Coverage Report

Created: 2026-01-20 07:37

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/aom/av1/common/reconintra.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3
 *
4
 * This source code is subject to the terms of the BSD 2 Clause License and
5
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6
 * was not distributed with this source code in the LICENSE file, you can
7
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8
 * Media Patent License 1.0 was not distributed with this source code in the
9
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10
 */
11
12
#include <math.h>
13
14
#include "config/aom_config.h"
15
#include "config/aom_dsp_rtcd.h"
16
#include "config/av1_rtcd.h"
17
18
#include "aom_dsp/aom_dsp_common.h"
19
#include "aom_mem/aom_mem.h"
20
#include "aom_ports/aom_once.h"
21
#include "aom_ports/mem.h"
22
#include "av1/common/av1_common_int.h"
23
#include "av1/common/cfl.h"
24
#include "av1/common/reconintra.h"
25
26
enum {
27
  NEED_LEFT = 1 << 1,
28
  NEED_ABOVE = 1 << 2,
29
  NEED_ABOVERIGHT = 1 << 3,
30
  NEED_ABOVELEFT = 1 << 4,
31
  NEED_BOTTOMLEFT = 1 << 5,
32
};
33
34
#define INTRA_EDGE_FILT 3
35
521M
#define INTRA_EDGE_TAPS 5
36
#define MAX_UPSAMPLE_SZ 16
37
79.4M
#define NUM_INTRA_NEIGHBOUR_PIXELS (MAX_TX_SIZE * 2 + 32)
38
39
static const uint8_t extend_modes[INTRA_MODES] = {
40
  NEED_ABOVE | NEED_LEFT,                   // DC
41
  NEED_ABOVE,                               // V
42
  NEED_LEFT,                                // H
43
  NEED_ABOVE | NEED_ABOVERIGHT,             // D45
44
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // D135
45
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // D113
46
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // D157
47
  NEED_LEFT | NEED_BOTTOMLEFT,              // D203
48
  NEED_ABOVE | NEED_ABOVERIGHT,             // D67
49
  NEED_LEFT | NEED_ABOVE,                   // SMOOTH
50
  NEED_LEFT | NEED_ABOVE,                   // SMOOTH_V
51
  NEED_LEFT | NEED_ABOVE,                   // SMOOTH_H
52
  NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT,  // PAETH
53
};
54
55
// Tables to store if the top-right reference pixels are available. The flags
56
// are represented with bits, packed into 8-bit integers. E.g., for the 32x32
57
// blocks in a 128x128 superblock, the index of the "o" block is 10 (in raster
58
// order), so its flag is stored at the 3rd bit of the 2nd entry in the table,
59
// i.e. (table[10 / 8] >> (10 % 8)) & 1.
60
//       . . . .
61
//       . . . .
62
//       . . o .
63
//       . . . .
64
static uint8_t has_tr_4x4[128] = {
65
  255, 255, 255, 255, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
66
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
67
  255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
68
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
69
  255, 255, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
70
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
71
  255, 127, 255, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
72
  127, 127, 127, 127, 85, 85, 85, 85, 119, 119, 119, 119, 85, 85, 85, 85,
73
};
74
static uint8_t has_tr_4x8[64] = {
75
  255, 255, 255, 255, 119, 119, 119, 119, 127, 127, 127, 127, 119,
76
  119, 119, 119, 255, 127, 255, 127, 119, 119, 119, 119, 127, 127,
77
  127, 127, 119, 119, 119, 119, 255, 255, 255, 127, 119, 119, 119,
78
  119, 127, 127, 127, 127, 119, 119, 119, 119, 255, 127, 255, 127,
79
  119, 119, 119, 119, 127, 127, 127, 127, 119, 119, 119, 119,
80
};
81
static uint8_t has_tr_8x4[64] = {
82
  255, 255, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
83
  127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
84
  255, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
85
  127, 127, 0, 0, 85, 85, 0, 0, 119, 119, 0, 0, 85, 85, 0, 0,
86
};
87
static uint8_t has_tr_8x8[32] = {
88
  255, 255, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85,
89
  255, 127, 85, 85, 119, 119, 85, 85, 127, 127, 85, 85, 119, 119, 85, 85,
90
};
91
static uint8_t has_tr_8x16[16] = {
92
  255, 255, 119, 119, 127, 127, 119, 119,
93
  255, 127, 119, 119, 127, 127, 119, 119,
94
};
95
static uint8_t has_tr_16x8[16] = {
96
  255, 0, 85, 0, 119, 0, 85, 0, 127, 0, 85, 0, 119, 0, 85, 0,
97
};
98
static uint8_t has_tr_16x16[8] = {
99
  255, 85, 119, 85, 127, 85, 119, 85,
100
};
101
static uint8_t has_tr_16x32[4] = { 255, 119, 127, 119 };
102
static uint8_t has_tr_32x16[4] = { 15, 5, 7, 5 };
103
static uint8_t has_tr_32x32[2] = { 95, 87 };
104
static uint8_t has_tr_32x64[1] = { 127 };
105
static uint8_t has_tr_64x32[1] = { 19 };
106
static uint8_t has_tr_64x64[1] = { 7 };
107
static uint8_t has_tr_64x128[1] = { 3 };
108
static uint8_t has_tr_128x64[1] = { 1 };
109
static uint8_t has_tr_128x128[1] = { 1 };
110
static uint8_t has_tr_4x16[32] = {
111
  255, 255, 255, 255, 127, 127, 127, 127, 255, 127, 255,
112
  127, 127, 127, 127, 127, 255, 255, 255, 127, 127, 127,
113
  127, 127, 255, 127, 255, 127, 127, 127, 127, 127,
114
};
115
static uint8_t has_tr_16x4[32] = {
116
  255, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0,
117
  127, 0, 0, 0, 85, 0, 0, 0, 119, 0, 0, 0, 85, 0, 0, 0,
118
};
119
static uint8_t has_tr_8x32[8] = {
120
  255, 255, 127, 127, 255, 127, 127, 127,
121
};
122
static uint8_t has_tr_32x8[8] = {
123
  15, 0, 5, 0, 7, 0, 5, 0,
124
};
125
static uint8_t has_tr_16x64[2] = { 255, 127 };
126
static uint8_t has_tr_64x16[2] = { 3, 1 };
127
128
static const uint8_t *const has_tr_tables[BLOCK_SIZES_ALL] = {
129
  // 4X4
130
  has_tr_4x4,
131
  // 4X8,       8X4,            8X8
132
  has_tr_4x8, has_tr_8x4, has_tr_8x8,
133
  // 8X16,      16X8,           16X16
134
  has_tr_8x16, has_tr_16x8, has_tr_16x16,
135
  // 16X32,     32X16,          32X32
136
  has_tr_16x32, has_tr_32x16, has_tr_32x32,
137
  // 32X64,     64X32,          64X64
138
  has_tr_32x64, has_tr_64x32, has_tr_64x64,
139
  // 64x128,    128x64,         128x128
140
  has_tr_64x128, has_tr_128x64, has_tr_128x128,
141
  // 4x16,      16x4,            8x32
142
  has_tr_4x16, has_tr_16x4, has_tr_8x32,
143
  // 32x8,      16x64,           64x16
144
  has_tr_32x8, has_tr_16x64, has_tr_64x16
145
};
146
147
static uint8_t has_tr_vert_8x8[32] = {
148
  255, 255, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0,
149
  255, 127, 0, 0, 119, 119, 0, 0, 127, 127, 0, 0, 119, 119, 0, 0,
150
};
151
static uint8_t has_tr_vert_16x16[8] = {
152
  255, 0, 119, 0, 127, 0, 119, 0,
153
};
154
static uint8_t has_tr_vert_32x32[2] = { 15, 7 };
155
static uint8_t has_tr_vert_64x64[1] = { 3 };
156
157
// The _vert_* tables are like the ordinary tables above, but describe the
158
// order we visit square blocks when doing a PARTITION_VERT_A or
159
// PARTITION_VERT_B. This is the same order as normal except for on the last
160
// split where we go vertically (TL, BL, TR, BR). We treat the rectangular block
161
// as a pair of squares, which means that these tables work correctly for both
162
// mixed vertical partition types.
163
//
164
// There are tables for each of the square sizes. Vertical rectangles (like
165
// BLOCK_16X32) use their respective "non-vert" table
166
static const uint8_t *const has_tr_vert_tables[BLOCK_SIZES] = {
167
  // 4X4
168
  NULL,
169
  // 4X8,      8X4,         8X8
170
  has_tr_4x8, NULL, has_tr_vert_8x8,
171
  // 8X16,     16X8,        16X16
172
  has_tr_8x16, NULL, has_tr_vert_16x16,
173
  // 16X32,    32X16,       32X32
174
  has_tr_16x32, NULL, has_tr_vert_32x32,
175
  // 32X64,    64X32,       64X64
176
  has_tr_32x64, NULL, has_tr_vert_64x64,
177
  // 64x128,   128x64,      128x128
178
  has_tr_64x128, NULL, has_tr_128x128
179
};
180
181
static const uint8_t *get_has_tr_table(PARTITION_TYPE partition,
182
15.6M
                                       BLOCK_SIZE bsize) {
183
15.6M
  const uint8_t *ret = NULL;
184
  // If this is a mixed vertical partition, look up bsize in orders_vert.
185
15.6M
  if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) {
186
1.22M
    assert(bsize < BLOCK_SIZES);
187
1.22M
    ret = has_tr_vert_tables[bsize];
188
14.4M
  } else {
189
14.4M
    ret = has_tr_tables[bsize];
190
14.4M
  }
191
15.6M
  assert(ret);
192
15.6M
  return ret;
193
15.6M
}
194
195
static int has_top_right(BLOCK_SIZE sb_size, BLOCK_SIZE bsize, int mi_row,
196
                         int mi_col, int top_available, int right_available,
197
                         PARTITION_TYPE partition, TX_SIZE txsz, int row_off,
198
39.7M
                         int col_off, int ss_x, int ss_y) {
199
39.7M
  if (!top_available || !right_available) return 0;
200
201
35.5M
  const int bw_unit = mi_size_wide[bsize];
202
35.5M
  const int plane_bw_unit = AOMMAX(bw_unit >> ss_x, 1);
203
35.5M
  const int top_right_count_unit = tx_size_wide_unit[txsz];
204
205
35.5M
  if (row_off > 0) {  // Just need to check if enough pixels on the right.
206
10.1M
    if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64]) {
207
      // Special case: For 128x128 blocks, the transform unit whose
208
      // top-right corner is at the center of the block does in fact have
209
      // pixels available at its top-right corner.
210
4.15M
      if (row_off == mi_size_high[BLOCK_64X64] >> ss_y &&
211
743k
          col_off + top_right_count_unit == mi_size_wide[BLOCK_64X64] >> ss_x) {
212
226k
        return 1;
213
226k
      }
214
3.92M
      const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x;
215
3.92M
      const int col_off_64 = col_off % plane_bw_unit_64;
216
3.92M
      return col_off_64 + top_right_count_unit < plane_bw_unit_64;
217
4.15M
    }
218
6.00M
    return col_off + top_right_count_unit < plane_bw_unit;
219
25.3M
  } else {
220
    // All top-right pixels are in the block above, which is already available.
221
25.3M
    if (col_off + top_right_count_unit < plane_bw_unit) return 1;
222
223
23.3M
    const int bw_in_mi_log2 = mi_size_wide_log2[bsize];
224
23.3M
    const int bh_in_mi_log2 = mi_size_high_log2[bsize];
225
23.3M
    const int sb_mi_size = mi_size_high[sb_size];
226
23.3M
    const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2;
227
23.3M
    const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2;
228
229
    // Top row of superblock: so top-right pixels are in the top and/or
230
    // top-right superblocks, both of which are already available.
231
23.3M
    if (blk_row_in_sb == 0) return 1;
232
233
    // Rightmost column of superblock (and not the top row): so top-right pixels
234
    // fall in the right superblock, which is not available yet.
