Coverage Report

Created: 2025-12-28 06:39

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/gstreamer/subprojects/libdrm-2.4.124/include/drm/drm_fourcc.h
Line
Count
Source
1
/*
2
 * Copyright 2011 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21
 * OTHER DEALINGS IN THE SOFTWARE.
22
 */
23
24
#ifndef DRM_FOURCC_H
25
#define DRM_FOURCC_H
26
27
#include "drm.h"
28
29
#if defined(__cplusplus)
30
extern "C" {
31
#endif
32
33
/**
34
 * DOC: overview
35
 *
36
 * In the DRM subsystem, framebuffer pixel formats are described using the
37
 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38
 * fourcc code, a Format Modifier may optionally be provided, in order to
39
 * further describe the buffer's format - for example tiling or compression.
40
 *
41
 * Format Modifiers
42
 * ----------------
43
 *
44
 * Format modifiers are used in conjunction with a fourcc code, forming a
45
 * unique fourcc:modifier pair. This format:modifier pair must fully define the
46
 * format and data layout of the buffer, and should be the only way to describe
47
 * that particular buffer.
48
 *
49
 * Having multiple fourcc:modifier pairs which describe the same layout should
50
 * be avoided, as such aliases run the risk of different drivers exposing
51
 * different names for the same data format, forcing userspace to understand
52
 * that they are aliases.
53
 *
54
 * Format modifiers may change any property of the buffer, including the number
55
 * of planes and/or the required allocation size. Format modifiers are
56
 * vendor-namespaced, and as such the relationship between a fourcc code and a
57
 * modifier is specific to the modifier being used. For example, some modifiers
58
 * may preserve meaning - such as number of planes - from the fourcc code,
59
 * whereas others may not.
60
 *
61
 * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62
 * match only a single modifier. A modifier must not be a subset of layouts of
63
 * another modifier. For instance, it's incorrect to encode pitch alignment in
64
 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65
 * aligned modifier. That said, modifiers can have implicit minimal
66
 * requirements.
67
 *
68
 * For modifiers where the combination of fourcc code and modifier can alias,
69
 * a canonical pair needs to be defined and used by all drivers. Preferred
70
 * combinations are also encouraged where all combinations might lead to
71
 * confusion and unnecessarily reduced interoperability. An example for the
72
 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73
 *
74
 * There are two kinds of modifier users:
75
 *
76
 * - Kernel and user-space drivers: for drivers it's important that modifiers
77
 *   don't alias, otherwise two drivers might support the same format but use
78
 *   different aliases, preventing them from sharing buffers in an efficient
79
 *   format.
80
 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81
 *   see modifiers as opaque tokens they can check for equality and intersect.
82
 *   These users mustn't need to know to reason about the modifier value
83
 *   (i.e. they are not expected to extract information out of the modifier).
84
 *
85
 * Vendors should document their modifier usage in as much detail as
86
 * possible, to ensure maximum compatibility across devices, drivers and
87
 * applications.
88
 *
89
 * The authoritative list of format modifier codes is found in
90
 * `include/uapi/drm/drm_fourcc.h`
91
 *
92
 * Open Source User Waiver
93
 * -----------------------
94
 *
95
 * Because this is the authoritative source for pixel formats and modifiers
96
 * referenced by GL, Vulkan extensions and other standards and hence used both
97
 * by open source and closed source driver stacks, the usual requirement for an
98
 * upstream in-kernel or open source userspace user does not apply.
99
 *
100
 * To ensure, as much as feasible, compatibility across stacks and avoid
101
 * confusion with incompatible enumerations stakeholders for all relevant driver
102
 * stacks should approve additions.
103
 */
104
105
0
#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
106
0
         ((__u32)(c) << 16) | ((__u32)(d) << 24))
107
108
0
#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
109
110
/* Reserve 0 for the invalid format specifier */
111
0
#define DRM_FORMAT_INVALID  0
112
113
/* color index */
114
#define DRM_FORMAT_C1   fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
115
#define DRM_FORMAT_C2   fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
116
#define DRM_FORMAT_C4   fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
117
#define DRM_FORMAT_C8   fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
118
119
/* 1 bpp Darkness (inverse relationship between channel value and brightness) */
120
#define DRM_FORMAT_D1   fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
121
122
/* 2 bpp Darkness (inverse relationship between channel value and brightness) */
123
#define DRM_FORMAT_D2   fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
124
125
/* 4 bpp Darkness (inverse relationship between channel value and brightness) */
126
#define DRM_FORMAT_D4   fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
127
128
/* 8 bpp Darkness (inverse relationship between channel value and brightness) */
129
#define DRM_FORMAT_D8   fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
130
131
/* 1 bpp Red (direct relationship between channel value and brightness) */
132
#define DRM_FORMAT_R1   fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
133
134
/* 2 bpp Red (direct relationship between channel value and brightness) */
135
#define DRM_FORMAT_R2   fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
136
137
/* 4 bpp Red (direct relationship between channel value and brightness) */
138
#define DRM_FORMAT_R4   fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
139
140
/* 8 bpp Red (direct relationship between channel value and brightness) */
141
#define DRM_FORMAT_R8   fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
142
143
/* 10 bpp Red (direct relationship between channel value and brightness) */
144
#define DRM_FORMAT_R10    fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
145
146
/* 12 bpp Red (direct relationship between channel value and brightness) */
147
#define DRM_FORMAT_R12    fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
148
149
/* 16 bpp Red (direct relationship between channel value and brightness) */
150
#define DRM_FORMAT_R16    fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
151
152
/* 16 bpp RG */
153
#define DRM_FORMAT_RG88   fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
154
#define DRM_FORMAT_GR88   fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
155
156
/* 32 bpp RG */
157
#define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
158
#define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
159
160
/* 8 bpp RGB */
161
#define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
162
#define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
163
164
/* 16 bpp RGB */
165
#define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
166
#define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
167
#define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
168
#define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
169
170
#define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
171
#define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
172
#define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
173
#define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
174
175
#define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
176
#define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
177
#define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
178
#define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
179
180
#define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
181
#define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
182
#define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
183
#define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
184
185
0
#define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
186
0
#define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
187
188
/* 24 bpp RGB */
189
0
#define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
190
0
#define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
191
192
/* 32 bpp RGB */
193
#define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
194
#define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
195
#define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
196
#define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
197
198
#define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
199
#define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
200
#define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
201
#define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
202
203
#define DRM_FORMAT_XRGB2101010  fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
204
#define DRM_FORMAT_XBGR2101010  fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
205
#define DRM_FORMAT_RGBX1010102  fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
