Coverage Report

Created: 2025-09-04 06:06

/src/haproxy/src/pool.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Memory management functions.
3
 *
4
 * Copyright 2000-2007 Willy Tarreau <w@1wt.eu>
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License
8
 * as published by the Free Software Foundation; either version
9
 * 2 of the License, or (at your option) any later version.
10
 *
11
 */
12
13
#include <errno.h>
14
15
#include <import/plock.h>
16
17
#include <haproxy/activity.h>
18
#include <haproxy/api.h>
19
#include <haproxy/applet-t.h>
20
#include <haproxy/cfgparse.h>
21
#include <haproxy/channel.h>
22
#include <haproxy/cli.h>
23
#include <haproxy/errors.h>
24
#include <haproxy/global.h>
25
#include <haproxy/list.h>
26
#include <haproxy/pool.h>
27
#include <haproxy/pool-os.h>
28
#include <haproxy/sc_strm.h>
29
#include <haproxy/stats-t.h>
30
#include <haproxy/stconn.h>
31
#include <haproxy/thread.h>
32
#include <haproxy/tools.h>
33
34
35
/* These ones are initialized per-thread on startup by init_pools() */
36
THREAD_LOCAL size_t pool_cache_bytes = 0;                /* total cache size */
37
THREAD_LOCAL size_t pool_cache_count = 0;                /* #cache objects   */
38
39
struct list pools __read_mostly = LIST_HEAD_INIT(pools);
40
int mem_poison_byte __read_mostly = 'P';
41
int pool_trim_in_progress = 0;
42
uint pool_debugging __read_mostly =               /* set of POOL_DBG_* flags */
43
#if defined(DEBUG_FAIL_ALLOC) && (DEBUG_FAIL_ALLOC > 0)
44
  POOL_DBG_FAIL_ALLOC |
45
#endif
46
#if defined(DEBUG_DONT_SHARE_POOLS) && (DEBUG_DONT_SHARE_POOLS > 0)
47
  POOL_DBG_DONT_MERGE |
48
#endif
49
#if defined(DEBUG_POOL_INTEGRITY) && (DEBUG_POOL_INTEGRITY > 0)
50
  POOL_DBG_COLD_FIRST |
51
  POOL_DBG_INTEGRITY  |
52
#endif
53
#if defined(CONFIG_HAP_NO_GLOBAL_POOLS)
54
  POOL_DBG_NO_GLOBAL  |
55
#endif
56
#if defined(DEBUG_NO_POOLS) && (DEBUG_NO_POOLS > 0)
57
  POOL_DBG_NO_CACHE   |
58
#endif
59
#if defined(DEBUG_POOL_TRACING) && (DEBUG_POOL_TRACING > 0)
60
  POOL_DBG_CALLER     |
61
#endif
62
#if defined(DEBUG_MEMORY_POOLS) && (DEBUG_MEMORY_POOLS > 0)
63
  POOL_DBG_TAG        |
64
#endif
65
#if defined(DEBUG_UAF) && (DEBUG_UAF > 0)
66
  POOL_DBG_NO_CACHE   |
67
  POOL_DBG_UAF        |
68
#endif
69
  0;
70
71
static const struct {
72
  uint flg;
73
  const char *set;
74
  const char *clr;
75
  const char *hlp;
76
} dbg_options[] = {
77
  /* flg,                 set,          clr,            hlp */
78
  { POOL_DBG_FAIL_ALLOC, "fail",       "no-fail",      "randomly fail allocations" },
79
  { POOL_DBG_DONT_MERGE, "no-merge",   "merge",        "disable merging of similar pools" },
80
  { POOL_DBG_COLD_FIRST, "cold-first", "hot-first",    "pick cold objects first" },
81
  { POOL_DBG_INTEGRITY,  "integrity",  "no-integrity", "enable cache integrity checks" },
82
  { POOL_DBG_NO_GLOBAL,  "no-global",  "global",       "disable global shared cache" },
83
  { POOL_DBG_NO_CACHE,   "no-cache",   "cache",        "disable thread-local cache" },
84
  { POOL_DBG_CALLER,     "caller",     "no-caller",    "save caller information in cache" },
85
  { POOL_DBG_TAG,        "tag",        "no-tag",       "add tag at end of allocated objects" },
86
  { POOL_DBG_POISON,     "poison",     "no-poison",    "poison newly allocated objects" },
87
  { POOL_DBG_UAF,        "uaf",        "no-uaf",       "enable use-after-free checks (slow)" },
88
  { POOL_DBG_BACKUP,     "backup",     "no-backup",    "compare object contents on re-alloc" },
89
  { 0 /* end */ }
90
};
91
92
/* describes a snapshot of a pool line about to be dumped by "show pools" */
93
struct pool_dump_info {
94
  const struct pool_head *entry;
95
  ulong alloc_items;
96
  ulong alloc_bytes;
97
  ulong used_items;
98
  ulong cached_items;
99
  ulong need_avg;
100
  ulong failed_items;
101
};
102
103
/* context used by "show pools" */
104
struct show_pools_ctx {
105
  char *prefix;  /* if non-null, match this prefix name for the pool */
106
  int how;     /* bits 0..3: 0=no sort, 1=by name, 2=by item size, 3=by total alloc */
107
  int maxcnt;  /* 0=no limit, other=max number of output entries */
108
};
109
110
static int mem_fail_rate __read_mostly = 0;
111
static int using_default_allocator __read_mostly = 1; // linked-in allocator or LD_PRELOADed one ?
112
static int disable_trim __read_mostly = 0;
113
static int(*my_mallctl)(const char *, void *, size_t *, void *, size_t) = NULL;
114
static int(*_malloc_trim)(size_t) = NULL;
115
116
/* returns the pool hash bucket an object should use based on its pointer.
117
 * Objects will needed consistent bucket assignment so that they may be
118
 * allocated on one thread and released on another one. Thus only the
119
 * pointer is usable.
120
 */
121
static forceinline unsigned int pool_pbucket(const void *ptr)
122
0
{
123
0
  return ptr_hash(ptr, CONFIG_HAP_POOL_BUCKETS_BITS);
124
0
}
125
126
/* returns the pool hash bucket to use for the current thread. This should only
127
 * be used when no pointer is available (e.g. count alloc failures).
128
 */
129
static forceinline unsigned int pool_tbucket(void)
130
0
{
131
0
  return tid % CONFIG_HAP_POOL_BUCKETS;
132
0
}
133
134
/* ask the allocator to trim memory pools.
135
 * This must run under thread isolation so that competing threads trying to
136
 * allocate or release memory do not prevent the allocator from completing
137
 * its job. We just have to be careful as callers might already be isolated
138
 * themselves.
139
 */
140
void trim_all_pools(void)
141
0
{
142
0
  int isolated = thread_isolated();
143
144
0
  if (!isolated)
145
0
    thread_isolate();
146
147
0
  malloc_trim(0);
148
149
0
  if (!isolated)
150
0
    thread_release();
151
0
}
152
153
/* check if we're using the same allocator as the one that provides
154
 * malloc_trim() and mallinfo(). The principle is that on glibc, both
155
 * malloc_trim() and mallinfo() are provided, and using mallinfo() we
156
 * can check if malloc() is performed through glibc or any other one
157
 * the executable was linked against (e.g. jemalloc). Prior to this we
158
 * have to check whether we're running on jemalloc by verifying if the
159
 * mallctl() function is provided. Its pointer will be used later.
160
 */
161
static void detect_allocator(void)
162
0
{
163
0
#if defined(__ELF__)
164
0
  extern int mallctl(const char *, void *, size_t *, void *, size_t) __attribute__((weak));
165
166
0
  my_mallctl = mallctl;
167
0
#endif
168
0
  if (!my_mallctl) {
169
    /* trick: we won't enter here if mallctl() is known at link
170
     * time. This allows to detect if the symbol was changed since
171
     * the program was linked, indicating it's not running on the
172
     * expected allocator (due to an LD_PRELOAD) and that we must
173
     * be extra cautious and avoid some optimizations that are
174
     * known to break such as malloc_trim().
175
     */
176
0
    my_mallctl = get_sym_curr_addr("mallctl");
177
0
    using_default_allocator = (my_mallctl == NULL);
178
0
  }
179
180
0
  if (!my_mallctl) {
181
0
#if defined(HA_HAVE_MALLOC_TRIM)
182
#ifdef HA_HAVE_MALLINFO2
183
    struct mallinfo2 mi1, mi2;
184
#else
185
0
    struct mallinfo mi1, mi2;
186
0
#endif
187
0
    void *ptr;
188
189
#ifdef HA_HAVE_MALLINFO2
190
    mi1 = mallinfo2();
191
#else
192
0
    mi1 = mallinfo();
193
0
#endif
194
0
    ptr = DISGUISE(malloc(1));
195
#ifdef HA_HAVE_MALLINFO2
196
    mi2 = mallinfo2();
197
#else
198
0
    mi2 = mallinfo();
199
0
#endif
200
0
    free(DISGUISE(ptr));
201
202
0
    using_default_allocator = !!memcmp(&mi1, &mi2, sizeof(mi1));
203
#elif defined(HA_HAVE_MALLOC_ZONE)
204
    using_default_allocator = (malloc_default_zone() != NULL);
205
#endif
206
0
  }
207
208
  /* detect presence of malloc_trim() */
209
0
  _malloc_trim = get_sym_next_addr("malloc_trim");
210
0
}
211
212
/* replace the libc's malloc_trim() so that we can also intercept the calls
213
 * from child libraries when the allocator is not the default one.
