
775
  // with the SIMD version of this function.
776
29.5k
  int buf_stride = ((width_ext + 3) & ~3) + 16;
777
29.5k
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
778
29.5k
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
779
29.5k
  int32_t *A = A_;
780
29.5k
  int32_t *B = B_;
781
29.5k
  int i, j;
782
29.5k
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
783
29.5k
                                sgr_params_idx, radius_idx, 1, A, B);
784
29.5k
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
785
29.5k
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
786
787
  // Use the A[] and B[] arrays to calculate the filtered image
788
29.5k
  (void)r;
789
29.5k
  assert(r == 2);
790
1.48M
  for (i = 0; i < height; ++i) {
791
1.45M
    if (!(i & 1)) {  // even row
792
29.4M
      for (j = 0; j < width; ++j) {
793
28.7M
        const int k = i * buf_stride + j;
794
28.7M
        const int l = i * dgd_stride + j;
795
28.7M
        const int m = i * dst_stride + j;
796
28.7M
        const int nb = 5;
797
28.7M
        const int32_t a = (A[k - buf_stride] + A[k + buf_stride]) * 6 +
798
28.7M
                          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
799
28.7M
                           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
800
28.7M
                              5;
801
28.7M
        const int32_t b = (B[k - buf_stride] + B[k + buf_stride]) * 6 +
802
28.7M
                          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
803
28.7M
                           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
804
28.7M
                              5;
805
28.7M
        const int32_t v = a * dgd[l] + b;
806
28.7M
        dst[m] =
807
28.7M
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
808
28.7M
      }
809
730k
    } else {  // odd row
810
29.4M
      for (j = 0; j < width; ++j) {
811
28.6M
        const int k = i * buf_stride + j;
812
28.6M
        const int l = i * dgd_stride + j;
813
28.6M
        const int m = i * dst_stride + j;
814
28.6M
        const int nb = 4;
815
28.6M
        const int32_t a = A[k] * 6 + (A[k - 1] + A[k + 1]) * 5;
816
28.6M
        const int32_t b = B[k] * 6 + (B[k - 1] + B[k + 1]) * 5;
817
28.6M
        const int32_t v = a * dgd[l] + b;
818
28.6M
        dst[m] =
819
28.6M
            ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
820
28.6M
      }
821
729k
    }
822
1.45M
  }
823
29.5k
}
824
825
static void selfguided_restoration_internal(int32_t *dgd, int width, int height,
826
                                            int dgd_stride, int32_t *dst,
827
                                            int dst_stride, int bit_depth,
828
                                            int sgr_params_idx,
829
33.0k
                                            int radius_idx) {
830
33.0k
  const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ;
831
  // Adjusting the stride of A and B here appears to avoid bad cache effects,
832
  // leading to a significant speed improvement.
833
  // We also align the stride to a multiple of 16 bytes, for consistency
834
  // with the SIMD version of this function.
835
33.0k
  int buf_stride = ((width_ext + 3) & ~3) + 16;
836
33.0k
  int32_t A_[RESTORATION_PROC_UNIT_PELS];
837
33.0k
  int32_t B_[RESTORATION_PROC_UNIT_PELS];
838
33.0k
  int32_t *A = A_;
839
33.0k
  int32_t *B = B_;
840
33.0k
  int i, j;
841
33.0k
  calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth,
842
33.0k
                                sgr_params_idx, radius_idx, 0, A, B);
843
33.0k
  A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
844
33.0k
  B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ;
845
846
  // Use the A[] and B[] arrays to calculate the filtered image
847
1.67M
  for (i = 0; i < height; ++i) {
848
67.9M
    for (j = 0; j < width; ++j) {
849
66.2M
      const int k = i * buf_stride + j;
850
66.2M
      const int l = i * dgd_stride + j;
851
66.2M
      const int m = i * dst_stride + j;
852
66.2M
      const int nb = 5;
853
66.2M
      const int32_t a =
854
66.2M
          (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) *
855
66.2M
              4 +
856
66.2M
          (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] +
857
66.2M
           A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) *
858
66.2M
              3;
859
66.2M
      const int32_t b =
860
66.2M
          (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) *
861
66.2M
              4 +
862
66.2M
          (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] +
863
66.2M
           B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) *
864
66.2M
              3;
865
66.2M
      const int32_t v = a * dgd[l] + b;
866
66.2M
      dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS);
867
66.2M
    }
868
1.64M
  }
869
33.0k
}
870
871
int av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height,
872
                                 int dgd_stride, int32_t *flt0, int32_t *flt1,
873
                                 int flt_stride, int sgr_params_idx,
874
39.7k
                                 int bit_depth, int highbd) {
875
39.7k
  int32_t dgd32_[RESTORATION_PROC_UNIT_PELS];
876
39.7k
  const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ;
877
39.7k
  int32_t *dgd32 =
878
39.7k
      dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ;
879
880
39.7k
  if (highbd) {
881
16.3k
    const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8);
882
887k
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
883
40.1M
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
884
39.3M
        dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j];
885
39.3M
      }
886
871k
    }
887
23.4k
  } else {
888
1.35M
    for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) {
889
62.4M
      for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) {
890
61.0M
        dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j];
891
61.0M
      }
892
1.33M
    }
893
23.4k
  }
894
895
39.7k
  const sgr_params_type *const params = &av1_sgr_params[sgr_params_idx];
896
  // If params->r == 0 we skip the corresponding filter. We only allow one of
897
  // the radii to be 0, as having both equal to 0 would be equivalent to
898
  // skipping SGR entirely.
