Coverage Report

Created: 2026-01-20 07:37

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/libwebp/src/utils/quant_levels_utils.c
Line
Count
Source
1
// Copyright 2011 Google Inc. All Rights Reserved.
2
//
3
// Use of this source code is governed by a BSD-style license
4
// that can be found in the COPYING file in the root of the source
5
// tree. An additional intellectual property rights grant can be found
6
// in the file PATENTS. All contributing project authors may
7
// be found in the AUTHORS file in the root of the source tree.
8
// -----------------------------------------------------------------------------
9
//
10
// Quantize levels for specified number of quantization-levels ([2, 256]).
11
// Min and max values are preserved (usual 0 and 255 for alpha plane).
12
//
13
// Author: Skal (pascal.massimino@gmail.com)
14
15
#include "src/utils/quant_levels_utils.h"
16
17
#include <assert.h>
18
#include <stddef.h>
19
20
#include "src/utils/bounds_safety.h"
21
#include "src/webp/types.h"
22
23
#define NUM_SYMBOLS 256
24
25
0
#define MAX_ITER 6            // Maximum number of convergence steps.
26
0
#define ERROR_THRESHOLD 1e-4  // MSE stopping criterion.
27
28
WEBP_ASSUME_UNSAFE_INDEXABLE_ABI
29
30
// -----------------------------------------------------------------------------
31
// Quantize levels.
32
33
int QuantizeLevels(uint8_t* const WEBP_COUNTED_BY((size_t)width* height) data,
34
0
                   int width, int height, int num_levels, uint64_t* const sse) {
35
0
  int freq[NUM_SYMBOLS] = {0};
36
0
  int q_level[NUM_SYMBOLS] = {0};
37
0
  double inv_q_level[NUM_SYMBOLS] = {0};
38
0
  int min_s = 255, max_s = 0;
39
0
  const size_t data_size = height * width;
40
0
  int i, num_levels_in, iter;
41
0
  double last_err = 1.e38, err = 0.;
42
0
  const double err_threshold = ERROR_THRESHOLD * data_size;
43
44
0
  if (data == NULL) {
45
0
    return 0;
46
0
  }
47
48
0
  if (width <= 0 || height <= 0) {
49
0
    return 0;
50
0
  }
51
52
0
  if (num_levels < 2 || num_levels > 256) {
53
0
    return 0;
54
0
  }
55
56
0
  {
57
0
    size_t n;
58
0
    num_levels_in = 0;
59
0
    for (n = 0; n < data_size; ++n) {
60
0
      num_levels_in += (freq[data[n]] == 0);
61
0
      if (min_s > data[n]) min_s = data[n];
62
0
      if (max_s < data[n]) max_s = data[n];
63
0
      ++freq[data[n]];
64
0
    }
65
0
  }
66
67
0
  if (num_levels_in <= num_levels) goto End;  // nothing to do!
68
69
  // Start with uniformly spread centroids.
70
0
  for (i = 0; i < num_levels; ++i) {
71
0
    inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1);
72
0
  }
73
74
  // Fixed values. Won't be changed.
75
0
  q_level[min_s] = 0;
76
0
  q_level[max_s] = num_levels - 1;
77
0
  assert(inv_q_level[0] == min_s);
78
0
  assert(inv_q_level[num_levels - 1] == max_s);
79
80
  // k-Means iterations.
81
0
  for (iter = 0; iter < MAX_ITER; ++iter) {
82
0
    double q_sum[NUM_SYMBOLS] = {0};
83
0
    double q_count[NUM_SYMBOLS] = {0};
84
0
    int s, slot = 0;
85
86
    // Assign classes to representatives.
87
0
    for (s = min_s; s <= max_s; ++s) {
88
      // Keep track of the nearest neighbour 'slot'
89
0
      while (slot < num_levels - 1 &&
90
0
             2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) {
91
0
        ++slot;
92
0
      }
93
0
      if (freq[s] > 0) {
94
0
        q_sum[slot] += s * freq[s];
95
0
        q_count[slot] += freq[s];
96
0
      }
97
0
      q_level[s] = slot;
98
0
    }
99
100
    // Assign new representatives to classes.
101
0
    if (num_levels > 2) {
102
0
      for (slot = 1; slot < num_levels - 1; ++slot) {
103
0
        const double count = q_count[slot];
104
0
        if (count > 0.) {
105
0
          inv_q_level[slot] = q_sum[slot] / count;
106
0
        }
107
0
      }
108
0
    }
109
110
    // Compute convergence error.
111
0
    err = 0.;
112
0
    for (s = min_s; s <= max_s; ++s) {
113
0
      const double error = s - inv_q_level[q_level[s]];
114
0
      err += freq[s] * error * error;
115
0
    }
116
117
    // Check for convergence: we stop as soon as the error is no
118
    // longer improving.
119
0
    if (last_err - err < err_threshold) break;
120
0
    last_err = err;
121
0
  }
122
123
  // Remap the alpha plane to quantized values.
124
0
  {
125
    // double->int rounding operation can be costly, so we do it
126
    // once for all before remapping. We also perform the data[] -> slot
127
    // mapping, while at it (avoid one indirection in the final loop).
128
0
    uint8_t map[NUM_SYMBOLS];
129
0
    int s;
130
0
    size_t n;
131
0
    for (s = min_s; s <= max_s; ++s) {
132
0
      const int slot = q_level[s];
133
0
      map[s] = (uint8_t)(inv_q_level[slot] + .5);
134
0
    }
135
    // Final pass.
136
0
    for (n = 0; n < data_size; ++n) {
137
0
      data[n] = map[data[n]];
138
0
    }
139
0
  }
140
0
End:
141
  // Store sum of squared error if needed.
142
0
  if (sse != NULL) *sse = (uint64_t)err;
143
144
0
  return 1;
145
0
}