214
 */
215
int malloc_trim(size_t pad)
216
0
{
217
0
  int ret = 0;
218
219
0
  if (disable_trim)
220
0
    return ret;
221
222
0
  HA_ATOMIC_INC(&pool_trim_in_progress);
223
224
0
  if (my_mallctl) {
225
    /* here we're on jemalloc and malloc_trim() is called either
226
     * by haproxy or another dependency (the worst case that
227
     * normally crashes). Instead of just failing, we can actually
228
     * emulate it so let's do it now.
229
     */
230
0
    unsigned int i, narenas = 0;
231
0
    size_t len = sizeof(narenas);
232
233
0
    if (my_mallctl("arenas.narenas", &narenas, &len, NULL, 0) == 0) {
234
0
      for (i = 0; i < narenas; i ++) {
235
0
        char mib[32] = {0};
236
0
        snprintf(mib, sizeof(mib), "arena.%u.purge", i);
237
0
        (void)my_mallctl(mib, NULL, NULL, NULL, 0);
238
0
        ret = 1; // success
239
0
      }
240
0
    }
241
0
  }
242
0
  else if (!using_default_allocator) {
243
    /* special allocators that can be LD_PRELOADed end here */
244
0
    ret = 0; // did nothing
245
0
  }
246
0
  else if (_malloc_trim) {
247
    /* we're typically on glibc and not overridden */
248
0
    ret = _malloc_trim(pad);
249
0
  }
250
#if defined(HA_HAVE_MALLOC_ZONE)
251
  else {
252
    /* we're on MacOS, there's an equivalent mechanism */
253
    vm_address_t *zones;
254
    unsigned int i, nzones;
255
256
    if (malloc_get_all_zones(0, NULL, &zones, &nzones) == KERN_SUCCESS) {
257
      for (i = 0; i < nzones; i ++) {
258
        malloc_zone_t *zone = (malloc_zone_t *)zones[i];
259
260
        /* we cannot purge anonymous zones */
261
        if (zone->zone_name) {
262
          malloc_zone_pressure_relief(zone, 0);
263
          ret = 1; // success
264
        }
265
      }
266
    }
267
  }
268
#endif
269
0
  HA_ATOMIC_DEC(&pool_trim_in_progress);
270
271
  /* here we have ret=0 if nothing was release, or 1 if some were */
272
0
  return ret;
273
0
}
274
275
static int mem_should_fail(const struct pool_head *pool)
276
0
{
277
0
  int ret = 0;
278
279
0
  if (mem_fail_rate > 0 && !(global.mode & MODE_STARTING)) {
280
0
    if (mem_fail_rate > statistical_prng_range(100))
281
0
      ret = 1;
282
0
    else
283
0
      ret = 0;
284
0
  }
285
0
  return ret;
286
0
}
287
288
/* Try to find an existing shared pool with the same characteristics and
289
 * returns it, otherwise creates this one. NULL is returned if no memory
290
 * is available for a new creation. Two flags are supported :
291
 *   - MEM_F_SHARED to indicate that the pool may be shared with other users
292
 *   - MEM_F_EXACT to indicate that the size must not be rounded up
293
 * The name must be a stable pointer during all the program's life time.
294
 * The file and line are passed to store the registration location in the
295
 * registration struct. Use create_pool() instead which does it for free.
296
 * The alignment will be stored as-is in the registration.
297
 */
298
struct pool_head *create_pool_with_loc(const char *name, unsigned int size,
299
               unsigned int align, unsigned int flags,
300
               const char *file, unsigned int line)
301
0
{
302
0
  struct pool_registration *reg;
303
0
  struct pool_head *pool;
304
305
0
  reg = calloc(1, sizeof(*reg));
306
0
  if (!reg)
307
0
    return NULL;
308
309
0
  reg->name = name;
310
0
  reg->file = file;
311
0
  reg->line = line;
312
0
  reg->size = size;
313
0
  reg->flags = flags;
314
0
  reg->align = align;
315
316
0
  pool = create_pool_from_reg(name, reg);
317
0
  if (!pool)
318
0
    free(reg);
319
0
  return pool;
320
0
}
321
322
/* create a pool from a pool registration. All configuration is taken from
323
 * there. The alignment will automatically be raised to sizeof(void*) or the
324
 * next power of two so that it's always possible to lazily pass alignof() or
325
 * sizeof(). Alignments are always respected when merging pools.
326
 */
327
struct pool_head *create_pool_from_reg(const char *name, struct pool_registration *reg)
328
0
{
329
0
  unsigned int extra_mark, extra_caller, extra;
330
0
  unsigned int flags = reg->flags;
331
0
  unsigned int size = reg->size;
332
0
  unsigned int alignment = reg->align;
333
0
  struct pool_head *pool = NULL;
334
0
  struct pool_head *entry;
335
0
  struct list *start;
336
0
  unsigned int align;
337
0
  unsigned int best_diff;
338
0
  int thr __maybe_unused;
339
340
  /* extend alignment if needed */
341
0
  if (alignment < sizeof(void*))
342
0
    alignment = sizeof(void*);
343
0
  else if (alignment & (alignment - 1)) {
344
    /* not power of two! round up to next power of two by filling
345
     * all LSB in O(log(log(N))) then increment the result.
346
     */
347
0
    int shift = 1;
348
0
    do {
349
0
      alignment |= alignment >> shift;
350
0
      shift *= 2;
351
0
    } while (alignment & (alignment + 1));
352
0
    alignment++;
353
0
  }
354
355
0
  if (reg->type_align && alignment < reg->type_align) {
356
0
    ha_alert("BUG in the code: at %s:%u, requested creation of pool '%s' aligned to %u "
357
0
       "while type requires alignment of %u! Please report to developers. Aborting.\n",
358
0
       reg->file, reg->line, name, alignment, reg->type_align);
359
0
    return NULL;
360
0
  }
361
362
0
  extra_mark = (pool_debugging & POOL_DBG_TAG) ? POOL_EXTRA_MARK : 0;
363
0
  extra_caller = (pool_debugging & POOL_DBG_CALLER) ? POOL_EXTRA_CALLER : 0;
364
0
  extra = extra_mark + extra_caller;
365
366
0
  if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
367
    /* we'll store two lists there, we need the room for this. Let's
368
     * make sure it's always OK even when including the extra word
369
     * that is stored after the pci struct.
370
     */
371
0
    if (size + extra - extra_caller < sizeof(struct pool_cache_item))
372
0
      size = sizeof(struct pool_cache_item) + extra_caller - extra;
373
0
  }
374
375
  /* Now we know our size is set to the strict minimum possible. It may
376
   * be OK for elements allocated with an exact size (e.g. buffers), but
377
   * we're going to round the size up 16 bytes to merge almost identical
378
   * pools together. We only round up however when we add the debugging
379
   * tag since it's used to detect overflows. Otherwise we only round up
380
   * to the size of a word to preserve alignment.
381
   */
382
0
  if (!(flags & MEM_F_EXACT)) {
383
0
    align = (pool_debugging & POOL_DBG_TAG) ? sizeof(void *) : 16;
384
0
    size  = ((size + align - 1) & -align);
385
0
  }
386
387
0
  if (pool_debugging & POOL_DBG_BACKUP) {
388
    /* keep a full backup of the pool at release time. We need
389
     * a word-aligned size, so it's fine to do it now.
390
     */
391
0
    extra += size;
392
0
  }
393
394
  /* TODO: thread: we do not lock pool list for now because all pools are
395
   * created during HAProxy startup (so before threads creation) */
396
0
  start = &pools;
397
0
  best_diff = ~0U;
398
399
0
  list_for_each_entry(entry, &pools, list) {
400
0
    if (entry->size == size ||
401
0
        (!(flags & MEM_F_EXACT) && !pool_allocated(entry) &&
402
         /* size within 1% of avg size */
403
0
         (((ullong)entry->sum_size * 100ULL < (ullong)size * entry->users * 101ULL &&
404
0
           (ullong)entry->sum_size * 101ULL > (ullong)size * entry->users * 100ULL) ||
405
          /* or +/- 16 compared to the current avg size */
406
0
          (entry->sum_size - 16 * entry->users < size * entry->users &&
407
0
           entry->sum_size + 16 * entry->users > size * entry->users)))) {
408
409
      /* either we can share this place and we take it, or
410
       * we look for a shareable one or for the next position
411
       * before which we will insert a new one.
412
       */
413
0
      if ((flags & entry->flags & MEM_F_SHARED) &&
414
0
          (!(pool_debugging & POOL_DBG_DONT_MERGE) ||
415
0
           strcmp(name, entry->name) == 0)) {
416
        /* we can share this one */
417
0
        uint diff = (abs((int)(size * entry->users - entry->size)) + entry->users / 2) / entry->users;
418
419
        /* the principle here is:
420
         *   - if the best pool is smaller and the current
421
         *     candidate larger, we prefer the larger one
422
         *     so as not to grow an existing pool;
423
         *   - otherwise we go for the smallest distance
424
         *     from the existing one.