899
39.7k
  assert(!(params->r[0] == 0 && params->r[1] == 0));
900
901
39.7k
  if (params->r[0] > 0)
902
29.5k
    selfguided_restoration_fast_internal(dgd32, width, height, dgd32_stride,
903
29.5k
                                         flt0, flt_stride, bit_depth,
904
29.5k
                                         sgr_params_idx, 0);
905
39.7k
  if (params->r[1] > 0)
906
33.0k
    selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1,
907
33.0k
                                    flt_stride, bit_depth, sgr_params_idx, 1);
908
39.7k
  return 0;
909
39.7k
}
910
911
void av1_apply_selfguided_restoration_c(const uint8_t *dat8, int width,
912
                                        int height, int stride, int eps,
913
                                        const int *xqd, uint8_t *dst8,
914
                                        int dst_stride, int32_t *tmpbuf,
915
39.7k
                                        int bit_depth, int highbd) {
916
39.7k
  int32_t *flt0 = tmpbuf;
917
39.7k
  int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX;
918
39.7k
  assert(width * height <= RESTORATION_UNITPELS_MAX);
919
920
39.7k
  const int ret = av1_selfguided_restoration_c(
921
39.7k
      dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd);
922
39.7k
  (void)ret;
923
39.7k
  assert(!ret);
924
39.7k
  const sgr_params_type *const params = &av1_sgr_params[eps];
925
39.7k
  int xq[2];
926
39.7k
  av1_decode_xq(xqd, xq, params);
927
2.00M
  for (int i = 0; i < height; ++i) {
928
79.5M
    for (int j = 0; j < width; ++j) {
929
77.6M
      const int k = i * width + j;
930
77.6M
      uint8_t *dst8ij = dst8 + i * dst_stride + j;
931
77.6M
      const uint8_t *dat8ij = dat8 + i * stride + j;
932
933
77.6M
      const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij;
934
77.6M
      const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS;
935
77.6M
      int32_t v = u << SGRPROJ_PRJ_BITS;
936
      // If params->r == 0 then we skipped the filtering in
937
      // av1_selfguided_restoration_c, i.e. flt[k] == u
938
77.6M
      if (params->r[0] > 0) v += xq[0] * (flt0[k] - u);
939
77.6M
      if (params->r[1] > 0) v += xq[1] * (flt1[k] - u);
940
77.6M
      const int16_t w =
941
77.6M
          (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS);
942
943
77.6M
      const uint16_t out = clip_pixel_highbd(w, bit_depth);
944
77.6M
      if (highbd)
945
30.1M
        *CONVERT_TO_SHORTPTR(dst8ij) = out;
946
47.4M
      else
947
47.4M
        *dst8ij = (uint8_t)out;
948
77.6M
    }
949
1.96M
  }
950
39.7k
}
951
952
static void sgrproj_filter_stripe(const RestorationUnitInfo *rui,
953
                                  int stripe_width, int stripe_height,
954
                                  int procunit_width, const uint8_t *src,
955
                                  int src_stride, uint8_t *dst, int dst_stride,
956
12.1k
                                  int32_t *tmpbuf, int bit_depth) {
957
12.1k
  (void)bit_depth;
958
12.1k
  assert(bit_depth == 8);
959
960
35.5k
  for (int j = 0; j < stripe_width; j += procunit_width) {
961
23.4k
    int w = AOMMIN(procunit_width, stripe_width - j);
962
23.4k
    av1_apply_selfguided_restoration(
963
23.4k
        src + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
964
23.4k
        rui->sgrproj_info.xqd, dst + j, dst_stride, tmpbuf, bit_depth, 0);
965
23.4k
  }
966
12.1k
}
967
968
#if CONFIG_AV1_HIGHBITDEPTH
969
static void wiener_filter_stripe_highbd(const RestorationUnitInfo *rui,
970
                                        int stripe_width, int stripe_height,
971
                                        int procunit_width, const uint8_t *src8,
972
                                        int src_stride, uint8_t *dst8,
973
                                        int dst_stride, int32_t *tmpbuf,
974
26.5k
                                        int bit_depth) {
975
26.5k
  (void)tmpbuf;
976
26.5k
  const ConvolveParams conv_params = get_conv_params_wiener(bit_depth);
977
978
62.6k
  for (int j = 0; j < stripe_width; j += procunit_width) {
979
36.0k
    int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15);
980
36.0k
    const uint8_t *src8_p = src8 + j;
981
36.0k
    uint8_t *dst8_p = dst8 + j;
982
36.0k
    av1_highbd_wiener_convolve_add_src(src8_p, src_stride, dst8_p, dst_stride,
983
36.0k
                                       rui->wiener_info.hfilter, 16,
