/proc/self/cwd/external/utf8_range/utf8_validity.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2022 Google LLC |
2 | | // |
3 | | // Use of this source code is governed by an MIT-style |
4 | | // license that can be found in the LICENSE file or at |
5 | | // https://opensource.org/licenses/MIT. |
6 | | |
7 | | /* This is a wrapper for the Google range-sse.cc algorithm which checks whether a |
8 | | * sequence of bytes is a valid UTF-8 sequence and finds the longest valid prefix of |
9 | | * the UTF-8 sequence. |
10 | | * |
11 | | * The key difference is that it checks for as much ASCII symbols as possible |
12 | | * and then falls back to the range-sse.cc algorithm. The changes to the |
13 | | * algorithm are cosmetic, mostly to trick the clang compiler to produce optimal |
14 | | * code. |
15 | | * |
16 | | * For API see the utf8_validity.h header. |
17 | | */ |
18 | | #include "utf8_validity.h" |
19 | | |
20 | | #include <cstddef> |
21 | | #include <cstdint> |
22 | | |
23 | | #include "absl/strings/ascii.h" |
24 | | #include "absl/strings/string_view.h" |
25 | | |
26 | | #ifdef __SSE4_1__ |
27 | | #include <emmintrin.h> |
28 | | #include <smmintrin.h> |
29 | | #include <tmmintrin.h> |
30 | | #endif |
31 | | |
32 | | namespace utf8_range { |
33 | | namespace { |
34 | | |
35 | 1.35k | inline uint64_t UNALIGNED_LOAD64(const void* p) { |
36 | 1.35k | uint64_t t; |
37 | 1.35k | memcpy(&t, p, sizeof t); |
38 | 1.35k | return t; |
39 | 1.35k | } |
40 | | |
41 | 0 | inline bool TrailByteOk(const char c) { |
42 | 0 | return static_cast<int8_t>(c) <= static_cast<int8_t>(0xBF); |
43 | 0 | } |
44 | | |
45 | | /* If ReturnPosition is false then it returns 1 if |data| is a valid utf8 |
46 | | * sequence, otherwise returns 0. |
47 | | * If ReturnPosition is set to true, returns the length in bytes of the prefix |
48 | | of |data| that is all structurally valid UTF-8. |
49 | | */ |
50 | | template <bool ReturnPosition> |
51 | 958 | size_t ValidUTF8Span(const char* data, const char* end) { |
52 | | /* We return err_pos in the loop which is always 0 if !ReturnPosition */ |
53 | 958 | size_t err_pos = 0; |
54 | 958 | size_t codepoint_bytes = 0; |
55 | | /* The early check is done because of early continue's on codepoints of all |
56 | | * sizes, i.e. we first check for ascii and if it is, we call continue, then |
57 | | * for 2 byte codepoints, etc. This is done in order to reduce indentation and |
58 | | * improve readability of the codepoint validity check. |
59 | | */ |
60 | 958 | while (data + codepoint_bytes < end) { |
61 | 0 | if (ReturnPosition) { |
62 | 0 | err_pos += codepoint_bytes; |
63 | 0 | } |
64 | 0 | data += codepoint_bytes; |
65 | 0 | const size_t len = end - data; |
66 | 0 | const unsigned char byte1 = data[0]; |
67 | | |
68 | | /* We do not skip many ascii bytes at the same time as this function is |
69 | | used for tail checking (< 16 bytes) and for non x86 platforms. We also |
70 | | don't think that cases where non-ASCII codepoints are followed by ascii |
71 | | happen often. For small strings it also introduces some penalty. For |
72 | | purely ascii UTF8 strings (which is the overwhelming case) we call |
73 | | SkipAscii function which is multiplatform and extremely fast. |
74 | | */ |
75 | | /* [00..7F] ASCII -> 1 byte */ |
76 | 0 | if (absl::ascii_isascii(byte1)) { |
77 | 0 | codepoint_bytes = 1; |
78 | 0 | continue; |
79 | 0 | } |
80 | | /* [C2..DF], [80..BF] -> 2 bytes */ |
81 | 0 | if (len >= 2 && byte1 >= 0xC2 && byte1 <= 0xDF && TrailByteOk(data[1])) { |
82 | 0 | codepoint_bytes = 2; |
83 | 0 | continue; |
84 | 0 | } |
85 | 0 | if (len >= 3) { |
86 | 0 | const unsigned char byte2 = data[1]; |
87 | 0 | const unsigned char byte3 = data[2]; |
88 | | |
89 | | /* Is byte2, byte3 between [0x80, 0xBF] |
90 | | * Check for 0x80 was done above. |
91 | | */ |
92 | 0 | if (!TrailByteOk(byte2) || !TrailByteOk(byte3)) { |
93 | 0 | return err_pos; |
94 | 0 | } |
95 | | |
96 | 0 | if (/* E0, A0..BF, 80..BF */ |
97 | 0 | ((byte1 == 0xE0 && byte2 >= 0xA0) || |
98 | | /* E1..EC, 80..BF, 80..BF */ |
99 | 0 | (byte1 >= 0xE1 && byte1 <= 0xEC) || |
100 | | /* ED, 80..9F, 80..BF */ |
101 | 0 | (byte1 == 0xED && byte2 <= 0x9F) || |
102 | | /* EE..EF, 80..BF, 80..BF */ |
103 | 0 | (byte1 >= 0xEE && byte1 <= 0xEF))) { |
104 | 0 | codepoint_bytes = 3; |
105 | 0 | continue; |
106 | 0 | } |
107 | 0 | if (len >= 4) { |
108 | 0 | const unsigned char byte4 = data[3]; |
109 | | /* Is byte4 between 0x80 ~ 0xBF */ |
110 | 0 | if (!TrailByteOk(byte4)) { |
111 | 0 | return err_pos; |
112 | 0 | } |
113 | | |
114 | 0 | if (/* F0, 90..BF, 80..BF, 80..BF */ |
115 | 0 | ((byte1 == 0xF0 && byte2 >= 0x90) || |