425
         */
426
0
        if (!pool || entry->size == size ||
427
0
            (pool->size != size &&
428
0
             ((pool->size < size && entry->size >= size) ||
429
0
              (diff == best_diff && entry->size >= size) ||
430
0
              (diff < best_diff)))) {
431
0
          best_diff = diff;
432
0
          pool = entry;
433
0
        }
434
0
      }
435
0
    }
436
0
    else if (entry->size > size) {
437
      /* insert before this one */
438
0
      start = &entry->list;
439
0
    }
440
0
  }
441
442
0
  if (!pool) {
443
0
    void *pool_addr;
444
445
0
    pool_addr = calloc(1, sizeof(*pool) + __alignof__(*pool));
446
0
    if (!pool_addr)
447
0
      goto fail;
448
449
    /* always provide an aligned pool */
450
0
    pool = (struct pool_head*)((((size_t)pool_addr) + __alignof__(*pool)) & -(size_t)__alignof__(*pool));
451
0
    pool->base_addr = pool_addr; // keep it, it's the address to free later
452
453
0
    if (name)
454
0
      strlcpy2(pool->name, name, sizeof(pool->name));
455
0
    pool->alloc_sz = size + extra;
456
0
    pool->size = size;
457
0
    pool->align = alignment;
458
0
    pool->flags = flags;
459
0
    LIST_APPEND(start, &pool->list);
460
0
    LIST_INIT(&pool->regs);
461
462
0
    if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
463
      /* update per-thread pool cache if necessary */
464
0
      for (thr = 0; thr < MAX_THREADS; thr++) {
465
0
        LIST_INIT(&pool->cache[thr].list);
466
0
        pool->cache[thr].tid = thr;
467
0
        pool->cache[thr].pool = pool;
468
0
      }
469
0
    }
470
0
  }
471
0
  else {
472
    /* we found the best one */
473
0
    if (size > pool->size) {
474
0
      pool->size = size;
475
0
      pool->alloc_sz = size + extra;
476
0
    }
477
0
    if (alignment > pool->align)
478
0
      pool->align = alignment;
479
0
    DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name);
480
0
  }
481
482
0
  LIST_APPEND(&pool->regs, &reg->list);
483
0
  pool->users++;
484
0
  pool->sum_size += size;
485
486
0
 fail:
487
0
  return pool;
488
0
}
489
490
/* Tries to allocate an object for the pool <pool> using the system's allocator
491
 * and directly returns it. The pool's allocated counter is checked but NOT
492
 * updated, this is left to the caller, and but no other checks are performed.
493
 */
494
void *pool_get_from_os_noinc(struct pool_head *pool)
495
0
{
496
0
  if (!pool->limit || pool_allocated(pool) < pool->limit) {
497
0
    void *ptr;
498
499
0
    if ((pool_debugging & POOL_DBG_UAF) || (pool->flags & MEM_F_UAF))
500
0
      ptr = pool_alloc_area_uaf(pool->alloc_sz, pool->align);
501
0
    else
502
0
      ptr = pool_alloc_area(pool->alloc_sz, pool->align);
503
0
    if (ptr)
504
0
      return ptr;
505
0
    _HA_ATOMIC_INC(&pool->buckets[pool_tbucket()].failed);
506
0
  }
507
0
  activity[tid].pool_fail++;
508
0
  return NULL;
509
510
0
}
511
512
/* Releases a pool item back to the operating system but DOES NOT update
513
 * the allocation counter, it's left to the caller to do it. It may be
514
 * done before or after, it doesn't matter, the function does not use it.
515
 */
516
void pool_put_to_os_nodec(struct pool_head *pool, void *ptr)
517
0
{
518
0
  if ((pool_debugging & POOL_DBG_UAF) || (pool->flags & MEM_F_UAF))
519
0
    pool_free_area_uaf(ptr, pool->alloc_sz);
520
0
  else
521
0
    pool_free_area(ptr, pool->alloc_sz);
522
0
}
523
524
/* Tries to allocate an object for the pool <pool> using the system's allocator
525
 * and directly returns it. The pool's counters are updated but the object is
526
 * never cached, so this is usable with and without local or shared caches.
527
 */
528
void *pool_alloc_nocache(struct pool_head *pool, const void *caller)
529
0
{
530
0
  void *ptr = NULL;
531
0
  uint bucket;
532
0
  uint used;
533
534
0
  ptr = pool_get_from_os_noinc(pool);
535
0
  if (!ptr)
536
0
    return NULL;
537
538
0
  bucket = pool_pbucket(ptr);
539
540
0
  _HA_ATOMIC_INC(&pool->buckets[bucket].allocated);
541
0
  used = _HA_ATOMIC_FETCH_ADD(&pool->buckets[bucket].used, 1);
542
0
  swrate_add_scaled_opportunistic(&pool->buckets[bucket].needed_avg, POOL_AVG_SAMPLES, used, POOL_AVG_SAMPLES/4);
543
544
  /* keep track of where the element was allocated from */
545
0
  POOL_DEBUG_SET_MARK(pool, ptr);
546
0
  POOL_DEBUG_TRACE_CALLER(pool, (struct pool_cache_item *)ptr, caller);
547
0
  return ptr;
548
0
}
549
550
/* Release a pool item back to the OS and keeps the pool's counters up to date.
551
 * This is always defined even when pools are not enabled (their usage stats
552
 * are maintained).
553
 */
554
void pool_free_nocache(struct pool_head *pool, void *ptr)
555
0
{
556
0
  uint bucket = pool_pbucket(ptr);
557
0
  uint used;
558
559
0
  used = _HA_ATOMIC_SUB_FETCH(&pool->buckets[bucket].used, 1);
560
0
  _HA_ATOMIC_DEC(&pool->buckets[bucket].allocated);
561
0
  swrate_add_opportunistic(&pool->buckets[bucket].needed_avg, POOL_AVG_SAMPLES, used);
562
563
0
  pool_put_to_os_nodec(pool, ptr);
564
0
}
565
566
/* Copies the contents of <item> to the reserved area after it to have a backup.
567
 * The item part is left untouched.
568
 */
569
void pool_copy_pattern(struct pool_cache_head *pch, struct pool_cache_item *item, uint size)
570
0
{
571
0
  ulong *ptr = (ulong *)item;
572
0
  ulong extra;
573
574
0
  if (size <= sizeof(*item))
575
0
    return;
576
577
0
  extra = !!(pool_debugging & (POOL_DBG_TAG|POOL_DBG_CALLER));
578
0
  memcpy(&ptr[size/sizeof(*ptr) + extra], ptr, size);
579
0
}
580
581
/* Updates <pch>'s fill_pattern and fills the free area after <item> with it,
582
 * up to <size> bytes. The item part is left untouched.
583
 */
584
void pool_fill_pattern(struct pool_cache_head *pch, struct pool_cache_item *item, uint size)
585
0
{
586
0
  ulong *ptr = (ulong *)item;
587
0
  uint ofs;
588
0
  ulong u;
589
590
0
  if (size <= sizeof(*item))
591
0
    return;
592
593
  /* Upgrade the fill_pattern to change about half of the bits
594
   * (to be sure to catch static flag corruption), and apply it.
595
   */
596
0
  u = pch->fill_pattern += ~0UL / 3; // 0x55...55
597
0
  ofs = sizeof(*item) / sizeof(*ptr);
598
0
  while (ofs < size / sizeof(*ptr))
599
0
    ptr[ofs++] = u;
600
0
}
601
602
/* check for a pool_cache_item integrity after extracting it from the cache. It
603
 * must have been previously initialized using either pool_fill_pattern() or
604
 * pool_copy_pattern(). If any corruption is detected, the function provokes an
605
 * immediate crash.
606
 */
607
void pool_check_pattern(struct pool_cache_head *pch, struct pool_head *pool, struct pool_cache_item *item, const void *caller)
608
0
{
609
0
  const ulong *ptr = (const ulong *)item;
610
0
  uint size = pool->size;
611
0
  uint ofs;
612
0
  ulong u;
613
614
0
  if (size <= sizeof(*item))
615
0
    return;
616
617
0
  if (pool_debugging & POOL_DBG_INTEGRITY) {
618
    /* let's check that all words past *item are equal */
619
0
    ofs = sizeof(*item) / sizeof(*ptr);
620
0
    u = ptr[ofs++];
621
0
    while (ofs < size / sizeof(*ptr)) {
622
0
      if (unlikely(ptr[ofs] != u)) {
623
0
        pool_inspect_item("cache corruption detected", pool, item, caller, ofs * sizeof(*ptr));
624
0
        ABORT_NOW();
625
0
      }
626
0
      ofs++;
627
0
    }
628
0
  } else {
629
    /* the pattern was backed up */
630
0
    ofs = sizeof(*item) / sizeof(*ptr);
631
0
    u = !!(pool_debugging & (POOL_DBG_TAG|POOL_DBG_CALLER));
632
0
    while (ofs < size / sizeof(*ptr)) {
633
0
      if (unlikely(ptr[ofs] != ptr[size/sizeof(*ptr) + u + ofs])) {
634
0
        pool_inspect_item("cache corruption detected", pool, item, caller, ofs * sizeof(*ptr));
635
0
        ABORT_NOW();
636
0
      }
637
0
      ofs++;
638
0
    }
639
0
  }
640
0
}
641
642
/* removes up to <count> items from the end of the local pool cache <ph> for
643
 * pool <pool>. The shared pool is refilled with these objects in the limit
644
 * of the number of acceptable objects, and the rest will be released to the
645
 * OS. It is not a problem is <count> is larger than the number of objects in
646
 * the local cache. The counters are automatically updated. Must not be used
647
 * with pools disabled.