984
36.0k
                                       rui->wiener_info.vfilter, 16, w,
985
36.0k
                                       stripe_height, &conv_params, bit_depth);
986
36.0k
  }
987
26.5k
}
988
989
static void sgrproj_filter_stripe_highbd(const RestorationUnitInfo *rui,
990
                                         int stripe_width, int stripe_height,
991
                                         int procunit_width,
992
                                         const uint8_t *src8, int src_stride,
993
                                         uint8_t *dst8, int dst_stride,
994
8.62k
                                         int32_t *tmpbuf, int bit_depth) {
995
24.9k
  for (int j = 0; j < stripe_width; j += procunit_width) {
996
16.3k
    int w = AOMMIN(procunit_width, stripe_width - j);
997
16.3k
    av1_apply_selfguided_restoration(
998
16.3k
        src8 + j, w, stripe_height, src_stride, rui->sgrproj_info.ep,
999
16.3k
        rui->sgrproj_info.xqd, dst8 + j, dst_stride, tmpbuf, bit_depth, 1);
1000
16.3k
  }
1001
8.62k
}
1002
#endif  // CONFIG_AV1_HIGHBITDEPTH
1003
1004
typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui,
1005
                                  int stripe_width, int stripe_height,
1006
                                  int procunit_width, const uint8_t *src,
1007
                                  int src_stride, uint8_t *dst, int dst_stride,
1008
                                  int32_t *tmpbuf, int bit_depth);
1009
1010
#if CONFIG_AV1_HIGHBITDEPTH
1011
#define NUM_STRIPE_FILTERS 4
1012
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
1013
  wiener_filter_stripe, sgrproj_filter_stripe, wiener_filter_stripe_highbd,
1014
  sgrproj_filter_stripe_highbd
1015
};
1016
#else
1017
#define NUM_STRIPE_FILTERS 2
1018
static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = {
1019
  wiener_filter_stripe, sgrproj_filter_stripe
1020
};
1021
#endif  // CONFIG_AV1_HIGHBITDEPTH
1022
1023
// Filter one restoration unit
1024
void av1_loop_restoration_filter_unit(
1025
    const RestorationTileLimits *limits, const RestorationUnitInfo *rui,
1026
    const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs,
1027
    const AV1PixelRect *tile_rect, int tile_stripe0, int ss_x, int ss_y,
1028
    int highbd, int bit_depth, uint8_t *data8, int stride, uint8_t *dst8,
1029
49.2k
    int dst_stride, int32_t *tmpbuf, int optimized_lr) {
1030
49.2k
  RestorationType unit_rtype = rui->restoration_type;
1031
1032
49.2k
  int unit_h = limits->v_end - limits->v_start;
1033
49.2k
  int unit_w = limits->h_end - limits->h_start;
1034
49.2k
  uint8_t *data8_tl = data8 + limits->v_start * stride + limits->h_start;
1035
49.2k
  uint8_t *dst8_tl = dst8 + limits->v_start * dst_stride + limits->h_start;
1036
1037
49.2k
  if (unit_rtype == RESTORE_NONE) {
1038
18.9k
    copy_tile(unit_w, unit_h, data8_tl, stride, dst8_tl, dst_stride, highbd);
1039
18.9k
    return;
1040
18.9k
  }
1041
1042
30.3k
  const int filter_idx = 2 * highbd + (unit_rtype == RESTORE_SGRPROJ);
1043
30.3k
  assert(filter_idx < NUM_STRIPE_FILTERS);
1044
30.3k
  const stripe_filter_fun stripe_filter = stripe_filters[filter_idx];
1045
1046
30.3k
  const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x;
1047
1048
  // Convolve the whole tile one stripe at a time
1049
30.3k
  RestorationTileLimits remaining_stripes = *limits;
1050
30.3k
  int i = 0;
1051
91.5k
  while (i < unit_h) {
1052
61.2k
    int copy_above, copy_below;
1053
61.2k
    remaining_stripes.v_start = limits->v_start + i;
1054
1055
61.2k
    get_stripe_boundary_info(&remaining_stripes, tile_rect, ss_y, &copy_above,
1056
61.2k
                             &copy_below);
1057
1058
61.2k
    const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1059
61.2k
    const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y;
1060
1061
    // Work out where this stripe's boundaries are within
1062
    // rsb->stripe_boundary_{above,below}
1063
61.2k
    const int tile_stripe =
1064
61.2k
        (remaining_stripes.v_start - tile_rect->top + runit_offset) /
1065
61.2k
        full_stripe_height;
1066
61.2k
    const int frame_stripe = tile_stripe0 + tile_stripe;
1067
61.2k
    const int rsb_row = RESTORATION_CTX_VERT * frame_stripe;
1068
1069
    // Calculate this stripe's height, based on two rules:
1070
    // * The topmost stripe in each tile is 8 luma pixels shorter than usual.