116 | | /* F1..F3, 80..BF, 80..BF, 80..BF */ |
117 | 0 | (byte1 >= 0xF1 && byte1 <= 0xF3) || |
118 | | /* F4, 80..8F, 80..BF, 80..BF */ |
119 | 0 | (byte1 == 0xF4 && byte2 <= 0x8F))) { |
120 | 0 | codepoint_bytes = 4; |
121 | 0 | continue; |
122 | 0 | } |
123 | 0 | } |
124 | 0 | } |
125 | 0 | return err_pos; |
126 | 0 | } |
127 | 958 | if (ReturnPosition) { |
128 | 0 | err_pos += codepoint_bytes; |
129 | 0 | } |
130 | | /* if ReturnPosition is false, this returns 1. |
131 | | * if ReturnPosition is true, this returns err_pos. |
132 | | */ |
133 | 958 | return err_pos + (1 - ReturnPosition); |
134 | 958 | } utf8_validity.cc:unsigned long utf8_range::(anonymous namespace)::ValidUTF8Span<false>(char const*, char const*) Line | Count | Source | 51 | 958 | size_t ValidUTF8Span(const char* data, const char* end) { | 52 | | /* We return err_pos in the loop which is always 0 if !ReturnPosition */ | 53 | 958 | size_t err_pos = 0; | 54 | 958 | size_t codepoint_bytes = 0; | 55 | | /* The early check is done because of early continue's on codepoints of all | 56 | | * sizes, i.e. we first check for ascii and if it is, we call continue, then | 57 | | * for 2 byte codepoints, etc. This is done in order to reduce indentation and | 58 | | * improve readability of the codepoint validity check. | 59 | | */ | 60 | 958 | while (data + codepoint_bytes < end) { | 61 | 0 | if (ReturnPosition) { | 62 | 0 | err_pos += codepoint_bytes; | 63 | 0 | } | 64 | 0 | data += codepoint_bytes; | 65 | 0 | const size_t len = end - data; | 66 | 0 | const unsigned char byte1 = data[0]; | 67 | | | 68 | | /* We do not skip many ascii bytes at the same time as this function is | 69 | | used for tail checking (< 16 bytes) and for non x86 platforms. We also | 70 | | don't think that cases where non-ASCII codepoints are followed by ascii | 71 | | happen often. For small strings it also introduces some penalty. For | 72 | | purely ascii UTF8 strings (which is the overwhelming case) we call | 73 | | SkipAscii function which is multiplatform and extremely fast. | 74 | | */ | 75 | | /* [00..7F] ASCII -> 1 byte */ | 76 | 0 | if (absl::ascii_isascii(byte1)) { | 77 | 0 | codepoint_bytes = 1; | 78 | 0 | continue; | 79 | 0 | } | 80 | | /* [C2..DF], [80..BF] -> 2 bytes */ | 81 | 0 | if (len >= 2 && byte1 >= 0xC2 && byte1 <= 0xDF && TrailByteOk(data[1])) { | 82 | 0 | codepoint_bytes = 2; | 83 | 0 | continue; | 84 | 0 | } | 85 | 0 | if (len >= 3) { | 86 | 0 | const unsigned char byte2 = data[1]; | 87 | 0 | const unsigned char byte3 = data[2]; | 88 | | | 89 | | /* Is byte2, byte3 between [0x80, 0xBF] | 90 | | * Check for 0x80 was done above. | 91 | | */ | 92 | 0 | if (!TrailByteOk(byte2) || !TrailByteOk(byte3)) { | 93 | 0 | return err_pos; | 94 | 0 | } | 95 | | | 96 | 0 | if (/* E0, A0..BF, 80..BF */ | 97 | 0 | ((byte1 == 0xE0 && byte2 >= 0xA0) || | 98 | | /* E1..EC, 80..BF, 80..BF */ | 99 | 0 | (byte1 >= 0xE1 && byte1 <= 0xEC) || | 100 | | /* ED, 80..9F, 80..BF */ | 101 | 0 | (byte1 == 0xED && byte2 <= 0x9F) || | 102 | | /* EE..EF, 80..BF, 80..BF */ | 103 | 0 | (byte1 >= 0xEE && byte1 <= 0xEF))) { | 104 | 0 | codepoint_bytes = 3; | 105 | 0 | continue; | 106 | 0 | } | 107 | 0 | if (len >= 4) { | 108 | 0 | const unsigned char byte4 = data[3]; | 109 | | /* Is byte4 between 0x80 ~ 0xBF */ | 110 | 0 | if (!TrailByteOk(byte4)) { | 111 | 0 | return err_pos; | 112 | 0 | } | 113 | | | 114 | 0 | if (/* F0, 90..BF, 80..BF, 80..BF */ | 115 | 0 | ((byte1 == 0xF0 && byte2 >= 0x90) || | 116 | | /* F1..F3, 80..BF, 80..BF, 80..BF */ | 117 | 0 | (byte1 >= 0xF1 && byte1 <= 0xF3) || | 118 | | /* F4, 80..8F, 80..BF, 80..BF */ | 119 | 0 | (byte1 == 0xF4 && byte2 <= 0x8F))) { | 120 | 0 | codepoint_bytes = 4; | 121 | 0 | continue; | 122 | 0 | } | 123 | 0 | } | 124 | 0 | } | 125 | 0 | return err_pos; | 126 | 0 | } | 127 | 958 | if (ReturnPosition) { | 128 | 0 | err_pos += codepoint_bytes; | 129 | 0 | } | 130 | | /* if ReturnPosition is false, this returns 1. | 131 | | * if ReturnPosition is true, this returns err_pos. | 132 | | */ | 133 | 958 | return err_pos + (1 - ReturnPosition); | 134 | 958 | } |
Unexecuted instantiation: utf8_validity.cc:unsigned long utf8_range::(anonymous namespace)::ValidUTF8Span<true>(char const*, char const*) |
135 | | |
136 | | /* Returns the number of bytes needed to skip backwards to get to the first |
137 | | byte of codepoint. |
138 | | */ |
139 | 0 | inline int CodepointSkipBackwards(int32_t codepoint_word) { |
140 | 0 | const int8_t* const codepoint = |
141 | 0 | reinterpret_cast<const int8_t*>(&codepoint_word); |
142 | 0 | if (!TrailByteOk(codepoint[3])) { |
143 | 0 | return 1; |
144 | 0 | } else if (!TrailByteOk(codepoint[2])) { |