648
 */
649
static void pool_evict_last_items(struct pool_head *pool, struct pool_cache_head *ph, uint count)
650
0
{
651
0
  struct pool_cache_item *item;
652
0
  struct pool_item *pi, *head = NULL;
653
0
  void *caller = __builtin_return_address(0);
654
0
  uint released = 0;
655
0
  uint cluster = 0;
656
0
  uint to_free_max;
657
0
  uint bucket;
658
0
  uint used;
659
660
0
  BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
661
662
  /* Note: this will be zero when global pools are disabled */
663
0
  to_free_max = pool_releasable(pool);
664
665
0
  while (released < count && !LIST_ISEMPTY(&ph->list)) {
666
0
    item = LIST_PREV(&ph->list, typeof(item), by_pool);
667
0
    BUG_ON(&item->by_pool == &ph->list);
668
0
    if (unlikely(pool_debugging & (POOL_DBG_INTEGRITY|POOL_DBG_BACKUP)))
669
0
      pool_check_pattern(ph, pool, item, caller);
670
0
    LIST_DELETE(&item->by_pool);
671
0
    LIST_DELETE(&item->by_lru);
672
673
0
    bucket = pool_pbucket(item);
674
0
    used = _HA_ATOMIC_SUB_FETCH(&pool->buckets[bucket].used, 1);
675
0
    swrate_add_opportunistic(&pool->buckets[bucket].needed_avg, POOL_AVG_SAMPLES, used);
676
677
0
    if (to_free_max > released || cluster) {
678
      /* will never match when global pools are disabled */
679
0
      pi = (struct pool_item *)item;
680
0
      pi->next = NULL;
681
0
      pi->down = head;
682
0
      head = pi;
683
0
      cluster++;
684
0
      if (cluster >= CONFIG_HAP_POOL_CLUSTER_SIZE) {
685
        /* enough to make a cluster */
686
0
        pool_put_to_shared_cache(pool, head);
687
0
        cluster = 0;
688
0
        head = NULL;
689
0
      }
690
0
    } else {
691
      /* does pool_free_nocache() with a known bucket */
692
0
      _HA_ATOMIC_DEC(&pool->buckets[bucket].allocated);
693
0
      pool_put_to_os_nodec(pool, item);
694
0
    }
695
696
0
    released++;
697
0
  }
698
699
  /* incomplete cluster left */
700
0
  if (cluster)
701
0
    pool_put_to_shared_cache(pool, head);
702
703
0
  ph->count -= released;
704
0
  pool_cache_count -= released;
705
0
  pool_cache_bytes -= released * pool->size;
706
0
}
707
708
/* Evicts some of the oldest objects from one local cache, until its number of
709
 * objects is no more than 16+1/8 of the total number of locally cached objects
710
 * or the total size of the local cache is no more than 75% of its maximum (i.e.
711
 * we don't want a single cache to use all the cache for itself). For this, the
712
 * list is scanned in reverse. If <full> is non-null, all objects are evicted.
713
 * Must not be used when pools are disabled.
714
 */
715
void pool_evict_from_local_cache(struct pool_head *pool, int full)
716
0
{
717
0
  struct pool_cache_head *ph = &pool->cache[tid];
718
719
0
  BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
720
721
0
  while ((ph->count && full) ||
722
0
         (ph->count >= CONFIG_HAP_POOL_CLUSTER_SIZE &&
723
0
          ph->count >= 16 + pool_cache_count / 8 &&
724
0
          pool_cache_bytes > global.tune.pool_cache_size * 3 / 4)) {
725
0
    pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE);
726
0
  }
727
0
}
728
729
/* Evicts some of the oldest objects from the local cache, pushing them to the
730
 * global pool. Must not be used when pools are disabled.
731
 */
732
void pool_evict_from_local_caches()
733
0
{
734
0
  struct pool_cache_item *item;
735
0
  struct pool_cache_head *ph;
736
0
  struct pool_head *pool;
737
738
0
  BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
739
740
0
  do {
741
0
    item = LIST_PREV(&th_ctx->pool_lru_head, struct pool_cache_item *, by_lru);
742
0
    BUG_ON(&item->by_lru == &th_ctx->pool_lru_head);
743
    /* note: by definition we remove oldest objects so they also are the
744
     * oldest in their own pools, thus their next is the pool's head.
745
     */
746
0
    ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list);
747
0
    BUG_ON(ph->tid != tid);
748
749
0
    pool = container_of(ph - tid, struct pool_head, cache);
750
0
    BUG_ON(pool != ph->pool);
751
752
0
    pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE);
753
0
  } while (pool_cache_bytes > global.tune.pool_cache_size * 7 / 8);
754
0
}
755
756
/* Frees an object to the local cache, possibly pushing oldest objects to the
757
 * shared cache, which itself may decide to release some of them to the OS.
758
 * While it is unspecified what the object becomes past this point, it is
759
 * guaranteed to be released from the users' perspective. A caller address may
760
 * be passed and stored into the area when DEBUG_POOL_TRACING is set. Must not
761
 * be used with pools disabled.
762
 */
763
void pool_put_to_cache(struct pool_head *pool, void *ptr, const void *caller)
764
0
{
765
0
  struct pool_cache_item *item = (struct pool_cache_item *)ptr;
766
0
  struct pool_cache_head *ph = &pool->cache[tid];
767
768
0
  BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
769
770
0
  LIST_INSERT(&ph->list, &item->by_pool);
771
0
  LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
772
0
  POOL_DEBUG_TRACE_CALLER(pool, item, caller);
773
0
  ph->count++;
774
0
  if (unlikely(pool_debugging & POOL_DBG_BACKUP))
775
0
    pool_copy_pattern(ph, item, pool->size);
776
777
0
  if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
778
0
    pool_fill_pattern(ph, item, pool->size);
779
780
0
  pool_cache_count++;
781
0
  pool_cache_bytes += pool->size;
782
783
0
  if (unlikely(pool_cache_bytes > global.tune.pool_cache_size * 3 / 4)) {
784
0
    if (ph->count >= 16 + pool_cache_count / 8 + CONFIG_HAP_POOL_CLUSTER_SIZE)
785
0
      pool_evict_from_local_cache(pool, 0);
786
0
    if (pool_cache_bytes > global.tune.pool_cache_size)
787
0
      pool_evict_from_local_caches();
788
0
  }
789
0
}
790
791
/* Tries to refill the local cache <pch> from the shared one for pool <pool>.
792
 * This is only used when pools are in use and shared pools are enabled. No
793
 * malloc() is attempted, and poisonning is never performed. The purpose is to
794
 * get the fastest possible refilling so that the caller can easily check if
795
 * the cache has enough objects for its use. Must not be used when pools are
796
 * disabled.
797
 */
798
void pool_refill_local_from_shared(struct pool_head *pool, struct pool_cache_head *pch)
799
0
{
800
0
  struct pool_cache_item *item;
801
0
  struct pool_item *ret, *down;
802
0
  uint bucket;
803
0
  uint count;
804
805
0
  BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
806
807
  /* we'll need to reference the first element to figure the next one. We
808
   * must temporarily lock it so that nobody allocates then releases it,
809
   * or the dereference could fail. In order to limit the locking,
810
   * threads start from a bucket that depends on their ID.
811
   */
812
813
0
  bucket = pool_tbucket();
814
0
  ret = _HA_ATOMIC_LOAD(&pool->buckets[bucket].free_list);
815
0
  count = 0;
816
0
  do {
817
    /* look for an apparently non-busy entry. If we hit a busy pool
818
     * we retry with another random bucket. And if we encounter a
819
     * NULL, we retry once with another random bucket. This is in
820
     * order to prevent object accumulation in other buckets.
821
     */
822
0
    while (unlikely(ret == POOL_BUSY || (ret == NULL && count++ < 1))) {
823
0
      bucket = statistical_prng() % CONFIG_HAP_POOL_BUCKETS;
824
0
      ret = _HA_ATOMIC_LOAD(&pool->buckets[bucket].free_list);
825
0
    }
826
0
    if (ret == NULL)
827
0
      return;
828
0
  } while (unlikely((ret = _HA_ATOMIC_XCHG(&pool->buckets[bucket].free_list, POOL_BUSY)) == POOL_BUSY));
829
830
0
  if (unlikely(ret == NULL)) {
831
0
    HA_ATOMIC_STORE(&pool->buckets[bucket].free_list, NULL);
832
0
    return;
833
0
  }
834
835
  /* this releases the lock */
836
0
  HA_ATOMIC_STORE(&pool->buckets[bucket].free_list, ret->next);
837
838
  /* now store the retrieved object(s) into the local cache. Note that
839
   * they don't all have the same hash and that it doesn't necessarily
840
   * match the one from the pool.
841
   */
842
0
  count = 0;
843
0
  for (; ret; ret = down) {
844
0
    down = ret->down;
845
0
    item = (struct pool_cache_item *)ret;
846
0
    POOL_DEBUG_TRACE_CALLER(pool, item, NULL);
847
0
    LIST_INSERT(&pch->list, &item->by_pool);
848
0
    LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
849
0
    _HA_ATOMIC_INC(&pool->buckets[pool_pbucket(item)].used);
850
0
    count++;
851
0
    if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
852
0
      pool_fill_pattern(pch, item, pool->size);
853
854
0
  }
855
0
  pch->count += count;
856
0
  pool_cache_count += count;
857
0
  pool_cache_bytes += count * pool->size;
858
0
}
859
860
/* Adds pool item cluster <item> to the shared cache, which contains <count>
861
 * elements. The caller is advised to first check using pool_releasable() if
862
 * it's wise to add this series of objects there. Both the pool and the item's
863
 * head must be valid.
864
 */
865
void pool_put_to_shared_cache(struct pool_head *pool, struct pool_item *item)
866
0
{
867
0
  struct pool_item *free_list;
868
0
  uint bucket = pool_pbucket(item);
869
870
  /* we prefer to put the item into the entry that corresponds to its own
871
   * hash so that on return it remains in the right place, but that's not
872
   * mandatory.
