/src/hermes/external/llvh/include/llvh/IR/Constants.h
Line | Count | Source (jump to first uncovered line) |
1 | | //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// |
2 | | // |
3 | | // The LLVM Compiler Infrastructure |
4 | | // |
5 | | // This file is distributed under the University of Illinois Open Source |
6 | | // License. See LICENSE.TXT for details. |
7 | | // |
8 | | //===----------------------------------------------------------------------===// |
9 | | // |
10 | | /// @file |
11 | | /// This file contains the declarations for the subclasses of Constant, |
12 | | /// which represent the different flavors of constant values that live in LLVM. |
13 | | /// Note that Constants are immutable (once created they never change) and are |
14 | | /// fully shared by structural equivalence. This means that two structurally |
15 | | /// equivalent constants will always have the same address. Constants are |
16 | | /// created on demand as needed and never deleted: thus clients don't have to |
17 | | /// worry about the lifetime of the objects. |
18 | | // |
19 | | //===----------------------------------------------------------------------===// |
20 | | |
21 | | #ifndef LLVM_IR_CONSTANTS_H |
22 | | #define LLVM_IR_CONSTANTS_H |
23 | | |
24 | | #include "llvh/ADT/APFloat.h" |
25 | | #include "llvh/ADT/APInt.h" |
26 | | #include "llvh/ADT/ArrayRef.h" |
27 | | #include "llvh/ADT/None.h" |
28 | | #include "llvh/ADT/Optional.h" |
29 | | #include "llvh/ADT/STLExtras.h" |
30 | | #include "llvh/ADT/StringRef.h" |
31 | | #include "llvh/IR/Constant.h" |
32 | | #include "llvh/IR/DerivedTypes.h" |
33 | | #include "llvh/IR/OperandTraits.h" |
34 | | #include "llvh/IR/User.h" |
35 | | #include "llvh/IR/Value.h" |
36 | | #include "llvh/Support/Casting.h" |
37 | | #include "llvh/Support/Compiler.h" |
38 | | #include "llvh/Support/ErrorHandling.h" |
39 | | #include <cassert> |
40 | | #include <cstddef> |
41 | | #include <cstdint> |
42 | | |
43 | | namespace llvh { |
44 | | |
45 | | class ArrayType; |
46 | | class IntegerType; |
47 | | class PointerType; |
48 | | class SequentialType; |
49 | | class StructType; |
50 | | class VectorType; |
51 | | template <class ConstantClass> struct ConstantAggrKeyType; |
52 | | |
53 | | /// Base class for constants with no operands. |
54 | | /// |
55 | | /// These constants have no operands; they represent their data directly. |
56 | | /// Since they can be in use by unrelated modules (and are never based on |
57 | | /// GlobalValues), it never makes sense to RAUW them. |
58 | | class ConstantData : public Constant { |
59 | | friend class Constant; |
60 | | |
61 | 0 | Value *handleOperandChangeImpl(Value *From, Value *To) { |
62 | 0 | llvm_unreachable("Constant data does not have operands!"); |
63 | 0 | } |
64 | | |
65 | | protected: |
66 | 0 | explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {} |
67 | | |
68 | 0 | void *operator new(size_t s) { return User::operator new(s, 0); } |
69 | | |
70 | | public: |
71 | | ConstantData(const ConstantData &) = delete; |
72 | | |
73 | | /// Methods to support type inquiry through isa, cast, and dyn_cast. |
74 | 0 | static bool classof(const Value *V) { |
75 | 0 | return V->getValueID() >= ConstantDataFirstVal && |
76 | 0 | V->getValueID() <= ConstantDataLastVal; |
77 | 0 | } |
78 | | }; |
79 | | |
80 | | //===----------------------------------------------------------------------===// |
81 | | /// This is the shared class of boolean and integer constants. This class |
82 | | /// represents both boolean and integral constants. |
83 | | /// Class for constant integers. |
84 | | class ConstantInt final : public ConstantData { |
85 | | friend class Constant; |
86 | | |
87 | | APInt Val; |
88 | | |
89 | | ConstantInt(IntegerType *Ty, const APInt& V); |
90 | | |
91 | | void destroyConstantImpl(); |
92 | | |
93 | | public: |
94 | | ConstantInt(const ConstantInt &) = delete; |
95 | | |
96 | | static ConstantInt *getTrue(LLVMContext &Context); |
97 | | static ConstantInt *getFalse(LLVMContext &Context); |
98 | | static Constant *getTrue(Type *Ty); |
99 | | static Constant *getFalse(Type *Ty); |
100 | | |
101 | | /// If Ty is a vector type, return a Constant with a splat of the given |
102 | | /// value. Otherwise return a ConstantInt for the given value. |
103 | | static Constant *get(Type *Ty, uint64_t V, bool isSigned = false); |
104 | | |
105 | | /// Return a ConstantInt with the specified integer value for the specified |
106 | | /// type. If the type is wider than 64 bits, the value will be zero-extended |
107 | | /// to fit the type, unless isSigned is true, in which case the value will |
108 | | /// be interpreted as a 64-bit signed integer and sign-extended to fit |
109 | | /// the type. |
110 | | /// Get a ConstantInt for a specific value. |
111 | | static ConstantInt *get(IntegerType *Ty, uint64_t V, |
112 | | bool isSigned = false); |
113 | | |
114 | | /// Return a ConstantInt with the specified value for the specified type. The |
115 | | /// value V will be canonicalized to a an unsigned APInt. Accessing it with |
116 | | /// either getSExtValue() or getZExtValue() will yield a correctly sized and |
117 | | /// signed value for the type Ty. |
118 | | /// Get a ConstantInt for a specific signed value. |
119 | | static ConstantInt *getSigned(IntegerType *Ty, int64_t V); |
120 | | static Constant *getSigned(Type *Ty, int64_t V); |
121 | | |
122 | | /// Return a ConstantInt with the specified value and an implied Type. The |
123 | | /// type is the integer type that corresponds to the bit width of the value. |
124 | | static ConstantInt *get(LLVMContext &Context, const APInt &V); |
125 | | |
126 | | /// Return a ConstantInt constructed from the string strStart with the given |
127 | | /// radix. |
128 | | static ConstantInt *get(IntegerType *Ty, StringRef Str, |
129 | | uint8_t radix); |
130 | | |
131 | | /// If Ty is a vector type, return a Constant with a splat of the given |
132 | | /// value. Otherwise return a ConstantInt for the given value. |
133 | | static Constant *get(Type* Ty, const APInt& V); |
134 | | |
135 | | /// Return the constant as an APInt value reference. This allows clients to |
136 | | /// obtain a full-precision copy of the value. |
137 | | /// Return the constant's value. |
138 | 0 | inline const APInt &getValue() const { |
139 | 0 | return Val; |
140 | 0 | } |
141 | | |
142 | | /// getBitWidth - Return the bitwidth of this constant. |
143 | 0 | unsigned getBitWidth() const { return Val.getBitWidth(); } |
144 | | |
145 | | /// Return the constant as a 64-bit unsigned integer value after it |
146 | | /// has been zero extended as appropriate for the type of this constant. Note |
147 | | /// that this method can assert if the value does not fit in 64 bits. |
148 | | /// Return the zero extended value. |
149 | 0 | inline uint64_t getZExtValue() const { |
150 | 0 | return Val.getZExtValue(); |
151 | 0 | } |
152 | | |
153 | | /// Return the constant as a 64-bit integer value after it has been sign |