145 | 0 | return 2; |
146 | 0 | } else if (!TrailByteOk(codepoint[1])) { |
147 | 0 | return 3; |
148 | 0 | } |
149 | 0 | return 0; |
150 | 0 | } |
151 | | |
152 | | /* Skipping over ASCII as much as possible, per 8 bytes. It is intentional |
153 | | as most strings to check for validity consist only of 1 byte codepoints. |
154 | | */ |
155 | 958 | inline const char* SkipAscii(const char* data, const char* end) { |
156 | 2.31k | while (8 <= end - data && |
157 | 2.31k | (UNALIGNED_LOAD64(data) & 0x8080808080808080) == 0) { |
158 | 1.35k | data += 8; |
159 | 1.35k | } |
160 | 4.64k | while (data < end && absl::ascii_isascii(*data)) { |
161 | 3.69k | ++data; |
162 | 3.69k | } |
163 | 958 | return data; |
164 | 958 | } |
165 | | |
166 | | template <bool ReturnPosition> |
167 | 958 | size_t ValidUTF8(const char* data, size_t len) { |
168 | 958 | if (len == 0) return 1 - ReturnPosition; |
169 | 958 | const char* const end = data + len; |
170 | 958 | data = SkipAscii(data, end); |
171 | | /* SIMD algorithm always outperforms the naive version for any data of |
172 | | length >=16. |
173 | | */ |
174 | 958 | if (end - data < 16) { |
175 | 958 | return (ReturnPosition ? (data - (end - len)) : 0) + |
176 | 958 | ValidUTF8Span<ReturnPosition>(data, end); |
177 | 958 | } |
178 | 0 | #ifndef __SSE4_1__ |
179 | 0 | return (ReturnPosition ? (data - (end - len)) : 0) + |
180 | 0 | ValidUTF8Span<ReturnPosition>(data, end); |
181 | | #else |
182 | | /* This code checks that utf-8 ranges are structurally valid 16 bytes at once |
183 | | * using superscalar instructions. |
184 | | * The mapping between ranges of codepoint and their corresponding utf-8 |
185 | | * sequences is below. |
186 | | */ |
187 | | |
188 | | /* |
189 | | * U+0000...U+007F 00...7F |
190 | | * U+0080...U+07FF C2...DF 80...BF |
191 | | * U+0800...U+0FFF E0 A0...BF 80...BF |
192 | | * U+1000...U+CFFF E1...EC 80...BF 80...BF |
193 | | * U+D000...U+D7FF ED 80...9F 80...BF |
194 | | * U+E000...U+FFFF EE...EF 80...BF 80...BF |
195 | | * U+10000...U+3FFFF F0 90...BF 80...BF 80...BF |
196 | | * U+40000...U+FFFFF F1...F3 80...BF 80...BF 80...BF |
197 | | * U+100000...U+10FFFF F4 80...8F 80...BF 80...BF |
198 | | */ |
199 | | |
200 | | /* First we compute the type for each byte, as given by the table below. |
201 | | * This type will be used as an index later on. |
202 | | */ |
203 | | |
204 | | /* |
205 | | * Index Min Max Byte Type |
206 | | * 0 00 7F Single byte sequence |
207 | | * 1,2,3 80 BF Second, third and fourth byte for many of the sequences. |
208 | | * 4 A0 BF Second byte after E0 |
209 | | * 5 80 9F Second byte after ED |
210 | | * 6 90 BF Second byte after F0 |
211 | | * 7 80 8F Second byte after F4 |
212 | | * 8 C2 F4 First non ASCII byte |
213 | | * 9..15 7F 80 Invalid byte |
214 | | */ |
215 | | |
216 | | /* After the first step we compute the index for all bytes, then we permute |
217 | | the bytes according to their indices to check the ranges from the range |
218 | | table. |
219 | | * The range for a given type can be found in the range_min_table and |
220 | | range_max_table, the range for type/index X is in range_min_table[X] ... |
221 | | range_max_table[X]. |
222 | | */ |
223 | | |
224 | | /* Algorithm: |
225 | | * Put index zero to all bytes. |
226 | | * Find all non ASCII characters, give them index 8. |
227 | | * For each tail byte in a codepoint sequence, give it an index corresponding |
228 | | to the 1 based index from the end. |
229 | | * If the first byte of the codepoint is in the [C0...DF] range, we write |
230 | | index 1 in the following byte. |
231 | | * If the first byte of the codepoint is in the range [E0...EF], we write |
232 | | indices 2 and 1 in the next two bytes. |
233 | | * If the first byte of the codepoint is in the range [F0...FF] we write |
234 | | indices 3,2,1 into the next three bytes. |
235 | | * For finding the number of bytes we need to look at high nibbles (4 bits) |
236 | | and do the lookup from the table, it can be done with shift by 4 + shuffle |
237 | | instructions. We call it `first_len`. |
238 | | * Then we shift first_len by 8 bits to get the indices of the 2nd bytes. |
239 | | * Saturating sub 1 and shift by 8 bits to get the indices of the 3rd bytes. |
240 | | * Again to get the indices of the 4th bytes. |
241 | | * Take OR of all that 4 values and check within range. |
242 | | */ |
243 | | /* For example: |
244 | | * input C3 80 68 E2 80 20 A6 F0 A0 80 AC 20 F0 93 80 80 |
245 | | * first_len 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 0 |
246 | | * 1st byte 8 0 0 8 0 0 0 8 0 0 0 0 8 0 0 0 |
