Coverage Report

Created: 2026-01-09 06:23

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/haproxy/include/import/ebsttree.h
Line
Count
Source
1
/*
2
 * Elastic Binary Trees - macros to manipulate String data nodes.
3
 * Version 6.0.6
4
 * (C) 2002-2011 - Willy Tarreau <w@1wt.eu>
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation, version 2.1
9
 * exclusively.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20
21
/* These functions and macros rely on Multi-Byte nodes */
22
23
#ifndef _EBSTTREE_H
24
#define _EBSTTREE_H
25
26
#include "ebtree.h"
27
#include "ebmbtree.h"
28
29
/* The following functions are not inlined by default. They are declared
30
 * in ebsttree.c, which simply relies on their inline version.
31
 */
32
struct ebmb_node *ebst_lookup(struct eb_root *root, const char *x);
33
struct ebmb_node *ebst_insert(struct eb_root *root, struct ebmb_node *new);
34
35
/* Find the first occurrence of a length <len> string <x> in the tree <root>.
36
 * It's the caller's responsibility to use this function only on trees which
37
 * only contain zero-terminated strings, and that no null character is present
38
 * in string <x> in the first <len> chars. If none can be found, return NULL.
39
 */
40
static forceinline struct ebmb_node *
41
ebst_lookup_len(struct eb_root *root, const char *x, unsigned int len)
42
0
{
43
0
  struct ebmb_node *node;
44
45
0
  node = ebmb_lookup(root, x, len);
46
0
  if (!node || node->key[len] != 0)
47
0
    return NULL;
48
0
  return node;
49
0
}
Unexecuted instantiation: stats.c:ebst_lookup_len
Unexecuted instantiation: stick_table.c:ebst_lookup_len
Unexecuted instantiation: acl.c:ebst_lookup_len
Unexecuted instantiation: ebsttree.c:ebst_lookup_len
Unexecuted instantiation: pattern.c:ebst_lookup_len
Unexecuted instantiation: stats-file.c:ebst_lookup_len
50
51
/* Find the first occurrence of a zero-terminated string <x> in the tree <root>.
52
 * It's the caller's responsibility to use this function only on trees which
53
 * only contain zero-terminated strings. If none can be found, return NULL.
54
 */
55
static forceinline struct ebmb_node *__ebst_lookup(struct eb_root *root, const void *x)
56
0
{
57
0
  struct ebmb_node *node;
58
0
  eb_troot_t *troot;
59
0
  int bit;
60
0
  int node_bit;
61
62
0
  troot = root->b[EB_LEFT];
63
0
  if (unlikely(troot == NULL))
64
0
    return NULL;
65
66
0
  bit = 0;
67
0
  while (1) {
68
0
    if ((eb_gettag(troot) == EB_LEAF)) {
69
0
      node = container_of(eb_untag(troot, EB_LEAF),
70
0
              struct ebmb_node, node.branches);
71
0
      if (strcmp((char *)node->key, x) == 0)
72
0
        return node;
73
0
      else
74
0
        return NULL;
75
0
    }
76
0
    node = container_of(eb_untag(troot, EB_NODE),
77
0
            struct ebmb_node, node.branches);
78
79
0
    eb_prefetch(node->node.branches.b[0], 0);
80
0
    eb_prefetch(node->node.branches.b[1], 0);
81
82
0
    node_bit = node->node.bit;
83
84
0
    if (node_bit < 0) {
85
      /* We have a dup tree now. Either it's for the same
86
       * value, and we walk down left, or it's a different
87
       * one and we don't have our key.
88
       */
89
0
      if (strcmp((char *)node->key, x) != 0)
90
0
        return NULL;
91
92
0
      troot = node->node.branches.b[EB_LEFT];
93
0
      while (eb_gettag(troot) != EB_LEAF)
94
0
        troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
95
0
      node = container_of(eb_untag(troot, EB_LEAF),
96
0
              struct ebmb_node, node.branches);
97
0
      return node;
98
0
    }
99
100
    /* OK, normal data node, let's walk down but don't compare data
101
     * if we already reached the end of the key.
102
     */
103
0
    if (likely(bit >= 0)) {
104
0
      bit = string_equal_bits(x, node->key, bit);
105
0
      if (likely(bit < node_bit)) {
106
0
        if (bit >= 0)
107
0
          return NULL; /* no more common bits */
108
109
        /* bit < 0 : we reached the end of the key. If we
110
         * are in a tree with unique keys, we can return
111
         * this node. Otherwise we have to walk it down
112
         * and stop comparing bits.
113
         */
114
0
        if (eb_gettag(root->b[EB_RGHT]))
115
0
          return node;
116
0
      }
117
      /* if the bit is larger than the node's, we must bound it
118
       * because we might have compared too many bytes with an
119
       * inappropriate leaf. For a test, build a tree from "0",
120
       * "WW", "W", "S" inserted in this exact sequence and lookup
121
       * "W" => "S" is returned without this assignment.
