TestRehashPartitioner.java
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.mapreduce.lib.partition;
import static org.junit.jupiter.api.Assertions.assertTrue;
import java.util.Arrays;
import java.util.Collections;
import org.apache.commons.lang3.ArrayUtils;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.junit.jupiter.api.Test;
public class TestRehashPartitioner {
/** number of partitions */
private static final int PARTITIONS = 32;
/** step in sequence */
private static final int STEP = 3;
/** end of test sequence */
private static final int END = 100000;
/** maximum error for considering too big/small bucket */
private static final double MAX_ERROR = 0.20;
/** maximum number of oddly sized buckets */
private static final double MAX_BADBUCKETS = 0.10;
/** test partitioner for patterns */
@Test
public void testPatterns() {
int results[] = new int[PARTITIONS];
RehashPartitioner <IntWritable, NullWritable> p = new RehashPartitioner < IntWritable, NullWritable> ();
/* test sequence 4, 8, 12, ... 128 */
for(int i = 0; i < END; i+= STEP) {
results[p.getPartition(new IntWritable(i), null, PARTITIONS)]++;
}
int badbuckets = 0;
Integer min = Collections.min(Arrays.asList(ArrayUtils.toObject(results)));
Integer max = Collections.max(Arrays.asList(ArrayUtils.toObject(results)));
Integer avg = (int) Math.round((max+min)/2.0);
System.out.println("Dumping buckets distribution: min="+min+" avg="+avg+" max="+max);
for (int i = 0; i < PARTITIONS; i++) {
double var = (results[i]-avg)/(double)(avg);
System.out.println("bucket "+i+" "+results[i]+" items, variance "+var);
if (Math.abs(var) > MAX_ERROR)
badbuckets++;
}
System.out.println(badbuckets + " of "+PARTITIONS+" are too small or large buckets");
assertTrue(badbuckets < PARTITIONS * MAX_BADBUCKETS, "too many overflow buckets");
}
}