154 | | /// extended as appropriate for the type of this constant. Note that |
155 | | /// this method can assert if the value does not fit in 64 bits. |
156 | | /// Return the sign extended value. |
157 | 0 | inline int64_t getSExtValue() const { |
158 | 0 | return Val.getSExtValue(); |
159 | 0 | } |
160 | | |
161 | | /// A helper method that can be used to determine if the constant contained |
162 | | /// within is equal to a constant. This only works for very small values, |
163 | | /// because this is all that can be represented with all types. |
164 | | /// Determine if this constant's value is same as an unsigned char. |
165 | 0 | bool equalsInt(uint64_t V) const { |
166 | 0 | return Val == V; |
167 | 0 | } |
168 | | |
169 | | /// getType - Specialize the getType() method to always return an IntegerType, |
170 | | /// which reduces the amount of casting needed in parts of the compiler. |
171 | | /// |
172 | 0 | inline IntegerType *getType() const { |
173 | 0 | return cast<IntegerType>(Value::getType()); |
174 | 0 | } |
175 | | |
176 | | /// This static method returns true if the type Ty is big enough to |
177 | | /// represent the value V. This can be used to avoid having the get method |
178 | | /// assert when V is larger than Ty can represent. Note that there are two |
179 | | /// versions of this method, one for unsigned and one for signed integers. |
180 | | /// Although ConstantInt canonicalizes everything to an unsigned integer, |
181 | | /// the signed version avoids callers having to convert a signed quantity |
182 | | /// to the appropriate unsigned type before calling the method. |
183 | | /// @returns true if V is a valid value for type Ty |
184 | | /// Determine if the value is in range for the given type. |
185 | | static bool isValueValidForType(Type *Ty, uint64_t V); |
186 | | static bool isValueValidForType(Type *Ty, int64_t V); |
187 | | |
188 | 0 | bool isNegative() const { return Val.isNegative(); } |
189 | | |
190 | | /// This is just a convenience method to make client code smaller for a |
191 | | /// common code. It also correctly performs the comparison without the |
192 | | /// potential for an assertion from getZExtValue(). |
193 | 0 | bool isZero() const { |
194 | 0 | return Val.isNullValue(); |
195 | 0 | } |
196 | | |
197 | | /// This is just a convenience method to make client code smaller for a |
198 | | /// common case. It also correctly performs the comparison without the |
199 | | /// potential for an assertion from getZExtValue(). |
200 | | /// Determine if the value is one. |
201 | 0 | bool isOne() const { |
202 | 0 | return Val.isOneValue(); |
203 | 0 | } |
204 | | |
205 | | /// This function will return true iff every bit in this constant is set |
206 | | /// to true. |
207 | | /// @returns true iff this constant's bits are all set to true. |
208 | | /// Determine if the value is all ones. |
209 | 0 | bool isMinusOne() const { |
210 | 0 | return Val.isAllOnesValue(); |
211 | 0 | } |
212 | | |
213 | | /// This function will return true iff this constant represents the largest |
214 | | /// value that may be represented by the constant's type. |
215 | | /// @returns true iff this is the largest value that may be represented |
216 | | /// by this type. |
217 | | /// Determine if the value is maximal. |
218 | 0 | bool isMaxValue(bool isSigned) const { |
219 | 0 | if (isSigned) |
220 | 0 | return Val.isMaxSignedValue(); |
221 | 0 | else |
222 | 0 | return Val.isMaxValue(); |
223 | 0 | } |
224 | | |
225 | | /// This function will return true iff this constant represents the smallest |
226 | | /// value that may be represented by this constant's type. |
227 | | /// @returns true if this is the smallest value that may be represented by |
228 | | /// this type. |
229 | | /// Determine if the value is minimal. |
230 | 0 | bool isMinValue(bool isSigned) const { |
231 | 0 | if (isSigned) |
232 | 0 | return Val.isMinSignedValue(); |
233 | 0 | else |
234 | 0 | return Val.isMinValue(); |
235 | 0 | } |
236 | | |
237 | | /// This function will return true iff this constant represents a value with |
238 | | /// active bits bigger than 64 bits or a value greater than the given uint64_t |
239 | | /// value. |
240 | | /// @returns true iff this constant is greater or equal to the given number. |
241 | | /// Determine if the value is greater or equal to the given number. |
242 | 0 | bool uge(uint64_t Num) const { |
243 | 0 | return Val.uge(Num); |
244 | 0 | } |
245 | | |
246 | | /// getLimitedValue - If the value is smaller than the specified limit, |
247 | | /// return it, otherwise return the limit value. This causes the value |
248 | | /// to saturate to the limit. |
249 | | /// @returns the min of the value of the constant and the specified value |
250 | | /// Get the constant's value with a saturation limit |
251 | 0 | uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { |
252 | 0 | return Val.getLimitedValue(Limit); |
253 | 0 | } |
254 | | |
255 | | /// Methods to support type inquiry through isa, cast, and dyn_cast. |
256 | 0 | static bool classof(const Value *V) { |
257 | 0 | return V->getValueID() == ConstantIntVal; |
258 | 0 | } |
259 | | }; |
260 | | |
261 | | //===----------------------------------------------------------------------===// |
262 | | /// ConstantFP - Floating Point Values [float, double] |
263 | | /// |
264 | | class ConstantFP final : public ConstantData { |
265 | | friend class Constant; |
266 | | |
267 | | APFloat Val; |
268 | | |
269 | | ConstantFP(Type *Ty, const APFloat& V); |
270 | | |
271 | | void destroyConstantImpl(); |
272 | | |
273 | | public: |
274 | | ConstantFP(const ConstantFP &) = delete; |
275 | | |
276 | | /// Floating point negation must be implemented with f(x) = -0.0 - x. This |
277 | | /// method returns the negative zero constant for floating point or vector |
278 | | /// floating point types; for all other types, it returns the null value. |
279 | | static Constant *getZeroValueForNegation(Type *Ty); |
280 | | |
281 | | /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP, |
282 | | /// for the specified value in the specified type. This should only be used |
283 | | /// for simple constant values like 2.0/1.0 etc, that are known-valid both as |
284 | | /// host double and as the target format. |
285 | | static Constant *get(Type* Ty, double V); |
286 | | |
287 | | /// If Ty is a vector type, return a Constant with a splat of the given |
288 | | /// value. Otherwise return a ConstantFP for the given value. |
289 | | static Constant *get(Type *Ty, const APFloat &V); |
290 | | |
291 | | static Constant *get(Type* Ty, StringRef Str); |
292 | | static ConstantFP *get(LLVMContext &Context, const APFloat &V); |
293 | | static Constant *getNaN(Type *Ty, bool Negative = false, unsigned type = 0); |
294 | | static Constant *getNegativeZero(Type *Ty); |
295 | | static Constant *getInfinity(Type *Ty, bool Negative = false); |
296 | | |
297 | | /// Return true if Ty is big enough to represent V. |