247 | | * 2nd byte 0 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 // Shift + sub |
248 | | * 3rd byte 0 0 0 0 0 1 0 0 0 2 0 0 0 0 2 0 // Shift + sub |
249 | | * 4th byte 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 // Shift + sub |
250 | | * Index 8 1 0 8 2 1 0 8 3 2 1 0 8 3 2 1 // OR of results |
251 | | */ |
252 | | |
253 | | /* Checking for errors: |
254 | | * Error checking is done by looking up the high nibble (4 bits) of each byte |
255 | | against an error checking table. |
256 | | * Because the lookup value for the second byte depends of the value of the |
257 | | first byte in codepoint, we use saturated operations to adjust the index. |
258 | | * Specifically we need to add 2 for E0, 3 for ED, 3 for F0 and 4 for F4 to |
259 | | match the correct index. |
260 | | * If we subtract from all bytes EF then EO -> 241, ED -> 254, F0 -> 1, |
261 | | F4 -> 5 |
262 | | * Do saturating sub 240, then E0 -> 1, ED -> 14 and we can do lookup to |
263 | | match the adjustment |
264 | | * Add saturating 112, then F0 -> 113, F4 -> 117, all that were > 16 will |
265 | | be more 128 and lookup in ef_fe_table will return 0 but for F0 |
266 | | and F4 it will be 4 and 5 accordingly |
267 | | */ |
268 | | /* |
269 | | * Then just check the appropriate ranges with greater/smaller equal |
270 | | instructions. Check tail with a naive algorithm. |
271 | | * To save from previous 16 byte checks we just align previous_first_len to |
272 | | get correct continuations of the codepoints. |
273 | | */ |
274 | | |
275 | | /* |
276 | | * Map high nibble of "First Byte" to legal character length minus 1 |
277 | | * 0x00 ~ 0xBF --> 0 |
278 | | * 0xC0 ~ 0xDF --> 1 |
279 | | * 0xE0 ~ 0xEF --> 2 |
280 | | * 0xF0 ~ 0xFF --> 3 |
281 | | */ |
282 | | const __m128i first_len_table = |
283 | | _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3); |
284 | | |
285 | | /* Map "First Byte" to 8-th item of range table (0xC2 ~ 0xF4) */ |
286 | | const __m128i first_range_table = |
287 | | _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8); |
288 | | |
289 | | /* |
290 | | * Range table, map range index to min and max values |
291 | | */ |
292 | | const __m128i range_min_table = |
293 | | _mm_setr_epi8(0x00, 0x80, 0x80, 0x80, 0xA0, 0x80, 0x90, 0x80, 0xC2, 0x7F, |
294 | | 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F); |
295 | | |
296 | | const __m128i range_max_table = |
297 | | _mm_setr_epi8(0x7F, 0xBF, 0xBF, 0xBF, 0xBF, 0x9F, 0xBF, 0x8F, 0xF4, 0x80, |
298 | | 0x80, 0x80, 0x80, 0x80, 0x80, 0x80); |
299 | | |
300 | | /* |
301 | | * Tables for fast handling of four special First Bytes(E0,ED,F0,F4), after |
302 | | * which the Second Byte are not 80~BF. It contains "range index adjustment". |
303 | | * +------------+---------------+------------------+----------------+ |
304 | | * | First Byte | original range| range adjustment | adjusted range | |
305 | | * +------------+---------------+------------------+----------------+ |
306 | | * | E0 | 2 | 2 | 4 | |
307 | | * +------------+---------------+------------------+----------------+ |
308 | | * | ED | 2 | 3 | 5 | |
309 | | * +------------+---------------+------------------+----------------+ |
310 | | * | F0 | 3 | 3 | 6 | |
311 | | * +------------+---------------+------------------+----------------+ |
312 | | * | F4 | 4 | 4 | 8 | |
313 | | * +------------+---------------+------------------+----------------+ |
314 | | */ |
315 | | |
316 | | /* df_ee_table[1] -> E0, df_ee_table[14] -> ED as ED - E0 = 13 */ |
317 | | // The values represent the adjustment in the Range Index table for a correct |
318 | | // index. |
319 | | const __m128i df_ee_table = |
320 | | _mm_setr_epi8(0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0); |
321 | | |
322 | | /* ef_fe_table[1] -> F0, ef_fe_table[5] -> F4, F4 - F0 = 4 */ |
323 | | // The values represent the adjustment in the Range Index table for a correct |
324 | | // index. |
325 | | const __m128i ef_fe_table = |
326 | | _mm_setr_epi8(0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); |
327 | | |
328 | | __m128i prev_input = _mm_set1_epi8(0); |
329 | | __m128i prev_first_len = _mm_set1_epi8(0); |
330 | | __m128i error = _mm_set1_epi8(0); |
331 | | while (end - data >= 16) { |
332 | | const __m128i input = |
333 | | _mm_loadu_si128(reinterpret_cast<const __m128i*>(data)); |
334 | | |
335 | | /* high_nibbles = input >> 4 */ |
336 | | const __m128i high_nibbles = |
337 | | _mm_and_si128(_mm_srli_epi16(input, 4), _mm_set1_epi8(0x0F)); |
338 | | |
339 | | /* first_len = legal character length minus 1 */ |
340 | | /* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */ |
341 | | /* first_len = first_len_table[high_nibbles] */ |