206
#define DRM_FORMAT_BGRX1010102  fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
207
208
#define DRM_FORMAT_ARGB2101010  fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
209
#define DRM_FORMAT_ABGR2101010  fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
210
#define DRM_FORMAT_RGBA1010102  fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
211
#define DRM_FORMAT_BGRA1010102  fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
212
213
/* 64 bpp RGB */
214
#define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
215
#define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
216
217
#define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
218
#define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
219
220
/*
221
 * Floating point 64bpp RGB
222
 * IEEE 754-2008 binary16 half-precision float
223
 * [15:0] sign:exponent:mantissa 1:5:10
224
 */
225
#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
226
#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
227
228
#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
229
#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
230
231
/*
232
 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
233
 * of unused padding per component:
234
 */
235
#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
236
237
/* packed YCbCr */
238
0
#define DRM_FORMAT_YUYV   fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
239
0
#define DRM_FORMAT_YVYU   fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
240
0
#define DRM_FORMAT_UYVY   fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
241
#define DRM_FORMAT_VYUY   fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
242
243
#define DRM_FORMAT_AYUV   fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
244
#define DRM_FORMAT_AVUY8888 fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
245
#define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
246
#define DRM_FORMAT_XVUY8888 fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
247
#define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
248
#define DRM_FORMAT_VUY101010  fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
249
250
/*
251
 * packed Y2xx indicate for each component, xx valid data occupy msb
252
 * 16-xx padding occupy lsb
253
 */
254
#define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
255
#define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
256
#define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
257
258
/*
259
 * packed Y4xx indicate for each component, xx valid data occupy msb
260
 * 16-xx padding occupy lsb except Y410
261
 */
262
#define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
263
#define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
264
#define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
265
266
#define DRM_FORMAT_XVYU2101010  fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
267
#define DRM_FORMAT_XVYU12_16161616  fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
268
#define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
269
270
/*
271
 * packed YCbCr420 2x2 tiled formats
272
 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
273
 */
274
/* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
275
#define DRM_FORMAT_Y0L0   fourcc_code('Y', '0', 'L', '0')
276
/* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
277
#define DRM_FORMAT_X0L0   fourcc_code('X', '0', 'L', '0')
278
279
/* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
280
#define DRM_FORMAT_Y0L2   fourcc_code('Y', '0', 'L', '2')
281
/* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
282
#define DRM_FORMAT_X0L2   fourcc_code('X', '0', 'L', '2')
283
284
/*
285
 * 1-plane YUV 4:2:0
286
 * In these formats, the component ordering is specified (Y, followed by U
287
 * then V), but the exact Linear layout is undefined.
288
 * These formats can only be used with a non-Linear modifier.
289
 */
290
#define DRM_FORMAT_YUV420_8BIT  fourcc_code('Y', 'U', '0', '8')
291
#define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
292
293
/*
294
 * 2 plane RGB + A
295
 * index 0 = RGB plane, same format as the corresponding non _A8 format has
296
 * index 1 = A plane, [7:0] A
297
 */
298
#define DRM_FORMAT_XRGB8888_A8  fourcc_code('X', 'R', 'A', '8')
299
#define DRM_FORMAT_XBGR8888_A8  fourcc_code('X', 'B', 'A', '8')
300
#define DRM_FORMAT_RGBX8888_A8  fourcc_code('R', 'X', 'A', '8')
301
#define DRM_FORMAT_BGRX8888_A8  fourcc_code('B', 'X', 'A', '8')
302
#define DRM_FORMAT_RGB888_A8  fourcc_code('R', '8', 'A', '8')
303
#define DRM_FORMAT_BGR888_A8  fourcc_code('B', '8', 'A', '8')
304
#define DRM_FORMAT_RGB565_A8  fourcc_code('R', '5', 'A', '8')
305
#define DRM_FORMAT_BGR565_A8  fourcc_code('B', '5', 'A', '8')
306
307
/*
308
 * 2 plane YCbCr
309
 * index 0 = Y plane, [7:0] Y
310
 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
311
 * or
312
 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
313
 */
314
0
#define DRM_FORMAT_NV12   fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
315
0
#define DRM_FORMAT_NV21   fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
316
0
#define DRM_FORMAT_NV16   fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
317
0
#define DRM_FORMAT_NV61   fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
318
0
#define DRM_FORMAT_NV24   fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
319
#define DRM_FORMAT_NV42   fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
320
/*
321
 * 2 plane YCbCr
322
 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
323
 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
324
 */
325
0
#define DRM_FORMAT_NV15   fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
326
#define DRM_FORMAT_NV20   fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */
327
#define DRM_FORMAT_NV30   fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */
328
329
/*
330
 * 2 plane YCbCr MSB aligned
331
 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
332
 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
333
 */
334
#define DRM_FORMAT_P210   fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
335
336
/*
337
 * 2 plane YCbCr MSB aligned
338
 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
339
 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
340
 */
341
0
#define DRM_FORMAT_P010   fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
342
343
/*
344
 * 2 plane YCbCr MSB aligned
345
 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
346
 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
347
 */
348
#define DRM_FORMAT_P012   fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
349
350
/*
351
 * 2 plane YCbCr MSB aligned
352
 * index 0 = Y plane, [15:0] Y little endian
353
 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
354
 */
355
0
#define DRM_FORMAT_P016   fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
356
357
/* 2 plane YCbCr420.
358
 * 3 10 bit components and 2 padding bits packed into 4 bytes.
359
 * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
360
 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
361
 */
362
#define DRM_FORMAT_P030   fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
363
364
/* 3 plane non-subsampled (444) YCbCr
365
 * 16 bits per component, but only 10 bits are used and 6 bits are padded
366
 * index 0: Y plane, [15:0] Y:x [10:6] little endian
367
 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
368
 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
369
 */
370
#define DRM_FORMAT_Q410   fourcc_code('Q', '4', '1', '0')
371
372
/* 3 plane non-subsampled (444) YCrCb
373
 * 16 bits per component, but only 10 bits are used and 6 bits are padded
374
 * index 0: Y plane, [15:0] Y:x [10:6] little endian
375
 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
376
 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
377
 */
378
#define DRM_FORMAT_Q401   fourcc_code('Q', '4', '0', '1')
379
380
/*
381
 * 3 plane YCbCr
382
 * index 0: Y plane, [7:0] Y
383
 * index 1: Cb plane, [7:0] Cb
384
 * index 2: Cr plane, [7:0] Cr
385
 * or
386
 * index 1: Cr plane, [7:0] Cr
387
 * index 2: Cb plane, [7:0] Cb
388
 */
389
#define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
390
#define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
391
#define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
392
#define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
393
0
#define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
394
0
#define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
395
0
#define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
396
#define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
397
#define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
398
#define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
399
400
401
/*
402
 * Format Modifiers:
403
 *
404
 * Format modifiers describe, typically, a re-ordering or modification
405
 * of the data in a plane of an FB.  This can be used to express tiled/
406
 * swizzled formats, or compression, or a combination of the two.
407
 *
408
 * The upper 8 bits of the format modifier are a vendor-id as assigned
409
 * below.  The lower 56 bits are assigned as vendor sees fit.