1071
    // * We can't extend past the end of the current restoration unit
1072
61.2k
    const int nominal_stripe_height =
1073
61.2k
        full_stripe_height - ((tile_stripe == 0) ? runit_offset : 0);
1074
61.2k
    const int h = AOMMIN(nominal_stripe_height,
1075
61.2k
                         remaining_stripes.v_end - remaining_stripes.v_start);
1076
1077
61.2k
    setup_processing_stripe_boundary(&remaining_stripes, rsb, rsb_row, highbd,
1078
61.2k
                                     h, data8, stride, rlbs, copy_above,
1079
61.2k
                                     copy_below, optimized_lr);
1080
1081
61.2k
    stripe_filter(rui, unit_w, h, procunit_width, data8_tl + i * stride, stride,
1082
61.2k
                  dst8_tl + i * dst_stride, dst_stride, tmpbuf, bit_depth);
1083
1084
61.2k
    restore_processing_stripe_boundary(&remaining_stripes, rlbs, highbd, h,
1085
61.2k
                                       data8, stride, copy_above, copy_below,
1086
61.2k
                                       optimized_lr);
1087
1088
61.2k
    i += h;
1089
61.2k
  }
1090
30.3k
}
1091
1092
static void filter_frame_on_unit(const RestorationTileLimits *limits,
1093
                                 const AV1PixelRect *tile_rect,
1094
                                 int rest_unit_idx, void *priv, int32_t *tmpbuf,
1095
49.2k
                                 RestorationLineBuffers *rlbs) {
1096
49.2k
  FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv;
1097
49.2k
  const RestorationInfo *rsi = ctxt->rsi;
1098
1099
49.2k
  av1_loop_restoration_filter_unit(
1100
49.2k
      limits, &rsi->unit_info[rest_unit_idx], &rsi->boundaries, rlbs, tile_rect,
1101
49.2k
      ctxt->tile_stripe0, ctxt->ss_x, ctxt->ss_y, ctxt->highbd, ctxt->bit_depth,
1102
49.2k
      ctxt->data8, ctxt->data_stride, ctxt->dst8, ctxt->dst_stride, tmpbuf,
1103
49.2k
      rsi->optimized_lr);
1104
49.2k
}
1105
1106
void av1_loop_restoration_filter_frame_init(AV1LrStruct *lr_ctxt,
1107
                                            YV12_BUFFER_CONFIG *frame,
1108
                                            AV1_COMMON *cm, int optimized_lr,
1109
7.46k
                                            int num_planes) {
1110
7.46k
  const SequenceHeader *const seq_params = cm->seq_params;
1111
7.46k
  const int bit_depth = seq_params->bit_depth;
1112
7.46k
  const int highbd = seq_params->use_highbitdepth;
1113
7.46k
  lr_ctxt->dst = &cm->rst_frame;
1114
1115
7.46k
  const int frame_width = frame->crop_widths[0];
1116
7.46k
  const int frame_height = frame->crop_heights[0];
1117
7.46k
  if (aom_realloc_frame_buffer(
1118
7.46k
          lr_ctxt->dst, frame_width, frame_height, seq_params->subsampling_x,
1119
7.46k
          seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER,
1120
7.46k
          cm->features.byte_alignment, NULL, NULL, NULL, 0) < 0)
1121
0
    aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
1122
0
                       "Failed to allocate restoration dst buffer");
1123
1124
7.46k
  lr_ctxt->on_rest_unit = filter_frame_on_unit;
1125
7.46k
  lr_ctxt->frame = frame;
1126
28.8k
  for (int plane = 0; plane < num_planes; ++plane) {
1127
21.4k
    RestorationInfo *rsi = &cm->rst_info[plane];
1128
21.4k
    RestorationType rtype = rsi->frame_restoration_type;
1129
21.4k
    rsi->optimized_lr = optimized_lr;
1130
1131
21.4k
    if (rtype == RESTORE_NONE) {
1132
8.55k
      continue;
1133
8.55k
    }
1134
1135
12.8k
    const int is_uv = plane > 0;
1136
12.8k
    const int plane_width = frame->crop_widths[is_uv];
1137
12.8k
    const int plane_height = frame->crop_heights[is_uv];
1138
12.8k
    FilterFrameCtxt *lr_plane_ctxt = &lr_ctxt->ctxt[plane];
1139
1140
12.8k
    av1_extend_frame(frame->buffers[plane], plane_width, plane_height,
1141
12.8k
                     frame->strides[is_uv], RESTORATION_BORDER,
1142
12.8k
                     RESTORATION_BORDER, highbd);
1143
1144
12.8k
    lr_plane_ctxt->rsi = rsi;
1145
12.8k
    lr_plane_ctxt->ss_x = is_uv && seq_params->subsampling_x;
1146
12.8k
    lr_plane_ctxt->ss_y = is_uv && seq_params->subsampling_y;
1147
12.8k
    lr_plane_ctxt->highbd = highbd;
1148
12.8k
    lr_plane_ctxt->bit_depth = bit_depth;
1149
12.8k
    lr_plane_ctxt->data8 = frame->buffers[plane];
1150
12.8k
    lr_plane_ctxt->dst8 = lr_ctxt->dst->buffers[plane];
1151
12.8k
    lr_plane_ctxt->data_stride = frame->strides[is_uv];
1152
12.8k
    lr_plane_ctxt->dst_stride = lr_ctxt->dst->strides[is_uv];
1153
12.8k
    lr_plane_ctxt->tile_rect = av1_whole_frame_rect(cm, is_uv);
1154
12.8k
    lr_plane_ctxt->tile_stripe0 = 0;
1155
12.8k
  }
1156
7.46k
}
1157
1158
void av1_loop_restoration_copy_planes(AV1LrStruct *loop_rest_ctxt,
1159
7.46k
                                      AV1_COMMON *cm, int num_planes) {
1160
7.46k
  typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
1161
7.46k
                           YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
1162
7.46k
                           int vstart, int vend);
1163
7.46k
  static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
1164
7.46k
                                         aom_yv12_partial_coloc_copy_u,