235
18.3M
    if (((blk_col_in_sb + 1) << bw_in_mi_log2) >= sb_mi_size) {
236
2.66M
      return 0;
237
2.66M
    }
238
239
    // General case (neither top row nor rightmost column): check if the
240
    // top-right block is coded before the current block.
241
15.6M
    const int this_blk_index =
242
15.6M
        ((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) +
243
15.6M
        blk_col_in_sb + 0;
244
15.6M
    const int idx1 = this_blk_index / 8;
245
15.6M
    const int idx2 = this_blk_index % 8;
246
15.6M
    const uint8_t *has_tr_table = get_has_tr_table(partition, bsize);
247
15.6M
    return (has_tr_table[idx1] >> idx2) & 1;
248
18.3M
  }
249
35.5M
}
250
251
// Similar to the has_tr_* tables, but store if the bottom-left reference
252
// pixels are available.
253
static uint8_t has_bl_4x4[128] = {
254
  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  1,  1,  1,  84, 85, 85,
255
  85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  0,  1,  0,  84, 85, 85, 85, 16, 17,
256
  17, 17, 84, 85, 85, 85, 0,  1,  1,  1,  84, 85, 85, 85, 16, 17, 17, 17, 84,
257
  85, 85, 85, 0,  0,  0,  0,  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85,
258
  0,  1,  1,  1,  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  0,  1,
259
  0,  84, 85, 85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  1,  1,  1,  84, 85,
260
  85, 85, 16, 17, 17, 17, 84, 85, 85, 85, 0,  0,  0,  0,
261
};
262
static uint8_t has_bl_4x8[64] = {
263
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 1, 0,
264
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 0, 0,
265
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 1, 0,
266
  16, 17, 17, 17, 0, 1, 1, 1, 16, 17, 17, 17, 0, 0, 0, 0,
267
};
268
static uint8_t has_bl_8x4[64] = {
269
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 1,
270
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 0,
271
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 1,
272
  254, 255, 84, 85, 254, 255, 16, 17, 254, 255, 84, 85, 254, 255, 0, 0,
273
};
274
static uint8_t has_bl_8x8[32] = {
275
  84, 85, 16, 17, 84, 85, 0, 1, 84, 85, 16, 17, 84, 85, 0, 0,
276
  84, 85, 16, 17, 84, 85, 0, 1, 84, 85, 16, 17, 84, 85, 0, 0,
277
};
278
static uint8_t has_bl_8x16[16] = {
279
  16, 17, 0, 1, 16, 17, 0, 0, 16, 17, 0, 1, 16, 17, 0, 0,
280
};
281
static uint8_t has_bl_16x8[16] = {
282
  254, 84, 254, 16, 254, 84, 254, 0, 254, 84, 254, 16, 254, 84, 254, 0,
283
};
284
static uint8_t has_bl_16x16[8] = {
285
  84, 16, 84, 0, 84, 16, 84, 0,
286
};
287
static uint8_t has_bl_16x32[4] = { 16, 0, 16, 0 };
288
static uint8_t has_bl_32x16[4] = { 78, 14, 78, 14 };
289
static uint8_t has_bl_32x32[2] = { 4, 4 };
290
static uint8_t has_bl_32x64[1] = { 0 };
291
static uint8_t has_bl_64x32[1] = { 34 };
292
static uint8_t has_bl_64x64[1] = { 0 };
293
static uint8_t has_bl_64x128[1] = { 0 };
294
static uint8_t has_bl_128x64[1] = { 0 };
295
static uint8_t has_bl_128x128[1] = { 0 };
296
static uint8_t has_bl_4x16[32] = {
297
  0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,
298
  0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0,
299
};
300
static uint8_t has_bl_16x4[32] = {
301
  254, 254, 254, 84, 254, 254, 254, 16, 254, 254, 254, 84, 254, 254, 254, 0,
302
  254, 254, 254, 84, 254, 254, 254, 16, 254, 254, 254, 84, 254, 254, 254, 0,
303
};
304
static uint8_t has_bl_8x32[8] = {
305
  0, 1, 0, 0, 0, 1, 0, 0,
306
};
307
static uint8_t has_bl_32x8[8] = {
308
  238, 78, 238, 14, 238, 78, 238, 14,
309
};
310
static uint8_t has_bl_16x64[2] = { 0, 0 };
311
static uint8_t has_bl_64x16[2] = { 42, 42 };
312
313
static const uint8_t *const has_bl_tables[BLOCK_SIZES_ALL] = {
314
  // 4X4
315
  has_bl_4x4,
316
  // 4X8,         8X4,         8X8
317
  has_bl_4x8, has_bl_8x4, has_bl_8x8,
318
  // 8X16,        16X8,        16X16
319
  has_bl_8x16, has_bl_16x8, has_bl_16x16,
320
  // 16X32,       32X16,       32X32
321
  has_bl_16x32, has_bl_32x16, has_bl_32x32,
322
  // 32X64,       64X32,       64X64
323
  has_bl_32x64, has_bl_64x32, has_bl_64x64,
324
  // 64x128,      128x64,      128x128
325
  has_bl_64x128, has_bl_128x64, has_bl_128x128,
326
  // 4x16,        16x4,        8x32
327
  has_bl_4x16, has_bl_16x4, has_bl_8x32,
328
  // 32x8,        16x64,       64x16
329
  has_bl_32x8, has_bl_16x64, has_bl_64x16
330
};
331
332
static uint8_t has_bl_vert_8x8[32] = {
333
  254, 255, 16, 17, 254, 255, 0, 1, 254, 255, 16, 17, 254, 255, 0, 0,
334
  254, 255, 16, 17, 254, 255, 0, 1, 254, 255, 16, 17, 254, 255, 0, 0,
335
};
336
static uint8_t has_bl_vert_16x16[8] = {
337
  254, 16, 254, 0, 254, 16, 254, 0,
338
};
339
static uint8_t has_bl_vert_32x32[2] = { 14, 14 };
340
static uint8_t has_bl_vert_64x64[1] = { 2 };
341
342
// The _vert_* tables are like the ordinary tables above, but describe the
343
// order we visit square blocks when doing a PARTITION_VERT_A or
344
// PARTITION_VERT_B. This is the same order as normal except for on the last
345
// split where we go vertically (TL, BL, TR, BR). We treat the rectangular block
346
// as a pair of squares, which means that these tables work correctly for both
347
// mixed vertical partition types.
348
//
349
// There are tables for each of the square sizes. Vertical rectangles (like
350
// BLOCK_16X32) use their respective "non-vert" table
351
static const uint8_t *const has_bl_vert_tables[BLOCK_SIZES] = {
352
  // 4X4
353
  NULL,
354
  // 4X8,     8X4,         8X8
355
  has_bl_4x8, NULL, has_bl_vert_8x8,
356
  // 8X16,    16X8,        16X16
357
  has_bl_8x16, NULL, has_bl_vert_16x16,
358
  // 16X32,   32X16,       32X32
359
  has_bl_16x32, NULL, has_bl_vert_32x32,
360
  // 32X64,   64X32,       64X64
361
  has_bl_32x64, NULL, has_bl_vert_64x64,
362
  // 64x128,  128x64,      128x128
363
  has_bl_64x128, NULL, has_bl_128x128
364
};
365
366
static const uint8_t *get_has_bl_table(PARTITION_TYPE partition,
367
15.8M
                                       BLOCK_SIZE bsize) {
368
15.8M
  const uint8_t *ret = NULL;
369
  // If this is a mixed vertical partition, look up bsize in orders_vert.
370
15.8M
  if (partition == PARTITION_VERT_A || partition == PARTITION_VERT_B) {
371
1.30M
    assert(bsize < BLOCK_SIZES);
372
1.30M
    ret = has_bl_vert_tables[bsize];
373
14.5M
  } else {
374
14.5M
    ret = has_bl_tables[bsize];
375
14.5M
  }
376
15.8M
  assert(ret);
377
15.8M
  return ret;
378
15.8M
}
379
380
static int has_bottom_left(BLOCK_SIZE sb_size, BLOCK_SIZE bsize, int mi_row,
381
                           int mi_col, int bottom_available, int left_available,
382
                           PARTITION_TYPE partition, TX_SIZE txsz, int row_off,
383
39.7M
                           int col_off, int ss_x, int ss_y) {
384
39.7M
  if (!bottom_available || !left_available) return 0;
385
386
  // Special case for 128x* blocks, when col_off is half the block width.
387
  // This is needed because 128x* superblocks are divided into 64x* blocks in
388
  // raster order
389
36.3M
  if (block_size_wide[bsize] > block_size_wide[BLOCK_64X64] && col_off > 0) {
390
4.25M
    const int plane_bw_unit_64 = mi_size_wide[BLOCK_64X64] >> ss_x;
391
4.25M
    const int col_off_64 = col_off % plane_bw_unit_64;
392
4.25M
    if (col_off_64 == 0) {
393
      // We are at the left edge of top-right or bottom-right 64x* block.
394
801k
      const int plane_bh_unit_64 = mi_size_high[BLOCK_64X64] >> ss_y;
395
801k
      const int row_off_64 = row_off % plane_bh_unit_64;
396
801k
      const int plane_bh_unit =
397
801k
          AOMMIN(mi_size_high[bsize] >> ss_y, plane_bh_unit_64);
398
      // Check if all bottom-left pixels are in the left 64x* block (which is
399
      // already coded).
400
801k
      return row_off_64 + tx_size_high_unit[txsz] < plane_bh_unit;
401
801k
    }
402
4.25M
  }
403
404
35.5M
  if (col_off > 0) {
405
    // Bottom-left pixels are in the bottom-left block, which is not available.
406
8.45M
    return 0;
407
27.1M
  } else {
408
27.1M
    const int bh_unit = mi_size_high[bsize];
409
27.1M
    const int plane_bh_unit = AOMMAX(bh_unit >> ss_y, 1);
410
27.1M
    const int bottom_left_count_unit = tx_size_high_unit[txsz];
411
412
    // All bottom-left pixels are in the left block, which is already available.
413
27.1M
    if (row_off + bottom_left_count_unit < plane_bh_unit) return 1;
414
415
23.9M
    const int bw_in_mi_log2 = mi_size_wide_log2[bsize];
416
23.9M
    const int bh_in_mi_log2 = mi_size_high_log2[bsize];
417
23.9M
    const int sb_mi_size = mi_size_high[sb_size];
418
23.9M
    const int blk_row_in_sb = (mi_row & (sb_mi_size - 1)) >> bh_in_mi_log2;
419
23.9M
    const int blk_col_in_sb = (mi_col & (sb_mi_size - 1)) >> bw_in_mi_log2;
420
421
    // Leftmost column of superblock: so bottom-left pixels maybe in the left
422
    // and/or bottom-left superblocks. But only the left superblock is
423
    // available, so check if all required pixels fall in that superblock.
424
23.9M
    if (blk_col_in_sb == 0) {
425
3.87M
      const int blk_start_row_off =
426
3.87M
          blk_row_in_sb << (bh_in_mi_log2 + MI_SIZE_LOG2 - MI_SIZE_LOG2) >>
427
3.87M
          ss_y;
428
3.87M
      const int row_off_in_sb = blk_start_row_off + row_off;
429
3.87M
      const int sb_height_unit = sb_mi_size >> ss_y;
430
3.87M
      return row_off_in_sb + bottom_left_count_unit < sb_height_unit;
431
3.87M
    }
432
433
    // Bottom row of superblock (and not the leftmost column): so bottom-left
434
    // pixels fall in the bottom superblock, which is not available yet.
435
20.0M
    if (((blk_row_in_sb + 1) << bh_in_mi_log2) >= sb_mi_size) return 0;
436
437
    // General case (neither leftmost column nor bottom row): check if the
438
    // bottom-left block is coded before the current block.