298 | | static bool isValueValidForType(Type *Ty, const APFloat &V); |
299 | 0 | inline const APFloat &getValueAPF() const { return Val; } |
300 | | |
301 | | /// Return true if the value is positive or negative zero. |
302 | 0 | bool isZero() const { return Val.isZero(); } |
303 | | |
304 | | /// Return true if the sign bit is set. |
305 | 0 | bool isNegative() const { return Val.isNegative(); } |
306 | | |
307 | | /// Return true if the value is infinity |
308 | 0 | bool isInfinity() const { return Val.isInfinity(); } |
309 | | |
310 | | /// Return true if the value is a NaN. |
311 | 0 | bool isNaN() const { return Val.isNaN(); } |
312 | | |
313 | | /// We don't rely on operator== working on double values, as it returns true |
314 | | /// for things that are clearly not equal, like -0.0 and 0.0. |
315 | | /// As such, this method can be used to do an exact bit-for-bit comparison of |
316 | | /// two floating point values. The version with a double operand is retained |
317 | | /// because it's so convenient to write isExactlyValue(2.0), but please use |
318 | | /// it only for simple constants. |
319 | | bool isExactlyValue(const APFloat &V) const; |
320 | | |
321 | 0 | bool isExactlyValue(double V) const { |
322 | 0 | bool ignored; |
323 | 0 | APFloat FV(V); |
324 | 0 | FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); |
325 | 0 | return isExactlyValue(FV); |
326 | 0 | } |
327 | | |
328 | | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
329 | 0 | static bool classof(const Value *V) { |
330 | 0 | return V->getValueID() == ConstantFPVal; |
331 | 0 | } |
332 | | }; |
333 | | |
334 | | //===----------------------------------------------------------------------===// |
335 | | /// All zero aggregate value |
336 | | /// |
337 | | class ConstantAggregateZero final : public ConstantData { |
338 | | friend class Constant; |
339 | | |
340 | | explicit ConstantAggregateZero(Type *Ty) |
341 | 0 | : ConstantData(Ty, ConstantAggregateZeroVal) {} |
342 | | |
343 | | void destroyConstantImpl(); |
344 | | |
345 | | public: |
346 | | ConstantAggregateZero(const ConstantAggregateZero &) = delete; |
347 | | |
348 | | static ConstantAggregateZero *get(Type *Ty); |
349 | | |
350 | | /// If this CAZ has array or vector type, return a zero with the right element |
351 | | /// type. |
352 | | Constant *getSequentialElement() const; |
353 | | |
354 | | /// If this CAZ has struct type, return a zero with the right element type for |
355 | | /// the specified element. |
356 | | Constant *getStructElement(unsigned Elt) const; |
357 | | |
358 | | /// Return a zero of the right value for the specified GEP index if we can, |
359 | | /// otherwise return null (e.g. if C is a ConstantExpr). |
360 | | Constant *getElementValue(Constant *C) const; |
361 | | |
362 | | /// Return a zero of the right value for the specified GEP index. |
363 | | Constant *getElementValue(unsigned Idx) const; |
364 | | |
365 | | /// Return the number of elements in the array, vector, or struct. |
366 | | unsigned getNumElements() const; |
367 | | |
368 | | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
369 | | /// |
370 | 0 | static bool classof(const Value *V) { |
371 | 0 | return V->getValueID() == ConstantAggregateZeroVal; |
372 | 0 | } |
373 | | }; |
374 | | |
375 | | /// Base class for aggregate constants (with operands). |
376 | | /// |
377 | | /// These constants are aggregates of other constants, which are stored as |
378 | | /// operands. |
379 | | /// |
380 | | /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a |
381 | | /// ConstantVector. |
382 | | /// |
383 | | /// \note Some subclasses of \a ConstantData are semantically aggregates -- |
384 | | /// such as \a ConstantDataArray -- but are not subclasses of this because they |
385 | | /// use operands. |
386 | | class ConstantAggregate : public Constant { |
387 | | protected: |
388 | | ConstantAggregate(CompositeType *T, ValueTy VT, ArrayRef<Constant *> V); |
389 | | |
390 | | public: |
391 | | /// Transparently provide more efficient getOperand methods. |
392 | | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); |
393 | | |
394 | | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
395 | 0 | static bool classof(const Value *V) { |
396 | 0 | return V->getValueID() >= ConstantAggregateFirstVal && |
397 | 0 | V->getValueID() <= ConstantAggregateLastVal; |
398 | 0 | } |
399 | | }; |
400 | | |
401 | | template <> |
402 | | struct OperandTraits<ConstantAggregate> |
403 | | : public VariadicOperandTraits<ConstantAggregate> {}; |
404 | | |
405 | | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant) |
406 | | |
407 | | //===----------------------------------------------------------------------===// |
408 | | /// ConstantArray - Constant Array Declarations |
409 | | /// |
410 | | class ConstantArray final : public ConstantAggregate { |
411 | | friend struct ConstantAggrKeyType<ConstantArray>; |
412 | | friend class Constant; |
413 | | |
414 | | ConstantArray(ArrayType *T, ArrayRef<Constant *> Val); |
415 | | |
416 | | void destroyConstantImpl(); |
417 | | Value *handleOperandChangeImpl(Value *From, Value *To); |
418 | | |
419 | | public: |
420 | | // ConstantArray accessors |
421 | | static Constant *get(ArrayType *T, ArrayRef<Constant*> V); |
422 | | |
423 | | private: |
424 | | static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V); |
425 | | |
426 | | public: |
427 | | /// Specialize the getType() method to always return an ArrayType, |
428 | | /// which reduces the amount of casting needed in parts of the compiler. |
429 | 0 | inline ArrayType *getType() const { |
430 | 0 | return cast<ArrayType>(Value::getType()); |
431 | 0 | } |
432 | | |
433 | | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
434 | 0 | static bool classof(const Value *V) { |
435 | 0 | return V->getValueID() == ConstantArrayVal; |
436 | 0 | } |
437 | | }; |
438 | | |
439 | | //===----------------------------------------------------------------------===// |
440 | | // Constant Struct Declarations |
441 | | // |
442 | | class ConstantStruct final : public ConstantAggregate { |
443 | | friend struct ConstantAggrKeyType<ConstantStruct>; |
444 | | friend class Constant; |
445 | | |
446 | | ConstantStruct(StructType *T, ArrayRef<Constant *> Val); |
447 | | |
448 | | void destroyConstantImpl(); |
449 | | Value *handleOperandChangeImpl(Value *From, Value *To); |
450 | | |
451 | | public: |
452 | | // ConstantStruct accessors |
453 | | static Constant *get(StructType *T, ArrayRef<Constant*> V); |
454 | | |
455 | | template <typename... Csts> |
456 | | static typename std::enable_if<are_base_of<Constant, Csts...>::value, |
457 | | Constant *>::type |
458 | | get(StructType *T, Csts *... Vs) { |
459 | | SmallVector<Constant *, 8> Values({Vs...}); |
460 | | return get(T, Values); |
461 | | } |
462 | | |
463 | | /// Return an anonymous struct that has the specified elements. |
464 | | /// If the struct is possibly empty, then you must specify a context. |