410
 */
411
412
/* Vendor Ids: */
413
0
#define DRM_FORMAT_MOD_VENDOR_NONE    0
414
#define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
415
#define DRM_FORMAT_MOD_VENDOR_AMD     0x02
416
#define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
417
#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
418
#define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
419
0
#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
420
#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
421
#define DRM_FORMAT_MOD_VENDOR_ARM     0x08
422
#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
423
#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
424
425
/* add more to the end as needed */
426
427
#define DRM_FORMAT_RESERVED       ((1ULL << 56) - 1)
428
429
#define fourcc_mod_get_vendor(modifier) \
430
0
  (((modifier) >> 56) & 0xff)
431
432
#define fourcc_mod_is_vendor(modifier, vendor) \
433
  (fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
434
435
#define fourcc_mod_code(vendor, val) \
436
0
  ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
437
438
/*
439
 * Format Modifier tokens:
440
 *
441
 * When adding a new token please document the layout with a code comment,
442
 * similar to the fourcc codes above. drm_fourcc.h is considered the
443
 * authoritative source for all of these.
444
 *
445
 * Generic modifier names:
446
 *
447
 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
448
 * for layouts which are common across multiple vendors. To preserve
449
 * compatibility, in cases where a vendor-specific definition already exists and
450
 * a generic name for it is desired, the common name is a purely symbolic alias
451
 * and must use the same numerical value as the original definition.
452
 *
453
 * Note that generic names should only be used for modifiers which describe
454
 * generic layouts (such as pixel re-ordering), which may have
455
 * independently-developed support across multiple vendors.
456
 *
457
 * In future cases where a generic layout is identified before merging with a
458
 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
459
 * 'NONE' could be considered. This should only be for obvious, exceptional
460
 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
461
 * apply to a single vendor.
462
 *
463
 * Generic names should not be used for cases where multiple hardware vendors
464
 * have implementations of the same standardised compression scheme (such as
465
 * AFBC). In those cases, all implementations should use the same format
466
 * modifier(s), reflecting the vendor of the standard.
467
 */
468
469
#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
470
471
/*
472
 * Invalid Modifier
473
 *
474
 * This modifier can be used as a sentinel to terminate the format modifiers
475
 * list, or to initialize a variable with an invalid modifier. It might also be
476
 * used to report an error back to userspace for certain APIs.
477
 */
478
0
#define DRM_FORMAT_MOD_INVALID  fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
479
480
/*
481
 * Linear Layout
482
 *
483
 * Just plain linear layout. Note that this is different from no specifying any
484
 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
485
 * which tells the driver to also take driver-internal information into account
486
 * and so might actually result in a tiled framebuffer.
487
 */
488
#define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)
489
490
/*
491
 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
492
 *
493
 * The "none" format modifier doesn't actually mean that the modifier is
494
 * implicit, instead it means that the layout is linear. Whether modifiers are
495
 * used is out-of-band information carried in an API-specific way (e.g. in a
496
 * flag for drm_mode_fb_cmd2).
497
 */
498
#define DRM_FORMAT_MOD_NONE 0
499
500
/* Intel framebuffer modifiers */
501
502
/*
503
 * Intel X-tiling layout
504
 *
505
 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
506
 * in row-major layout. Within the tile bytes are laid out row-major, with
507
 * a platform-dependent stride. On top of that the memory can apply
508
 * platform-depending swizzling of some higher address bits into bit6.
509
 *
510
 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
511
 * On earlier platforms the is highly platforms specific and not useful for
512
 * cross-driver sharing. It exists since on a given platform it does uniquely
513
 * identify the layout in a simple way for i915-specific userspace, which
514
 * facilitated conversion of userspace to modifiers. Additionally the exact
515
 * format on some really old platforms is not known.
516
 */
517
#define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
518
519
/*
520
 * Intel Y-tiling layout
521
 *
522
 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
523
 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
524
 * chunks column-major, with a platform-dependent height. On top of that the
525
 * memory can apply platform-depending swizzling of some higher address bits
526
 * into bit6.
527
 *
528
 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
529
 * On earlier platforms the is highly platforms specific and not useful for
530
 * cross-driver sharing. It exists since on a given platform it does uniquely
531
 * identify the layout in a simple way for i915-specific userspace, which
532
 * facilitated conversion of userspace to modifiers. Additionally the exact
533
 * format on some really old platforms is not known.
534
 */
535
#define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
536
537
/*
538
 * Intel Yf-tiling layout
539
 *
540
 * This is a tiled layout using 4Kb tiles in row-major layout.
541
 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
542
 * are arranged in four groups (two wide, two high) with column-major layout.
543
 * Each group therefore consists out of four 256 byte units, which are also laid
544
 * out as 2x2 column-major.
545
 * 256 byte units are made out of four 64 byte blocks of pixels, producing
546
 * either a square block or a 2:1 unit.
547
 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
548
 * in pixel depends on the pixel depth.
549
 */
550
#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
551
552
/*
553
 * Intel color control surface (CCS) for render compression
554
 *
555
 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
556
 * The main surface will be plane index 0 and must be Y/Yf-tiled,
557
 * the CCS will be plane index 1.
558
 *
559
 * Each CCS tile matches a 1024x512 pixel area of the main surface.
560
 * To match certain aspects of the 3D hardware the CCS is
561
 * considered to be made up of normal 128Bx32 Y tiles, Thus
562
 * the CCS pitch must be specified in multiples of 128 bytes.
563
 *
564
 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
565
 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
566
 * But that fact is not relevant unless the memory is accessed
567
 * directly.
568
 */
569
#define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
570
#define I915_FORMAT_MOD_Yf_TILED_CCS  fourcc_mod_code(INTEL, 5)
571
572
/*
573
 * Intel color control surfaces (CCS) for Gen-12 render compression.
574
 *
575
 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
576
 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
577
 * main surface. In other words, 4 bits in CCS map to a main surface cache
578
 * line pair. The main surface pitch is required to be a multiple of four
579
 * Y-tile widths.
580
 */
581
#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
582
583
/*
584
 * Intel color control surfaces (CCS) for Gen-12 media compression
585
 *
586
 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
587
 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
588
 * main surface. In other words, 4 bits in CCS map to a main surface cache
589
 * line pair. The main surface pitch is required to be a multiple of four
590
 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
591
 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
592
 * planes 2 and 3 for the respective CCS.
593
 */
594
#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
595
596
/*
597
 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
598
 * compression.
599
 *
600
 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
601
 * and at index 1. The clear color is stored at index 2, and the pitch should
602
 * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
603
 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
604
 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
605
 * the converted clear color of size 64 bits. The first 32 bits store the Lower
606
 * Converted Clear Color value and the next 32 bits store the Higher Converted
607
 * Clear Color value when applicable. The Converted Clear Color values are
608
 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
609
 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
610
 * corresponds to an area of 4x1 tiles in the main surface. The main surface
611
 * pitch is required to be a multiple of 4 tile widths.
612
 */
613
#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
614
615
/*
616
 * Intel Tile 4 layout
617
 *
618
 * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
619
 * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
620
 * only differs from Tile Y at the 256B granularity in between. At this
621
 * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
622
 * of 64B x 8 rows.