1165
7.46k
                                         aom_yv12_partial_coloc_copy_v };
1166
7.46k
  assert(num_planes <= 3);
1167
28.8k
  for (int plane = 0; plane < num_planes; ++plane) {
1168
21.4k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
1169
12.8k
    AV1PixelRect tile_rect = loop_rest_ctxt->ctxt[plane].tile_rect;
1170
12.8k
    copy_funs[plane](loop_rest_ctxt->dst, loop_rest_ctxt->frame, tile_rect.left,
1171
12.8k
                     tile_rect.right, tile_rect.top, tile_rect.bottom);
1172
12.8k
  }
1173
7.46k
}
1174
1175
static void foreach_rest_unit_in_planes(AV1LrStruct *lr_ctxt, AV1_COMMON *cm,
1176
7.46k
                                        int num_planes) {
1177
7.46k
  FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
1178
1179
28.8k
  for (int plane = 0; plane < num_planes; ++plane) {
1180
21.4k
    if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) {
1181
8.55k
      continue;
1182
8.55k
    }
1183
1184
12.8k
    av1_foreach_rest_unit_in_plane(cm, plane, lr_ctxt->on_rest_unit,
1185
12.8k
                                   &ctxt[plane], &ctxt[plane].tile_rect,
1186
12.8k
                                   cm->rst_tmpbuf, cm->rlbs);
1187
12.8k
  }
1188
7.46k
}
1189
1190
void av1_loop_restoration_filter_frame(YV12_BUFFER_CONFIG *frame,
1191
                                       AV1_COMMON *cm, int optimized_lr,
1192
7.46k
                                       void *lr_ctxt) {
1193
7.46k
  assert(!cm->features.all_lossless);
1194
7.46k
  const int num_planes = av1_num_planes(cm);
1195
1196
7.46k
  AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
1197
1198
7.46k
  av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
1199
7.46k
                                         optimized_lr, num_planes);
1200
1201
7.46k
  foreach_rest_unit_in_planes(loop_rest_ctxt, cm, num_planes);
1202
1203
7.46k
  av1_loop_restoration_copy_planes(loop_rest_ctxt, cm, num_planes);
1204
7.46k
}
1205
1206
void av1_foreach_rest_unit_in_row(
1207
    RestorationTileLimits *limits, const AV1PixelRect *tile_rect,
1208
    rest_unit_visitor_t on_rest_unit, int row_number, int unit_size,
1209
    int unit_idx0, int hunits_per_tile, int vunits_per_tile, int plane,
1210
    void *priv, int32_t *tmpbuf, RestorationLineBuffers *rlbs,
1211
    sync_read_fn_t on_sync_read, sync_write_fn_t on_sync_write,
1212
36.3k
    struct AV1LrSyncData *const lr_sync) {
1213
36.3k
  const int tile_w = tile_rect->right - tile_rect->left;
1214
36.3k
  const int ext_size = unit_size * 3 / 2;
1215
36.3k
  int x0 = 0, j = 0;
1216
85.5k
  while (x0 < tile_w) {
1217
49.2k
    int remaining_w = tile_w - x0;
1218
49.2k
    int w = (remaining_w < ext_size) ? remaining_w : unit_size;
1219
1220
49.2k
    limits->h_start = tile_rect->left + x0;
1221
49.2k
    limits->h_end = tile_rect->left + x0 + w;
1222
49.2k
    assert(limits->h_end <= tile_rect->right);
1223
1224
49.2k
    const int unit_idx = unit_idx0 + row_number * hunits_per_tile + j;
1225
1226
    // No sync for even numbered rows
1227
    // For odd numbered rows, Loop Restoration of current block requires the LR
1228
    // of top-right and bottom-right blocks to be completed
1229
1230
    // top-right sync
1231
49.2k
    on_sync_read(lr_sync, row_number, j, plane);
1232
49.2k
    if ((row_number + 1) < vunits_per_tile)
1233
      // bottom-right sync
1234
28.1k
      on_sync_read(lr_sync, row_number + 2, j, plane);
1235
1236
49.2k
    on_rest_unit(limits, tile_rect, unit_idx, priv, tmpbuf, rlbs);
1237
1238
49.2k
    on_sync_write(lr_sync, row_number, j, hunits_per_tile, plane);
1239
1240
49.2k
    x0 += w;
1241
49.2k
    ++j;
1242
49.2k
  }
1243
36.3k
}
1244
1245
77.3k
void av1_lr_sync_read_dummy(void *const lr_sync, int r, int c, int plane) {
1246
77.3k
  (void)lr_sync;
1247
77.3k
  (void)r;
1248
77.3k
  (void)c;
1249
77.3k
  (void)plane;
1250
77.3k
}
1251
1252
void av1_lr_sync_write_dummy(void *const lr_sync, int r, int c,
1253
49.2k
                             const int sb_cols, int plane) {
1254
49.2k
  (void)lr_sync;
1255
49.2k
  (void)r;
1256
49.2k
  (void)c;
1257
49.2k
  (void)sb_cols;
1258
49.2k
  (void)plane;
1259
49.2k
}
1260
1261
static void foreach_rest_unit_in_tile(
1262
    const AV1PixelRect *tile_rect, int tile_row, int tile_col, int tile_cols,
1263
    int hunits_per_tile, int vunits_per_tile, int units_per_tile, int unit_size,
1264
    int ss_y, int plane, rest_unit_visitor_t on_rest_unit, void *priv,
1265
12.8k
    int32_t *tmpbuf, RestorationLineBuffers *rlbs) {
1266
12.8k
  const int tile_h = tile_rect->bottom - tile_rect->top;
1267
12.8k
  const int ext_size = unit_size * 3 / 2;
1268
1269
12.8k
  const int tile_idx = tile_col + tile_row * tile_cols;
1270
12.8k
  const int unit_idx0 = tile_idx * units_per_tile;
1271
1272
12.8k
  int y0 = 0, i = 0;
1273
49.1k
  while (y0 < tile_h) {
1274
36.3k
    int remaining_h = tile_h - y0;
1275
36.3k
    int h = (remaining_h < ext_size) ? remaining_h : unit_size;
1276
1277
36.3k
    RestorationTileLimits limits;
1278
36.3k
    limits.v_start = tile_rect->top + y0;
1279
36.3k
    limits.v_end = tile_rect->top + y0 + h;
1280
36.3k
    assert(limits.v_end <= tile_rect->bottom);