465 | 0 | static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) { |
466 | 0 | return get(getTypeForElements(V, Packed), V); |
467 | 0 | } |
468 | | static Constant *getAnon(LLVMContext &Ctx, |
469 | 0 | ArrayRef<Constant*> V, bool Packed = false) { |
470 | 0 | return get(getTypeForElements(Ctx, V, Packed), V); |
471 | 0 | } |
472 | | |
473 | | /// Return an anonymous struct type to use for a constant with the specified |
474 | | /// set of elements. The list must not be empty. |
475 | | static StructType *getTypeForElements(ArrayRef<Constant*> V, |
476 | | bool Packed = false); |
477 | | /// This version of the method allows an empty list. |
478 | | static StructType *getTypeForElements(LLVMContext &Ctx, |
479 | | ArrayRef<Constant*> V, |
480 | | bool Packed = false); |
481 | | |
482 | | /// Specialization - reduce amount of casting. |
483 | 0 | inline StructType *getType() const { |
484 | 0 | return cast<StructType>(Value::getType()); |
485 | 0 | } |
486 | | |
487 | | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
488 | 0 | static bool classof(const Value *V) { |
489 | 0 | return V->getValueID() == ConstantStructVal; |
490 | 0 | } |
491 | | }; |
492 | | |
493 | | //===----------------------------------------------------------------------===// |
494 | | /// Constant Vector Declarations |
495 | | /// |
496 | | class ConstantVector final : public ConstantAggregate { |
497 | | friend struct ConstantAggrKeyType<ConstantVector>; |
498 | | friend class Constant; |
499 | | |
500 | | ConstantVector(VectorType *T, ArrayRef<Constant *> Val); |
501 | | |
502 | | void destroyConstantImpl(); |
503 | | Value *handleOperandChangeImpl(Value *From, Value *To); |
504 | | |
505 | | public: |
506 | | // ConstantVector accessors |
507 | | static Constant *get(ArrayRef<Constant*> V); |
508 | | |
509 | | private: |
510 | | static Constant *getImpl(ArrayRef<Constant *> V); |
511 | | |
512 | | public: |
513 | | /// Return a ConstantVector with the specified constant in each element. |
514 | | static Constant *getSplat(unsigned NumElts, Constant *Elt); |
515 | | |
516 | | /// Specialize the getType() method to always return a VectorType, |
517 | | /// which reduces the amount of casting needed in parts of the compiler. |
518 | 0 | inline VectorType *getType() const { |
519 | 0 | return cast<VectorType>(Value::getType()); |
520 | 0 | } |
521 | | |
522 | | /// If this is a splat constant, meaning that all of the elements have the |
523 | | /// same value, return that value. Otherwise return NULL. |
524 | | Constant *getSplatValue() const; |
525 | | |
526 | | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
527 | 0 | static bool classof(const Value *V) { |
528 | 0 | return V->getValueID() == ConstantVectorVal; |
529 | 0 | } |
530 | | }; |
531 | | |
532 | | //===----------------------------------------------------------------------===// |
533 | | /// A constant pointer value that points to null |
534 | | /// |
535 | | class ConstantPointerNull final : public ConstantData { |
536 | | friend class Constant; |
537 | | |
538 | | explicit ConstantPointerNull(PointerType *T) |
539 | 0 | : ConstantData(T, Value::ConstantPointerNullVal) {} |
540 | | |
541 | | void destroyConstantImpl(); |
542 | | |
543 | | public: |
544 | | ConstantPointerNull(const ConstantPointerNull &) = delete; |
545 | | |
546 | | /// Static factory methods - Return objects of the specified value |
547 | | static ConstantPointerNull *get(PointerType *T); |
548 | | |
549 | | /// Specialize the getType() method to always return an PointerType, |
550 | | /// which reduces the amount of casting needed in parts of the compiler. |
551 | 0 | inline PointerType *getType() const { |
552 | 0 | return cast<PointerType>(Value::getType()); |
553 | 0 | } |
554 | | |
555 | | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
556 | 0 | static bool classof(const Value *V) { |
557 | 0 | return V->getValueID() == ConstantPointerNullVal; |
558 | 0 | } |
559 | | }; |
560 | | |
561 | | //===----------------------------------------------------------------------===// |
562 | | /// ConstantDataSequential - A vector or array constant whose element type is a |
563 | | /// simple 1/2/4/8-byte integer or float/double, and whose elements are just |
564 | | /// simple data values (i.e. ConstantInt/ConstantFP). This Constant node has no |
565 | | /// operands because it stores all of the elements of the constant as densely |
566 | | /// packed data, instead of as Value*'s. |
567 | | /// |
568 | | /// This is the common base class of ConstantDataArray and ConstantDataVector. |
569 | | /// |
570 | | class ConstantDataSequential : public ConstantData { |
571 | | friend class LLVMContextImpl; |
572 | | friend class Constant; |
573 | | |
574 | | /// A pointer to the bytes underlying this constant (which is owned by the |
575 | | /// uniquing StringMap). |
576 | | const char *DataElements; |
577 | | |
578 | | /// This forms a link list of ConstantDataSequential nodes that have |
579 | | /// the same value but different type. For example, 0,0,0,1 could be a 4 |
580 | | /// element array of i8, or a 1-element array of i32. They'll both end up in |
581 | | /// the same StringMap bucket, linked up. |
582 | | ConstantDataSequential *Next; |
583 | | |
584 | | void destroyConstantImpl(); |
585 | | |
586 | | protected: |
587 | | explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data) |
588 | 0 | : ConstantData(ty, VT), DataElements(Data), Next(nullptr) {} |
589 | 0 | ~ConstantDataSequential() { delete Next; } |
590 | | |
591 | | static Constant *getImpl(StringRef Bytes, Type *Ty); |
592 | | |
593 | | public: |
594 | | ConstantDataSequential(const ConstantDataSequential &) = delete; |
595 | | |
596 | | /// Return true if a ConstantDataSequential can be formed with a vector or |
597 | | /// array of the specified element type. |
598 | | /// ConstantDataArray only works with normal float and int types that are |
599 | | /// stored densely in memory, not with things like i42 or x86_f80. |
600 | | static bool isElementTypeCompatible(Type *Ty); |
601 | | |
602 | | /// If this is a sequential container of integers (of any size), return the |
603 | | /// specified element in the low bits of a uint64_t. |
604 | | uint64_t getElementAsInteger(unsigned i) const; |
605 | | |
606 | | /// If this is a sequential container of integers (of any size), return the |
607 | | /// specified element as an APInt. |
608 | | APInt getElementAsAPInt(unsigned i) const; |
609 | | |
610 | | /// If this is a sequential container of floating point type, return the |
611 | | /// specified element as an APFloat. |
612 | | APFloat getElementAsAPFloat(unsigned i) const; |
613 | | |
614 | | /// If this is an sequential container of floats, return the specified element |
615 | | /// as a float. |
616 | | float getElementAsFloat(unsigned i) const; |
617 | | |
618 | | /// If this is an sequential container of doubles, return the specified |
619 | | /// element as a double. |