623
 */
624
#define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
625
626
/*
627
 * Intel color control surfaces (CCS) for DG2 render compression.
628
 *
629
 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
630
 * outside of the GEM object in a reserved memory area dedicated for the
631
 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
632
 * main surface pitch is required to be a multiple of four Tile 4 widths.
633
 */
634
#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
635
636
/*
637
 * Intel color control surfaces (CCS) for DG2 media compression.
638
 *
639
 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
640
 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
641
 * 0 and 1, respectively. The CCS for all planes are stored outside of the
642
 * GEM object in a reserved memory area dedicated for the storage of the
643
 * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
644
 * pitch is required to be a multiple of four Tile 4 widths.
645
 */
646
#define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
647
648
/*
649
 * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
650
 *
651
 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
652
 * outside of the GEM object in a reserved memory area dedicated for the
653
 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
654
 * main surface pitch is required to be a multiple of four Tile 4 widths. The
655
 * clear color is stored at plane index 1 and the pitch should be 64 bytes
656
 * aligned. The format of the 256 bits of clear color data matches the one used
657
 * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
658
 * for details.
659
 */
660
#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
661
662
/*
663
 * Intel Color Control Surfaces (CCS) for display ver. 14 render compression.
664
 *
665
 * The main surface is tile4 and at plane index 0, the CCS is linear and
666
 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
667
 * main surface. In other words, 4 bits in CCS map to a main surface cache
668
 * line pair. The main surface pitch is required to be a multiple of four
669
 * tile4 widths.
670
 */
671
#define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13)
672
673
/*
674
 * Intel Color Control Surfaces (CCS) for display ver. 14 media compression
675
 *
676
 * The main surface is tile4 and at plane index 0, the CCS is linear and
677
 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
678
 * main surface. In other words, 4 bits in CCS map to a main surface cache
679
 * line pair. The main surface pitch is required to be a multiple of four
680
 * tile4 widths. For semi-planar formats like NV12, CCS planes follow the
681
 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
682
 * planes 2 and 3 for the respective CCS.
683
 */
684
#define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14)
685
686
/*
687
 * Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render
688
 * compression.
689
 *
690
 * The main surface is tile4 and is at plane index 0 whereas CCS is linear
691
 * and at index 1. The clear color is stored at index 2, and the pitch should
692
 * be ignored. The clear color structure is 256 bits. The first 128 bits
693
 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
694
 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
695
 * the converted clear color of size 64 bits. The first 32 bits store the Lower
696
 * Converted Clear Color value and the next 32 bits store the Higher Converted
697
 * Clear Color value when applicable. The Converted Clear Color values are
698
 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
699
 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
700
 * corresponds to an area of 4x1 tiles in the main surface. The main surface
701
 * pitch is required to be a multiple of 4 tile widths.
702
 */
703
#define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15)
704
705
/*
706
 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
707
 *
708
 * Macroblocks are laid in a Z-shape, and each pixel data is following the
709
 * standard NV12 style.
710
 * As for NV12, an image is the result of two frame buffers: one for Y,
711
 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
712
 * Alignment requirements are (for each buffer):
713
 * - multiple of 128 pixels for the width
714
 * - multiple of  32 pixels for the height
715
 *
716
 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
717
 */
718
#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
719
720
/*
721
 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
722
 *
723
 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
724
 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
725
 * they correspond to their 16x16 luma block.
726
 */
727
#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)
728
729
/*
730
 * Qualcomm Compressed Format
731
 *
732
 * Refers to a compressed variant of the base format that is compressed.
733
 * Implementation may be platform and base-format specific.
734
 *
735
 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
736
 * Pixel data pitch/stride is aligned with macrotile width.
737
 * Pixel data height is aligned with macrotile height.
738
 * Entire pixel data buffer is aligned with 4k(bytes).
739
 */
740
#define DRM_FORMAT_MOD_QCOM_COMPRESSED  fourcc_mod_code(QCOM, 1)
741
742
/*
743
 * Qualcomm Tiled Format
744
 *
745
 * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
746
 * Implementation may be platform and base-format specific.
747
 *
748
 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
749
 * Pixel data pitch/stride is aligned with macrotile width.
750
 * Pixel data height is aligned with macrotile height.
751
 * Entire pixel data buffer is aligned with 4k(bytes).
752
 */
753
#define DRM_FORMAT_MOD_QCOM_TILED3  fourcc_mod_code(QCOM, 3)
754
755
/*
756
 * Qualcomm Alternate Tiled Format
757
 *
758
 * Alternate tiled format typically only used within GMEM.
759
 * Implementation may be platform and base-format specific.
760
 */
761
#define DRM_FORMAT_MOD_QCOM_TILED2  fourcc_mod_code(QCOM, 2)
762
763
764
/* Vivante framebuffer modifiers */
765
766
/*
767
 * Vivante 4x4 tiling layout
768
 *
769
 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
770
 * layout.
771
 */
772
0
#define DRM_FORMAT_MOD_VIVANTE_TILED    fourcc_mod_code(VIVANTE, 1)
773
774
/*
775
 * Vivante 64x64 super-tiling layout
776
 *
777
 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
778
 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
779
 * major layout.
780
 *
781
 * For more information: see
782
 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
783
 */
784
0
#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED  fourcc_mod_code(VIVANTE, 2)
785
786
/*
787
 * Vivante 4x4 tiling layout for dual-pipe
788
 *
789
 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
790
 * different base address. Offsets from the base addresses are therefore halved
791
 * compared to the non-split tiled layout.
792
 */
793
0
#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED  fourcc_mod_code(VIVANTE, 3)
794
795
/*
796
 * Vivante 64x64 super-tiling layout for dual-pipe
797
 *
798
 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
799
 * starts at a different base address. Offsets from the base addresses are
800
 * therefore halved compared to the non-split super-tiled layout.
801
 */
802
0
#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
803
804
/*
805
 * Vivante TS (tile-status) buffer modifiers. They can be combined with all of
806
 * the color buffer tiling modifiers defined above. When TS is present it's a
807
 * separate buffer containing the clear/compression status of each tile. The
808
 * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer
809
 * tile size in bytes covered by one entry in the status buffer and s is the
810
 * number of status bits per entry.
811
 * We reserve the top 8 bits of the Vivante modifier space for tile status
812
 * clear/compression modifiers, as future cores might add some more TS layout
813
 * variations.
814
 */
815
0
#define VIVANTE_MOD_TS_64_4               (1ULL << 48)
816
0
#define VIVANTE_MOD_TS_64_2               (2ULL << 48)
817
0
#define VIVANTE_MOD_TS_128_4              (3ULL << 48)
818
0
#define VIVANTE_MOD_TS_256_4              (4ULL << 48)
819
0
#define VIVANTE_MOD_TS_MASK               (0xfULL << 48)
820
821
/*
822
 * Vivante compression modifiers. Those depend on a TS modifier being present
823
 * as the TS bits get reinterpreted as compression tags instead of simple
824
 * clear markers when compression is enabled.