873
   */
874
0
  free_list = _HA_ATOMIC_LOAD(&pool->buckets[bucket].free_list);
875
0
  do {
876
    /* look for an apparently non-busy entry */
877
0
    while (unlikely(free_list == POOL_BUSY)) {
878
0
      bucket = (bucket + 1) % CONFIG_HAP_POOL_BUCKETS;
879
0
      free_list = _HA_ATOMIC_LOAD(&pool->buckets[bucket].free_list);
880
0
    }
881
0
    _HA_ATOMIC_STORE(&item->next, free_list);
882
0
    __ha_barrier_atomic_store();
883
0
  } while (!_HA_ATOMIC_CAS(&pool->buckets[bucket].free_list, &free_list, item));
884
0
  __ha_barrier_atomic_store();
885
0
}
886
887
/*
888
 * This function frees whatever can be freed in pool <pool>.
889
 */
890
void pool_flush(struct pool_head *pool)
891
0
{
892
0
  struct pool_item *next, *temp, *down;
893
0
  uint bucket;
894
895
0
  if (!pool || (pool_debugging & (POOL_DBG_NO_CACHE|POOL_DBG_NO_GLOBAL)))
896
0
    return;
897
898
  /* The loop below atomically detaches the head of the free list and
899
   * replaces it with a NULL. Then the list can be released.
900
   */
901
0
  for (bucket = 0; bucket < CONFIG_HAP_POOL_BUCKETS; bucket++) {
902
0
    next = pool->buckets[bucket].free_list;
903
0
    while (1) {
904
0
      while (unlikely(next == POOL_BUSY))
905
0
        next = (void*)pl_wait_new_long((ulong*)&pool->buckets[bucket].free_list, (ulong)next);
906
907
0
      if (next == NULL)
908
0
        break;
909
910
0
      next = _HA_ATOMIC_XCHG(&pool->buckets[bucket].free_list, POOL_BUSY);
911
0
      if (next != POOL_BUSY) {
912
0
        HA_ATOMIC_STORE(&pool->buckets[bucket].free_list, NULL);
913
0
        break;
914
0
      }
915
0
    }
916
917
0
    while (next) {
918
0
      temp = next;
919
0
      next = temp->next;
920
0
      for (; temp; temp = down) {
921
0
        down = temp->down;
922
0
        _HA_ATOMIC_DEC(&pool->buckets[pool_pbucket(temp)].allocated);
923
0
        pool_put_to_os_nodec(pool, temp);
924
0
      }
925
0
    }
926
0
  }
927
  /* here, we should have pool->allocated == pool->used */
928
0
}
929
930
/*
931
 * This function frees whatever can be freed in all pools, but respecting
932
 * the minimum thresholds imposed by owners. It makes sure to be alone to
933
 * run by using thread_isolate(). <pool_ctx> is unused.
934
 */
935
void pool_gc(struct pool_head *pool_ctx)
936
0
{
937
0
  struct pool_head *entry;
938
0
  int isolated = thread_isolated();
939
940
0
  if (!isolated)
941
0
    thread_isolate();
942
943
0
  list_for_each_entry(entry, &pools, list) {
944
0
    struct pool_item *temp, *down;
945
0
    uint allocated = pool_allocated(entry);
946
0
    uint used = pool_used(entry);
947
0
    int bucket = 0;
948
949
0
    while ((int)(allocated - used) > (int)entry->minavail) {
950
      /* ok let's find next entry to evict */
951
0
      while (!entry->buckets[bucket].free_list && bucket < CONFIG_HAP_POOL_BUCKETS)
952
0
        bucket++;
953
954
0
      if (bucket >= CONFIG_HAP_POOL_BUCKETS)
955
0
        break;
956
957
0
      temp = entry->buckets[bucket].free_list;
958
0
      entry->buckets[bucket].free_list = temp->next;
959
0
      for (; temp; temp = down) {
960
0
        down = temp->down;
961
0
        allocated--;
962
0
        _HA_ATOMIC_DEC(&entry->buckets[pool_pbucket(temp)].allocated);
963
0
        pool_put_to_os_nodec(entry, temp);
964
0
      }
965
0
    }
966
0
  }
967
968
0
  trim_all_pools();
969
970
0
  if (!isolated)
971
0
    thread_release();
972
0
}
973
974
/*
975
 * Returns a pointer to type <type> taken from the pool <pool_type> or
976
 * dynamically allocated. In the first case, <pool_type> is updated to point to
977
 * the next element in the list. <flags> is a binary-OR of POOL_F_* flags.
978
 * Prefer using pool_alloc() which does the right thing without flags.
979
 */
980
void *__pool_alloc(struct pool_head *pool, unsigned int flags)
981
0
{
982
0
  void *p = NULL;
983
0
  void *caller = __builtin_return_address(0);
984
985
0
  if (unlikely(pool_debugging & POOL_DBG_FAIL_ALLOC))
986
0
    if (!(flags & POOL_F_NO_FAIL) && mem_should_fail(pool))
987
0
      return NULL;
988
989
0
  if (likely(!(pool_debugging & POOL_DBG_NO_CACHE)) && !p)
990
0
    p = pool_get_from_cache(pool, caller);
991
992
0
  if (unlikely(!p))
993
0
    p = pool_alloc_nocache(pool, caller);
994
995
0
  if (likely(p)) {
996
#ifdef USE_MEMORY_PROFILING
997
    if (unlikely(profiling & HA_PROF_MEMORY)) {
998
      extern struct memprof_stats memprof_stats[MEMPROF_HASH_BUCKETS + 1];
999
      struct memprof_stats *bin;
1000
1001
      bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_P_ALLOC);
1002
      _HA_ATOMIC_ADD(&bin->alloc_calls, 1);
1003
      _HA_ATOMIC_ADD(&bin->alloc_tot, pool->size);
1004
      _HA_ATOMIC_STORE(&bin->info, pool);
1005
      /* replace the caller with the allocated bin: this way
1006
       * we'll the pool_free() call will be able to update our
1007
       * entry. We only do it for non-colliding entries though,
1008
       * since these ones store the true caller location.
1009
       */
1010
      if (bin >= &memprof_stats[0] && bin < &memprof_stats[MEMPROF_HASH_BUCKETS])
1011
        POOL_DEBUG_TRACE_CALLER(pool, (struct pool_cache_item *)p, bin);
1012
    }
1013
#endif
1014
0
    if (unlikely(flags & POOL_F_MUST_ZERO))
1015
0
      memset(p, 0, pool->size);
1016
0
    else if (unlikely(!(flags & POOL_F_NO_POISON) && (pool_debugging & POOL_DBG_POISON)))
1017
0
      memset(p, mem_poison_byte, pool->size);
1018
0
  }
1019
0
  return p;
1020
0
}
1021
1022
/*
1023
 * Puts a memory area back to the corresponding pool. <ptr> be valid. Using
1024
 * pool_free() is preferred.
1025
 */
1026
void __pool_free(struct pool_head *pool, void *ptr)
1027
0
{
1028
0
  const void *caller = __builtin_return_address(0);
1029
1030
  /* we'll get late corruption if we refill to the wrong pool or double-free */
1031
0
  POOL_DEBUG_CHECK_MARK(pool, ptr, caller);
1032
0
  POOL_DEBUG_RESET_MARK(pool, ptr);
1033
1034
#ifdef USE_MEMORY_PROFILING
1035
  if (unlikely(profiling & HA_PROF_MEMORY) && ptr) {
1036
    extern struct memprof_stats memprof_stats[MEMPROF_HASH_BUCKETS + 1];
1037
    struct memprof_stats *bin;
1038
1039
    bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_P_FREE);
1040
    _HA_ATOMIC_ADD(&bin->free_calls, 1);
1041
    _HA_ATOMIC_ADD(&bin->free_tot, pool->size);
1042
    _HA_ATOMIC_STORE(&bin->info, pool);
1043
1044
    /* check if the caller is an allocator, and if so, let's update
1045
     * its free() count.
1046
     */
1047
    bin = *(struct memprof_stats**)(((char *)ptr) + pool->alloc_sz - sizeof(void*));
1048
    if (bin >= &memprof_stats[0] && bin < &memprof_stats[MEMPROF_HASH_BUCKETS]) {
1049
      _HA_ATOMIC_ADD(&bin->free_calls, 1);
1050
      _HA_ATOMIC_ADD(&bin->free_tot, pool->size);
1051
    }
1052
  }
1053
#endif
1054
1055
0
  if (unlikely((pool_debugging & POOL_DBG_NO_CACHE) ||
1056
0
               (pool->flags & MEM_F_UAF) ||
1057
0
         global.tune.pool_cache_size < pool->size)) {
1058
0
    pool_free_nocache(pool, ptr);
1059
0
    return;
1060
0
  }
1061
1062
0
  pool_put_to_cache(pool, ptr, caller);
1063
0
}
1064
1065
/*
1066
 * This function destroys a pool by freeing it completely, unless it's still
1067
 * in use. This should be called only under extreme circumstances. It always
1068
 * returns NULL if the resulting pool is empty, easing the clearing of the old
1069
 * pointer, otherwise it returns the pool.
1070
 * .