620 | | double getElementAsDouble(unsigned i) const; |
621 | | |
622 | | /// Return a Constant for a specified index's element. |
623 | | /// Note that this has to compute a new constant to return, so it isn't as |
624 | | /// efficient as getElementAsInteger/Float/Double. |
625 | | Constant *getElementAsConstant(unsigned i) const; |
626 | | |
627 | | /// Specialize the getType() method to always return a SequentialType, which |
628 | | /// reduces the amount of casting needed in parts of the compiler. |
629 | 0 | inline SequentialType *getType() const { |
630 | 0 | return cast<SequentialType>(Value::getType()); |
631 | 0 | } |
632 | | |
633 | | /// Return the element type of the array/vector. |
634 | | Type *getElementType() const; |
635 | | |
636 | | /// Return the number of elements in the array or vector. |
637 | | unsigned getNumElements() const; |
638 | | |
639 | | /// Return the size (in bytes) of each element in the array/vector. |
640 | | /// The size of the elements is known to be a multiple of one byte. |
641 | | uint64_t getElementByteSize() const; |
642 | | |
643 | | /// This method returns true if this is an array of \p CharSize integers. |
644 | | bool isString(unsigned CharSize = 8) const; |
645 | | |
646 | | /// This method returns true if the array "isString", ends with a null byte, |
647 | | /// and does not contains any other null bytes. |
648 | | bool isCString() const; |
649 | | |
650 | | /// If this array is isString(), then this method returns the array as a |
651 | | /// StringRef. Otherwise, it asserts out. |
652 | 0 | StringRef getAsString() const { |
653 | 0 | assert(isString() && "Not a string"); |
654 | 0 | return getRawDataValues(); |
655 | 0 | } |
656 | | |
657 | | /// If this array is isCString(), then this method returns the array (without |
658 | | /// the trailing null byte) as a StringRef. Otherwise, it asserts out. |
659 | 0 | StringRef getAsCString() const { |
660 | 0 | assert(isCString() && "Isn't a C string"); |
661 | 0 | StringRef Str = getAsString(); |
662 | 0 | return Str.substr(0, Str.size()-1); |
663 | 0 | } |
664 | | |
665 | | /// Return the raw, underlying, bytes of this data. Note that this is an |
666 | | /// extremely tricky thing to work with, as it exposes the host endianness of |
667 | | /// the data elements. |
668 | | StringRef getRawDataValues() const; |
669 | | |
670 | | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
671 | 0 | static bool classof(const Value *V) { |
672 | 0 | return V->getValueID() == ConstantDataArrayVal || |
673 | 0 | V->getValueID() == ConstantDataVectorVal; |
674 | 0 | } |
675 | | |
676 | | private: |
677 | | const char *getElementPointer(unsigned Elt) const; |
678 | | }; |
679 | | |
680 | | //===----------------------------------------------------------------------===// |
681 | | /// An array constant whose element type is a simple 1/2/4/8-byte integer or |
682 | | /// float/double, and whose elements are just simple data values |
683 | | /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it |
684 | | /// stores all of the elements of the constant as densely packed data, instead |
685 | | /// of as Value*'s. |
686 | | class ConstantDataArray final : public ConstantDataSequential { |
687 | | friend class ConstantDataSequential; |
688 | | |
689 | | explicit ConstantDataArray(Type *ty, const char *Data) |
690 | 0 | : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {} |
691 | | |
692 | | public: |
693 | | ConstantDataArray(const ConstantDataArray &) = delete; |
694 | | |
695 | | /// get() constructor - Return a constant with array type with an element |
696 | | /// count and element type matching the ArrayRef passed in. Note that this |
697 | | /// can return a ConstantAggregateZero object. |
698 | | template <typename ElementTy> |
699 | | static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) { |
700 | | const char *Data = reinterpret_cast<const char *>(Elts.data()); |
701 | | return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(), |
702 | | Type::getScalarTy<ElementTy>(Context)); |
703 | | } |
704 | | |
705 | | /// get() constructor - ArrayTy needs to be compatible with |
706 | | /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>). |
707 | | template <typename ArrayTy> |
708 | | static Constant *get(LLVMContext &Context, ArrayTy &Elts) { |
709 | | return ConstantDataArray::get(Context, makeArrayRef(Elts)); |
710 | | } |
711 | | |
712 | | /// get() constructor - Return a constant with array type with an element |
713 | | /// count and element type matching the NumElements and ElementTy parameters |
714 | | /// passed in. Note that this can return a ConstantAggregateZero object. |
715 | | /// ElementTy needs to be one of i8/i16/i32/i64/float/double. Data is the |
716 | | /// buffer containing the elements. Be careful to make sure Data uses the |
717 | | /// right endianness, the buffer will be used as-is. |
718 | 0 | static Constant *getRaw(StringRef Data, uint64_t NumElements, Type *ElementTy) { |
719 | 0 | Type *Ty = ArrayType::get(ElementTy, NumElements); |
720 | 0 | return getImpl(Data, Ty); |
721 | 0 | } |
722 | | |
723 | | /// getFP() constructors - Return a constant with array type with an element |
724 | | /// count and element type of float with precision matching the number of |
725 | | /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, |
726 | | /// double for 64bits) Note that this can return a ConstantAggregateZero |
727 | | /// object. |
728 | | static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts); |
729 | | static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts); |
730 | | static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts); |
731 | | |
732 | | /// This method constructs a CDS and initializes it with a text string. |
733 | | /// The default behavior (AddNull==true) causes a null terminator to |
734 | | /// be placed at the end of the array (increasing the length of the string by |
735 | | /// one more than the StringRef would normally indicate. Pass AddNull=false |
736 | | /// to disable this behavior. |
737 | | static Constant *getString(LLVMContext &Context, StringRef Initializer, |
738 | | bool AddNull = true); |
739 | | |
740 | | /// Specialize the getType() method to always return an ArrayType, |
741 | | /// which reduces the amount of casting needed in parts of the compiler. |
742 | 0 | inline ArrayType *getType() const { |
743 | 0 | return cast<ArrayType>(Value::getType()); |
744 | 0 | } |
745 | | |
746 | | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
747 | 0 | static bool classof(const Value *V) { |
748 | 0 | return V->getValueID() == ConstantDataArrayVal; |
749 | 0 | } |
750 | | }; |
751 | | |
752 | | //===----------------------------------------------------------------------===// |
753 | | /// A vector constant whose element type is a simple 1/2/4/8-byte integer or |
754 | | /// float/double, and whose elements are just simple data values |
755 | | /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it |