825
 */
826
0
#define VIVANTE_MOD_COMP_DEC400           (1ULL << 52)
827
0
#define VIVANTE_MOD_COMP_MASK             (0xfULL << 52)
828
829
/* Masking out the extension bits will yield the base modifier. */
830
0
#define VIVANTE_MOD_EXT_MASK              (VIVANTE_MOD_TS_MASK | \
831
0
                                           VIVANTE_MOD_COMP_MASK)
832
833
/* NVIDIA frame buffer modifiers */
834
835
/*
836
 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
837
 *
838
 * Pixels are arranged in simple tiles of 16 x 16 bytes.
839
 */
840
#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
841
842
/*
843
 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
844
 * and Tegra GPUs starting with Tegra K1.
845
 *
846
 * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
847
 * based on the architecture generation.  GOBs themselves are then arranged in
848
 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
849
 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
850
 * a block depth or height of "4").
851
 *
852
 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
853
 * in full detail.
854
 *
855
 *       Macro
856
 * Bits  Param Description
857
 * ----  ----- -----------------------------------------------------------------
858
 *
859
 *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
860
 *             compatibility with the existing
861
 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
862
 *
863
 *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
864
 *             compatibility with the existing
865
 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
866
 *
867
 *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
868
 *             size).  Must be zero.
869
 *
870
 *             Note there is no log2(width) parameter.  Some portions of the
871
 *             hardware support a block width of two gobs, but it is impractical
872
 *             to use due to lack of support elsewhere, and has no known
873
 *             benefits.
874
 *
875
 * 11:9  -     Reserved (To support 2D-array textures with variable array stride
876
 *             in blocks, specified via log2(tile width in blocks)).  Must be
877
 *             zero.
878
 *
879
 * 19:12 k     Page Kind.  This value directly maps to a field in the page
880
 *             tables of all GPUs >= NV50.  It affects the exact layout of bits
881
 *             in memory and can be derived from the tuple
882
 *
883
 *               (format, GPU model, compression type, samples per pixel)
884
 *
885
 *             Where compression type is defined below.  If GPU model were
886
 *             implied by the format modifier, format, or memory buffer, page
887
 *             kind would not need to be included in the modifier itself, but
888
 *             since the modifier should define the layout of the associated
889
 *             memory buffer independent from any device or other context, it
890
 *             must be included here.
891
 *
892
 * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
893
 *             starting with Fermi GPUs.  Additionally, the mapping between page
894
 *             kind and bit layout has changed at various points.
895
 *
896
 *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
897
 *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
898
 *               2 = Gob Height 8, Turing+ Page Kind mapping
899
 *               3 = Reserved for future use.
900
 *
901
 * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
902
 *             bit remapping step that occurs at an even lower level than the
903
 *             page kind and block linear swizzles.  This causes the layout of
904
 *             surfaces mapped in those SOC's GPUs to be incompatible with the
905
 *             equivalent mapping on other GPUs in the same system.
906
 *
907
 *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
908
 *               1 = Desktop GPU and Tegra Xavier+ Layout
909
 *
910
 * 25:23 c     Lossless Framebuffer Compression type.
911
 *
912
 *               0 = none
913
 *               1 = ROP/3D, layout 1, exact compression format implied by Page
914
 *                   Kind field
915
 *               2 = ROP/3D, layout 2, exact compression format implied by Page
916
 *                   Kind field
917
 *               3 = CDE horizontal
918
 *               4 = CDE vertical
919
 *               5 = Reserved for future use
920
 *               6 = Reserved for future use
921
 *               7 = Reserved for future use
922
 *
923
 * 55:25 -     Reserved for future use.  Must be zero.
924
 */
925
#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
926
  fourcc_mod_code(NVIDIA, (0x10 | \
927
         ((h) & 0xf) | \
928
         (((k) & 0xff) << 12) | \
929
         (((g) & 0x3) << 20) | \
930
         (((s) & 0x1) << 22) | \
931
         (((c) & 0x7) << 23)))
932
933
/* To grandfather in prior block linear format modifiers to the above layout,
934
 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
935
 * with block-linear layouts, is remapped within drivers to the value 0xfe,
936
 * which corresponds to the "generic" kind used for simple single-sample
937
 * uncompressed color formats on Fermi - Volta GPUs.
938
 */
939
static __inline__ __u64
940
drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
941
0
{
942
0
  if (!(modifier & 0x10) || (modifier & (0xff << 12)))
943
0
    return modifier;
944
0
  else
945
0
    return modifier | (0xfe << 12);
946
0
}
Unexecuted instantiation: gstdrmdumb.c:drm_fourcc_canonicalize_nvidia_format_mod
Unexecuted instantiation: xf86drm.c:drm_fourcc_canonicalize_nvidia_format_mod
Unexecuted instantiation: xf86drmMode.c:drm_fourcc_canonicalize_nvidia_format_mod
947
948
/*
949
 * 16Bx2 Block Linear layout, used by Tegra K1 and later
950
 *
951
 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
952
 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
953
 *
954
 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
955
 *
956
 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
957
 * Valid values are:
958
 *
959
 * 0 == ONE_GOB
960
 * 1 == TWO_GOBS
961
 * 2 == FOUR_GOBS
962
 * 3 == EIGHT_GOBS
963
 * 4 == SIXTEEN_GOBS
964
 * 5 == THIRTYTWO_GOBS
965
 *
966
 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
967
 * in full detail.
968
 */
969
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
970
  DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
971
972
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
973
  DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
974
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
975
  DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
976
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
977
  DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
978
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
979
  DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
980
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
981
  DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
982
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
983
  DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
984
985
/*
986
 * Some Broadcom modifiers take parameters, for example the number of
987
 * vertical lines in the image. Reserve the lower 32 bits for modifier
988
 * type, and the next 24 bits for parameters. Top 8 bits are the
989
 * vendor code.
990
 */
991
#define __fourcc_mod_broadcom_param_shift 8
992
#define __fourcc_mod_broadcom_param_bits 48
993
#define fourcc_mod_broadcom_code(val, params) \
994
  fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
995
#define fourcc_mod_broadcom_param(m) \
996
  ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \
997
         ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
998
#define fourcc_mod_broadcom_mod(m) \
999
  ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<  \
1000
     __fourcc_mod_broadcom_param_shift))
1001
1002
/*
1003
 * Broadcom VC4 "T" format
1004
 *
1005
 * This is the primary layout that the V3D GPU can texture from (it
1006
 * can't do linear).  The T format has:
1007
 *
1008
 * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
1009
 *   pixels at 32 bit depth.
1010
 *
1011
 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
1012
 *   16x16 pixels).
1013
 *
1014
 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
1015
 *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
1016
 *   they're (TR, BR, BL, TL), where bottom left is start of memory.
1017
 *
1018
 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
1019
 *   tiles) or right-to-left (odd rows of 4k tiles).