1071
 */
1072
void *pool_destroy(struct pool_head *pool)
1073
0
{
1074
0
  if (pool) {
1075
0
    if (!(pool_debugging & POOL_DBG_NO_CACHE))
1076
0
      pool_evict_from_local_cache(pool, 1);
1077
1078
0
    pool_flush(pool);
1079
0
    if (pool_used(pool))
1080
0
      return pool;
1081
0
    pool->users--;
1082
0
    if (!pool->users) {
1083
      /* remove all registrations at once */
1084
0
      struct pool_registration *reg, *back;
1085
1086
0
      list_for_each_entry_safe(reg, back, &pool->regs, list) {
1087
0
        LIST_DELETE(&reg->list);
1088
0
        if (!(reg->flags & MEM_F_STATREG))
1089
0
          free(reg);
1090
0
      }
1091
1092
0
      LIST_DELETE(&pool->list);
1093
1094
      /* note that if used == 0, the cache is empty */
1095
0
      free(pool->base_addr);
1096
0
    }
1097
1098
    /* make sure this pool is no longer referenced in memory profiling */
1099
0
    memprof_remove_stale_info(pool);
1100
0
  }
1101
0
  return NULL;
1102
0
}
1103
1104
/* This destroys all pools on exit. It is *not* thread safe. */
1105
void pool_destroy_all()
1106
0
{
1107
0
  struct pool_head *entry, *back;
1108
1109
0
  list_for_each_entry_safe(entry, back, &pools, list) {
1110
    /* there's only one occurrence of each pool in the list,
1111
     * and we're existing instead of looping on the whole
1112
     * list just to decrement users, force it to 1 here.
1113
     */
1114
0
    entry->users = 1;
1115
0
    pool_destroy(entry);
1116
0
  }
1117
0
}
1118
1119
/* carefully inspects an item upon fatal error and emit diagnostics.
1120
 * If ofs < 0, no hint is provided regarding the content location. However if
1121
 * ofs >= 0, then we also try to inspect around that place where corruption
1122
 * was detected.
1123
 */
1124
void pool_inspect_item(const char *msg, struct pool_head *pool, const void *item, const void *caller, ssize_t ofs)
1125
0
{
1126
0
  const struct pool_head *the_pool = NULL;
1127
1128
0
  chunk_printf(&trash,
1129
0
         "FATAL: pool inconsistency detected in thread %d: %s.\n"
1130
0
         "  caller: %p (",
1131
0
         tid + 1, msg, caller);
1132
1133
0
  resolve_sym_name(&trash, NULL, caller);
1134
1135
0
  chunk_appendf(&trash,
1136
0
          ")\n"
1137
0
          "  item: %p\n"
1138
0
          "  pool: %p ('%s', size %u, real %u, users %u)\n",
1139
0
          item, pool, pool->name, pool->size, pool->alloc_sz, pool->users);
1140
1141
0
  if (ofs >= 0) {
1142
0
    chunk_printf(&trash, "Contents around first corrupted address relative to pool item:.\n");
1143
0
    dump_area_with_syms(&trash, item, item + ofs, NULL, NULL, NULL);
1144
0
  }
1145
1146
0
  if (pool_debugging & POOL_DBG_TAG) {
1147
0
    const void **pool_mark;
1148
0
    struct pool_head *ph;
1149
0
    const void *tag;
1150
1151
0
    pool_mark = (const void **)(((char *)item) + pool->size);
1152
0
    tag =  may_access(pool_mark) ? *pool_mark : NULL;
1153
0
    if (tag == pool) {
1154
0
      chunk_appendf(&trash, "  tag: @%p = %p (%s)\n", pool_mark, tag, pool->name);
1155
0
      the_pool = pool;
1156
0
    }
1157
0
    else {
1158
0
      if (!may_access(pool_mark))
1159
0
        chunk_appendf(&trash, "Tag not accessible. ");
1160
0
      else
1161
0
        chunk_appendf(&trash, "Tag does not match (%p). ", tag);
1162
1163
0
      list_for_each_entry(ph, &pools, list) {
1164
0
        pool_mark = (const void **)(((char *)item) + ph->size);
1165
0
        if (!may_access(pool_mark))
1166
0
          continue;
1167
0
        tag =  *pool_mark;
1168
1169
0
        if (tag == ph) {
1170
0
          if (!the_pool)
1171
0
            chunk_appendf(&trash, "Possible origin pool(s):\n");
1172
1173
0
          chunk_appendf(&trash, "  tag: @%p = %p (%s, size %u, real %u, users %u)\n",
1174
0
                  pool_mark, tag, ph->name, ph->size, ph->alloc_sz, ph->users);
1175
0
          if (!the_pool || the_pool->size < ph->size)
1176
0
            the_pool = ph;
1177
0
        }
1178
0
      }
1179
1180
0
      if (!the_pool) {
1181
0
        chunk_appendf(&trash,
1182
0
                "Tag does not match any other pool.\n");
1183
1184
0
        pool_mark = (const void **)(((char *)item) + pool->size);
1185
0
        if (resolve_sym_name(&trash, "Resolving the tag as a pool_free() location: ", *pool_mark))
1186
0
          chunk_appendf(&trash, "\n");
1187
0
        else
1188
0
          chunk_appendf(&trash, " (no match).\n");
1189
1190
0
        dump_area_with_syms(&trash, item, pool_mark, pool, "pool", pool->name);
1191
0
      }
1192
0
    }
1193
0
  }
1194
1195
0
  if (pool_debugging & POOL_DBG_CALLER) {
1196
0
    struct buffer *trash2 = get_trash_chunk();
1197
0
    const struct pool_head *ph;
1198
0
    const void **pool_mark;
1199
0
    const void *tag, *rec_tag;
1200
1201
0
    ph = the_pool ? the_pool : pool;
1202
0
    pool_mark = (const void **)(((char *)item) + ph->alloc_sz - sizeof(void*));
1203
0
    rec_tag =  may_access(pool_mark) ? *pool_mark : NULL;
1204
1205
0
    if (rec_tag && resolve_sym_name(trash2, NULL, rec_tag))
1206
0
      chunk_appendf(&trash,
1207
0
              "Recorded caller if pool '%s':\n  @%p (+%04u) = %p (%s)\n",
1208
0
              ph->name, pool_mark, (uint)(ph->alloc_sz - sizeof(void*)),
1209
0
              rec_tag, trash2->area);
1210
1211
0
    if (!the_pool) {
1212
      /* the pool couldn't be formally verified */
1213
0
      chunk_appendf(&trash, "Other possible callers:\n");
1214
0
      list_for_each_entry(ph, &pools, list) {
1215
0
        if (ph == pool)
1216
0
          continue;
1217
0
        pool_mark = (const void **)(((char *)item) + ph->alloc_sz - sizeof(void*));
1218
0
        if (!may_access(pool_mark))
1219
0
          continue;
1220
0
        tag = *pool_mark;
1221
0
        if (tag == rec_tag)
1222
0
          continue;
1223
1224
        /* see if we can resolve something */
1225
0
        chunk_printf(trash2, "@%p (+%04u) = %p (", pool_mark, (uint)(ph->alloc_sz - sizeof(void*)), tag);
1226
0
        if (resolve_sym_name(trash2, NULL, tag)) {
1227
0
          chunk_appendf(trash2, ")");
1228
0
          chunk_appendf(&trash,
1229
0
                  "  %s [as pool %s, size %u, real %u, users %u]\n",
1230
0
                  trash2->area, ph->name, ph->size, ph->alloc_sz, ph->users);
1231
0
        }
1232
0
      }
1233
0
    }
1234
0
  }
1235
1236
0
  chunk_appendf(&trash, "\n");
1237
0
  DISGUISE(write(2, trash.area, trash.data));
1238
0
}
1239
1240
/* used by qsort in "show pools" to sort by name */
1241
static int cmp_dump_pools_name(const void *a, const void *b)
1242
0
{
1243
0
  const struct pool_dump_info *l = (const struct pool_dump_info *)a;
1244
0
  const struct pool_dump_info *r = (const struct pool_dump_info *)b;
1245
1246
0
  return strcmp(l->entry->name, r->entry->name);
1247
0
}
1248
1249
/* used by qsort in "show pools" to sort by item size */
1250
static int cmp_dump_pools_size(const void *a, const void *b)
1251
0
{
1252
0
  const struct pool_dump_info *l = (const struct pool_dump_info *)a;
1253
0
  const struct pool_dump_info *r = (const struct pool_dump_info *)b;
1254
1255
0
  if (l->entry->size > r->entry->size)
1256
0
    return -1;
1257
0
  else if (l->entry->size < r->entry->size)
1258
0
    return 1;
1259
0
  else
1260
0
    return 0;
1261
0
}
1262
1263
/* used by qsort in "show pools" to sort by usage */
1264
static int cmp_dump_pools_usage(const void *a, const void *b)
1265
0
{
1266
0
  const struct pool_dump_info *l = (const struct pool_dump_info *)a;
1267
0
  const struct pool_dump_info *r = (const struct pool_dump_info *)b;
1268
1269
0
  if (l->alloc_bytes > r->alloc_bytes)
1270
0
    return -1;
1271
0
  else if (l->alloc_bytes < r->alloc_bytes)
1272
0
    return 1;
1273
0
  else
1274
0
    return 0;
1275
0
}
1276
1277
/* will not dump more than this number of entries. Anything beyond this will
1278
 * likely not fit into a regular output buffer anyway.
1279
 */
1280
0
#define POOLS_MAX_DUMPED_ENTRIES 1024
1281
1282
/* This function dumps memory usage information into the trash buffer.
1283
 * It may sort by a criterion if bits 0..3 of <how> are non-zero, and
1284
 * limit the number of output lines if <max> is non-zero. It may limit
1285
 * only to pools whose names start with <pfx> if <pfx> is non-null.