439
15.8M
    const int this_blk_index =
440
15.8M
        ((blk_row_in_sb + 0) << (MAX_MIB_SIZE_LOG2 - bw_in_mi_log2)) +
441
15.8M
        blk_col_in_sb + 0;
442
15.8M
    const int idx1 = this_blk_index / 8;
443
15.8M
    const int idx2 = this_blk_index % 8;
444
15.8M
    const uint8_t *has_bl_table = get_has_bl_table(partition, bsize);
445
15.8M
    return (has_bl_table[idx1] >> idx2) & 1;
446
20.0M
  }
447
35.5M
}
448
449
typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride,
450
                              const uint8_t *above, const uint8_t *left);
451
452
static intra_pred_fn pred[INTRA_MODES][TX_SIZES_ALL];
453
static intra_pred_fn dc_pred[2][2][TX_SIZES_ALL];
454
455
#if CONFIG_AV1_HIGHBITDEPTH
456
typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride,
457
                                   const uint16_t *above, const uint16_t *left,
458
                                   int bd);
459
static intra_high_pred_fn pred_high[INTRA_MODES][TX_SIZES_ALL];
460
static intra_high_pred_fn dc_pred_high[2][2][TX_SIZES_ALL];
461
#endif
462
463
5
static void init_intra_predictors_internal(void) {
464
5
  assert(NELEMENTS(mode_to_angle_map) == INTRA_MODES);
465
466
#if CONFIG_REALTIME_ONLY
467
#define INIT_RECTANGULAR(p, type)             \
468
  p[TX_4X8] = aom_##type##_predictor_4x8;     \
469
  p[TX_8X4] = aom_##type##_predictor_8x4;     \
470
  p[TX_8X16] = aom_##type##_predictor_8x16;   \
471
  p[TX_16X8] = aom_##type##_predictor_16x8;   \
472
  p[TX_16X32] = aom_##type##_predictor_16x32; \
473
  p[TX_32X16] = aom_##type##_predictor_32x16; \
474
  p[TX_32X64] = aom_##type##_predictor_32x64; \
475
  p[TX_64X32] = aom_##type##_predictor_64x32;
476
#else
477
5
#define INIT_RECTANGULAR(p, type)             \
478
100
  p[TX_4X8] = aom_##type##_predictor_4x8;     \
479
100
  p[TX_8X4] = aom_##type##_predictor_8x4;     \
480
100
  p[TX_8X16] = aom_##type##_predictor_8x16;   \
481
100
  p[TX_16X8] = aom_##type##_predictor_16x8;   \
482
100
  p[TX_16X32] = aom_##type##_predictor_16x32; \
483
100
  p[TX_32X16] = aom_##type##_predictor_32x16; \
484
100
  p[TX_32X64] = aom_##type##_predictor_32x64; \
485
100
  p[TX_64X32] = aom_##type##_predictor_64x32; \
486
100
  p[TX_4X16] = aom_##type##_predictor_4x16;   \
487
100
  p[TX_16X4] = aom_##type##_predictor_16x4;   \
488
100
  p[TX_8X32] = aom_##type##_predictor_8x32;   \
489
100
  p[TX_32X8] = aom_##type##_predictor_32x8;   \
490
100
  p[TX_16X64] = aom_##type##_predictor_16x64; \
491
100
  p[TX_64X16] = aom_##type##_predictor_64x16;
492
5
#endif
493
494
5
#define INIT_NO_4X4(p, type)                  \
495
100
  p[TX_8X8] = aom_##type##_predictor_8x8;     \
496
100
  p[TX_16X16] = aom_##type##_predictor_16x16; \
497
100
  p[TX_32X32] = aom_##type##_predictor_32x32; \
498
100
  p[TX_64X64] = aom_##type##_predictor_64x64; \
499
100
  INIT_RECTANGULAR(p, type)
500
501
5
#define INIT_ALL_SIZES(p, type)           \
502
100
  p[TX_4X4] = aom_##type##_predictor_4x4; \
503
100
  INIT_NO_4X4(p, type)
504
505
5
  INIT_ALL_SIZES(pred[V_PRED], v);
506
5
  INIT_ALL_SIZES(pred[H_PRED], h);
507
5
  INIT_ALL_SIZES(pred[PAETH_PRED], paeth);
508
5
  INIT_ALL_SIZES(pred[SMOOTH_PRED], smooth);
509
5
  INIT_ALL_SIZES(pred[SMOOTH_V_PRED], smooth_v);
510
5
  INIT_ALL_SIZES(pred[SMOOTH_H_PRED], smooth_h);
511
5
  INIT_ALL_SIZES(dc_pred[0][0], dc_128);
512
5
  INIT_ALL_SIZES(dc_pred[0][1], dc_top);
513
5
  INIT_ALL_SIZES(dc_pred[1][0], dc_left);
514
5
  INIT_ALL_SIZES(dc_pred[1][1], dc);
515
5
#if CONFIG_AV1_HIGHBITDEPTH
516
5
  INIT_ALL_SIZES(pred_high[V_PRED], highbd_v);
517
5
  INIT_ALL_SIZES(pred_high[H_PRED], highbd_h);
518
5
  INIT_ALL_SIZES(pred_high[PAETH_PRED], highbd_paeth);
519
5
  INIT_ALL_SIZES(pred_high[SMOOTH_PRED], highbd_smooth);
520
5
  INIT_ALL_SIZES(pred_high[SMOOTH_V_PRED], highbd_smooth_v);
521
5
  INIT_ALL_SIZES(pred_high[SMOOTH_H_PRED], highbd_smooth_h);
522
5
  INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128);
523
5
  INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top);
524
5
  INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left);
525
5
  INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc);
526
5
#endif
527
5
#undef intra_pred_allsizes
528
5
}
529
530
// Directional prediction, zone 1: 0 < angle < 90
531
void av1_dr_prediction_z1_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
532
                            const uint8_t *above, const uint8_t *left,
533
872k
                            int upsample_above, int dx, int dy) {
534
872k
  int r, c, x, base, shift, val;
535
536
872k
  (void)left;
537
872k
  (void)dy;
538
872k
  assert(dy == 1);
539
872k
  assert(dx > 0);
540
541
872k
  const int max_base_x = ((bw + bh) - 1) << upsample_above;
542
872k
  const int frac_bits = 6 - upsample_above;
543
872k
  const int base_inc = 1 << upsample_above;
544
872k
  x = dx;
545
11.5M
  for (r = 0; r < bh; ++r, dst += stride, x += dx) {
546
10.6M
    base = x >> frac_bits;
547
10.6M
    shift = ((x << upsample_above) & 0x3F) >> 1;
548
549
10.6M
    if (base >= max_base_x) {
550
16.5k
      for (int i = r; i < bh; ++i) {
551
11.1k
        memset(dst, above[max_base_x], bw * sizeof(dst[0]));
552
11.1k
        dst += stride;
553
11.1k
      }
554
5.41k
      return;
555
5.41k
    }
556
557
219M
    for (c = 0; c < bw; ++c, base += base_inc) {
558
208M
      if (base < max_base_x) {
559
207M
        val = above[base] * (32 - shift) + above[base + 1] * shift;
560
207M
        dst[c] = ROUND_POWER_OF_TWO(val, 5);
561
207M
      } else {
562
1.28M
        dst[c] = above[max_base_x];
563
1.28M
      }
564
208M
    }
565
10.6M
  }
566
872k
}
567
568
// Directional prediction, zone 2: 90 < angle < 180
569
void av1_dr_prediction_z2_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
570
                            const uint8_t *above, const uint8_t *left,
571
                            int upsample_above, int upsample_left, int dx,
572
1.52M
                            int dy) {
573
1.52M
  assert(dx > 0);
574
1.52M
  assert(dy > 0);
575
576
1.52M
  const int min_base_x = -(1 << upsample_above);
577
1.52M
  const int min_base_y = -(1 << upsample_left);
578
1.52M
  (void)min_base_y;
579
1.52M
  const int frac_bits_x = 6 - upsample_above;
580
1.52M
  const int frac_bits_y = 6 - upsample_left;
581
582
20.3M
  for (int r = 0; r < bh; ++r) {
583
378M
    for (int c = 0; c < bw; ++c) {
584
359M
      int val;
585
359M
      int y = r + 1;
586
359M
      int x = (c << 6) - y * dx;
587
359M
      const int base_x = x >> frac_bits_x;
588
359M
      if (base_x >= min_base_x) {
589
175M
        const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1;
590
175M
        val = above[base_x] * (32 - shift) + above[base_x + 1] * shift;
591
175M
        val = ROUND_POWER_OF_TWO(val, 5);
592
183M
      } else {
593
183M
        x = c + 1;
594
183M
        y = (r << 6) - x * dy;
595
183M
        const int base_y = y >> frac_bits_y;
596
183M
        assert(base_y >= min_base_y);
597
183M
        const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1;
598
183M
        val = left[base_y] * (32 - shift) + left[base_y + 1] * shift;
599
183M
        val = ROUND_POWER_OF_TWO(val, 5);
600
183M
      }
601
359M
      dst[c] = val;
602
359M
    }
603
18.8M
    dst += stride;
604
18.8M
  }
605
1.52M
}
606
607
// Directional prediction, zone 3: 180 < angle < 270
608
void av1_dr_prediction_z3_c(uint8_t *dst, ptrdiff_t stride, int bw, int bh,
609
                            const uint8_t *above, const uint8_t *left,
610
905k
                            int upsample_left, int dx, int dy) {
611
905k
  int r, c, y, base, shift, val;
612
613
905k
  (void)above;
614
905k
  (void)dx;
615
616
905k
  assert(dx == 1);
617
905k
  assert(dy > 0);
618
619
905k
  const int max_base_y = (bw + bh - 1) << upsample_left;
620
905k
  const int frac_bits = 6 - upsample_left;
621
905k
  const int base_inc = 1 << upsample_left;
622
905k
  y = dy;
623
12.4M
  for (c = 0; c < bw; ++c, y += dy) {
624
11.5M
    base = y >> frac_bits;
625
11.5M
    shift = ((y << upsample_left) & 0x3F) >> 1;
626
627
216M
    for (r = 0; r < bh; ++r, base += base_inc) {
628
204M
      if (base < max_base_y) {
629
204M
        val = left[base] * (32 - shift) + left[base + 1] * shift;
630
204M
        dst[r * stride + c] = val = ROUND_POWER_OF_TWO(val, 5);
631
204M
      } else {
632
0
        for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y];
633
0
        break;
634
0
      }
635
204M
    }
636
11.5M
  }
637
905k
}
638
639
static void dr_predictor(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size,
640
                         const uint8_t *above, const uint8_t *left,
641
4.66M
                         int upsample_above, int upsample_left, int angle) {
642
4.66M
  const int dx = av1_get_dx(angle);
643
4.66M
  const int dy = av1_get_dy(angle);
644
4.66M
  const int bw = tx_size_wide[tx_size];
645
4.66M
  const int bh = tx_size_high[tx_size];
646
4.66M
  assert(angle > 0 && angle < 270);
647
648
4.66M
  if (angle > 0 && angle < 90) {
649
872k
    av1_dr_prediction_z1(dst, stride, bw, bh, above, left, upsample_above, dx,
650
872k
                         dy);
651
3.78M
  } else if (angle > 90 && angle < 180) {
652
1.52M
    av1_dr_prediction_z2(dst, stride, bw, bh, above, left, upsample_above,
653
1.52M
                         upsample_left, dx, dy);
654
2.26M
  } else if (angle > 180 && angle < 270) {
655
905k
    av1_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left, dx,
656
905k
                         dy);
657
1.35M
  } else if (angle == 90) {
658
567k
    pred[V_PRED][tx_size](dst, stride, above, left);
659
791k
  } else if (angle == 180) {
660
791k