342 | | __m128i first_len = _mm_shuffle_epi8(first_len_table, high_nibbles); |
343 | | |
344 | | /* First Byte: set range index to 8 for bytes within 0xC0 ~ 0xFF */ |
345 | | /* range = first_range_table[high_nibbles] */ |
346 | | __m128i range = _mm_shuffle_epi8(first_range_table, high_nibbles); |
347 | | |
348 | | /* Second Byte: set range index to first_len */ |
349 | | /* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */ |
350 | | /* range |= (first_len, prev_first_len) << 1 byte */ |
351 | | range = _mm_or_si128(range, _mm_alignr_epi8(first_len, prev_first_len, 15)); |
352 | | |
353 | | /* Third Byte: set range index to saturate_sub(first_len, 1) */ |
354 | | /* 0 for 00~7F, 0 for C0~DF, 1 for E0~EF, 2 for F0~FF */ |
355 | | __m128i tmp1; |
356 | | __m128i tmp2; |
357 | | /* tmp1 = saturate_sub(first_len, 1) */ |
358 | | tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(1)); |
359 | | /* tmp2 = saturate_sub(prev_first_len, 1) */ |
360 | | tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(1)); |
361 | | /* range |= (tmp1, tmp2) << 2 bytes */ |
362 | | range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 14)); |
363 | | |
364 | | /* Fourth Byte: set range index to saturate_sub(first_len, 2) */ |
365 | | /* 0 for 00~7F, 0 for C0~DF, 0 for E0~EF, 1 for F0~FF */ |
366 | | /* tmp1 = saturate_sub(first_len, 2) */ |
367 | | tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(2)); |
368 | | /* tmp2 = saturate_sub(prev_first_len, 2) */ |
369 | | tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(2)); |
370 | | /* range |= (tmp1, tmp2) << 3 bytes */ |
371 | | range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 13)); |
372 | | |
373 | | /* |
374 | | * Now we have below range indices calculated |
375 | | * Correct cases: |
376 | | * - 8 for C0~FF |
377 | | * - 3 for 1st byte after F0~FF |
378 | | * - 2 for 1st byte after E0~EF or 2nd byte after F0~FF |
379 | | * - 1 for 1st byte after C0~DF or 2nd byte after E0~EF or |
380 | | * 3rd byte after F0~FF |
381 | | * - 0 for others |
382 | | * Error cases: |
383 | | * >9 for non ascii First Byte overlapping |
384 | | * E.g., F1 80 C2 90 --> 8 3 10 2, where 10 indicates error |
385 | | */ |
386 | | |
387 | | /* Adjust Second Byte range for special First Bytes(E0,ED,F0,F4) */ |
388 | | /* Overlaps lead to index 9~15, which are illegal in range table */ |
389 | | __m128i shift1; |
390 | | __m128i pos; |
391 | | __m128i range2; |
392 | | /* shift1 = (input, prev_input) << 1 byte */ |
393 | | shift1 = _mm_alignr_epi8(input, prev_input, 15); |
394 | | pos = _mm_sub_epi8(shift1, _mm_set1_epi8(0xEF)); |
395 | | /* |
396 | | * shift1: | EF F0 ... FE | FF 00 ... ... DE | DF E0 ... EE | |
397 | | * pos: | 0 1 15 | 16 17 239| 240 241 255| |
398 | | * pos-240: | 0 0 0 | 0 0 0 | 0 1 15 | |
399 | | * pos+112: | 112 113 127| >= 128 | >= 128 | |
400 | | */ |
401 | | tmp1 = _mm_subs_epu8(pos, _mm_set1_epi8(-16)); |
402 | | range2 = _mm_shuffle_epi8(df_ee_table, tmp1); |
403 | | tmp2 = _mm_adds_epu8(pos, _mm_set1_epi8(112)); |
404 | | range2 = _mm_add_epi8(range2, _mm_shuffle_epi8(ef_fe_table, tmp2)); |
405 | | |
406 | | range = _mm_add_epi8(range, range2); |
407 | | |
408 | | /* Load min and max values per calculated range index */ |
409 | | __m128i min_range = _mm_shuffle_epi8(range_min_table, range); |
410 | | __m128i max_range = _mm_shuffle_epi8(range_max_table, range); |
411 | | |
412 | | /* Check value range */ |
413 | | if (ReturnPosition) { |
414 | | error = _mm_cmplt_epi8(input, min_range); |
415 | | error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range)); |
416 | | /* 5% performance drop from this conditional branch */ |
417 | | if (!_mm_testz_si128(error, error)) { |
418 | | break; |
419 | | } |
420 | | } else { |
421 | | error = _mm_or_si128(error, _mm_cmplt_epi8(input, min_range)); |
422 | | error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range)); |
423 | | } |
424 | | |
425 | | prev_input = input; |
426 | | prev_first_len = first_len; |
427 | | |
428 | | data += 16; |
429 | | } |
430 | | /* If we got to the end, we don't need to skip any bytes backwards */ |
431 | | if (ReturnPosition && (data - (end - len)) == 0) { |
432 | | return ValidUTF8Span<true>(data, end); |
433 | | } |
434 | | /* Find previous codepoint (not 80~BF) */ |
435 | | data -= CodepointSkipBackwards(_mm_extract_epi32(prev_input, 3)); |
436 | | if (ReturnPosition) { |
437 | | return (data - (end - len)) + ValidUTF8Span<true>(data, end); |
438 | | } |
439 | | /* Test if there was any error */ |
440 | | if (!_mm_testz_si128(error, error)) { |
441 | | return 0; |
442 | | } |
443 | | /* Check the tail */ |
444 | | return ValidUTF8Span<false>(data, end); |