1020
 */
1021
#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
1022
1023
/*
1024
 * Broadcom SAND format
1025
 *
1026
 * This is the native format that the H.264 codec block uses.  For VC4
1027
 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
1028
 *
1029
 * The image can be considered to be split into columns, and the
1030
 * columns are placed consecutively into memory.  The width of those
1031
 * columns can be either 32, 64, 128, or 256 pixels, but in practice
1032
 * only 128 pixel columns are used.
1033
 *
1034
 * The pitch between the start of each column is set to optimally
1035
 * switch between SDRAM banks. This is passed as the number of lines
1036
 * of column width in the modifier (we can't use the stride value due
1037
 * to various core checks that look at it , so you should set the
1038
 * stride to width*cpp).
1039
 *
1040
 * Note that the column height for this format modifier is the same
1041
 * for all of the planes, assuming that each column contains both Y
1042
 * and UV.  Some SAND-using hardware stores UV in a separate tiled
1043
 * image from Y to reduce the column height, which is not supported
1044
 * with these modifiers.
1045
 *
1046
 * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
1047
 * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
1048
 * wide, but as this is a 10 bpp format that translates to 96 pixels.
1049
 */
1050
1051
#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
1052
  fourcc_mod_broadcom_code(2, v)
1053
#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
1054
  fourcc_mod_broadcom_code(3, v)
1055
#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
1056
  fourcc_mod_broadcom_code(4, v)
1057
#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
1058
  fourcc_mod_broadcom_code(5, v)
1059
1060
#define DRM_FORMAT_MOD_BROADCOM_SAND32 \
1061
  DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
1062
#define DRM_FORMAT_MOD_BROADCOM_SAND64 \
1063
  DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
1064
#define DRM_FORMAT_MOD_BROADCOM_SAND128 \
1065
  DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
1066
#define DRM_FORMAT_MOD_BROADCOM_SAND256 \
1067
  DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
1068
1069
/* Broadcom UIF format
1070
 *
1071
 * This is the common format for the current Broadcom multimedia
1072
 * blocks, including V3D 3.x and newer, newer video codecs, and
1073
 * displays.
1074
 *
1075
 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
1076
 * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
1077
 * stored in columns, with padding between the columns to ensure that
1078
 * moving from one column to the next doesn't hit the same SDRAM page
1079
 * bank.
1080
 *
1081
 * To calculate the padding, it is assumed that each hardware block
1082
 * and the software driving it knows the platform's SDRAM page size,
1083
 * number of banks, and XOR address, and that it's identical between
1084
 * all blocks using the format.  This tiling modifier will use XOR as
1085
 * necessary to reduce the padding.  If a hardware block can't do XOR,
1086
 * the assumption is that a no-XOR tiling modifier will be created.
1087
 */
1088
#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
1089
1090
/*
1091
 * Arm Framebuffer Compression (AFBC) modifiers
1092
 *
1093
 * AFBC is a proprietary lossless image compression protocol and format.
1094
 * It provides fine-grained random access and minimizes the amount of data
1095
 * transferred between IP blocks.
1096
 *
1097
 * AFBC has several features which may be supported and/or used, which are
1098
 * represented using bits in the modifier. Not all combinations are valid,
1099
 * and different devices or use-cases may support different combinations.
1100
 *
1101
 * Further information on the use of AFBC modifiers can be found in
1102
 * Documentation/gpu/afbc.rst
1103
 */
1104
1105
/*
1106
 * The top 4 bits (out of the 56 bits allotted for specifying vendor specific
1107
 * modifiers) denote the category for modifiers. Currently we have three
1108
 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1109
 * sixteen different categories.
1110
 */
1111
#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1112
  fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1113
1114
0
#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1115
0
#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1116
1117
#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1118
  DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1119
1120
/*
1121
 * AFBC superblock size
1122
 *
1123
 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1124
 * size (in pixels) must be aligned to a multiple of the superblock size.
1125
 * Four lowest significant bits(LSBs) are reserved for block size.
1126
 *
1127
 * Where one superblock size is specified, it applies to all planes of the
1128
 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1129
 * the first applies to the Luma plane and the second applies to the Chroma
1130
 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1131
 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1132
 */
1133
0
#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
1134
0
#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
1135
0
#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
1136
0
#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
1137
0
#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1138
1139
/*
1140
 * AFBC lossless colorspace transform
1141
 *
1142
 * Indicates that the buffer makes use of the AFBC lossless colorspace
1143
 * transform.
1144
 */
1145
#define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
1146
1147
/*
1148
 * AFBC block-split
1149
 *
1150
 * Indicates that the payload of each superblock is split. The second
1151
 * half of the payload is positioned at a predefined offset from the start
1152
 * of the superblock payload.
1153
 */
1154
#define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
1155
1156
/*
1157
 * AFBC sparse layout
1158
 *
1159
 * This flag indicates that the payload of each superblock must be stored at a
1160
 * predefined position relative to the other superblocks in the same AFBC
1161
 * buffer. This order is the same order used by the header buffer. In this mode
1162
 * each superblock is given the same amount of space as an uncompressed
1163
 * superblock of the particular format would require, rounding up to the next
1164
 * multiple of 128 bytes in size.
1165
 */
1166
#define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
1167
1168
/*
1169
 * AFBC copy-block restrict
1170
 *
1171
 * Buffers with this flag must obey the copy-block restriction. The restriction
1172
 * is such that there are no copy-blocks referring across the border of 8x8
1173
 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1174
 */
1175
#define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
1176
1177
/*
1178
 * AFBC tiled layout
1179
 *
1180
 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1181
 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1182
 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1183
 * larger bpp formats. The order between the tiles is scan line.
1184
 * When the tiled layout is used, the buffer size (in pixels) must be aligned
1185
 * to the tile size.
1186
 */
1187
#define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1188
1189
/*
1190
 * AFBC solid color blocks
1191
 *
1192
 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1193
 * can be reduced if a whole superblock is a single color.
1194
 */
1195
#define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1196
1197
/*
1198
 * AFBC double-buffer
1199
 *
1200
 * Indicates that the buffer is allocated in a layout safe for front-buffer
1201
 * rendering.
1202
 */
1203
#define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1204
1205
/*
1206
 * AFBC buffer content hints
1207
 *
1208
 * Indicates that the buffer includes per-superblock content hints.
1209
 */
1210
#define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1211
1212
/* AFBC uncompressed storage mode
1213
 *
1214
 * Indicates that the buffer is using AFBC uncompressed storage mode.
1215
 * In this mode all superblock payloads in the buffer use the uncompressed
1216
 * storage mode, which is usually only used for data which cannot be compressed.
1217
 * The buffer layout is the same as for AFBC buffers without USM set, this only
1218
 * affects the storage mode of the individual superblocks. Note that even a
1219
 * buffer without USM set may use uncompressed storage mode for some or all
1220
 * superblocks, USM just guarantees it for all.