    pred[H_PRED][tx_size](dst, stride, above, left);
661
791k
  }
662
4.66M
}
663
664
#if CONFIG_AV1_HIGHBITDEPTH
665
// Directional prediction, zone 1: 0 < angle < 90
666
void av1_highbd_dr_prediction_z1_c(uint16_t *dst, ptrdiff_t stride, int bw,
667
                                   int bh, const uint16_t *above,
668
                                   const uint16_t *left, int upsample_above,
669
697k
                                   int dx, int dy, int bd) {
670
697k
  int r, c, x, base, shift, val;
671
672
697k
  (void)left;
673
697k
  (void)dy;
674
697k
  (void)bd;
675
697k
  assert(dy == 1);
676
697k
  assert(dx > 0);
677
678
697k
  const int max_base_x = ((bw + bh) - 1) << upsample_above;
679
697k
  const int frac_bits = 6 - upsample_above;
680
697k
  const int base_inc = 1 << upsample_above;
681
697k
  x = dx;
682
9.04M
  for (r = 0; r < bh; ++r, dst += stride, x += dx) {
683
8.34M
    base = x >> frac_bits;
684
8.34M
    shift = ((x << upsample_above) & 0x3F) >> 1;
685
686
8.34M
    if (base >= max_base_x) {
687
12.6k
      for (int i = r; i < bh; ++i) {
688
8.20k
        aom_memset16(dst, above[max_base_x], bw);
689
8.20k
        dst += stride;
690
8.20k
      }
691
4.48k
      return;
692
4.48k
    }
693
694
179M
    for (c = 0; c < bw; ++c, base += base_inc) {
695
171M
      if (base < max_base_x) {
696
170M
        val = above[base] * (32 - shift) + above[base + 1] * shift;
697
170M
        dst[c] = ROUND_POWER_OF_TWO(val, 5);
698
170M
      } else {
699
972k
        dst[c] = above[max_base_x];
700
972k
      }
701
171M
    }
702
8.34M
  }
703
697k
}
704
705
// Directional prediction, zone 2: 90 < angle < 180
706
void av1_highbd_dr_prediction_z2_c(uint16_t *dst, ptrdiff_t stride, int bw,
707
                                   int bh, const uint16_t *above,
708
                                   const uint16_t *left, int upsample_above,
709
1.41M
                                   int upsample_left, int dx, int dy, int bd) {
710
1.41M
  (void)bd;
711
1.41M
  assert(dx > 0);
712
1.41M
  assert(dy > 0);
713
714
1.41M
  const int min_base_x = -(1 << upsample_above);
715
1.41M
  const int min_base_y = -(1 << upsample_left);
716
1.41M
  (void)min_base_y;
717
1.41M
  const int frac_bits_x = 6 - upsample_above;
718
1.41M
  const int frac_bits_y = 6 - upsample_left;
719
720
17.2M
  for (int r = 0; r < bh; ++r) {
721
338M
    for (int c = 0; c < bw; ++c) {
722
322M
      int val;
723
322M
      int y = r + 1;
724
322M
      int x = (c << 6) - y * dx;
725
322M
      const int base_x = x >> frac_bits_x;
726
322M
      if (base_x >= min_base_x) {
727
151M
        const int shift = ((x * (1 << upsample_above)) & 0x3F) >> 1;
728
151M
        val = above[base_x] * (32 - shift) + above[base_x + 1] * shift;
729
151M
        val = ROUND_POWER_OF_TWO(val, 5);
730
171M
      } else {
731
171M
        x = c + 1;
732
171M
        y = (r << 6) - x * dy;
733
171M
        const int base_y = y >> frac_bits_y;
734
171M
        assert(base_y >= min_base_y);
735
171M
        const int shift = ((y * (1 << upsample_left)) & 0x3F) >> 1;
736
171M
        val = left[base_y] * (32 - shift) + left[base_y + 1] * shift;
737
171M
        val = ROUND_POWER_OF_TWO(val, 5);
738
171M
      }
739
322M
      dst[c] = val;
740
322M
    }
741
15.8M
    dst += stride;
742
15.8M
  }
743
1.41M
}
744
745
// Directional prediction, zone 3: 180 < angle < 270
746
void av1_highbd_dr_prediction_z3_c(uint16_t *dst, ptrdiff_t stride, int bw,
747
                                   int bh, const uint16_t *above,
748
                                   const uint16_t *left, int upsample_left,
749
826k
                                   int dx, int dy, int bd) {
750
826k
  int r, c, y, base, shift, val;
751
752
826k
  (void)above;
753
826k
  (void)dx;
754
826k
  (void)bd;
755
826k
  assert(dx == 1);
756
826k
  assert(dy > 0);
757
758
826k
  const int max_base_y = (bw + bh - 1) << upsample_left;
759
826k
  const int frac_bits = 6 - upsample_left;
760
826k
  const int base_inc = 1 << upsample_left;
761
826k
  y = dy;
762
10.4M
  for (c = 0; c < bw; ++c, y += dy) {
763
9.57M
    base = y >> frac_bits;
764
9.57M
    shift = ((y << upsample_left) & 0x3F) >> 1;
765
766
187M
    for (r = 0; r < bh; ++r, base += base_inc) {
767
178M
      if (base < max_base_y) {
768
178M
        val = left[base] * (32 - shift) + left[base + 1] * shift;
769
178M
        dst[r * stride + c] = ROUND_POWER_OF_TWO(val, 5);
770
178M
      } else {
771
0
        for (; r < bh; ++r) dst[r * stride + c] = left[max_base_y];
772
0
        break;
773
0
      }
774
178M
    }
775
9.57M
  }
776
826k
}
777
778
static void highbd_dr_predictor(uint16_t *dst, ptrdiff_t stride,
779
                                TX_SIZE tx_size, const uint16_t *above,
780
                                const uint16_t *left, int upsample_above,
781
4.02M
                                int upsample_left, int angle, int bd) {
782
4.02M
  const int dx = av1_get_dx(angle);
783
4.02M
  const int dy = av1_get_dy(angle);
784
4.02M
  const int bw = tx_size_wide[tx_size];
785
4.02M
  const int bh = tx_size_high[tx_size];
786
4.02M
  assert(angle > 0 && angle < 270);
787
788
4.02M
  if (angle > 0 && angle < 90) {
789
697k
    av1_highbd_dr_prediction_z1(dst, stride, bw, bh, above, left,
790
697k
                                upsample_above, dx, dy, bd);
791
3.32M
  } else if (angle > 90 && angle < 180) {
792
1.41M
    av1_highbd_dr_prediction_z2(dst, stride, bw, bh, above, left,
793
1.41M
                                upsample_above, upsample_left, dx, dy, bd);
794
1.91M
  } else if (angle > 180 && angle < 270) {
795
826k
    av1_highbd_dr_prediction_z3(dst, stride, bw, bh, above, left, upsample_left,
796
826k
                                dx, dy, bd);
797
1.08M
  } else if (angle == 90) {
798
428k
    pred_high[V_PRED][tx_size](dst, stride, above, left, bd);
799
659k
  } else if (angle == 180) {
800
659k
    pred_high[H_PRED][tx_size](dst, stride, above, left, bd);
801
659k
  }
802
4.02M
}
803
#endif  // CONFIG_AV1_HIGHBITDEPTH
804
805
DECLARE_ALIGNED(16, const int8_t,
806
                av1_filter_intra_taps[FILTER_INTRA_MODES][8][8]) = {
807
  {
808
      { -6, 10, 0, 0, 0, 12, 0, 0 },
809
      { -5, 2, 10, 0, 0, 9, 0, 0 },
810
      { -3, 1, 1, 10, 0, 7, 0, 0 },
811
      { -3, 1, 1, 2, 10, 5, 0, 0 },
812
      { -4, 6, 0, 0, 0, 2, 12, 0 },
813
      { -3, 2, 6, 0, 0, 2, 9, 0 },
814
      { -3, 2, 2, 6, 0, 2, 7, 0 },
815
      { -3, 1, 2, 2, 6, 3, 5, 0 },
816
  },
817
  {
818
      { -10, 16, 0, 0, 0, 10, 0, 0 },
819
      { -6, 0, 16, 0, 0, 6, 0, 0 },
820
      { -4, 0, 0, 16, 0, 4, 0, 0 },
821
      { -2, 0, 0, 0, 16, 2, 0, 0 },
822
      { -10, 16, 0, 0, 0, 0, 10, 0 },
823
      { -6, 0, 16, 0, 0, 0, 6, 0 },
824
      { -4, 0, 0, 16, 0, 0, 4, 0 },
825
      { -2, 0, 0, 0, 16, 0, 2, 0 },
826
  },
827
  {
828
      { -8, 8, 0, 0, 0, 16, 0, 0 },
829
      { -8, 0, 8, 0, 0, 16, 0, 0 },
830
      { -8, 0, 0, 8, 0, 16, 0, 0 },
831
      { -8, 0, 0, 0, 8, 16, 0, 0 },
832
      { -4, 4, 0, 0, 0, 0, 16, 0 },
833
      { -4, 0, 4, 0, 0, 0, 16, 0 },
834
      { -4, 0, 0, 4, 0, 0, 16, 0 },
835
      { -4, 0, 0, 0, 4, 0, 16, 0 },
836
  },
837
  {
838
      { -2, 8, 0, 0, 0, 10, 0, 0 },
839
      { -1, 3, 8, 0, 0, 6, 0, 0 },
840
      { -1, 2, 3, 8, 0, 4, 0, 0 },
841
      { 0, 1, 2, 3, 8, 2, 0, 0 },
842
      { -1, 4, 0, 0, 0, 3, 10, 0 },
843
      { -1, 3, 4, 0, 0, 4, 6, 0 },
844
      { -1, 2, 3, 4, 0, 4, 4, 0 },
845
      { -1, 2, 2, 3, 4, 3, 3, 0 },
846
  },
847
  {
848
      { -12, 14, 0, 0, 0, 14, 0, 0 },
849
      { -10, 0, 14, 0, 0, 12, 0, 0 },
850
      { -9, 0, 0, 14, 0, 11, 0, 0 },
851
      { -8, 0, 0, 0, 14, 10, 0, 0 },
852
      { -10, 12, 0, 0, 0, 0, 14, 0 },
853
      { -9, 1, 12, 0, 0, 0, 12, 0 },
854
      { -8, 0, 0, 12, 0, 1, 11, 0 },
855
      { -7, 0, 0, 1, 12, 1, 9, 0 },
856
  },
857
};
858
859
void av1_filter_intra_predictor_c(uint8_t *dst, ptrdiff_t stride,
860
                                  TX_SIZE tx_size, const uint8_t *above,
861
1.03M
                                  const uint8_t *left, int mode) {
862
1.03M
  int r, c;
863
1.03M
  uint8_t buffer[33][33];
864
1.03M
  const int bw = tx_size_wide[tx_size];
865
1.03M
  const int bh = tx_size_high[tx_size];
866
867
1.03M
  assert(bw <= 32 && bh <= 32);
868
869
9.88M
  for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r];
870
1.03M
  memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(uint8_t));
871
872
5.45M
  for (r = 1; r < bh + 1; r += 2)
873
16.9M
    for (c = 1; c < bw + 1; c += 4) {
874
12.5M
      const uint8_t p0 = buffer[r - 1][c - 1];
875
12.5M
      const uint8_t p1 = buffer[r - 1][c];
876
12.5M
      const uint8_t p2 = buffer[r - 1][c + 1];
877
12.5M
      const uint8_t p3 = buffer[r - 1][c + 2];
878
12.5M
      const uint8_t p4 = buffer[r - 1][c + 3];
879
12.5M
      const uint8_t p5 = buffer[r][c - 1];
880
12.5M
      const uint8_t p6 = buffer[r + 1][c - 1];
881
112M
      for (int k = 0; k < 8; ++k) {
882
100M
        int r_offset = k >> 2;
883
100M
        int c_offset = k & 0x03;
884
100M
        int pr = av1_filter_intra_taps[mode][k][0] * p0 +
885
100M
                 av1_filter_intra_taps[mode][k][1] * p1 +
886
100M
                 av1_filter_intra_taps[mode][k][2] * p2 +
887
100M
                 av1_filter_intra_taps[mode][k][3] * p3 +
888
100M
                 av1_filter_intra_taps[mode][k][4] * p4 +
889
100M
                 av1_filter_intra_taps[mode][k][5] * p5 +
890
100M
                 av1_filter_intra_taps[mode][k][6] * p6;
891
        // Section 7.11.2.3 specifies the right-hand side of the assignment as
892
        //   Clip1( Round2Signed( pr, INTRA_FILTER_SCALE_BITS ) ).