1286
 */
1287
void dump_pools_to_trash(int how, int max, const char *pfx)
1288
0
{
1289
0
  struct pool_dump_info pool_info[POOLS_MAX_DUMPED_ENTRIES];
1290
0
  struct pool_head *entry;
1291
0
  unsigned long long allocated, used;
1292
0
  int nbpools, i;
1293
0
  unsigned long long cached_bytes = 0;
1294
0
  uint cached = 0;
1295
0
  uint alloc_items;
1296
0
  int by_what = how & 0xF; // bits 0..3 = sorting criterion
1297
0
  int detailed = !!(how & 0x10); // print details
1298
1299
0
  allocated = used = nbpools = 0;
1300
1301
0
  list_for_each_entry(entry, &pools, list) {
1302
0
    if (nbpools >= POOLS_MAX_DUMPED_ENTRIES)
1303
0
      break;
1304
1305
0
    alloc_items = pool_allocated(entry);
1306
    /* do not dump unused entries when sorting by usage */
1307
0
    if (by_what == 3 && !alloc_items)
1308
0
      continue;
1309
1310
    /* verify the pool name if a prefix is requested */
1311
0
    if (pfx && strncmp(entry->name, pfx, strlen(pfx)) != 0)
1312
0
      continue;
1313
1314
0
    if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
1315
0
      for (cached = i = 0; i < global.nbthread; i++)
1316
0
        cached += entry->cache[i].count;
1317
0
    }
1318
0
    pool_info[nbpools].entry = entry;
1319
0
    pool_info[nbpools].alloc_items = alloc_items;
1320
0
    pool_info[nbpools].alloc_bytes = (ulong)entry->size * alloc_items;
1321
0
    pool_info[nbpools].used_items = pool_used(entry);
1322
0
    pool_info[nbpools].cached_items = cached;
1323
0
    pool_info[nbpools].need_avg = swrate_avg(pool_needed_avg(entry), POOL_AVG_SAMPLES);
1324
0
    pool_info[nbpools].failed_items = pool_failed(entry);
1325
0
    nbpools++;
1326
0
  }
1327
1328
0
  if (by_what == 1)  /* sort by name */
1329
0
    qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_name);
1330
0
  else if (by_what == 2)  /* sort by item size */
1331
0
    qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_size);
1332
0
  else if (by_what == 3)  /* sort by total usage */
1333
0
    qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_usage);
1334
1335
0
  chunk_printf(&trash, "Dumping pools usage");
1336
0
  if (!max || max >= POOLS_MAX_DUMPED_ENTRIES)
1337
0
    max = POOLS_MAX_DUMPED_ENTRIES;
1338
0
  if (nbpools >= max)
1339
0
    chunk_appendf(&trash, " (limited to the first %u entries)", max);
1340
0
  chunk_appendf(&trash, ". Use SIGQUIT to flush them.\n");
1341
1342
0
  for (i = 0; i < nbpools && i < max; i++) {
1343
0
    chunk_appendf(&trash, "  - Pool %s (%u bytes/%u) : %lu allocated (%lu bytes), %lu used"
1344
0
            " (~%lu by thread caches)"
1345
0
            ", needed_avg %lu, %lu failures, %u users, @%p%s\n",
1346
0
                  pool_info[i].entry->name, pool_info[i].entry->size, pool_info[i].entry->align,
1347
0
            pool_info[i].alloc_items, pool_info[i].alloc_bytes,
1348
0
            pool_info[i].used_items, pool_info[i].cached_items,
1349
0
            pool_info[i].need_avg, pool_info[i].failed_items,
1350
0
                  pool_info[i].entry->users, pool_info[i].entry,
1351
0
                  (pool_info[i].entry->flags & MEM_F_SHARED) ? " [SHARED]" : "");
1352
1353
0
    cached_bytes += pool_info[i].cached_items * (ulong)pool_info[i].entry->size;
1354
0
    allocated    += pool_info[i].alloc_items  * (ulong)pool_info[i].entry->size;
1355
0
    used         += pool_info[i].used_items   * (ulong)pool_info[i].entry->size;
1356
1357
0
    if (detailed) {
1358
0
      struct pool_registration *reg;
1359
0
      list_for_each_entry(reg, &pool_info[i].entry->regs, list) {
1360
0
        chunk_appendf(&trash, "      >  %-12s: size=%u flags=%#x align=%u", reg->name, reg->size, reg->flags, reg->align);
1361
0
        if (reg->file && reg->line)
1362
0
          chunk_appendf(&trash, " [%s:%u]", reg->file, reg->line);
1363
0
        chunk_appendf(&trash, "\n");
1364
0
      }
1365
0
    }
1366
0
  }
1367
1368
0
  chunk_appendf(&trash, "Total: %d pools, %llu bytes allocated, %llu used"
1369
0
          " (~%llu by thread caches)"
1370
0
          ".\n",
1371
0
                nbpools, allocated, used, cached_bytes
1372
0
          );
1373
0
}
1374
1375
/* Dump statistics on pools usage. */
1376
void dump_pools(void)
1377
0
{
1378
0
  dump_pools_to_trash(0, 0, NULL);
1379
0
  qfprintf(stderr, "%s", trash.area);
1380
0
}
1381
1382
/* This function returns the total number of failed pool allocations */
1383
int pool_total_failures()
1384
0
{
1385
0
  struct pool_head *entry;
1386
0
  int failed = 0;
1387
1388
0
  list_for_each_entry(entry, &pools, list)
1389
0
    failed += pool_failed(entry);
1390
0
  return failed;
1391
0
}
1392
1393
/* This function returns the total amount of memory allocated in pools (in bytes) */
1394
unsigned long long pool_total_allocated()
1395
0
{
1396
0
  struct pool_head *entry;
1397
0
  unsigned long long allocated = 0;
1398
1399
0
  list_for_each_entry(entry, &pools, list)
1400
0
    allocated += pool_allocated(entry) * (ullong)entry->size;
1401
0
  return allocated;
1402
0
}
1403
1404
/* This function returns the total amount of memory used in pools (in bytes) */
1405
unsigned long long pool_total_used()
1406
0
{
1407
0
  struct pool_head *entry;
1408
0
  unsigned long long used = 0;
1409
1410
0
  list_for_each_entry(entry, &pools, list)
1411
0
    used += pool_used(entry) * (ullong)entry->size;
1412
0
  return used;
1413
0
}
1414
1415
/* This function parses a string made of a set of debugging features as
1416
 * specified after -dM on the command line, and will set pool_debugging
1417
 * accordingly. On success it returns a strictly positive value. It may zero
1418
 * with the first warning in <err>, -1 with a help message in <err>, or -2 with
1419
 * the first error in <err> return the first error in <err>. <err> is undefined
1420
 * on success, and will be non-null and locally allocated on help/error/warning.
1421
 * The caller must free it. Warnings are used to report features that were not
1422
 * enabled at build time, and errors are used to report unknown features.
1423
 */
1424
int pool_parse_debugging(const char *str, char **err)
1425
0
{
1426
0
  struct ist args;
1427
0
  char *end;
1428
0
  uint new_dbg;
1429
0
  int v;
1430
1431
1432
  /* if it's empty or starts with a number, it's the mem poisonning byte */
1433
0
  v = strtol(str, &end, 0);
1434
0
  if (!*end || *end == ',') {
1435
0
    mem_poison_byte = *str ? v : 'P';
1436
0
    if (mem_poison_byte >= 0)
1437
0
      pool_debugging |=  POOL_DBG_POISON;
1438
0
    else
1439
0
      pool_debugging &= ~POOL_DBG_POISON;
1440
0
    str = end;
1441
0
  }
1442
1443
0
  new_dbg = pool_debugging;
1444
1445
0
  for (args = ist(str); istlen(args); args = istadv(istfind(args, ','), 1)) {
1446
0
    struct ist feat = iststop(args, ',');
1447
1448
0
    if (!istlen(feat))
1449
0
      continue;
1450
1451
0
    if (isteq(feat, ist("help"))) {
1452
0
      ha_free(err);
1453
0
      memprintf(err,
1454
0
          "-dM alone enables memory poisonning with byte 0x50 on allocation. A numeric\n"
1455
0
          "value may be appended immediately after -dM to use another value (0 supported).\n"
1456
0
          "Then an optional list of comma-delimited keywords may be appended to set or\n"
1457
0
          "clear some debugging options ('*' marks the current setting):\n\n"
1458
0
          "    set               clear            description\n"
1459
0
          "  -----------------+-----------------+-----------------------------------------\n");
1460
1461
0
      for (v = 0; dbg_options[v].flg; v++) {
1462
0
        memprintf(err, "%s  %c %-15s|%c %-15s| %s\n",
1463
0
            *err,
1464
0
            (pool_debugging & dbg_options[v].flg) ? '*' : ' ',
1465
0
            dbg_options[v].set,
1466
0
            (pool_debugging & dbg_options[v].flg) ? ' ' : '*',
1467
0
            dbg_options[v].clr,
1468
0
            dbg_options[v].hlp);
1469
0
      }
1470
1471
0
      memprintf(err,
1472
0
                "%s  -----------------+-----------------+-----------------------------------------\n"
1473
0
          "Examples:\n"
1474
0
          "  Disable merging and enable poisonning with byte 'P': -dM0x50,no-merge\n"
1475
0
          "  Randomly fail allocations: -dMfail\n"
1476
0
          "  Detect out-of-bound corruptions: -dMno-merge,tag\n"
1477
0
          "  Detect post-free cache corruptions: -dMno-merge,cold-first,integrity,caller\n"
1478
0
          "  Detect all cache corruptions: -dMno-merge,cold-first,integrity,tag,caller\n"
1479
0
          "  Detect UAF (disables cache, very slow): -dMuaf\n"
1480
0
          "  Detect post-cache UAF: -dMuaf,cache,no-merge,cold-first,integrity,tag,caller\n"
1481
0
          "  Detect post-free cache corruptions: -dMno-merge,cold-first,integrity,caller\n",
1482
0
                *err);
1483
0
      return -1;
1484
0
    }
1485
1486
0
    for (v = 0; dbg_options[v].flg; v++) {
1487
0
      if (isteq(feat, ist(dbg_options[v].set))) {
1488
0
        new_dbg |= dbg_options[v].flg;
1489
        /* UAF implicitly disables caching, but it's
1490
         * still possible to forcefully re-enable it.