1281
    // Offset the tile upwards to align with the restoration processing stripe
1282
36.3k
    const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
1283
36.3k
    limits.v_start = AOMMAX(tile_rect->top, limits.v_start - voffset);
1284
36.3k
    if (limits.v_end < tile_rect->bottom) limits.v_end -= voffset;
1285
1286
36.3k
    av1_foreach_rest_unit_in_row(
1287
36.3k
        &limits, tile_rect, on_rest_unit, i, unit_size, unit_idx0,
1288
36.3k
        hunits_per_tile, vunits_per_tile, plane, priv, tmpbuf, rlbs,
1289
36.3k
        av1_lr_sync_read_dummy, av1_lr_sync_write_dummy, NULL);
1290
1291
36.3k
    y0 += h;
1292
36.3k
    ++i;
1293
36.3k
  }
1294
12.8k
}
1295
1296
void av1_foreach_rest_unit_in_plane(const struct AV1Common *cm, int plane,
1297
                                    rest_unit_visitor_t on_rest_unit,
1298
                                    void *priv, AV1PixelRect *tile_rect,
1299
                                    int32_t *tmpbuf,
1300
12.8k
                                    RestorationLineBuffers *rlbs) {
1301
12.8k
  const int is_uv = plane > 0;
1302
12.8k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1303
1304
12.8k
  const RestorationInfo *rsi = &cm->rst_info[plane];
1305
1306
12.8k
  foreach_rest_unit_in_tile(tile_rect, LR_TILE_ROW, LR_TILE_COL, LR_TILE_COLS,
1307
12.8k
                            rsi->horz_units_per_tile, rsi->vert_units_per_tile,
1308
12.8k
                            rsi->units_per_tile, rsi->restoration_unit_size,
1309
12.8k
                            ss_y, plane, on_rest_unit, priv, tmpbuf, rlbs);
1310
12.8k
}
1311
1312
int av1_loop_restoration_corners_in_sb(const struct AV1Common *cm, int plane,
1313
                                       int mi_row, int mi_col, BLOCK_SIZE bsize,
1314
                                       int *rcol0, int *rcol1, int *rrow0,
1315
21.4M
                                       int *rrow1) {
1316
21.4M
  assert(rcol0 && rcol1 && rrow0 && rrow1);
1317
1318
21.4M
  if (bsize != cm->seq_params->sb_size) return 0;
1319
2.41M
  if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) return 0;
1320
1321
2.41M
  assert(!cm->features.all_lossless);
1322
1323
432k
  const int is_uv = plane > 0;
1324
1325
432k
  const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
1326
432k
  const int tile_w = tile_rect.right - tile_rect.left;
1327
432k
  const int tile_h = tile_rect.bottom - tile_rect.top;
1328
1329
432k
  const int mi_top = 0;
1330
432k
  const int mi_left = 0;
1331
1332
  // Compute the mi-unit corners of the superblock relative to the top-left of
1333
  // the tile
1334
432k
  const int mi_rel_row0 = mi_row - mi_top;
1335
432k
  const int mi_rel_col0 = mi_col - mi_left;
1336
432k
  const int mi_rel_row1 = mi_rel_row0 + mi_size_high[bsize];
1337
432k
  const int mi_rel_col1 = mi_rel_col0 + mi_size_wide[bsize];
1338
1339
432k
  const RestorationInfo *rsi = &cm->rst_info[plane];
1340
432k
  const int size = rsi->restoration_unit_size;
1341
1342
  // Calculate the number of restoration units in this tile (which might be
1343
  // strictly less than rsi->horz_units_per_tile and rsi->vert_units_per_tile)
1344
432k
  const int horz_units = av1_lr_count_units_in_tile(size, tile_w);
1345
432k
  const int vert_units = av1_lr_count_units_in_tile(size, tile_h);
1346
1347
  // The size of an MI-unit on this plane of the image
1348
432k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1349
432k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1350
432k
  const int mi_size_x = MI_SIZE >> ss_x;
1351
432k
  const int mi_size_y = MI_SIZE >> ss_y;
1352
1353
  // Write m for the relative mi column or row, D for the superres denominator
1354
  // and N for the superres numerator. If u is the upscaled pixel offset then
1355
  // we can write the downscaled pixel offset in two ways as:
1356
  //
1357
  //   MI_SIZE * m = N / D u
1358
  //
1359
  // from which we get u = D * MI_SIZE * m / N
1360
432k
  const int mi_to_num_x = av1_superres_scaled(cm)
1361
432k
                              ? mi_size_x * cm->superres_scale_denominator
1362
432k
                              : mi_size_x;
1363
432k
  const int mi_to_num_y = mi_size_y;
1364
432k
  const int denom_x = av1_superres_scaled(cm) ? size * SCALE_NUMERATOR : size;
1365
432k
  const int denom_y = size;
1366
1367
432k
  const int rnd_x = denom_x - 1;
1368
432k
  const int rnd_y = denom_y - 1;
1369
1370
  // rcol0/rrow0 should be the first column/row of restoration units (relative
1371
  // to the top-left of the tile) that doesn't start left/below of
1372
  // mi_col/mi_row. For this calculation, we need to round up the division (if
1373
  // the sb starts at runit column 10.1, the first matching runit has column
1374
  // index 11)
1375
432k
  *rcol0 = (mi_rel_col0 * mi_to_num_x + rnd_x) / denom_x;
1376
432k
  *rrow0 = (mi_rel_row0 * mi_to_num_y + rnd_y) / denom_y;
1377
1378
  // rel_col1/rel_row1 is the equivalent calculation, but for the superblock
1379
  // below-right. If we're at the bottom or right of the tile, this restoration
1380
  // unit might not exist, in which case we'll clamp accordingly.