893
        // Since Clip1() clips a negative value to 0, it is safe to replace
894
        // Round2Signed() with Round2().
895
100M
        buffer[r + r_offset][c + c_offset] =
896
100M
            clip_pixel(ROUND_POWER_OF_TWO(pr, FILTER_INTRA_SCALE_BITS));
897
100M
      }
898
12.5M
    }
899
900
9.88M
  for (r = 0; r < bh; ++r) {
901
8.85M
    memcpy(dst, &buffer[r + 1][1], bw * sizeof(uint8_t));
902
8.85M
    dst += stride;
903
8.85M
  }
904
1.03M
}
905
906
#if CONFIG_AV1_HIGHBITDEPTH
907
static void highbd_filter_intra_predictor(uint16_t *dst, ptrdiff_t stride,
908
                                          TX_SIZE tx_size,
909
                                          const uint16_t *above,
910
                                          const uint16_t *left, int mode,
911
944k
                                          int bd) {
912
944k
  int r, c;
913
944k
  uint16_t buffer[33][33];
914
944k
  const int bw = tx_size_wide[tx_size];
915
944k
  const int bh = tx_size_high[tx_size];
916
917
944k
  assert(bw <= 32 && bh <= 32);
918
919
8.77M
  for (r = 0; r < bh; ++r) buffer[r + 1][0] = left[r];
920
944k
  memcpy(buffer[0], &above[-1], (bw + 1) * sizeof(buffer[0][0]));
921
922
4.86M
  for (r = 1; r < bh + 1; r += 2)
923
14.7M
    for (c = 1; c < bw + 1; c += 4) {
924
10.7M
      const uint16_t p0 = buffer[r - 1][c - 1];
925
10.7M
      const uint16_t p1 = buffer[r - 1][c];
926
10.7M
      const uint16_t p2 = buffer[r - 1][c + 1];
927
10.7M
      const uint16_t p3 = buffer[r - 1][c + 2];
928
10.7M
      const uint16_t p4 = buffer[r - 1][c + 3];
929
10.7M
      const uint16_t p5 = buffer[r][c - 1];
930
10.7M
      const uint16_t p6 = buffer[r + 1][c - 1];
931
97.0M
      for (int k = 0; k < 8; ++k) {
932
86.2M
        int r_offset = k >> 2;
933
86.2M
        int c_offset = k & 0x03;
934
86.2M
        int pr = av1_filter_intra_taps[mode][k][0] * p0 +
935
86.2M
                 av1_filter_intra_taps[mode][k][1] * p1 +
936
86.2M
                 av1_filter_intra_taps[mode][k][2] * p2 +
937
86.2M
                 av1_filter_intra_taps[mode][k][3] * p3 +
938
86.2M
                 av1_filter_intra_taps[mode][k][4] * p4 +
939
86.2M
                 av1_filter_intra_taps[mode][k][5] * p5 +
940
86.2M
                 av1_filter_intra_taps[mode][k][6] * p6;
941
        // Section 7.11.2.3 specifies the right-hand side of the assignment as
942
        //   Clip1( Round2Signed( pr, INTRA_FILTER_SCALE_BITS ) ).
943
        // Since Clip1() clips a negative value to 0, it is safe to replace
944
        // Round2Signed() with Round2().
945
86.2M
        buffer[r + r_offset][c + c_offset] = clip_pixel_highbd(
946
86.2M
            ROUND_POWER_OF_TWO(pr, FILTER_INTRA_SCALE_BITS), bd);
947
86.2M
      }
948
10.7M
    }
949
950
8.77M
  for (r = 0; r < bh; ++r) {
951
7.83M
    memcpy(dst, &buffer[r + 1][1], bw * sizeof(dst[0]));
952
7.83M
    dst += stride;
953
7.83M
  }
954
944k
}
955
#endif  // CONFIG_AV1_HIGHBITDEPTH
956
957
69.9M
static int is_smooth(const MB_MODE_INFO *mbmi, int plane) {
958
69.9M
  if (plane == 0) {
959
28.2M
    const PREDICTION_MODE mode = mbmi->mode;
960
28.2M
    return (mode == SMOOTH_PRED || mode == SMOOTH_V_PRED ||
961
25.2M
            mode == SMOOTH_H_PRED);
962
41.7M
  } else {
963
    // uv_mode is not set for inter blocks, so need to explicitly
964
    // detect that case.
965
41.7M
    if (is_inter_block(mbmi)) return 0;
966
967
41.5M
    const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
968
41.5M
    return (uv_mode == UV_SMOOTH_PRED || uv_mode == UV_SMOOTH_V_PRED ||
969
37.5M
            uv_mode == UV_SMOOTH_H_PRED);
970
41.7M
  }
971
69.9M
}
972
973
39.7M
static int get_intra_edge_filter_type(const MACROBLOCKD *xd, int plane) {
974
39.7M
  int ab_sm, le_sm;
975
976
39.7M
  if (plane == 0) {
977
16.3M
    const MB_MODE_INFO *ab = xd->above_mbmi;
978
16.3M
    const MB_MODE_INFO *le = xd->left_mbmi;
979
16.3M
    ab_sm = ab ? is_smooth(ab, plane) : 0;
980
16.3M
    le_sm = le ? is_smooth(le, plane) : 0;
981
23.3M
  } else {
982
23.3M
    const MB_MODE_INFO *ab = xd->chroma_above_mbmi;
983
23.3M
    const MB_MODE_INFO *le = xd->chroma_left_mbmi;
984
23.3M
    ab_sm = ab ? is_smooth(ab, plane) : 0;
985
23.3M
    le_sm = le ? is_smooth(le, plane) : 0;
986
23.3M
  }
987
988
39.7M
  return (ab_sm || le_sm) ? 1 : 0;
989
39.7M
}
990
991
7.39M
static int intra_edge_filter_strength(int bs0, int bs1, int delta, int type) {
992
7.39M
  const int d = abs(delta);
993
7.39M
  int strength = 0;
994
995
7.39M
  const int blk_wh = bs0 + bs1;
996
7.39M
  if (type == 0) {
997
5.47M
    if (blk_wh <= 8) {
998
1.65M
      if (d >= 56) strength = 1;
999
3.82M
    } else if (blk_wh <= 12) {
1000
556k
      if (d >= 40) strength = 1;
1001
3.26M
    } else if (blk_wh <= 16) {
1002
1.00M
      if (d >= 40) strength = 1;
1003
2.26M
    } else if (blk_wh <= 24) {
1004
967k
      if (d >= 8) strength = 1;
1005
967k
      if (d >= 16) strength = 2;
1006
967k
      if (d >= 32) strength = 3;
1007
1.29M
    } else if (blk_wh <= 32) {
1008
475k
      if (d >= 1) strength = 1;
1009
475k
      if (d >= 4) strength = 2;
1010
475k
      if (d >= 32) strength = 3;
1011
821k
    } else {
1012
821k
      if (d >= 1) strength = 3;
1013
821k
    }
1014
5.47M
  } else {
1015
1.91M
    if (blk_wh <= 8) {
1016
384k
      if (d >= 40) strength = 1;
1017
384k
      if (d >= 64) strength = 2;
1018
1.53M
    } else if (blk_wh <= 16) {
1019
645k
      if (d >= 20) strength = 1;
1020
645k
      if (d >= 48) strength = 2;
1021
889k
    } else if (blk_wh <= 24) {
1022
411k
      if (d >= 4) strength = 3;
1023
477k
    } else {
1024
477k
      if (d >= 1) strength = 3;
1025
477k
    }
1026
1.91M
  }
1027
7.39M
  return strength;
1028
7.39M
}
1029
1030
3.57M
void av1_filter_intra_edge_c(uint8_t *p, int sz, int strength) {
1031
3.57M
  if (!strength) return;
1032
1033
2.38M
  const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 },
1034
2.38M
                                                         { 0, 5, 6, 5, 0 },
1035
2.38M
                                                         { 2, 4, 4, 4, 2 } };
1036
2.38M
  const int filt = strength - 1;
1037
2.38M
  uint8_t edge[129];
1038
1039
2.38M
  memcpy(edge, p, sz * sizeof(*p));
1040
50.0M
  for (int i = 1; i < sz; i++) {
1041
47.7M
    int s = 0;
1042
286M
    for (int j = 0; j < INTRA_EDGE_TAPS; j++) {
1043
238M
      int k = i - 2 + j;
1044
238M
      k = (k < 0) ? 0 : k;
1045
238M
      k = (k > sz - 1) ? sz - 1 : k;
1046
238M
      s += edge[k] * kernel[filt][j];
1047
238M
    }
1048
47.7M
    s = (s + 8) >> 4;
1049
47.7M
    p[i] = s;
1050
47.7M
  }
1051
2.38M
}
1052
1053
472k
static void filter_intra_edge_corner(uint8_t *p_above, uint8_t *p_left) {
1054
472k
  const int kernel[3] = { 5, 6, 5 };
1055
1056
472k
  int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) +
1057
472k
          (p_above[0] * kernel[2]);
1058
472k
  s = (s + 8) >> 4;
1059
472k
  p_above[-1] = s;
1060
472k
  p_left[-1] = s;
1061
472k
}
1062
1063
3.82M
void av1_filter_intra_edge_high_c(uint16_t *p, int sz, int strength) {
1064
3.82M
  if (!strength) return;
1065
1066
2.11M
  const int kernel[INTRA_EDGE_FILT][INTRA_EDGE_TAPS] = { { 0, 4, 8, 4, 0 },
1067
2.11M
                                                         { 0, 5, 6, 5, 0 },
1068
2.11M
                                                         { 2, 4, 4, 4, 2 } };
1069
2.11M
  const int filt = strength - 1;
1070
2.11M
  uint16_t edge[129];
1071
1072
2.11M
  memcpy(edge, p, sz * sizeof(*p));
1073
41.4M
  for (int i = 1; i < sz; i++) {
1074
39.2M
    int s = 0;
1075
235M
    for (int j = 0; j < INTRA_EDGE_TAPS; j++) {
1076
196M
      int k = i - 2 + j;
1077
196M
      k = (k < 0) ? 0 : k;
1078
196M
      k = (k > sz - 1) ? sz - 1 : k;
1079
196M
      s += edge[k] * kernel[filt][j];
1080
196M
    }
1081
39.2M
    s = (s + 8) >> 4;
1082
39.2M
    p[i] = s;
1083
39.2M
  }
1084
2.11M
}
1085
1086
#if CONFIG_AV1_HIGHBITDEPTH
1087
357k
static void filter_intra_edge_corner_high(uint16_t *p_above, uint16_t *p_left) {
1088
357k
  const int kernel[3] = { 5, 6, 5 };
1089
1090
357k
  int s = (p_left[0] * kernel[0]) + (p_above[-1] * kernel[1]) +
1091
357k
          (p_above[0] * kernel[2]);
1092
357k
  s = (s + 8) >> 4;
1093
357k
  p_above[-1] = s;
1094
357k
  p_left[-1] = s;
1095
357k
}
1096
#endif
1097
1098
887k
void av1_upsample_intra_edge_c(uint8_t *p, int sz) {
1099
  // interpolate half-sample positions
1100
887k
  assert(sz <= MAX_UPSAMPLE_SZ);
1101
1102
887k
  uint8_t in[MAX_UPSAMPLE_SZ + 3];
1103
  // copy p[-1..(sz-1)] and extend first and last samples
1104
887k
  in[0] = p[-1];
1105
887k
  in[1] = p[-1];
1106
8.71M
  for (int i = 0; i < sz; i++) {
1107
7.82M
    in[i + 2] = p[i];
1108
7.82M
  }
1109
887k
  in[sz + 2] = p[sz - 1];
1110
1111
  // interpolate half-sample edge positions
1112
887k
  p[-2] = in[0];
1113
8.71M
  for (int i = 0; i < sz; i++) {
1114
7.82M
    int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3];
1115
7.82M
    s = clip_pixel((s + 8) >> 4);
1116
7.82M
    p[2 * i - 1] = s;
1117
7.82M
    p[2 * i] = in[i + 2];
1118
7.82M
  }
1119
887k
}
1120
1121
1.19M
void av1_upsample_intra_edge_high_c(uint16_t *p, int sz, int bd) {
1122
  // interpolate half-sample positions
1123
1.19M
  assert(sz <= MAX_UPSAMPLE_SZ);
1124
1125
1.19M
  uint16_t in[MAX_UPSAMPLE_SZ + 3];
1126
  // copy p[-1..(sz-1)] and extend first and last samples
1127
1.19M
  in[0] = p[-1];
1128
1.19M
  in[1] = p[-1];
1129
11.0M
  for (int i = 0; i < sz; i++) {
1130
9.81M
    in[i + 2] = p[i];
1131
9.81M
  }
1132
1.19M
  in[sz + 2] = p[sz - 1];
1133
1134
  // interpolate half-sample edge positions
1135
1.19M
  p[-2] = in[0];
1136
11.0M
  for (int i = 0; i < sz; i++) {
1137
9.81M
    int s = -in[i] + (9 * in[i + 1]) + (9 * in[i + 2]) - in[i + 3];
1138
9.81M
    s = (s + 8) >> 4;
1139
9.81M
    s = clip_pixel_highbd(s, bd);
1140
9.81M
    p[2 * i - 1] = s;
1141
9.81M
    p[2 * i] = in[i + 2];
1142
9.81M
  }
1143
1.19M
}
1144
#if CONFIG_AV1_HIGHBITDEPTH
1145
static void build_intra_predictors_high(
1146
    const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride,
1147
    PREDICTION_MODE mode, int angle_delta, FILTER_INTRA_MODE filter_intra_mode,
1148
    TX_SIZE tx_size, int disable_edge_filter, int n_top_px, int n_topright_px,