1491
         */
1492
0
        if (dbg_options[v].flg == POOL_DBG_UAF)
1493
0
          new_dbg |= POOL_DBG_NO_CACHE;
1494
        /* fail should preset the tune.fail-alloc ratio to 1%  */
1495
0
        if (dbg_options[v].flg == POOL_DBG_FAIL_ALLOC)
1496
0
          mem_fail_rate = 1;
1497
0
        break;
1498
0
      }
1499
0
      else if (isteq(feat, ist(dbg_options[v].clr))) {
1500
0
        new_dbg &= ~dbg_options[v].flg;
1501
        /* no-fail should reset the tune.fail-alloc ratio */
1502
0
        if (dbg_options[v].flg == POOL_DBG_FAIL_ALLOC)
1503
0
          mem_fail_rate = 0;
1504
0
        break;
1505
0
      }
1506
0
    }
1507
1508
0
    if (!dbg_options[v].flg) {
1509
0
      memprintf(err, "unknown pool debugging feature <%.*s>", (int)istlen(feat), istptr(feat));
1510
0
      return -2;
1511
0
    }
1512
0
  }
1513
1514
0
  pool_debugging = new_dbg;
1515
0
  return 1;
1516
0
}
1517
1518
/* parse a "show pools" command. It returns 1 on failure, 0 if it starts to dump. */
1519
static int cli_parse_show_pools(char **args, char *payload, struct appctx *appctx, void *private)
1520
0
{
1521
0
  struct show_pools_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
1522
0
  int arg;
1523
1524
0
  for (arg = 2; *args[arg]; arg++) {
1525
0
    if (strcmp(args[arg], "byname") == 0) {
1526
0
      ctx->how = (ctx->how & ~0xF) | 1; // sort output by name
1527
0
    }
1528
0
    else if (strcmp(args[arg], "bysize") == 0) {
1529
0
      ctx->how = (ctx->how & ~0xF) | 2; // sort output by item size
1530
0
    }
1531
0
    else if (strcmp(args[arg], "byusage") == 0) {
1532
0
      ctx->how = (ctx->how & ~0xF) | 3; // sort output by total allocated size
1533
0
    }
1534
0
    else if (strcmp(args[arg], "detailed") == 0) {
1535
0
      ctx->how |= 0x10;                 // print detailed registrations
1536
0
    }
1537
0
    else if (strcmp(args[arg], "match") == 0 && *args[arg+1]) {
1538
0
      ctx->prefix = strdup(args[arg+1]); // only pools starting with this
1539
0
      if (!ctx->prefix)
1540
0
        return cli_err(appctx, "Out of memory.\n");
1541
0
      arg++;
1542
0
    }
1543
0
    else if (isdigit((unsigned char)*args[arg])) {
1544
0
      ctx->maxcnt = atoi(args[arg]); // number of entries to dump
1545
0
    }
1546
0
    else
1547
0
      return cli_err(appctx, "Expects either 'byname', 'bysize', 'byusage', 'match <pfx>', 'detailed', or a max number of output lines.\n");
1548
0
  }
1549
0
  return 0;
1550
0
}
1551
1552
/* release the "show pools" context */
1553
static void cli_release_show_pools(struct appctx *appctx)
1554
0
{
1555
0
  struct show_pools_ctx *ctx = appctx->svcctx;
1556
1557
0
  ha_free(&ctx->prefix);
1558
0
}
1559
1560
/* This function dumps memory usage information onto the stream connector's
1561
 * read buffer. It returns 0 as long as it does not complete, non-zero upon
1562
 * completion. No state is used.
1563
 */
1564
static int cli_io_handler_dump_pools(struct appctx *appctx)
1565
0
{
1566
0
  struct show_pools_ctx *ctx = appctx->svcctx;
1567
1568
0
  dump_pools_to_trash(ctx->how, ctx->maxcnt, ctx->prefix);
1569
0
  if (applet_putchk(appctx, &trash) == -1)
1570
0
    return 0;
1571
0
  return 1;
1572
0
}
1573
1574
/* callback used to create early pool <name> of size <size> and store the
1575
 * resulting pointer into <ptr>. If the allocation fails, it quits with after
1576
 * emitting an error message.
1577
 */
1578
void create_pool_callback(struct pool_head **ptr, char *name, struct pool_registration *reg)
1579
0
{
1580
0
  *ptr = create_pool_from_reg(name, reg);
1581
0
  if (!*ptr) {
1582
0
    ha_alert("Failed to allocate pool '%s' of size %u : %s. Aborting.\n",
1583
0
       name, reg->size, strerror(errno));
1584
0
    exit(1);
1585
0
  }
1586
0
}
1587
1588
/* Initializes all per-thread arrays on startup */
1589
static void init_pools()
1590
0
{
1591
0
  int thr;
1592
1593
0
  for (thr = 0; thr < MAX_THREADS; thr++) {
1594
0
    LIST_INIT(&ha_thread_ctx[thr].pool_lru_head);
1595
0
  }
1596
1597
0
  detect_allocator();
1598
0
}
1599
1600
INITCALL0(STG_PREPARE, init_pools);
1601
1602
/* Report in build options if trim is supported */
1603
static void pools_register_build_options(void)
1604
0
{
1605
0
  if (!using_default_allocator) {
1606
0
    char *ptr = NULL;
1607
0
    memprintf(&ptr, "Running with a replaced memory allocator (e.g. via LD_PRELOAD).");
1608
0
    hap_register_build_opts(ptr, 1);
1609
0
    mark_tainted(TAINTED_REPLACED_MEM_ALLOCATOR);
1610
0
  }
1611
0
}
1612
INITCALL0(STG_REGISTER, pools_register_build_options);
1613
1614
/* register cli keywords */
1615
static struct cli_kw_list cli_kws = {{ },{
1616
  { { "show", "pools",  NULL }, "show pools [by*] [match <pfx>] [nb]     : report information about the memory pools usage", cli_parse_show_pools, cli_io_handler_dump_pools, cli_release_show_pools },
1617
  {{},}
1618
}};
1619
1620
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
1621
1622
1623
/* config parser for global "tune.fail-alloc" */
1624
static int mem_parse_global_fail_alloc(char **args, int section_type, struct proxy *curpx,
1625
                                       const struct proxy *defpx, const char *file, int line,
1626
                                       char **err)
1627
0
{
1628
0
  if (too_many_args(1, args, err, NULL))
1629
0
    return -1;
1630
0
  mem_fail_rate = atoi(args[1]);
1631
0
  if (mem_fail_rate < 0 || mem_fail_rate > 100) {
1632
0
      memprintf(err, "'%s' expects a numeric value between 0 and 100.", args[0]);
1633
0
      return -1;
1634
0
  }
1635
0
  return 0;
1636
0
}
1637
1638
/* config parser for global "tune.memory.hot-size" */
1639
static int mem_parse_global_hot_size(char **args, int section_type, struct proxy *curpx,
1640
                                       const struct proxy *defpx, const char *file, int line,
1641
                                       char **err)
1642
0
{
1643
0
  long size;
1644
1645
0
  if (too_many_args(1, args, err, NULL))
1646
0
    return -1;
1647
1648
0
  size = atol(args[1]);
1649
0
  if (size <= 0) {
1650
0
      memprintf(err, "'%s' expects a strictly positive value.", args[0]);
1651
0
      return -1;
1652
0
  }
1653
1654
0
  global.tune.pool_cache_size = size;
1655
0
  return 0;
1656
0
}
1657
1658
/* config parser for global "no-memory-trimming" */
1659
static int mem_parse_global_no_mem_trim(char **args, int section_type, struct proxy *curpx,
1660
                                       const struct proxy *defpx, const char *file, int line,
1661
                                       char **err)
1662
0
{
1663
0
  if (too_many_args(0, args, err, NULL))
1664
0
    return -1;
1665
0
  disable_trim = 1;
1666
0
  return 0;
1667
0
}
1668
1669
/* register global config keywords */
1670
static struct cfg_kw_list mem_cfg_kws = {ILH, {
1671
  { CFG_GLOBAL, "tune.fail-alloc", mem_parse_global_fail_alloc },
1672
  { CFG_GLOBAL, "tune.memory.hot-size", mem_parse_global_hot_size },
1673
  { CFG_GLOBAL, "no-memory-trimming", mem_parse_global_no_mem_trim },
1674
  { 0, NULL, NULL }
1675
}};
1676
1677
INITCALL1(STG_REGISTER, cfg_register_keywords, &mem_cfg_kws);
1678
1679
/*
1680
 * Local variables:
1681
 *  c-indent-level: 8
1682
 *  c-basic-offset: 8
1683
 * End:
1684
 */