Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/h5py/_hl/attrs.py: 20%
128 statements
« prev ^ index » next coverage.py v7.2.7, created at 2023-06-07 06:30 +0000
« prev ^ index » next coverage.py v7.2.7, created at 2023-06-07 06:30 +0000
1# This file is part of h5py, a Python interface to the HDF5 library.
2#
3# http://www.h5py.org
4#
5# Copyright 2008-2013 Andrew Collette and contributors
6#
7# License: Standard 3-clause BSD; see "license.txt" for full license terms
8# and contributor agreement.
10"""
11 Implements high-level operations for attributes.
13 Provides the AttributeManager class, available on high-level objects
14 as <obj>.attrs.
15"""
17import numpy
18import uuid
20from .. import h5, h5s, h5t, h5a, h5p
21from . import base
22from .base import phil, with_phil, Empty, is_empty_dataspace, product
23from .datatype import Datatype
26class AttributeManager(base.MutableMappingHDF5, base.CommonStateObject):
28 """
29 Allows dictionary-style access to an HDF5 object's attributes.
31 These are created exclusively by the library and are available as
32 a Python attribute at <object>.attrs
34 Like Group objects, attributes provide a minimal dictionary-
35 style interface. Anything which can be reasonably converted to a
36 Numpy array or Numpy scalar can be stored.
38 Attributes are automatically created on assignment with the
39 syntax <obj>.attrs[name] = value, with the HDF5 type automatically
40 deduced from the value. Existing attributes are overwritten.
42 To modify an existing attribute while preserving its type, use the
43 method modify(). To specify an attribute of a particular type and
44 shape, use create().
45 """
47 def __init__(self, parent):
48 """ Private constructor.
49 """
50 self._id = parent.id
52 @with_phil
53 def __getitem__(self, name):
54 """ Read the value of an attribute.
55 """
56 attr = h5a.open(self._id, self._e(name))
57 shape = attr.shape
59 # shape is None for empty dataspaces
60 if shape is None:
61 return Empty(attr.dtype)
63 dtype = attr.dtype
65 # Do this first, as we'll be fiddling with the dtype for top-level
66 # array types
67 htype = h5t.py_create(dtype)
69 # NumPy doesn't support top-level array types, so we have to "fake"
70 # the correct type and shape for the array. For example, consider
71 # attr.shape == (5,) and attr.dtype == '(3,)f'. Then:
72 if dtype.subdtype is not None:
73 subdtype, subshape = dtype.subdtype
74 shape = attr.shape + subshape # (5, 3)
75 dtype = subdtype # 'f'
77 arr = numpy.zeros(shape, dtype=dtype, order='C')
78 attr.read(arr, mtype=htype)
80 string_info = h5t.check_string_dtype(dtype)
81 if string_info and (string_info.length is None):
82 # Vlen strings: convert bytes to Python str
83 arr = numpy.array([
84 b.decode('utf-8', 'surrogateescape') for b in arr.flat
85 ], dtype=dtype).reshape(arr.shape)
87 if arr.ndim == 0:
88 return arr[()]
89 return arr
91 def get_id(self, name):
92 """Get a low-level AttrID object for the named attribute.
93 """
94 return h5a.open(self._id, self._e(name))
96 @with_phil
97 def __setitem__(self, name, value):
98 """ Set a new attribute, overwriting any existing attribute.
100 The type and shape of the attribute are determined from the data. To
101 use a specific type or shape, or to preserve the type of an attribute,
102 use the methods create() and modify().
103 """
104 self.create(name, data=value)
106 @with_phil
107 def __delitem__(self, name):
108 """ Delete an attribute (which must already exist). """
109 h5a.delete(self._id, self._e(name))
111 def create(self, name, data, shape=None, dtype=None):
112 """ Create a new attribute, overwriting any existing attribute.
114 name
115 Name of the new attribute (required)
116 data
117 An array to initialize the attribute (required)
118 shape
119 Shape of the attribute. Overrides data.shape if both are
120 given, in which case the total number of points must be unchanged.
121 dtype
122 Data type of the attribute. Overrides data.dtype if both
123 are given.
124 """
126 with phil:
127 # First, make sure we have a NumPy array. We leave the data type
128 # conversion for HDF5 to perform.
129 if not isinstance(data, Empty):
130 data = base.array_for_new_object(data, specified_dtype=dtype)
132 if shape is None:
133 shape = data.shape
134 elif isinstance(shape, int):
135 shape = (shape,)
137 use_htype = None # If a committed type is given, we must use it
138 # in the call to h5a.create.
140 if isinstance(dtype, Datatype):
141 use_htype = dtype.id
142 dtype = dtype.dtype
143 elif dtype is None:
144 dtype = data.dtype
145 else:
146 dtype = numpy.dtype(dtype) # In case a string, e.g. 'i8' is passed
148 original_dtype = dtype # We'll need this for top-level array types
150 # Where a top-level array type is requested, we have to do some
151 # fiddling around to present the data as a smaller array of
152 # subarrays.