1381
432k
  *rcol1 = AOMMIN((mi_rel_col1 * mi_to_num_x + rnd_x) / denom_x, horz_units);
1382
432k
  *rrow1 = AOMMIN((mi_rel_row1 * mi_to_num_y + rnd_y) / denom_y, vert_units);
1383
1384
432k
  return *rcol0 < *rcol1 && *rrow0 < *rrow1;
1385
432k
}
1386
1387
// Extend to left and right
1388
static void extend_lines(uint8_t *buf, int width, int height, int stride,
1389
222k
                         int extend, int use_highbitdepth) {
1390
666k
  for (int i = 0; i < height; ++i) {
1391
444k
    if (use_highbitdepth) {
1392
334k
      uint16_t *buf16 = (uint16_t *)buf;
1393
334k
      aom_memset16(buf16 - extend, buf16[0], extend);
1394
334k
      aom_memset16(buf16 + width, buf16[width - 1], extend);
1395
334k
    } else {
1396
109k
      memset(buf - extend, buf[0], extend);
1397
109k
      memset(buf + width, buf[width - 1], extend);
1398
109k
    }
1399
444k
    buf += stride;
1400
444k
  }
1401
222k
}
1402
1403
static void save_deblock_boundary_lines(
1404
    const YV12_BUFFER_CONFIG *frame, const AV1_COMMON *cm, int plane, int row,
1405
    int stripe, int use_highbd, int is_above,
1406
183k
    RestorationStripeBoundaries *boundaries) {
1407
183k
  const int is_uv = plane > 0;
1408
183k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1409
183k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1410
183k
  const uint8_t *src_rows = src_buf + row * src_stride;
1411
1412
183k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1413
183k
                               : boundaries->stripe_boundary_below;
1414
183k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1415
183k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1416
183k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1417
1418
  // There is a rare case in which a processing stripe can end 1px above the
1419
  // crop border. In this case, we do want to use deblocked pixels from below
1420
  // the stripe (hence why we ended up in this function), but instead of
1421
  // fetching 2 "below" rows we need to fetch one and duplicate it.
1422
  // This is equivalent to clamping the sample locations against the crop border
1423
183k
  const int lines_to_save =
1424
183k
      AOMMIN(RESTORATION_CTX_VERT, frame->crop_heights[is_uv] - row);
1425
183k
  assert(lines_to_save == 1 || lines_to_save == 2);
1426
1427
183k
  int upscaled_width;
1428
183k
  int line_bytes;
1429
183k
  if (av1_superres_scaled(cm)) {
1430
150k
    const int ss_x = is_uv && cm->seq_params->subsampling_x;
1431
150k
    upscaled_width = (cm->superres_upscaled_width + ss_x) >> ss_x;
1432
150k
    line_bytes = upscaled_width << use_highbd;
1433
150k
    if (use_highbd)
1434
117k
      av1_upscale_normative_rows(
1435
117k
          cm, CONVERT_TO_BYTEPTR(src_rows), frame->strides[is_uv],
1436
117k
          CONVERT_TO_BYTEPTR(bdry_rows), boundaries->stripe_boundary_stride,
1437
117k
          plane, lines_to_save);
1438
32.8k
    else
1439
32.8k
      av1_upscale_normative_rows(cm, src_rows, frame->strides[is_uv], bdry_rows,
1440
32.8k
                                 boundaries->stripe_boundary_stride, plane,
1441
32.8k
                                 lines_to_save);
1442
150k
  } else {
1443
33.0k
    upscaled_width = frame->crop_widths[is_uv];
1444
33.0k
    line_bytes = upscaled_width << use_highbd;
1445
99.0k
    for (int i = 0; i < lines_to_save; i++) {
1446
66.0k
      memcpy(bdry_rows + i * bdry_stride, src_rows + i * src_stride,
1447
66.0k
             line_bytes);
1448
66.0k
    }
1449
33.0k
  }
1450
  // If we only saved one line, then copy it into the second line buffer
1451
183k
  if (lines_to_save == 1)
1452
45
    memcpy(bdry_rows + bdry_stride, bdry_rows, line_bytes);
1453
1454
183k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1455
183k
               RESTORATION_EXTRA_HORZ, use_highbd);
1456
183k
}
1457
1458
static void save_cdef_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1459
                                     const AV1_COMMON *cm, int plane, int row,
1460
                                     int stripe, int use_highbd, int is_above,
1461
38.6k
                                     RestorationStripeBoundaries *boundaries) {
1462
38.6k
  const int is_uv = plane > 0;
1463
38.6k
  const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]);
1464
38.6k
  const int src_stride = frame->strides[is_uv] << use_highbd;
1465
38.6k
  const uint8_t *src_rows = src_buf + row * src_stride;
1466
1467
38.6k
  uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above
1468
38.6k
                               : boundaries->stripe_boundary_below;
1469
38.6k
  uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd);
1470
38.6k
  const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd;
1471
38.6k
  uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride;
1472
38.6k
  const int src_width = frame->crop_widths[is_uv];
1473
1474
  // At the point where this function is called, we've already applied
1475
  // superres. So we don't need to extend the lines here, we can just
1476
  // pull directly from the topmost row of the upscaled frame.