756 | | /// stores all of the elements of the constant as densely packed data, instead |
757 | | /// of as Value*'s. |
758 | | class ConstantDataVector final : public ConstantDataSequential { |
759 | | friend class ConstantDataSequential; |
760 | | |
761 | | explicit ConstantDataVector(Type *ty, const char *Data) |
762 | 0 | : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {} |
763 | | |
764 | | public: |
765 | | ConstantDataVector(const ConstantDataVector &) = delete; |
766 | | |
767 | | /// get() constructors - Return a constant with vector type with an element |
768 | | /// count and element type matching the ArrayRef passed in. Note that this |
769 | | /// can return a ConstantAggregateZero object. |
770 | | static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts); |
771 | | static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts); |
772 | | static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts); |
773 | | static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts); |
774 | | static Constant *get(LLVMContext &Context, ArrayRef<float> Elts); |
775 | | static Constant *get(LLVMContext &Context, ArrayRef<double> Elts); |
776 | | |
777 | | /// getFP() constructors - Return a constant with vector type with an element |
778 | | /// count and element type of float with the precision matching the number of |
779 | | /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, |
780 | | /// double for 64bits) Note that this can return a ConstantAggregateZero |
781 | | /// object. |
782 | | static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts); |
783 | | static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts); |
784 | | static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts); |
785 | | |
786 | | /// Return a ConstantVector with the specified constant in each element. |
787 | | /// The specified constant has to be a of a compatible type (i8/i16/ |
788 | | /// i32/i64/float/double) and must be a ConstantFP or ConstantInt. |
789 | | static Constant *getSplat(unsigned NumElts, Constant *Elt); |
790 | | |
791 | | /// Returns true if this is a splat constant, meaning that all elements have |
792 | | /// the same value. |
793 | | bool isSplat() const; |
794 | | |
795 | | /// If this is a splat constant, meaning that all of the elements have the |
796 | | /// same value, return that value. Otherwise return NULL. |
797 | | Constant *getSplatValue() const; |
798 | | |
799 | | /// Specialize the getType() method to always return a VectorType, |
800 | | /// which reduces the amount of casting needed in parts of the compiler. |
801 | 0 | inline VectorType *getType() const { |
802 | 0 | return cast<VectorType>(Value::getType()); |
803 | 0 | } |
804 | | |
805 | | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
806 | 0 | static bool classof(const Value *V) { |
807 | 0 | return V->getValueID() == ConstantDataVectorVal; |
808 | 0 | } |
809 | | }; |
810 | | |
811 | | //===----------------------------------------------------------------------===// |
812 | | /// A constant token which is empty |
813 | | /// |
814 | | class ConstantTokenNone final : public ConstantData { |
815 | | friend class Constant; |
816 | | |
817 | | explicit ConstantTokenNone(LLVMContext &Context) |
818 | 0 | : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {} |
819 | | |
820 | | void destroyConstantImpl(); |
821 | | |
822 | | public: |
823 | | ConstantTokenNone(const ConstantTokenNone &) = delete; |
824 | | |
825 | | /// Return the ConstantTokenNone. |
826 | | static ConstantTokenNone *get(LLVMContext &Context); |
827 | | |
828 | | /// Methods to support type inquiry through isa, cast, and dyn_cast. |
829 | 0 | static bool classof(const Value *V) { |
830 | 0 | return V->getValueID() == ConstantTokenNoneVal; |
831 | 0 | } |
832 | | }; |
833 | | |
834 | | /// The address of a basic block. |
835 | | /// |
836 | | class BlockAddress final : public Constant { |
837 | | friend class Constant; |
838 | | |
839 | | BlockAddress(Function *F, BasicBlock *BB); |
840 | | |
841 | 0 | void *operator new(size_t s) { return User::operator new(s, 2); } |
842 | | |
843 | | void destroyConstantImpl(); |
844 | | Value *handleOperandChangeImpl(Value *From, Value *To); |
845 | | |
846 | | public: |
847 | | /// Return a BlockAddress for the specified function and basic block. |
848 | | static BlockAddress *get(Function *F, BasicBlock *BB); |
849 | | |
850 | | /// Return a BlockAddress for the specified basic block. The basic |
851 | | /// block must be embedded into a function. |
852 | | static BlockAddress *get(BasicBlock *BB); |
853 | | |
854 | | /// Lookup an existing \c BlockAddress constant for the given BasicBlock. |
855 | | /// |
856 | | /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress. |
857 | | static BlockAddress *lookup(const BasicBlock *BB); |
858 | | |
859 | | /// Transparently provide more efficient getOperand methods. |
860 | | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
861 | | |
862 | 0 | Function *getFunction() const { return (Function*)Op<0>().get(); } |
863 | 0 | BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); } |
864 | | |
865 | | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
866 | 0 | static bool classof(const Value *V) { |
867 | 0 | return V->getValueID() == BlockAddressVal; |
868 | 0 | } |
869 | | }; |
870 | | |
871 | | template <> |
872 | | struct OperandTraits<BlockAddress> : |
873 | | public FixedNumOperandTraits<BlockAddress, 2> { |
874 | | }; |
875 | | |
876 | | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value) |
877 | | |
878 | | //===----------------------------------------------------------------------===// |
879 | | /// A constant value that is initialized with an expression using |
880 | | /// other constant values. |
881 | | /// |
882 | | /// This class uses the standard Instruction opcodes to define the various |
883 | | /// constant expressions. The Opcode field for the ConstantExpr class is |
884 | | /// maintained in the Value::SubclassData field. |
885 | | class ConstantExpr : public Constant { |
886 | | friend struct ConstantExprKeyType; |
887 | | friend class Constant; |
888 | | |
889 | | void destroyConstantImpl(); |
890 | | Value *handleOperandChangeImpl(Value *From, Value *To); |
891 | | |
892 | | protected: |
893 | | ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) |
894 | 0 | : Constant(ty, ConstantExprVal, Ops, NumOps) { |
895 | 0 | // Operation type (an Instruction opcode) is stored as the SubclassData. |
896 | 0 | setValueSubclassData(Opcode); |
897 | 0 | } |
898 | | |
899 | | public: |
900 | | // Static methods to construct a ConstantExpr of different kinds. Note that |
901 | | // these methods may return a object that is not an instance of the |
902 | | // ConstantExpr class, because they will attempt to fold the constant |
903 | | // expression into something simpler if possible. |
904 | | |
905 | | /// getAlignOf constant expr - computes the alignment of a type in a target |