122
       */
123
0
      else
124
0
        bit = node_bit;
125
0
    }
126
127
0
    troot = node->node.branches.b[(((unsigned char*)x)[node_bit >> 3] >>
128
0
                 (~node_bit & 7)) & 1];
129
0
  }
130
0
}
Unexecuted instantiation: stats.c:__ebst_lookup
Unexecuted instantiation: stick_table.c:__ebst_lookup
Unexecuted instantiation: acl.c:__ebst_lookup
Unexecuted instantiation: ebsttree.c:__ebst_lookup
Unexecuted instantiation: pattern.c:__ebst_lookup
Unexecuted instantiation: stats-file.c:__ebst_lookup
131
132
/* Insert ebmb_node <new> into subtree starting at node root <root>. Only
133
 * new->key needs be set with the zero-terminated string key. The ebmb_node is
134
 * returned. If root->b[EB_RGHT]==1, the tree may only contain unique keys. The
135
 * caller is responsible for properly terminating the key with a zero.
136
 */
137
static forceinline struct ebmb_node *
138
__ebst_insert(struct eb_root *root, struct ebmb_node *new)
139
0
{
140
0
  struct ebmb_node *old;
141
0
  unsigned int side;
142
0
  eb_troot_t *troot;
143
0
  eb_troot_t *root_right;
144
0
  int diff;
145
0
  int bit;
146
0
  int old_node_bit;
147
148
0
  side = EB_LEFT;
149
0
  troot = root->b[EB_LEFT];
150
0
  root_right = root->b[EB_RGHT];
151
0
  if (unlikely(troot == NULL)) {
152
    /* Tree is empty, insert the leaf part below the left branch */
153
0
    root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
154
0
    new->node.leaf_p = eb_dotag(root, EB_LEFT);
155
0
    new->node.node_p = NULL; /* node part unused */
156
0
    return new;
157
0
  }
158
159
  /* The tree descent is fairly easy :
160
   *  - first, check if we have reached a leaf node
161
   *  - second, check if we have gone too far
162
   *  - third, reiterate
163
   * Everywhere, we use <new> for the node node we are inserting, <root>
164
   * for the node we attach it to, and <old> for the node we are
165
   * displacing below <new>. <troot> will always point to the future node
166
   * (tagged with its type). <side> carries the side the node <new> is
167
   * attached to below its parent, which is also where previous node
168
   * was attached.
169
   */
170
171
0
  bit = 0;
172
0
  while (1) {
173
0
    if (unlikely(eb_gettag(troot) == EB_LEAF)) {
174
0
      eb_troot_t *new_left, *new_rght;
175
0
      eb_troot_t *new_leaf, *old_leaf;
176
177
0
      old = container_of(eb_untag(troot, EB_LEAF),
178
0
              struct ebmb_node, node.branches);
179
180
0
      new_left = eb_dotag(&new->node.branches, EB_LEFT);
181
0
      new_rght = eb_dotag(&new->node.branches, EB_RGHT);
182
0
      new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
183
0
      old_leaf = eb_dotag(&old->node.branches, EB_LEAF);
184
185
0
      new->node.node_p = old->node.leaf_p;
186
187
      /* Right here, we have 3 possibilities :
188
       * - the tree does not contain the key, and we have
189
       *   new->key < old->key. We insert new above old, on
190
       *   the left ;
191
       *
192
       * - the tree does not contain the key, and we have
193
       *   new->key > old->key. We insert new above old, on
194
       *   the right ;
195
       *
196
       * - the tree does contain the key, which implies it
197
       *   is alone. We add the new key next to it as a
198
       *   first duplicate.
199
       *
200
       * The last two cases can easily be partially merged.
201
       */
202
0
      if (bit >= 0)
203
0
        bit = string_equal_bits(new->key, old->key, bit);
204
205
0
      if (bit < 0) {
206
        /* key was already there */
207
208
        /* we may refuse to duplicate this key if the tree is
209
         * tagged as containing only unique keys.