1149
    int n_left_px, int n_bottomleft_px, int intra_edge_filter_type,
1150
18.5M
    int bit_depth) {
1151
18.5M
  int i;
1152
18.5M
  uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
1153
18.5M
  uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
1154
18.5M
  DECLARE_ALIGNED(16, uint16_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1155
18.5M
  DECLARE_ALIGNED(16, uint16_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1156
18.5M
  uint16_t *const above_row = above_data + 16;
1157
18.5M
  uint16_t *const left_col = left_data + 16;
1158
18.5M
  const int txwpx = tx_size_wide[tx_size];
1159
18.5M
  const int txhpx = tx_size_high[tx_size];
1160
18.5M
  int need_left = extend_modes[mode] & NEED_LEFT;
1161
18.5M
  int need_above = extend_modes[mode] & NEED_ABOVE;
1162
18.5M
  int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
1163
18.5M
  const uint16_t *above_ref = ref - ref_stride;
1164
18.5M
  const uint16_t *left_ref = ref - 1;
1165
18.5M
  int p_angle = 0;
1166
18.5M
  const int is_dr_mode = av1_is_directional_mode(mode);
1167
18.5M
  const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES;
1168
18.5M
  int base = 128 << (bit_depth - 8);
1169
  // The left_data, above_data buffers must be zeroed to fix some intermittent
1170
  // valgrind errors. Uninitialized reads in intra pred modules (e.g. width = 4
1171
  // path in av1_highbd_dr_prediction_z2_avx2()) from left_data, above_data are
1172
  // seen to be the potential reason for this issue.
1173
18.5M
  aom_memset16(left_data, base + 1, NUM_INTRA_NEIGHBOUR_PIXELS);
1174
18.5M
  aom_memset16(above_data, base - 1, NUM_INTRA_NEIGHBOUR_PIXELS);
1175
1176
  // The default values if ref pixels are not available:
1177
  // base   base-1 base-1 .. base-1 base-1 base-1 base-1 base-1 base-1
1178
  // base+1   A      B  ..     Y      Z
1179
  // base+1   C      D  ..     W      X
1180
  // base+1   E      F  ..     U      V
1181
  // base+1   G      H  ..     S      T      T      T      T      T
1182
1183
18.5M
  if (is_dr_mode) {
1184
4.13M
    p_angle = mode_to_angle_map[mode] + angle_delta;
1185
4.13M
    if (p_angle <= 90)
1186
1.16M
      need_above = 1, need_left = 0, need_above_left = 1;
1187
2.96M
    else if (p_angle < 180)
1188
1.41M
      need_above = 1, need_left = 1, need_above_left = 1;
1189
1.55M
    else
1190
1.55M
      need_above = 0, need_left = 1, need_above_left = 1;
1191
4.13M
  }
1192
18.5M
  if (use_filter_intra) need_left = need_above = need_above_left = 1;
1193
1194
18.5M
  assert(n_top_px >= 0);
1195
18.5M
  assert(n_topright_px >= 0);
1196
18.5M
  assert(n_left_px >= 0);
1197
18.5M
  assert(n_bottomleft_px >= 0);
1198
1199
18.5M
  if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
1200
110k
    int val;
1201
110k
    if (need_left) {
1202
69.7k
      val = (n_top_px > 0) ? above_ref[0] : base + 1;
1203
69.7k
    } else {
1204
41.1k
      val = (n_left_px > 0) ? left_ref[0] : base - 1;
1205
41.1k
    }
1206
2.97M
    for (i = 0; i < txhpx; ++i) {
1207
2.86M
      aom_memset16(dst, val, txwpx);
1208
2.86M
      dst += dst_stride;
1209
2.86M
    }
1210
110k
    return;
1211
110k
  }
1212
1213
  // NEED_LEFT
1214
18.4M
  if (need_left) {
1215
17.3M
    int need_bottom = extend_modes[mode] & NEED_BOTTOMLEFT;
1216
17.3M
    if (use_filter_intra) need_bottom = 0;
1217
17.3M
    if (is_dr_mode) need_bottom = p_angle > 180;
1218
17.3M
    const int num_left_pixels_needed = txhpx + (need_bottom ? txwpx : 0);
1219
17.3M
    i = 0;
1220
17.3M
    if (n_left_px > 0) {
1221
250M
      for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
1222
16.1M
      if (need_bottom && n_bottomleft_px > 0) {
1223
267k
        assert(i == txhpx);
1224
2.87M
        for (; i < txhpx + n_bottomleft_px; i++)
1225
2.60M
          left_col[i] = left_ref[i * ref_stride];
1226
267k
      }
1227
16.1M
      if (i < num_left_pixels_needed)
1228
760k
        aom_memset16(&left_col[i], left_col[i - 1], num_left_pixels_needed - i);
1229
16.1M
    } else if (n_top_px > 0) {
1230
1.09M
      aom_memset16(left_col, above_ref[0], num_left_pixels_needed);
1231
1.09M
    }
1232
17.3M
  }
1233
1234
  // NEED_ABOVE
1235
18.4M
  if (need_above) {
1236
16.9M
    int need_right = extend_modes[mode] & NEED_ABOVERIGHT;
1237
16.9M
    if (use_filter_intra) need_right = 0;
1238
16.9M
    if (is_dr_mode) need_right = p_angle < 90;
1239
16.9M
    const int num_top_pixels_needed = txwpx + (need_right ? txhpx : 0);
1240
16.9M
    if (n_top_px > 0) {
1241
16.2M
      memcpy(above_row, above_ref, n_top_px * sizeof(above_ref[0]));
1242
16.2M
      i = n_top_px;
1243
16.2M
      if (need_right && n_topright_px > 0) {
1244
431k
        assert(n_top_px == txwpx);
1245
431k
        memcpy(above_row + txwpx, above_ref + txwpx,
1246
431k
               n_topright_px * sizeof(above_ref[0]));
1247
431k
        i += n_topright_px;
1248
431k
      }
1249
16.2M
      if (i < num_top_pixels_needed)
1250
690k
        aom_memset16(&above_row[i], above_row[i - 1],
1251
690k
                     num_top_pixels_needed - i);
1252
16.2M
    } else if (n_left_px > 0) {
1253
638k
      aom_memset16(above_row, left_ref[0], num_top_pixels_needed);
1254
638k
    }
1255
16.9M
  }
1256
1257
18.4M
  if (need_above_left) {
1258
8.77M
    if (n_top_px > 0 && n_left_px > 0) {
1259
8.05M
      above_row[-1] = above_ref[-1];
1260
8.05M
    } else if (n_top_px > 0) {
1261
399k
      above_row[-1] = above_ref[0];
1262
399k
    } else if (n_left_px > 0) {
1263
303k
      above_row[-1] = left_ref[0];
1264
303k
    } else {
1265
10.8k
      above_row[-1] = base;
1266
10.8k
    }
1267
8.77M
    left_col[-1] = above_row[-1];
1268
8.77M
  }
1269
1270
18.4M
  if (use_filter_intra) {
1271
944k
    highbd_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col,
1272
944k
                                  filter_intra_mode, bit_depth);
1273
944k
    return;
1274
944k
  }
1275
1276
17.4M
  if (is_dr_mode) {
1277
4.02M
    int upsample_above = 0;
1278
4.02M
    int upsample_left = 0;
1279
4.02M
    if (!disable_edge_filter) {
1280
3.60M
      const int need_right = p_angle < 90;
1281
3.60M
      const int need_bottom = p_angle > 180;
1282
3.60M
      if (p_angle != 90 && p_angle != 180) {
1283
2.63M
        const int ab_le = need_above_left ? 1 : 0;
1284
2.63M
        if (need_above && need_left && (txwpx + txhpx >= 24)) {
1285
357k
          filter_intra_edge_corner_high(above_row, left_col);
1286
357k
        }
1287
2.63M
        if (need_above && n_top_px > 0) {
1288
1.84M
          const int strength = intra_edge_filter_strength(
1289
1.84M
              txwpx, txhpx, p_angle - 90, intra_edge_filter_type);
1290
1.84M
          const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0);
1291
1.84M
          av1_filter_intra_edge_high(above_row - ab_le, n_px, strength);
1292
1.84M
        }
1293
2.63M
        if (need_left && n_left_px > 0) {
1294
1.98M
          const int strength = intra_edge_filter_strength(
1295
1.98M
              txhpx, txwpx, p_angle - 180, intra_edge_filter_type);
1296
1.98M
          const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0);
1297
1.98M
          av1_filter_intra_edge_high(left_col - ab_le, n_px, strength);
1298
1.98M
        }
1299
2.63M
      }
1300
3.60M
      upsample_above = av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90,
1301
3.60M
                                                   intra_edge_filter_type);
1302
3.60M
      if (need_above && upsample_above) {
1303
451k
        const int n_px = txwpx + (need_right ? txhpx : 0);
1304
451k
        av1_upsample_intra_edge_high(above_row, n_px, bit_depth);
1305
451k
      }
1306
3.60M
      upsample_left = av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180,
1307
3.60M
                                                  intra_edge_filter_type);
1308
3.60M
      if (need_left && upsample_left) {
1309
747k
        const int n_px = txhpx + (need_bottom ? txwpx : 0);
1310
747k
        av1_upsample_intra_edge_high(left_col, n_px, bit_depth);
1311
747k
      }
1312
3.60M
    }
1313
4.02M
    highbd_dr_predictor(dst, dst_stride, tx_size, above_row, left_col,
1314
4.02M
                        upsample_above, upsample_left, p_angle, bit_depth);
1315
4.02M
    return;
1316
4.02M
  }
1317
1318
  // predict
1319
13.4M
  if (mode == DC_PRED) {
1320
7.24M
    dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size](
1321
7.24M
        dst, dst_stride, above_row, left_col, bit_depth);
1322
7.24M
  } else {
1323
6.22M
    pred_high[mode][tx_size](dst, dst_stride, above_row, left_col, bit_depth);
1324
6.22M
  }
1325
13.4M
}
1326
#endif  // CONFIG_AV1_HIGHBITDEPTH
1327
1328
static void build_intra_predictors(
1329
    const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride,
1330
    PREDICTION_MODE mode, int angle_delta, FILTER_INTRA_MODE filter_intra_mode,
1331
    TX_SIZE tx_size, int disable_edge_filter, int n_top_px, int n_topright_px,
1332
21.1M
    int n_left_px, int n_bottomleft_px, int intra_edge_filter_type) {
1333
21.1M
  int i;
1334
21.1M
  const uint8_t *above_ref = ref - ref_stride;
1335
21.1M
  const uint8_t *left_ref = ref - 1;
1336
21.1M
  DECLARE_ALIGNED(16, uint8_t, left_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1337
21.1M
  DECLARE_ALIGNED(16, uint8_t, above_data[NUM_INTRA_NEIGHBOUR_PIXELS]);
1338
21.1M
  uint8_t *const above_row = above_data + 16;
1339
21.1M
  uint8_t *const left_col = left_data + 16;
1340
21.1M
  const int txwpx = tx_size_wide[tx_size];
1341
21.1M
  const int txhpx = tx_size_high[tx_size];
1342
21.1M
  int need_left = extend_modes[mode] & NEED_LEFT;
1343
21.1M
  int need_above = extend_modes[mode] & NEED_ABOVE;
1344
21.1M
  int need_above_left = extend_modes[mode] & NEED_ABOVELEFT;
1345
21.1M
  int p_angle = 0;
1346
21.1M
  const int is_dr_mode = av1_is_directional_mode(mode);
1347
21.1M
  const int use_filter_intra = filter_intra_mode != FILTER_INTRA_MODES;
1348
  // The left_data, above_data buffers must be zeroed to fix some intermittent
1349
  // valgrind errors. Uninitialized reads in intra pred modules (e.g. width = 4
1350
  // path in av1_dr_prediction_z1_avx2()) from left_data, above_data are seen to
1351
  // be the potential reason for this issue.