906 | | /// independent way (Note: the return type is an i64). |
907 | | static Constant *getAlignOf(Type *Ty); |
908 | | |
909 | | /// getSizeOf constant expr - computes the (alloc) size of a type (in |
910 | | /// address-units, not bits) in a target independent way (Note: the return |
911 | | /// type is an i64). |
912 | | /// |
913 | | static Constant *getSizeOf(Type *Ty); |
914 | | |
915 | | /// getOffsetOf constant expr - computes the offset of a struct field in a |
916 | | /// target independent way (Note: the return type is an i64). |
917 | | /// |
918 | | static Constant *getOffsetOf(StructType *STy, unsigned FieldNo); |
919 | | |
920 | | /// getOffsetOf constant expr - This is a generalized form of getOffsetOf, |
921 | | /// which supports any aggregate type, and any Constant index. |
922 | | /// |
923 | | static Constant *getOffsetOf(Type *Ty, Constant *FieldNo); |
924 | | |
925 | | static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false); |
926 | | static Constant *getFNeg(Constant *C); |
927 | | static Constant *getNot(Constant *C); |
928 | | static Constant *getAdd(Constant *C1, Constant *C2, |
929 | | bool HasNUW = false, bool HasNSW = false); |
930 | | static Constant *getFAdd(Constant *C1, Constant *C2); |
931 | | static Constant *getSub(Constant *C1, Constant *C2, |
932 | | bool HasNUW = false, bool HasNSW = false); |
933 | | static Constant *getFSub(Constant *C1, Constant *C2); |
934 | | static Constant *getMul(Constant *C1, Constant *C2, |
935 | | bool HasNUW = false, bool HasNSW = false); |
936 | | static Constant *getFMul(Constant *C1, Constant *C2); |
937 | | static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false); |
938 | | static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false); |
939 | | static Constant *getFDiv(Constant *C1, Constant *C2); |
940 | | static Constant *getURem(Constant *C1, Constant *C2); |
941 | | static Constant *getSRem(Constant *C1, Constant *C2); |
942 | | static Constant *getFRem(Constant *C1, Constant *C2); |
943 | | static Constant *getAnd(Constant *C1, Constant *C2); |
944 | | static Constant *getOr(Constant *C1, Constant *C2); |
945 | | static Constant *getXor(Constant *C1, Constant *C2); |
946 | | static Constant *getShl(Constant *C1, Constant *C2, |
947 | | bool HasNUW = false, bool HasNSW = false); |
948 | | static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false); |
949 | | static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false); |
950 | | static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
951 | | static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
952 | | static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
953 | | static Constant *getFPTrunc(Constant *C, Type *Ty, |
954 | | bool OnlyIfReduced = false); |
955 | | static Constant *getFPExtend(Constant *C, Type *Ty, |
956 | | bool OnlyIfReduced = false); |
957 | | static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
958 | | static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
959 | | static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
960 | | static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
961 | | static Constant *getPtrToInt(Constant *C, Type *Ty, |
962 | | bool OnlyIfReduced = false); |
963 | | static Constant *getIntToPtr(Constant *C, Type *Ty, |
964 | | bool OnlyIfReduced = false); |
965 | | static Constant *getBitCast(Constant *C, Type *Ty, |
966 | | bool OnlyIfReduced = false); |
967 | | static Constant *getAddrSpaceCast(Constant *C, Type *Ty, |
968 | | bool OnlyIfReduced = false); |
969 | | |
970 | 0 | static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); } |
971 | 0 | static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); } |
972 | | |
973 | 0 | static Constant *getNSWAdd(Constant *C1, Constant *C2) { |
974 | 0 | return getAdd(C1, C2, false, true); |
975 | 0 | } |
976 | | |
977 | 0 | static Constant *getNUWAdd(Constant *C1, Constant *C2) { |
978 | 0 | return getAdd(C1, C2, true, false); |
979 | 0 | } |
980 | | |
981 | 0 | static Constant *getNSWSub(Constant *C1, Constant *C2) { |
982 | 0 | return getSub(C1, C2, false, true); |
983 | 0 | } |
984 | | |
985 | 0 | static Constant *getNUWSub(Constant *C1, Constant *C2) { |
986 | 0 | return getSub(C1, C2, true, false); |
987 | 0 | } |
988 | | |
989 | 0 | static Constant *getNSWMul(Constant *C1, Constant *C2) { |
990 | 0 | return getMul(C1, C2, false, true); |
991 | 0 | } |
992 | | |
993 | 0 | static Constant *getNUWMul(Constant *C1, Constant *C2) { |
994 | 0 | return getMul(C1, C2, true, false); |
995 | 0 | } |
996 | | |
997 | 0 | static Constant *getNSWShl(Constant *C1, Constant *C2) { |
998 | 0 | return getShl(C1, C2, false, true); |
999 | 0 | } |
1000 | | |
1001 | 0 | static Constant *getNUWShl(Constant *C1, Constant *C2) { |
1002 | 0 | return getShl(C1, C2, true, false); |
1003 | 0 | } |
1004 | | |
1005 | 0 | static Constant *getExactSDiv(Constant *C1, Constant *C2) { |
1006 | 0 | return getSDiv(C1, C2, true); |
1007 | 0 | } |
1008 | | |
1009 | 0 | static Constant *getExactUDiv(Constant *C1, Constant *C2) { |
1010 | 0 | return getUDiv(C1, C2, true); |
1011 | 0 | } |
1012 | | |
1013 | 0 | static Constant *getExactAShr(Constant *C1, Constant *C2) { |
1014 | 0 | return getAShr(C1, C2, true); |
1015 | 0 | } |
1016 | | |
1017 | 0 | static Constant *getExactLShr(Constant *C1, Constant *C2) { |
1018 | 0 | return getLShr(C1, C2, true); |
1019 | 0 | } |
1020 | | |
1021 | | /// Return the identity constant for a binary opcode. |
1022 | | /// The identity constant C is defined as X op C = X and C op X = X for every |
1023 | | /// X when the binary operation is commutative. If the binop is not |
1024 | | /// commutative, callers can acquire the operand 1 identity constant by |
1025 | | /// setting AllowRHSConstant to true. For example, any shift has a zero |
1026 | | /// identity constant for operand 1: X shift 0 = X. |
1027 | | /// Return nullptr if the operator does not have an identity constant. |
1028 | | static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty, |
1029 | | bool AllowRHSConstant = false); |
1030 | | |
1031 | | /// Return the absorbing element for the given binary |
1032 | | /// operation, i.e. a constant C such that X op C = C and C op X = C for |
1033 | | /// every X. For example, this returns zero for integer multiplication. |
1034 | | /// It returns null if the operator doesn't have an absorbing element. |
1035 | | static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty); |
1036 | | |
1037 | | /// Transparently provide more efficient getOperand methods. |
1038 | | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); |
1039 | | |
1040 | | /// Convenience function for getting a Cast operation. |
1041 | | /// |
1042 | | /// \param ops The opcode for the conversion |
1043 | | /// \param C The constant to be converted |
1044 | | /// \param Ty The type to which the constant is converted |
1045 | | /// \param OnlyIfReduced see \a getWithOperands() docs. |
1046 | | static Constant *getCast(unsigned ops, Constant *C, Type *Ty, |