210
         */
211
0
        if (eb_gettag(root_right))
212
0
          return old;
213
214
        /* new arbitrarily goes to the right and tops the dup tree */
215
0
        old->node.leaf_p = new_left;
216
0
        new->node.leaf_p = new_rght;
217
0
        new->node.branches.b[EB_LEFT] = old_leaf;
218
0
        new->node.branches.b[EB_RGHT] = new_leaf;
219
0
        new->node.bit = -1;
220
0
        root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
221
0
        return new;
222
0
      }
223
224
0
      diff = cmp_bits(new->key, old->key, bit);
225
0
      if (diff < 0) {
226
        /* new->key < old->key, new takes the left */
227
0
        new->node.leaf_p = new_left;
228
0
        old->node.leaf_p = new_rght;
229
0
        new->node.branches.b[EB_LEFT] = new_leaf;
230
0
        new->node.branches.b[EB_RGHT] = old_leaf;
231
0
      } else {
232
        /* new->key > old->key, new takes the right */
233
0
        old->node.leaf_p = new_left;
234
0
        new->node.leaf_p = new_rght;
235
0
        new->node.branches.b[EB_LEFT] = old_leaf;
236
0
        new->node.branches.b[EB_RGHT] = new_leaf;
237
0
      }
238
0
      break;
239
0
    }
240
241
    /* OK we're walking down this link */
242
0
    old = container_of(eb_untag(troot, EB_NODE),
243
0
           struct ebmb_node, node.branches);
244
245
0
    eb_prefetch(old->node.branches.b[0], 0);
246
0
    eb_prefetch(old->node.branches.b[1], 0);
247
248
0
    old_node_bit = old->node.bit;
249
250
    /* Stop going down when we don't have common bits anymore. We
251
     * also stop in front of a duplicates tree because it means we
252
     * have to insert above. Note: we can compare more bits than
253
     * the current node's because as long as they are identical, we
254
     * know we descend along the correct side.
255
     */
256
0
    if (bit >= 0 && (bit < old_node_bit || old_node_bit < 0))
257
0
      bit = string_equal_bits(new->key, old->key, bit);
258
259
0
    if (unlikely(bit < 0)) {
260
      /* Perfect match, we must only stop on head of dup tree
261
       * or walk down to a leaf.
262
       */
263
0
      if (old_node_bit < 0) {
264
        /* We know here that string_equal_bits matched all
265
         * bits and that we're on top of a dup tree, then
266
         * we can perform the dup insertion and return.
267
         */
268
0
        struct eb_node *ret;
269
0
        ret = eb_insert_dup(&old->node, &new->node);
270
0
        return container_of(ret, struct ebmb_node, node);
271
0
      }
272
      /* OK so let's walk down */
273
0
    }
274
0
    else if (bit < old_node_bit || old_node_bit < 0) {
275
      /* The tree did not contain the key, or we stopped on top of a dup
276
       * tree, possibly containing the key. In the former case, we insert
277
       * <new> before the node <old>, and set ->bit to designate the lowest
278
       * bit position in <new> which applies to ->branches.b[]. In the later
279
       * case, we add the key to the existing dup tree. Note that we cannot
280
       * enter here if we match an intermediate node's key that is not the
281
       * head of a dup tree.
282
       */
283
0
      eb_troot_t *new_left, *new_rght;
284
0
      eb_troot_t *new_leaf, *old_node;
285
286
0
      new_left = eb_dotag(&new->node.branches, EB_LEFT);
287
0
      new_rght = eb_dotag(&new->node.branches, EB_RGHT);
288
0
      new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
289
0
      old_node = eb_dotag(&old->node.branches, EB_NODE);
290
291
0
      new->node.node_p = old->node.node_p;
292
293
      /* we can never match all bits here */
294
0
      diff = cmp_bits(new->key, old->key, bit);
295
0
      if (diff < 0) {
296
0
        new->node.leaf_p = new_left;
297
0
        old->node.node_p = new_rght;
298
0
        new->node.branches.b[EB_LEFT] = new_leaf;
299
0
        new->node.branches.b[EB_RGHT] = old_node;
300
0
      }
301
0
      else {
302
0
        old->node.node_p = new_left;
303
0
        new->node.leaf_p = new_rght;
304
0
        new->node.branches.b[EB_LEFT] = old_node;
305
0
        new->node.branches.b[EB_RGHT] = new_leaf;
306
0
      }
307
0
      break;
308
0
    }
309
310
    /* walk down */
311
0
    root = &old->node.branches;
312
0
    side = (new->key[old_node_bit >> 3] >> (~old_node_bit & 7)) & 1;
313
0
    troot = root->b[side];
314
0
  }
315
316
  /* Ok, now we are inserting <new> between <root> and <old>. <old>'s
317
   * parent is already set to <new>, and the <root>'s branch is still in
318
   * <side>. Update the root's leaf till we have it. Note that we can also
319
   * find the side by checking the side of new->node.node_p.
320
   */
321
322
  /* We need the common higher bits between new->key and old->key.
323
   * This number of bits is already in <bit>.
324
   * NOTE: we can't get here with bit < 0 since we found a dup !
325
   */
326
0
  new->node.bit = bit;
327
0
  root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
328
0
  return new;
329
0
}
Unexecuted instantiation: stats.c:__ebst_insert
Unexecuted instantiation: stick_table.c:__ebst_insert
Unexecuted instantiation: acl.c:__ebst_insert
Unexecuted instantiation: ebsttree.c:__ebst_insert
Unexecuted instantiation: pattern.c:__ebst_insert
Unexecuted instantiation: stats-file.c:__ebst_insert
330
331
#endif /* _EBSTTREE_H */
332