1477
38.6k
  const int ss_x = is_uv && cm->seq_params->subsampling_x;
1478
38.6k
  const int upscaled_width = av1_superres_scaled(cm)
1479
38.6k
                                 ? (cm->superres_upscaled_width + ss_x) >> ss_x
1480
38.6k
                                 : src_width;
1481
38.6k
  const int line_bytes = upscaled_width << use_highbd;
1482
115k
  for (int i = 0; i < RESTORATION_CTX_VERT; i++) {
1483
    // Copy the line at 'row' into both context lines. This is because
1484
    // we want to (effectively) extend the outermost row of CDEF data
1485
    // from this tile to produce a border, rather than using deblocked
1486
    // pixels from the tile above/below.
1487
77.2k
    memcpy(bdry_rows + i * bdry_stride, src_rows, line_bytes);
1488
77.2k
  }
1489
38.6k
  extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride,
1490
38.6k
               RESTORATION_EXTRA_HORZ, use_highbd);
1491
38.6k
}
1492
1493
static void save_tile_row_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1494
                                         int use_highbd, int plane,
1495
38.6k
                                         AV1_COMMON *cm, int after_cdef) {
1496
38.6k
  const int is_uv = plane > 0;
1497
38.6k
  const int ss_y = is_uv && cm->seq_params->subsampling_y;
1498
38.6k
  const int stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y;
1499
38.6k
  const int stripe_off = RESTORATION_UNIT_OFFSET >> ss_y;
1500
1501
  // Get the tile rectangle, with height rounded up to the next multiple of 8
1502
  // luma pixels (only relevant for the bottom tile of the frame)
1503
38.6k
  const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv);
1504
38.6k
  const int stripe0 = 0;
1505
1506
38.6k
  RestorationStripeBoundaries *boundaries = &cm->rst_info[plane].boundaries;
1507
1508
38.6k
  const int plane_height = ROUND_POWER_OF_TWO(cm->height, ss_y);
1509
1510
38.6k
  int tile_stripe;
1511
260k
  for (tile_stripe = 0;; ++tile_stripe) {
1512
260k
    const int rel_y0 = AOMMAX(0, tile_stripe * stripe_height - stripe_off);
1513
260k
    const int y0 = tile_rect.top + rel_y0;
1514
260k
    if (y0 >= tile_rect.bottom) break;
1515
1516
222k
    const int rel_y1 = (tile_stripe + 1) * stripe_height - stripe_off;
1517
222k
    const int y1 = AOMMIN(tile_rect.top + rel_y1, tile_rect.bottom);
1518
1519
222k
    const int frame_stripe = stripe0 + tile_stripe;
1520
1521
    // In this case, we should only use CDEF pixels at the top
1522
    // and bottom of the frame as a whole; internal tile boundaries
1523
    // can use deblocked pixels from adjacent tiles for context.
1524
222k
    const int use_deblock_above = (frame_stripe > 0);
1525
222k
    const int use_deblock_below = (y1 < plane_height);
1526
1527
222k
    if (!after_cdef) {
1528
      // Save deblocked context where needed.
1529
111k
      if (use_deblock_above) {
1530
91.8k
        save_deblock_boundary_lines(frame, cm, plane, y0 - RESTORATION_CTX_VERT,
1531
91.8k
                                    frame_stripe, use_highbd, 1, boundaries);
1532
91.8k
      }
1533
111k
      if (use_deblock_below) {
1534
91.8k
        save_deblock_boundary_lines(frame, cm, plane, y1, frame_stripe,
1535
91.8k
                                    use_highbd, 0, boundaries);
1536
91.8k
      }
1537
111k
    } else {
1538
      // Save CDEF context where needed. Note that we need to save the CDEF
1539
      // context for a particular boundary iff we *didn't* save deblocked
1540
      // context for that boundary.
1541
      //
1542
      // In addition, we need to save copies of the outermost line within
1543
      // the tile, rather than using data from outside the tile.
1544
111k
      if (!use_deblock_above) {
1545
19.3k
        save_cdef_boundary_lines(frame, cm, plane, y0, frame_stripe, use_highbd,
1546
19.3k
                                 1, boundaries);
1547
19.3k
      }
1548
111k
      if (!use_deblock_below) {
1549
19.3k
        save_cdef_boundary_lines(frame, cm, plane, y1 - 1, frame_stripe,
1550
19.3k
                                 use_highbd, 0, boundaries);
1551
19.3k
      }
1552
111k
    }
1553
222k
  }
1554
38.6k
}
1555
1556
// For each RESTORATION_PROC_UNIT_SIZE pixel high stripe, save 4 scan
1557
// lines to be used as boundary in the loop restoration process. The
1558
// lines are saved in rst_internal.stripe_boundary_lines
1559
void av1_loop_restoration_save_boundary_lines(const YV12_BUFFER_CONFIG *frame,
1560
13.0k
                                              AV1_COMMON *cm, int after_cdef) {
1561
13.0k
  const int num_planes = av1_num_planes(cm);
1562
13.0k
  const int use_highbd = cm->seq_params->use_highbitdepth;
1563
51.6k
  for (int p = 0; p < num_planes; ++p) {
1564
38.6k
    save_tile_row_boundary_lines(frame, use_highbd, p, cm, after_cdef);
1565
38.6k
  }
1566
13.0k
}