1221
 */
1222
#define AFBC_FORMAT_MOD_USM (1ULL << 12)
1223
1224
/*
1225
 * Arm Fixed-Rate Compression (AFRC) modifiers
1226
 *
1227
 * AFRC is a proprietary fixed rate image compression protocol and format,
1228
 * designed to provide guaranteed bandwidth and memory footprint
1229
 * reductions in graphics and media use-cases.
1230
 *
1231
 * AFRC buffers consist of one or more planes, with the same components
1232
 * and meaning as an uncompressed buffer using the same pixel format.
1233
 *
1234
 * Within each plane, the pixel/luma/chroma values are grouped into
1235
 * "coding unit" blocks which are individually compressed to a
1236
 * fixed size (in bytes). All coding units within a given plane of a buffer
1237
 * store the same number of values, and have the same compressed size.
1238
 *
1239
 * The coding unit size is configurable, allowing different rates of compression.
1240
 *
1241
 * The start of each AFRC buffer plane must be aligned to an alignment granule which
1242
 * depends on the coding unit size.
1243
 *
1244
 * Coding Unit Size   Plane Alignment
1245
 * ----------------   ---------------
1246
 * 16 bytes           1024 bytes
1247
 * 24 bytes           512  bytes
1248
 * 32 bytes           2048 bytes
1249
 *
1250
 * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1251
 * to a multiple of the paging tile dimensions.
1252
 * The dimensions of each paging tile depend on whether the buffer is optimised for
1253
 * scanline (SCAN layout) or rotated (ROT layout) access.
1254
 *
1255
 * Layout   Paging Tile Width   Paging Tile Height
1256
 * ------   -----------------   ------------------
1257
 * SCAN     16 coding units     4 coding units
1258
 * ROT      8  coding units     8 coding units
1259
 *
1260
 * The dimensions of each coding unit depend on the number of components
1261
 * in the compressed plane and whether the buffer is optimised for
1262
 * scanline (SCAN layout) or rotated (ROT layout) access.
1263
 *
1264
 * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1265
 * -----------------------------   ---------   -----------------   ------------------
1266
 * 1                               SCAN        16 samples          4 samples
1267
 * Example: 16x4 luma samples in a 'Y' plane
1268
 *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1269
 * -----------------------------   ---------   -----------------   ------------------
1270
 * 1                               ROT         8 samples           8 samples
1271
 * Example: 8x8 luma samples in a 'Y' plane
1272
 *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1273
 * -----------------------------   ---------   -----------------   ------------------
1274
 * 2                               DONT CARE   8 samples           4 samples
1275
 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1276
 * -----------------------------   ---------   -----------------   ------------------
1277
 * 3                               DONT CARE   4 samples           4 samples
1278
 * Example: 4x4 pixels in an RGB buffer without alpha
1279
 * -----------------------------   ---------   -----------------   ------------------
1280
 * 4                               DONT CARE   4 samples           4 samples
1281
 * Example: 4x4 pixels in an RGB buffer with alpha
1282
 */
1283
1284
0
#define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1285
1286
#define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1287
  DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1288
1289
/*
1290
 * AFRC coding unit size modifier.
1291
 *
1292
 * Indicates the number of bytes used to store each compressed coding unit for
1293
 * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1294
 * is the same for both Cb and Cr, which may be stored in separate planes.
1295
 *
1296
 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1297
 * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1298
 * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1299
 * this corresponds to the luma plane.
1300
 *
1301
 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1302
 * each compressed coding unit in the second and third planes in the buffer.
1303
 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1304
 *
1305
 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1306
 * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1307
 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1308
 * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1309
 */
1310
0
#define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1311
0
#define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1312
0
#define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1313
0
#define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1314
1315
#define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1316
#define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1317
1318
/*
1319
 * AFRC scanline memory layout.
1320
 *
1321
 * Indicates if the buffer uses the scanline-optimised layout
1322
 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1323
 * The memory layout is the same for all planes.
1324
 */
1325
0
#define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1326
1327
/*
1328
 * Arm 16x16 Block U-Interleaved modifier
1329
 *
1330
 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1331
 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1332
 * in the block are reordered.
1333
 */
1334
#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1335
  DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1336
1337
/*
1338
 * Allwinner tiled modifier
1339
 *
1340
 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1341
 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1342
 * planes.
1343
 *
1344
 * With this tiling, the luminance samples are disposed in tiles representing
1345
 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1346
 * The pixel order in each tile is linear and the tiles are disposed linearly,
1347
 * both in row-major order.
1348
 */
1349
#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1350
1351
/*
1352
 * Amlogic Video Framebuffer Compression modifiers
1353
 *
1354
 * Amlogic uses a proprietary lossless image compression protocol and format
1355
 * for their hardware video codec accelerators, either video decoders or
1356
 * video input encoders.
1357
 *
1358
 * It considerably reduces memory bandwidth while writing and reading
1359
 * frames in memory.
1360
 *
1361
 * The underlying storage is considered to be 3 components, 8bit or 10-bit
1362
 * per component YCbCr 420, single plane :
1363
 * - DRM_FORMAT_YUV420_8BIT
1364
 * - DRM_FORMAT_YUV420_10BIT
1365
 *
1366
 * The first 8 bits of the mode defines the layout, then the following 8 bits
1367
 * defines the options changing the layout.
1368
 *
1369
 * Not all combinations are valid, and different SoCs may support different
1370
 * combinations of layout and options.
1371
 */
1372
#define __fourcc_mod_amlogic_layout_mask 0xff
1373
#define __fourcc_mod_amlogic_options_shift 8
1374
#define __fourcc_mod_amlogic_options_mask 0xff
1375
1376
#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1377
  fourcc_mod_code(AMLOGIC, \
1378
      ((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1379
      (((__options) & __fourcc_mod_amlogic_options_mask) \
1380
       << __fourcc_mod_amlogic_options_shift))
1381
1382
/* Amlogic FBC Layouts */
1383
1384
/*
1385
 * Amlogic FBC Basic Layout
1386
 *
1387
 * The basic layout is composed of:
1388
 * - a body content organized in 64x32 superblocks with 4096 bytes per
1389
 *   superblock in default mode.
1390
 * - a 32 bytes per 128x64 header block
1391
 *
1392
 * This layout is transferrable between Amlogic SoCs supporting this modifier.
1393
 */
1394
0
#define AMLOGIC_FBC_LAYOUT_BASIC    (1ULL)
1395
1396
/*
1397
 * Amlogic FBC Scatter Memory layout
1398
 *
1399
 * Indicates the header contains IOMMU references to the compressed
1400
 * frames content to optimize memory access and layout.
1401
 *
1402
 * In this mode, only the header memory address is needed, thus the
1403
 * content memory organization is tied to the current producer
1404
 * execution and cannot be saved/dumped neither transferrable between
1405
 * Amlogic SoCs supporting this modifier.
1406
 *
1407
 * Due to the nature of the layout, these buffers are not expected to
1408
 * be accessible by the user-space clients, but only accessible by the
1409
 * hardware producers and consumers.