153 if dtype.subdtype is not None:
155 subdtype, subshape = dtype.subdtype
157 # Make sure the subshape matches the last N axes' sizes.
158 if shape[-len(subshape):] != subshape:
159 raise ValueError("Array dtype shape %s is incompatible with data shape %s" % (subshape, shape))
161 # New "advertised" shape and dtype
162 shape = shape[0:len(shape)-len(subshape)]
163 dtype = subdtype
165 # Not an array type; make sure to check the number of elements
166 # is compatible, and reshape if needed.
167 else:
169 if shape is not None and numpy.product(shape, dtype=numpy.ulonglong) != numpy.product(data.shape, dtype=numpy.ulonglong):
170 raise ValueError("Shape of new attribute conflicts with shape of data")
172 if shape != data.shape:
173 data = data.reshape(shape)
175 # We need this to handle special string types.
176 if not isinstance(data, Empty):
177 data = numpy.asarray(data, dtype=dtype)
179 # Make HDF5 datatype and dataspace for the H5A calls
180 if use_htype is None:
181 htype = h5t.py_create(original_dtype, logical=True)
182 htype2 = h5t.py_create(original_dtype) # Must be bit-for-bit representation rather than logical
183 else:
184 htype = use_htype
185 htype2 = None
187 if isinstance(data, Empty):
188 space = h5s.create(h5s.NULL)
189 else:
190 space = h5s.create_simple(shape)
192 # This mess exists because you can't overwrite attributes in HDF5.
193 # So we write to a temporary attribute first, and then rename.
194 # see issue 1385
195 # if track_order is enabled new attributes (which exceed the
196 # max_compact range, 8 is default) cannot be created as temporary
197 # attributes with subsequent rename, doing that would trigger
198 # the error discussed in the above issue
199 attr_exists = False
200 if h5a.exists(self._id, self._e(name)):
201 attr_exists = True
202 tempname = uuid.uuid4().hex
203 else:
204 tempname = name
206 attr = h5a.create(self._id, self._e(tempname), htype, space)
207 try:
208 if not isinstance(data, Empty):
209 attr.write(data, mtype=htype2)
210 if attr_exists:
211 # Rename temp attribute to proper name
212 # No atomic rename in HDF5 :(
213 h5a.delete(self._id, self._e(name))
214 h5a.rename(self._id, self._e(tempname), self._e(name))
215 except:
216 attr.close()
217 h5a.delete(self._id, self._e(tempname))
218 raise
219 finally:
220 attr.close()
222 def modify(self, name, value):
223 """ Change the value of an attribute while preserving its type.
225 Differs from __setitem__ in that if the attribute already exists, its
226 type is preserved. This can be very useful for interacting with
227 externally generated files.
229 If the attribute doesn't exist, it will be automatically created.
230 """
231 with phil:
232 if not name in self:
233 self[name] = value
234 else:
235 attr = h5a.open(self._id, self._e(name))
237 if is_empty_dataspace(attr):
238 raise OSError("Empty attributes can't be modified")
240 # If the input data is already an array, let HDF5 do the conversion.
241 # If it's a list or similar, don't make numpy guess a dtype for it.
242 dt = None if isinstance(value, numpy.ndarray) else attr.dtype
243 value = numpy.asarray(value, order='C', dtype=dt)
245 # Allow the case of () <-> (1,)
246 if (value.shape != attr.shape) and not \
247 (value.size == 1 and product(attr.shape) == 1):
248 raise TypeError("Shape of data is incompatible with existing attribute")
249 attr.write(value)
251 @with_phil
252 def __len__(self):
253 """ Number of attributes attached to the object. """
254 # I expect we will not have more than 2**32 attributes
255 return h5a.get_num_attrs(self._id)
257 def __iter__(self):
258 """ Iterate over the names of attributes. """
259 with phil:
261 attrlist = []
262 def iter_cb(name, *args):
263 """ Callback to gather attribute names """
264 attrlist.append(self._d(name))
266 cpl = self._id.get_create_plist()
267 crt_order = cpl.get_attr_creation_order()
268 cpl.close()
269 if crt_order & h5p.CRT_ORDER_TRACKED:
270 idx_type = h5.INDEX_CRT_ORDER
271 else:
272 idx_type = h5.INDEX_NAME
274 h5a.iterate(self._id, iter_cb, index_type=idx_type)
276 for name in attrlist:
277 yield name
279 @with_phil
280 def __contains__(self, name):
281 """ Determine if an attribute exists, by name. """
282 return h5a.exists(self._id, self._e(name))
284 @with_phil
285 def __repr__(self):
286 if not self._id:
287 return "<Attributes of closed HDF5 object>"
288 return "<Attributes of HDF5 object at %s>" % id(self._id)