1352
21.1M
  memset(left_data, 129, NUM_INTRA_NEIGHBOUR_PIXELS);
1353
21.1M
  memset(above_data, 127, NUM_INTRA_NEIGHBOUR_PIXELS);
1354
1355
  // The default values if ref pixels are not available:
1356
  // 128 127 127 .. 127 127 127 127 127 127
1357
  // 129  A   B  ..  Y   Z
1358
  // 129  C   D  ..  W   X
1359
  // 129  E   F  ..  U   V
1360
  // 129  G   H  ..  S   T   T   T   T   T
1361
  // ..
1362
1363
21.1M
  if (is_dr_mode) {
1364
4.74M
    p_angle = mode_to_angle_map[mode] + angle_delta;
1365
4.74M
    if (p_angle <= 90)
1366
1.47M
      need_above = 1, need_left = 0, need_above_left = 1;
1367
3.27M
    else if (p_angle < 180)
1368
1.52M
      need_above = 1, need_left = 1, need_above_left = 1;
1369
1.75M
    else
1370
1.75M
      need_above = 0, need_left = 1, need_above_left = 1;
1371
4.74M
  }
1372
21.1M
  if (use_filter_intra) need_left = need_above = need_above_left = 1;
1373
1374
21.1M
  assert(n_top_px >= 0);
1375
21.1M
  assert(n_topright_px >= 0);
1376
21.1M
  assert(n_left_px >= 0);
1377
21.1M
  assert(n_bottomleft_px >= 0);
1378
1379
21.1M
  if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
1380
88.5k
    int val;
1381
88.5k
    if (need_left) {
1382
56.3k
      val = (n_top_px > 0) ? above_ref[0] : 129;
1383
56.3k
    } else {
1384
32.1k
      val = (n_left_px > 0) ? left_ref[0] : 127;
1385
32.1k
    }
1386
2.01M
    for (i = 0; i < txhpx; ++i) {
1387
1.92M
      memset(dst, val, txwpx);
1388
1.92M
      dst += dst_stride;
1389
1.92M
    }
1390
88.5k
    return;
1391
88.5k
  }
1392
1393
  // NEED_LEFT
1394
21.0M
  if (need_left) {
1395
19.6M
    int need_bottom = extend_modes[mode] & NEED_BOTTOMLEFT;
1396
19.6M
    if (use_filter_intra) need_bottom = 0;
1397
19.6M
    if (is_dr_mode) need_bottom = p_angle > 180;
1398
19.6M
    const int num_left_pixels_needed = txhpx + (need_bottom ? txwpx : 0);
1399
19.6M
    i = 0;
1400
19.6M
    if (n_left_px > 0) {
1401
278M
      for (; i < n_left_px; i++) left_col[i] = left_ref[i * ref_stride];
1402
18.4M
      if (need_bottom && n_bottomleft_px > 0) {
1403
327k
        assert(i == txhpx);
1404
3.64M
        for (; i < txhpx + n_bottomleft_px; i++)
1405
3.31M
          left_col[i] = left_ref[i * ref_stride];
1406
327k
      }
1407
18.4M
      if (i < num_left_pixels_needed)
1408
835k
        memset(&left_col[i], left_col[i - 1], num_left_pixels_needed - i);
1409
18.4M
    } else if (n_top_px > 0) {
1410
1.10M
      memset(left_col, above_ref[0], num_left_pixels_needed);
1411
1.10M
    }
1412
19.6M
  }
1413
1414
  // NEED_ABOVE
1415
21.0M
  if (need_above) {
1416
19.3M
    int need_right = extend_modes[mode] & NEED_ABOVERIGHT;
1417
19.3M
    if (use_filter_intra) need_right = 0;
1418
19.3M
    if (is_dr_mode) need_right = p_angle < 90;
1419
19.3M
    const int num_top_pixels_needed = txwpx + (need_right ? txhpx : 0);
1420
19.3M
    if (n_top_px > 0) {
1421
18.7M
      memcpy(above_row, above_ref, n_top_px);
1422
18.7M
      i = n_top_px;
1423
18.7M
      if (need_right && n_topright_px > 0) {
1424
536k
        assert(n_top_px == txwpx);
1425
536k
        memcpy(above_row + txwpx, above_ref + txwpx, n_topright_px);
1426
536k
        i += n_topright_px;
1427
536k
      }
1428
18.7M
      if (i < num_top_pixels_needed)
1429
845k
        memset(&above_row[i], above_row[i - 1], num_top_pixels_needed - i);
1430
18.7M
    } else if (n_left_px > 0) {
1431
623k
      memset(above_row, left_ref[0], num_top_pixels_needed);
1432
623k
    }
1433
19.3M
  }
1434
1435
21.0M
  if (need_above_left) {
1436
10.4M
    if (n_top_px > 0 && n_left_px > 0) {
1437
9.68M
      above_row[-1] = above_ref[-1];
1438
9.68M
    } else if (n_top_px > 0) {
1439
427k
      above_row[-1] = above_ref[0];
1440
427k
    } else if (n_left_px > 0) {
1441
359k
      above_row[-1] = left_ref[0];
1442
359k
    } else {
1443
7.20k
      above_row[-1] = 128;
1444
7.20k
    }
1445
10.4M
    left_col[-1] = above_row[-1];
1446
10.4M
  }
1447
1448
21.0M
  if (use_filter_intra) {
1449
1.03M
    av1_filter_intra_predictor(dst, dst_stride, tx_size, above_row, left_col,
1450
1.03M
                               filter_intra_mode);
1451
1.03M
    return;
1452
1.03M
  }
1453
1454
20.0M
  if (is_dr_mode) {
1455
4.66M
    int upsample_above = 0;
1456
4.66M
    int upsample_left = 0;
1457
4.66M
    if (!disable_edge_filter) {
1458
3.54M
      const int need_right = p_angle < 90;
1459
3.54M
      const int need_bottom = p_angle > 180;
1460
3.54M
      if (p_angle != 90 && p_angle != 180) {
1461
2.48M
        const int ab_le = need_above_left ? 1 : 0;
1462
2.48M
        if (need_above && need_left && (txwpx + txhpx >= 24)) {
1463
472k
          filter_intra_edge_corner(above_row, left_col);
1464
472k
        }
1465
2.48M
        if (need_above && n_top_px > 0) {
1466
1.76M
          const int strength = intra_edge_filter_strength(
1467
1.76M
              txwpx, txhpx, p_angle - 90, intra_edge_filter_type);
1468
1.76M
          const int n_px = n_top_px + ab_le + (need_right ? txhpx : 0);
1469
1.76M
          av1_filter_intra_edge(above_row - ab_le, n_px, strength);
1470
1.76M
        }
1471
2.48M
        if (need_left && n_left_px > 0) {
1472
1.80M
          const int strength = intra_edge_filter_strength(
1473
1.80M
              txhpx, txwpx, p_angle - 180, intra_edge_filter_type);
1474
1.80M
          const int n_px = n_left_px + ab_le + (need_bottom ? txwpx : 0);
1475
1.80M
          av1_filter_intra_edge(left_col - ab_le, n_px, strength);
1476
1.80M
        }
1477
2.48M
      }
1478
3.54M
      upsample_above = av1_use_intra_edge_upsample(txwpx, txhpx, p_angle - 90,
1479
3.54M
                                                   intra_edge_filter_type);
1480
3.54M
      if (need_above && upsample_above) {
1481
388k
        const int n_px = txwpx + (need_right ? txhpx : 0);
1482
388k
        av1_upsample_intra_edge(above_row, n_px);
1483
388k
      }
1484
3.54M
      upsample_left = av1_use_intra_edge_upsample(txhpx, txwpx, p_angle - 180,
1485
3.54M
                                                  intra_edge_filter_type);
1486
3.54M
      if (need_left && upsample_left) {
1487
499k
        const int n_px = txhpx + (need_bottom ? txwpx : 0);
1488
499k
        av1_upsample_intra_edge(left_col, n_px);
1489
499k
      }
1490
3.54M
    }
1491
4.66M
    dr_predictor(dst, dst_stride, tx_size, above_row, left_col, upsample_above,
1492
4.66M
                 upsample_left, p_angle);
1493
4.66M
    return;
1494
4.66M
  }
1495
1496
  // predict
1497
15.3M
  if (mode == DC_PRED) {
1498
7.70M
    dc_pred[n_left_px > 0][n_top_px > 0][tx_size](dst, dst_stride, above_row,
1499
7.70M
                                                  left_col);
1500
7.70M
  } else {
1501
7.67M
    pred[mode][tx_size](dst, dst_stride, above_row, left_col);
1502
7.67M
  }
1503
15.3M
}
1504
1505
static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x,
1506
7.48M
                                            int subsampling_y) {
1507
7.48M
  assert(subsampling_x >= 0 && subsampling_x < 2);
1508
7.48M
  assert(subsampling_y >= 0 && subsampling_y < 2);
1509
7.48M
  BLOCK_SIZE bs = bsize;
1510
7.48M
  switch (bsize) {
1511
119k
    case BLOCK_4X4:
1512
119k
      if (subsampling_x == 1 && subsampling_y == 1)
1513
117k
        bs = BLOCK_8X8;
1514
1.22k
      else if (subsampling_x == 1)
1515
1.22k
        bs = BLOCK_8X4;
1516
0
      else if (subsampling_y == 1)
1517
0
        bs = BLOCK_4X8;
1518
119k
      break;
1519
191k
    case BLOCK_4X8:
1520
191k
      if (subsampling_x == 1 && subsampling_y == 1)
1521
191k
        bs = BLOCK_8X8;
1522
0
      else if (subsampling_x == 1)
1523
0
        bs = BLOCK_8X8;
1524
0
      else if (subsampling_y == 1)
1525
0
        bs = BLOCK_4X8;
1526
191k
      break;
1527
233k
    case BLOCK_8X4:
1528
233k
      if (subsampling_x == 1 && subsampling_y == 1)
1529
232k
        bs = BLOCK_8X8;
1530
1.35k
      else if (subsampling_x == 1)
1531
1.35k
        bs = BLOCK_8X4;
1532
0
      else if (subsampling_y == 1)
1533
0
        bs = BLOCK_8X8;
1534
233k
      break;
1535
333k
    case BLOCK_4X16:
1536
333k
      if (subsampling_x == 1 && subsampling_y == 1)
1537
333k
        bs = BLOCK_8X16;
1538
0
      else if (subsampling_x == 1)
1539
0
        bs = BLOCK_8X16;
1540
0
      else if (subsampling_y == 1)
1541
0
        bs = BLOCK_4X16;
1542
333k
      break;
1543
303k
    case BLOCK_16X4:
1544
303k
      if (subsampling_x == 1 && subsampling_y == 1)
1545
300k
        bs = BLOCK_16X8;
1546
2.81k
      else if (subsampling_x == 1)