1410
 *
1411
 * The user-space clients should expect a failure while trying to mmap
1412
 * the DMA-BUF handle returned by the producer.
1413
 */
1414
0
#define AMLOGIC_FBC_LAYOUT_SCATTER    (2ULL)
1415
1416
/* Amlogic FBC Layout Options Bit Mask */
1417
1418
/*
1419
 * Amlogic FBC Memory Saving mode
1420
 *
1421
 * Indicates the storage is packed when pixel size is multiple of word
1422
 * boundaries, i.e. 8bit should be stored in this mode to save allocation
1423
 * memory.
1424
 *
1425
 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1426
 * the basic layout and 3200 bytes per 64x32 superblock combined with
1427
 * the scatter layout.
1428
 */
1429
0
#define AMLOGIC_FBC_OPTION_MEM_SAVING   (1ULL << 0)
1430
1431
/*
1432
 * AMD modifiers
1433
 *
1434
 * Memory layout:
1435
 *
1436
 * without DCC:
1437
 *   - main surface
1438
 *
1439
 * with DCC & without DCC_RETILE:
1440
 *   - main surface in plane 0
1441
 *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1442
 *
1443
 * with DCC & DCC_RETILE:
1444
 *   - main surface in plane 0
1445
 *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1446
 *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1447
 *
1448
 * For multi-plane formats the above surfaces get merged into one plane for
1449
 * each format plane, based on the required alignment only.
1450
 *
1451
 * Bits  Parameter                Notes
1452
 * ----- ------------------------ ---------------------------------------------
1453
 *
1454
 *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1455
 *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1456
 *    13 DCC
1457
 *    14 DCC_RETILE
1458
 *    15 DCC_PIPE_ALIGN
1459
 *    16 DCC_INDEPENDENT_64B
1460
 *    17 DCC_INDEPENDENT_128B
1461
 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1462
 *    20 DCC_CONSTANT_ENCODE
1463
 * 23:21 PIPE_XOR_BITS            Only for some chips
1464
 * 26:24 BANK_XOR_BITS            Only for some chips
1465
 * 29:27 PACKERS                  Only for some chips
1466
 * 32:30 RB                       Only for some chips
1467
 * 35:33 PIPE                     Only for some chips
1468
 * 55:36 -                        Reserved for future use, must be zero
1469
 */
1470
#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1471
1472
#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1473
1474
/* Reserve 0 for GFX8 and older */
1475
0
#define AMD_FMT_MOD_TILE_VER_GFX9 1
1476
0
#define AMD_FMT_MOD_TILE_VER_GFX10 2
1477
0
#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1478
0
#define AMD_FMT_MOD_TILE_VER_GFX11 4
1479
0
#define AMD_FMT_MOD_TILE_VER_GFX12 5
1480
1481
/*
1482
 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1483
 * version.
1484
 */
1485
#define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1486
1487
/*
1488
 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1489
 * GFX9 as canonical version.
1490
 *
1491
 * 64K_D_2D on GFX12 is identical to 64K_D on GFX11.
1492
 */
1493
#define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1494
#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1495
#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1496
#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1497
#define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1498
1499
/* Gfx12 swizzle modes:
1500
 *    0 - LINEAR
1501
 *    1 - 256B_2D  - 2D block dimensions
1502
 *    2 - 4KB_2D
1503
 *    3 - 64KB_2D
1504
 *    4 - 256KB_2D
1505
 *    5 - 4KB_3D   - 3D block dimensions
1506
 *    6 - 64KB_3D
1507
 *    7 - 256KB_3D
1508
 */
1509
#define AMD_FMT_MOD_TILE_GFX12_64K_2D 3
1510
#define AMD_FMT_MOD_TILE_GFX12_256K_2D 4
1511
1512
#define AMD_FMT_MOD_DCC_BLOCK_64B 0
1513
#define AMD_FMT_MOD_DCC_BLOCK_128B 1
1514
#define AMD_FMT_MOD_DCC_BLOCK_256B 2
1515
1516
0
#define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1517
0
#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1518
0
#define AMD_FMT_MOD_TILE_SHIFT 8
1519
0
#define AMD_FMT_MOD_TILE_MASK 0x1F
1520
1521
/* Whether DCC compression is enabled. */
1522
0
#define AMD_FMT_MOD_DCC_SHIFT 13
1523
0
#define AMD_FMT_MOD_DCC_MASK 0x1
1524
1525
/*
1526
 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1527
 * one which is not-aligned.
1528
 */
1529
0
#define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1530
0
#define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1531
1532
/* Only set if DCC_RETILE = false */
1533
0
#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1534
0
#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1535
1536
0
#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1537
0
#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1538
0
#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1539
0
#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1540
0
#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1541
0
#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1542
1543
#define AMD_FMT_MOD_GFX12_DCC_MAX_COMPRESSED_BLOCK_SHIFT     3
1544
#define AMD_FMT_MOD_GFX12_DCC_MAX_COMPRESSED_BLOCK_MASK      0x3 /* 0:64B, 1:128B, 2:256B */
1545
1546
/*
1547
 * DCC supports embedding some clear colors directly in the DCC surface.
1548
 * However, on older GPUs the rendering HW ignores the embedded clear color
1549
 * and prefers the driver provided color. This necessitates doing a fastclear
1550
 * eliminate operation before a process transfers control.
1551
 *
1552
 * If this bit is set that means the fastclear eliminate is not needed for these
1553
 * embeddable colors.
1554
 */
1555
0
#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1556
0
#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1557
1558
/*
1559
 * The below fields are for accounting for per GPU differences. These are only
1560
 * relevant for GFX9 and later and if the tile field is *_X/_T.
1561
 *
1562
 * PIPE_XOR_BITS = always needed
1563
 * BANK_XOR_BITS = only for TILE_VER_GFX9
1564
 * PACKERS = only for TILE_VER_GFX10_RBPLUS
1565
 * RB = only for TILE_VER_GFX9 & DCC
1566
 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1567
 */
1568
0
#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1569
0
#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1570
0
#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1571
0
#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1572
0
#define AMD_FMT_MOD_PACKERS_SHIFT 27
1573
0
#define AMD_FMT_MOD_PACKERS_MASK 0x7
1574
0
#define AMD_FMT_MOD_RB_SHIFT 30
1575
0
#define AMD_FMT_MOD_RB_MASK 0x7
1576
0
#define AMD_FMT_MOD_PIPE_SHIFT 33
1577
0
#define AMD_FMT_MOD_PIPE_MASK 0x7
1578
1579
#define AMD_FMT_MOD_SET(field, value) \
1580
  ((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
1581
#define AMD_FMT_MOD_GET(field, value) \
1582
0
  (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1583
#define AMD_FMT_MOD_CLEAR(field) \
1584
  (~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1585
1586
#if defined(__cplusplus)
1587
}
1588
#endif
1589
1590
#endif /* DRM_FOURCC_H */