445 | | #endif |
446 | 958 | } utf8_validity.cc:unsigned long utf8_range::(anonymous namespace)::ValidUTF8<false>(char const*, unsigned long) Line | Count | Source | 167 | 958 | size_t ValidUTF8(const char* data, size_t len) { | 168 | 958 | if (len == 0) return 1 - ReturnPosition; | 169 | 958 | const char* const end = data + len; | 170 | 958 | data = SkipAscii(data, end); | 171 | | /* SIMD algorithm always outperforms the naive version for any data of | 172 | | length >=16. | 173 | | */ | 174 | 958 | if (end - data < 16) { | 175 | 958 | return (ReturnPosition ? (data - (end - len)) : 0) + | 176 | 958 | ValidUTF8Span<ReturnPosition>(data, end); | 177 | 958 | } | 178 | 0 | #ifndef __SSE4_1__ | 179 | 0 | return (ReturnPosition ? (data - (end - len)) : 0) + | 180 | 0 | ValidUTF8Span<ReturnPosition>(data, end); | 181 | | #else | 182 | | /* This code checks that utf-8 ranges are structurally valid 16 bytes at once | 183 | | * using superscalar instructions. | 184 | | * The mapping between ranges of codepoint and their corresponding utf-8 | 185 | | * sequences is below. | 186 | | */ | 187 | | | 188 | | /* | 189 | | * U+0000...U+007F 00...7F | 190 | | * U+0080...U+07FF C2...DF 80...BF | 191 | | * U+0800...U+0FFF E0 A0...BF 80...BF | 192 | | * U+1000...U+CFFF E1...EC 80...BF 80...BF | 193 | | * U+D000...U+D7FF ED 80...9F 80...BF | 194 | | * U+E000...U+FFFF EE...EF 80...BF 80...BF | 195 | | * U+10000...U+3FFFF F0 90...BF 80...BF 80...BF | 196 | | * U+40000...U+FFFFF F1...F3 80...BF 80...BF 80...BF | 197 | | * U+100000...U+10FFFF F4 80...8F 80...BF 80...BF | 198 | | */ | 199 | | | 200 | | /* First we compute the type for each byte, as given by the table below. | 201 | | * This type will be used as an index later on. | 202 | | */ | 203 | | | 204 | | /* | 205 | | * Index Min Max Byte Type | 206 | | * 0 00 7F Single byte sequence | 207 | | * 1,2,3 80 BF Second, third and fourth byte for many of the sequences. | 208 | | * 4 A0 BF Second byte after E0 | 209 | | * 5 80 9F Second byte after ED | 210 | | * 6 90 BF Second byte after F0 | 211 | | * 7 80 8F Second byte after F4 | 212 | | * 8 C2 F4 First non ASCII byte | 213 | | * 9..15 7F 80 Invalid byte | 214 | | */ | 215 | | | 216 | | /* After the first step we compute the index for all bytes, then we permute | 217 | | the bytes according to their indices to check the ranges from the range | 218 | | table. | 219 | | * The range for a given type can be found in the range_min_table and | 220 | | range_max_table, the range for type/index X is in range_min_table[X] ... | 221 | | range_max_table[X]. | 222 | | */ | 223 | | | 224 | | /* Algorithm: | 225 | | * Put index zero to all bytes. | 226 | | * Find all non ASCII characters, give them index 8. | 227 | | * For each tail byte in a codepoint sequence, give it an index corresponding | 228 | | to the 1 based index from the end. | 229 | | * If the first byte of the codepoint is in the [C0...DF] range, we write | 230 | | index 1 in the following byte. | 231 | | * If the first byte of the codepoint is in the range [E0...EF], we write | 232 | | indices 2 and 1 in the next two bytes. | 233 | | * If the first byte of the codepoint is in the range [F0...FF] we write | 234 | | indices 3,2,1 into the next three bytes. | 235 | | * For finding the number of bytes we need to look at high nibbles (4 bits) | 236 | | and do the lookup from the table, it can be done with shift by 4 + shuffle | 237 | | instructions. We call it `first_len`. | 238 | | * Then we shift first_len by 8 bits to get the indices of the 2nd bytes. | 239 | | * Saturating sub 1 and shift by 8 bits to get the indices of the 3rd bytes. | 240 | | * Again to get the indices of the 4th bytes. | 241 | | * Take OR of all that 4 values and check within range. | 242 | | */ | 243 | | /* For example: | 244 | | * input C3 80 68 E2 80 20 A6 F0 A0 80 AC 20 F0 93 80 80 | 245 | | * first_len 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 0 | 246 | | * 1st byte 8 0 0 8 0 0 0 8 0 0 0 0 8 0 0 0 | 247 | | * 2nd byte 0 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 // Shift + sub | 248 | | * 3rd byte 0 0 0 0 0 1 0 0 0 2 0 0 0 0 2 0 // Shift + sub | 249 | | * 4th byte 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 // Shift + sub | 250 | | * Index 8 1 0 8 2 1 0 8 3 2 1 0 8 3 2 1 // OR of results | 251 | | */ | 252 | | | 253 | | /* Checking for errors: | 254 | | * Error checking is done by looking up the high nibble (4 bits) of each byte | 255 | | against an error checking table. | 256 | | * Because the lookup value for the second byte depends of the value of the | 257 | | first byte in codepoint, we use saturated operations to