1547
2.81k
        bs = BLOCK_16X4;
1548
0
      else if (subsampling_y == 1)
1549
0
        bs = BLOCK_16X8;
1550
303k
      break;
1551
6.30M
    default: break;
1552
7.48M
  }
1553
7.48M
  return bs;
1554
7.48M
}
1555
1556
void av1_predict_intra_block(const MACROBLOCKD *xd, BLOCK_SIZE sb_size,
1557
                             int enable_intra_edge_filter, int wpx, int hpx,
1558
                             TX_SIZE tx_size, PREDICTION_MODE mode,
1559
                             int angle_delta, int use_palette,
1560
                             FILTER_INTRA_MODE filter_intra_mode,
1561
                             const uint8_t *ref, int ref_stride, uint8_t *dst,
1562
                             int dst_stride, int col_off, int row_off,
1563
40.3M
                             int plane) {
1564
40.3M
  const MB_MODE_INFO *const mbmi = xd->mi[0];
1565
40.3M
  const int txwpx = tx_size_wide[tx_size];
1566
40.3M
  const int txhpx = tx_size_high[tx_size];
1567
40.3M
  const int x = col_off << MI_SIZE_LOG2;
1568
40.3M
  const int y = row_off << MI_SIZE_LOG2;
1569
1570
40.3M
  if (use_palette) {
1571
639k
    int r, c;
1572
639k
    const uint8_t *const map = xd->plane[plane != 0].color_index_map +
1573
639k
                               xd->color_index_map_offset[plane != 0];
1574
639k
    const uint16_t *const palette =
1575
639k
        mbmi->palette_mode_info.palette_colors + plane * PALETTE_MAX_SIZE;
1576
639k
    if (is_cur_buf_hbd(xd)) {
1577
52.7k
      uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
1578
422k
      for (r = 0; r < txhpx; ++r) {
1579
4.59M
        for (c = 0; c < txwpx; ++c) {
1580
4.22M
          dst16[r * dst_stride + c] = palette[map[(r + y) * wpx + c + x]];
1581
4.22M
        }
1582
370k
      }
1583
586k
    } else {
1584
6.11M
      for (r = 0; r < txhpx; ++r) {
1585
84.6M
        for (c = 0; c < txwpx; ++c) {
1586
79.1M
          dst[r * dst_stride + c] =
1587
79.1M
              (uint8_t)palette[map[(r + y) * wpx + c + x]];
1588
79.1M
        }
1589
5.53M
      }
1590
586k
    }
1591
639k
    return;
1592
639k
  }
1593
1594
39.7M
  const struct macroblockd_plane *const pd = &xd->plane[plane];
1595
39.7M
  const int txw = tx_size_wide_unit[tx_size];
1596
39.7M
  const int txh = tx_size_high_unit[tx_size];
1597
39.7M
  const int ss_x = pd->subsampling_x;
1598
39.7M
  const int ss_y = pd->subsampling_y;
1599
39.7M
  const int have_top =
1600
39.7M
      row_off || (ss_y ? xd->chroma_up_available : xd->up_available);
1601
39.7M
  const int have_left =
1602
39.7M
      col_off || (ss_x ? xd->chroma_left_available : xd->left_available);
1603
39.7M
  const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
1604
39.7M
  const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
1605
1606
  // Distance between the right edge of this prediction block to
1607
  // the frame right edge
1608
39.7M
  const int xr = (xd->mb_to_right_edge >> (3 + ss_x)) + wpx - x - txwpx;
1609
  // Distance between the bottom edge of this prediction block to
1610
  // the frame bottom edge
1611
39.7M
  const int yd = (xd->mb_to_bottom_edge >> (3 + ss_y)) + hpx - y - txhpx;
1612
39.7M
  const int right_available =
1613
39.7M
      mi_col + ((col_off + txw) << ss_x) < xd->tile.mi_col_end;
1614
39.7M
  const int bottom_available =
1615
39.7M
      (yd > 0) && (mi_row + ((row_off + txh) << ss_y) < xd->tile.mi_row_end);
1616
1617
39.7M
  const PARTITION_TYPE partition = mbmi->partition;
1618
1619
39.7M
  BLOCK_SIZE bsize = mbmi->bsize;
1620
  // force 4x4 chroma component block size.
1621
39.7M
  if (ss_x || ss_y) {
1622
7.48M
    bsize = scale_chroma_bsize(bsize, ss_x, ss_y);
1623
7.48M
  }
1624
1625
39.7M
  const int have_top_right =
1626
39.7M
      has_top_right(sb_size, bsize, mi_row, mi_col, have_top, right_available,
1627
39.7M
                    partition, tx_size, row_off, col_off, ss_x, ss_y);
1628
39.7M
  const int have_bottom_left = has_bottom_left(
1629
39.7M
      sb_size, bsize, mi_row, mi_col, bottom_available, have_left, partition,
1630
39.7M
      tx_size, row_off, col_off, ss_x, ss_y);
1631
1632
39.7M
  const int disable_edge_filter = !enable_intra_edge_filter;
1633
39.7M
  const int intra_edge_filter_type = get_intra_edge_filter_type(xd, plane);
1634
39.7M
#if CONFIG_AV1_HIGHBITDEPTH
1635
39.7M
  if (is_cur_buf_hbd(xd)) {
1636
18.5M
    build_intra_predictors_high(
1637
18.5M
        ref, ref_stride, dst, dst_stride, mode, angle_delta, filter_intra_mode,
1638
18.5M
        tx_size, disable_edge_filter, have_top ? AOMMIN(txwpx, xr + txwpx) : 0,
1639
18.5M
        have_top_right ? AOMMIN(txwpx, xr) : 0,
1640
18.5M
        have_left ? AOMMIN(txhpx, yd + txhpx) : 0,
1641
18.5M
        have_bottom_left ? AOMMIN(txhpx, yd) : 0, intra_edge_filter_type,
1642
18.5M
        xd->bd);
1643
18.5M
    return;
1644
18.5M
  }
1645
21.1M
#endif
1646
21.1M
  build_intra_predictors(
1647
21.1M
      ref, ref_stride, dst, dst_stride, mode, angle_delta, filter_intra_mode,
1648
21.1M
      tx_size, disable_edge_filter, have_top ? AOMMIN(txwpx, xr + txwpx) : 0,
1649
21.1M
      have_top_right ? AOMMIN(txwpx, xr) : 0,
1650
21.1M
      have_left ? AOMMIN(txhpx, yd + txhpx) : 0,
1651
21.1M
      have_bottom_left ? AOMMIN(txhpx, yd) : 0, intra_edge_filter_type);
1652
21.1M
}
1653
1654
void av1_predict_intra_block_facade(const AV1_COMMON *cm, MACROBLOCKD *xd,
1655
                                    int plane, int blk_col, int blk_row,
1656
40.3M
                                    TX_SIZE tx_size) {
1657
40.3M
  const MB_MODE_INFO *const mbmi = xd->mi[0];
1658
40.3M
  struct macroblockd_plane *const pd = &xd->plane[plane];
1659
40.3M
  const int dst_stride = pd->dst.stride;
1660
40.3M
  uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
1661
40.3M
  const PREDICTION_MODE mode =
1662
40.3M
      (plane == AOM_PLANE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
1663
40.3M
  const int use_palette = mbmi->palette_mode_info.palette_size[plane != 0] > 0;
1664
40.3M
  const FILTER_INTRA_MODE filter_intra_mode =
1665
40.3M
      (plane == AOM_PLANE_Y && mbmi->filter_intra_mode_info.use_filter_intra)
1666
40.3M
          ? mbmi->filter_intra_mode_info.filter_intra_mode
1667
40.3M
          : FILTER_INTRA_MODES;
1668
40.3M
  const int angle_delta = mbmi->angle_delta[plane != AOM_PLANE_Y] * ANGLE_STEP;
1669
40.3M
  const SequenceHeader *seq_params = cm->seq_params;
1670
1671
40.3M
  if (plane != AOM_PLANE_Y && mbmi->uv_mode == UV_CFL_PRED) {
1672
4.31M
#if CONFIG_DEBUG
1673
4.31M
    assert(is_cfl_allowed(xd));
1674
4.31M
    const BLOCK_SIZE plane_bsize =
1675
4.31M
        get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
1676
4.31M
    (void)plane_bsize;
1677
4.31M
    assert(plane_bsize < BLOCK_SIZES_ALL);
1678
4.31M
    if (!xd->lossless[mbmi->segment_id]) {
1679
4.30M
      assert(blk_col == 0);
1680
4.30M
      assert(blk_row == 0);
1681
4.30M
      assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]);
1682
4.30M
      assert(block_size_high[plane_bsize] == tx_size_high[tx_size]);
1683
4.30M
    }
1684
4.31M
#endif
1685
4.31M
    CFL_CTX *const cfl = &xd->cfl;
1686
4.31M
    CFL_PRED_TYPE pred_plane = get_cfl_pred_type(plane);
1687
4.31M
    if (cfl->dc_pred_is_cached[pred_plane] == 0) {
1688
4.31M
      av1_predict_intra_block(xd, seq_params->sb_size,
1689
4.31M
                              seq_params->enable_intra_edge_filter, pd->width,
1690
4.31M
                              pd->height, tx_size, mode, angle_delta,
1691
4.31M
                              use_palette, filter_intra_mode, dst, dst_stride,
1692
4.31M
                              dst, dst_stride, blk_col, blk_row, plane);
1693
4.31M
      if (cfl->use_dc_pred_cache) {
1694
0
        cfl_store_dc_pred(xd, dst, pred_plane, tx_size_wide[tx_size]);
1695
0
        cfl->dc_pred_is_cached[pred_plane] = 1;
1696
0
      }
1697
4.31M
    } else {
1698
0
      cfl_load_dc_pred(xd, dst, dst_stride, tx_size, pred_plane);
1699
0
    }
1700
4.31M
    cfl_predict_block(xd, dst, dst_stride, tx_size, plane);
1701
4.31M
    return;
1702
4.31M
  }
1703
36.0M
  av1_predict_intra_block(
1704
36.0M
      xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, pd->width,
1705
36.0M
      pd->height, tx_size, mode, angle_delta, use_palette, filter_intra_mode,
1706
36.0M
      dst, dst_stride, dst, dst_stride, blk_col, blk_row, plane);
1707
36.0M
}
1708
1709
5
void av1_init_intra_predictors(void) {
1710
5
  aom_once(init_intra_predictors_internal);
1711
5
}