adjust the index. | 258 | | * Specifically we need to add 2 for E0, 3 for ED, 3 for F0 and 4 for F4 to | 259 | | match the correct index. | 260 | | * If we subtract from all bytes EF then EO -> 241, ED -> 254, F0 -> 1, | 261 | | F4 -> 5 | 262 | | * Do saturating sub 240, then E0 -> 1, ED -> 14 and we can do lookup to | 263 | | match the adjustment | 264 | | * Add saturating 112, then F0 -> 113, F4 -> 117, all that were > 16 will | 265 | | be more 128 and lookup in ef_fe_table will return 0 but for F0 | 266 | | and F4 it will be 4 and 5 accordingly | 267 | | */ | 268 | | /* | 269 | | * Then just check the appropriate ranges with greater/smaller equal | 270 | | instructions. Check tail with a naive algorithm. | 271 | | * To save from previous 16 byte checks we just align previous_first_len to | 272 | | get correct continuations of the codepoints. | 273 | | */ | 274 | | | 275 | | /* | 276 | | * Map high nibble of "First Byte" to legal character length minus 1 | 277 | | * 0x00 ~ 0xBF --> 0 | 278 | | * 0xC0 ~ 0xDF --> 1 | 279 | | * 0xE0 ~ 0xEF --> 2 | 280 | | * 0xF0 ~ 0xFF --> 3 | 281 | | */ | 282 | | const __m128i first_len_table = | 283 | | _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3); | 284 | | | 285 | | /* Map "First Byte" to 8-th item of range table (0xC2 ~ 0xF4) */ | 286 | | const __m128i first_range_table = | 287 | | _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8); | 288 | | | 289 | | /* | 290 | | * Range table, map range index to min and max values | 291 | | */ | 292 | | const __m128i range_min_table = | 293 | | _mm_setr_epi8(0x00, 0x80, 0x80, 0x80, 0xA0, 0x80, 0x90, 0x80, 0xC2, 0x7F, | 294 | | 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F); | 295 | | | 296 | | const __m128i range_max_table = | 297 | | _mm_setr_epi8(0x7F, 0xBF, 0xBF, 0xBF, 0xBF, 0x9F, 0xBF, 0x8F, 0xF4, 0x80, | 298 | | 0x80, 0x80, 0x80, 0x80, 0x80, 0x80); | 299 | | | 300 | | /* | 301 | | * Tables for fast handling of four special First Bytes(E0,ED,F0,F4), after | 302 | | * which the Second Byte are not 80~BF. It contains "range index adjustment". | 303 | | * +------------+---------------+------------------+----------------+ | 304 | | * | First Byte | original range| range adjustment | adjusted range | | 305 | | * +------------+---------------+------------------+----------------+ | 306 | | * | E0 | 2 | 2 | 4 | | 307 | | * +------------+---------------+------------------+----------------+ | 308 | | * | ED | 2 | 3 | 5 | | 309 | | * +------------+---------------+------------------+----------------+ | 310 | | * | F0 | 3 | 3 | 6 | | 311 | | * +------------+---------------+------------------+----------------+ | 312 | | * | F4 | 4 | 4 | 8 | | 313 | | * +------------+---------------+------------------+----------------+ | 314 | | */ | 315 | | | 316 | | /* df_ee_table[1] -> E0, df_ee_table[14] -> ED as ED - E0 = 13 */ | 317 | | // The values represent the adjustment in the Range Index table for a correct | 318 | | // index. | 319 | | const __m128i df_ee_table = | 320 | | _mm_setr_epi8(0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0); | 321 | | | 322 | | /* ef_fe_table[1] -> F0, ef_fe_table[5] -> F4, F4 - F0 = 4 */ | 323 | | // The values represent the adjustment in the Range Index table for a correct | 324 | | // index. | 325 | | const __m128i ef_fe_table = | 326 | | _mm_setr_epi8(0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); | 327 | | | 328 | | __m128i prev_input = _mm_set1_epi8(0); | 329 | | __m128i prev_first_len = _mm_set1_epi8(0); | 330 | | __m128i error = _mm_set1_epi8(0); | 331 | | while (end - data >= 16) { | 332 | | const __m128i input = | 333 | | _mm_loadu_si128(reinterpret_cast<const __m128i*>(data)); | 334 | | | 335 | | /* high_nibbles = input >> 4 */ | 336 | | const __m128i high_nibbles = | 337 | | _mm_and_si128(_mm_srli_epi16(input, 4), _mm_set1_epi8(0x0F)); | 338 | | | 339 | | /* first_len = legal character length minus 1 */ | 340 | | /* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */ | 341 | | /* first_len = first_len_table[high_nibbles] */ | 342 | | __m128i first_len = _mm_shuffle_epi8(first_len_table, high_nibbles); | 343 | | | 344 | | /* First Byte: set range index to 8 for bytes within 0xC0 ~ 0xFF */ | 345 | | /* range = first_range_table[high_nibbles] */ | 346 | | __m128i range = _mm_shuffle_epi8(first_range_table, high_nibbles); | 347 | | | 348 | | /* Second Byte: set range index to first_len */ | 349 | | /* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */ | 350 | | /* range |= (first_len, prev_first_len) << 1 byte */ | 351 | | range = _mm_or_si128(range, _mm_alignr_epi8(first_len, prev_first_len, 15)); | 352 | | | 353 | | /* Third Byte: set range index to saturate_sub(first_len, 1) */ | 354 | | /* 0 for 00~7F, 0 for C0~DF, 1 for E0~EF, 2 for F0~FF */ | 355 | | __m128i tmp1; | 356 | | __m128i tmp2; | 357 | | /* tmp1 = saturate_sub(first_len, 1) */ | 358 | | tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(1)); | 359 | | /* tmp2 = saturate_sub(prev_first_len, 1) */ | 360 | | tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(1)); | 361 | | /* range |= (tmp1, tmp2) << 2 bytes */ | 362 | | range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 14)); | 363 | | | 364 | | /* Fourth Byte: set range index to saturate_sub(first_len, 2) */ | 365 | | /* 0 for 00~7F, 0 for C0~DF, 0 for E0~EF, 1 for F0~FF */ | 366 | | /* tmp1 = saturate_sub(first_len, 2) */ | 367 | | tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(2)); | 368 | | /* tmp2 = saturate_sub(prev_first_len, 2) */ | 369 | | tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(2)); | 370 | | /* range |= (tmp1, tmp2) << 3 bytes */ | 371 | | range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 13)); | 372 | | | 373 | | /* | 374 | | * Now we have below range indices calculated | 375 | | * Correct cases: | 376 | | * - 8 for C0~FF | 377 | | * - 3 for 1st byte after F0~FF | 378 | | * - 2 for 1st byte after E0~EF or 2nd byte after F0~FF | 379 | | * - 1 for 1st byte after C0~DF or 2nd byte after E0~EF or | 380 | | * 3rd byte after F0~FF | 381 | | * - 0 for others | 382 | | * Error cases: | 383 | | * >9 for non ascii First Byte overlapping | 384 | | * E.g., F1 80 C2 90 --> 8 3 10 2, where 10 indicates error | 385 | | */ | 386 | | | 387 | | /* Adjust Second Byte range for special First Bytes(E0,ED,F0,F4) */ | 388 | | /* Overlaps lead to index 9~15, which are illegal in range table */ | 389 | | __m128i shift1; | 390 | | __m128i pos; | 391 | | __m128i range2; | 392 | | /* shift1 = (input, prev_input) << 1 byte */ | 393 | | shift1 = _mm_alignr_epi8(input, prev_input, 15); | 394 | | pos = _mm_sub_epi8(shift1, _mm_set1_epi8(0xEF)); | 395 | | /* | 396 | | * shift1: | EF F0 ... FE | FF 00 ... ... DE | DF E0 ... EE | | 397 | | * pos: | 0 1 15 | 16 17 239| 240 241 255| | 398 | | * pos-240: | 0 0 0 | 0 0 0 | 0 1 15 | | 399 | | * pos+112: | 112 113 127| >= 128 | >= 128 | | 400 | | */ | 401 | | tmp1 = _mm_subs_epu8(pos, _mm_set1_epi8(-16)); | 402 | | range2 = _mm_shuffle_epi8(df_ee_table, tmp1); | 403 | | tmp2 = _mm_adds_epu8(pos, _mm_set1_epi8(112)); | 404 | | range2 = _mm_add_epi8(range2, _mm_shuffle_epi8(ef_fe_table, tmp2)); | 405 | | | 406 | | range = _mm_add_epi8(range, range2); | 407 | | | 408 | | /* Load min and max values per calculated range index */ | 409 | | __m128i min_range = _mm_shuffle_epi8(range_min_table, range); | 410 | | __m128i max_range = _mm_shuffle_epi8(range_max_table, range); | 411 | | | 412 | | /* Check value range */ | 413 | | if (ReturnPosition) { | 414 | | error = _mm_cmplt_epi8(input, min_range); | 415 | | error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range)); | 416 | | /* 5% performance drop from this conditional branch */ | 417 | | if (!_mm_testz_si128(error, error)) { | 418 | | break; | 419 | | } | 420 | | } else { | 421 | | error = _mm_or_si128(error, _mm_cmplt_epi8(input, min_range)); | 422 | | error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range)); | 423 | | } | 424 | | | 425 | | prev_input = input; | 426 | | prev_first_len = first_len; | 427 | | | 428 | | data += 16; | 429 | | } | 430 | | /* If we got to the end, we don't need to skip any bytes backwards */ | 431 | | if (ReturnPosition && (data - (end - len)) == 0) { | 432 | | return ValidUTF8Span<true>(data, end); | 433 | | } | 434 | | /* Find previous codepoint (not 80~BF) */ | 435 | | data -= CodepointSkipBackwards(_mm_extract_epi32(prev_input, 3)); | 436 | | if (ReturnPosition) { | 437 | | return (data - (end - len)) + ValidUTF8Span<true>(data, end); | 438 | | } | 439 | | /* Test if there was any error */ | 440 | | if (!_mm_testz_si128(error, error)) { | 441 | | return 0; | 442 | | } | 443 | | /* Check the tail */ | 444 | | return ValidUTF8Span<false>(data, end); | 445 | | #endif | 446 | 958 | } |
Unexecuted instantiation: utf8_validity.cc:unsigned long utf8_range::(anonymous namespace)::ValidUTF8<true>(char const*, unsigned long) |
447 | | |
448 | | } // namespace |
449 | | |
450 | 958 | bool IsStructurallyValid(absl::string_view str) { |
451 | 958 | return ValidUTF8</*ReturnPosition=*/false>(str.data(), str.size()); |
452 | 958 | } |
453 | | |
454 | 0 | size_t SpanStructurallyValid(absl::string_view str) { |
455 | 0 | return ValidUTF8</*ReturnPosition=*/true>(str.data(), str.size()); |
456 | 0 | } |
457 | | |
458 | | } // namespace utf8_range |