1047 | | bool OnlyIfReduced = false); |
1048 | | |
1049 | | // Create a ZExt or BitCast cast constant expression |
1050 | | static Constant *getZExtOrBitCast( |
1051 | | Constant *C, ///< The constant to zext or bitcast |
1052 | | Type *Ty ///< The type to zext or bitcast C to |
1053 | | ); |
1054 | | |
1055 | | // Create a SExt or BitCast cast constant expression |
1056 | | static Constant *getSExtOrBitCast( |
1057 | | Constant *C, ///< The constant to sext or bitcast |
1058 | | Type *Ty ///< The type to sext or bitcast C to |
1059 | | ); |
1060 | | |
1061 | | // Create a Trunc or BitCast cast constant expression |
1062 | | static Constant *getTruncOrBitCast( |
1063 | | Constant *C, ///< The constant to trunc or bitcast |
1064 | | Type *Ty ///< The type to trunc or bitcast C to |
1065 | | ); |
1066 | | |
1067 | | /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant |
1068 | | /// expression. |
1069 | | static Constant *getPointerCast( |
1070 | | Constant *C, ///< The pointer value to be casted (operand 0) |
1071 | | Type *Ty ///< The type to which cast should be made |
1072 | | ); |
1073 | | |
1074 | | /// Create a BitCast or AddrSpaceCast for a pointer type depending on |
1075 | | /// the address space. |
1076 | | static Constant *getPointerBitCastOrAddrSpaceCast( |
1077 | | Constant *C, ///< The constant to addrspacecast or bitcast |
1078 | | Type *Ty ///< The type to bitcast or addrspacecast C to |
1079 | | ); |
1080 | | |
1081 | | /// Create a ZExt, Bitcast or Trunc for integer -> integer casts |
1082 | | static Constant *getIntegerCast( |
1083 | | Constant *C, ///< The integer constant to be casted |
1084 | | Type *Ty, ///< The integer type to cast to |
1085 | | bool isSigned ///< Whether C should be treated as signed or not |
1086 | | ); |
1087 | | |
1088 | | /// Create a FPExt, Bitcast or FPTrunc for fp -> fp casts |
1089 | | static Constant *getFPCast( |
1090 | | Constant *C, ///< The integer constant to be casted |
1091 | | Type *Ty ///< The integer type to cast to |
1092 | | ); |
1093 | | |
1094 | | /// Return true if this is a convert constant expression |
1095 | | bool isCast() const; |
1096 | | |
1097 | | /// Return true if this is a compare constant expression |
1098 | | bool isCompare() const; |
1099 | | |
1100 | | /// Return true if this is an insertvalue or extractvalue expression, |
1101 | | /// and the getIndices() method may be used. |
1102 | | bool hasIndices() const; |
1103 | | |
1104 | | /// Return true if this is a getelementptr expression and all |
1105 | | /// the index operands are compile-time known integers within the |
1106 | | /// corresponding notional static array extents. Note that this is |
1107 | | /// not equivalant to, a subset of, or a superset of the "inbounds" |
1108 | | /// property. |
1109 | | bool isGEPWithNoNotionalOverIndexing() const; |
1110 | | |
1111 | | /// Select constant expr |
1112 | | /// |
1113 | | /// \param OnlyIfReducedTy see \a getWithOperands() docs. |
1114 | | static Constant *getSelect(Constant *C, Constant *V1, Constant *V2, |
1115 | | Type *OnlyIfReducedTy = nullptr); |
1116 | | |
1117 | | /// get - Return a binary or shift operator constant expression, |
1118 | | /// folding if possible. |
1119 | | /// |
1120 | | /// \param OnlyIfReducedTy see \a getWithOperands() docs. |
1121 | | static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, |
1122 | | unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr); |
1123 | | |
1124 | | /// Return an ICmp or FCmp comparison operator constant expression. |
1125 | | /// |
1126 | | /// \param OnlyIfReduced see \a getWithOperands() docs. |
1127 | | static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2, |
1128 | | bool OnlyIfReduced = false); |
1129 | | |
1130 | | /// get* - Return some common constants without having to |
1131 | | /// specify the full Instruction::OPCODE identifier. |
1132 | | /// |
1133 | | static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS, |
1134 | | bool OnlyIfReduced = false); |
1135 | | static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS, |
1136 | | bool OnlyIfReduced = false); |
1137 | | |
1138 | | /// Getelementptr form. Value* is only accepted for convenience; |
1139 | | /// all elements must be Constants. |
1140 | | /// |
1141 | | /// \param InRangeIndex the inrange index if present or None. |
1142 | | /// \param OnlyIfReducedTy see \a getWithOperands() docs. |
1143 | | static Constant *getGetElementPtr(Type *Ty, Constant *C, |
1144 | | ArrayRef<Constant *> IdxList, |
1145 | | bool InBounds = false, |
1146 | | Optional<unsigned> InRangeIndex = None, |
1147 | 0 | Type *OnlyIfReducedTy = nullptr) { |
1148 | 0 | return getGetElementPtr( |
1149 | 0 | Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()), |
1150 | 0 | InBounds, InRangeIndex, OnlyIfReducedTy); |
1151 | 0 | } |
1152 | | static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, |
1153 | | bool InBounds = false, |
1154 | | Optional<unsigned> InRangeIndex = None, |
1155 | 0 | Type *OnlyIfReducedTy = nullptr) { |
1156 | 0 | // This form of the function only exists to avoid ambiguous overload |
1157 | 0 | // warnings about whether to convert Idx to ArrayRef<Constant *> or |
1158 | 0 | // ArrayRef<Value *>. |
1159 | 0 | return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex, |
1160 | 0 | OnlyIfReducedTy); |
1161 | 0 | } |
1162 | | static Constant *getGetElementPtr(Type *Ty, Constant *C, |
1163 | | ArrayRef<Value *> IdxList, |
1164 | | bool InBounds = false, |
1165 | | Optional<unsigned> InRangeIndex = None, |
1166 | | Type *OnlyIfReducedTy = nullptr); |
1167 | | |
1168 | | /// Create an "inbounds" getelementptr. See the documentation for the |
1169 | | /// "inbounds" flag in LangRef.html for details. |
1170 | | static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, |
1171 | 0 | ArrayRef<Constant *> IdxList) { |
1172 | 0 | return getGetElementPtr(Ty, C, IdxList, true); |
1173 | 0 | } |
1174 | | static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, |
1175 | 0 | Constant *Idx) { |
1176 | 0 | // This form of the function only exists to avoid ambiguous overload |
1177 | 0 | // warnings about whether to convert Idx to ArrayRef<Constant *> or |
1178 | 0 | // ArrayRef<Value *>. |
1179 | 0 | return getGetElementPtr(Ty, C, Idx, true); |
1180 | 0 | } |
1181 | | static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, |
1182 | 0 | ArrayRef<Value *> IdxList) { |
1183 | 0 | return getGetElementPtr(Ty, C, IdxList, true); |
1184 | 0 | } |
1185 | | |
1186 | | static Constant *getExtractElement(Constant *Vec, Constant *Idx, |
1187 | | Type *OnlyIfReducedTy = nullptr); |
1188 | | static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, |
1189 | | Type *OnlyIfReducedTy = nullptr); |
1190 | | static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask, |
1191 | | Type *OnlyIfReducedTy = nullptr); |
1192 | | static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, |
1193 | | Type *OnlyIfReducedTy = nullptr); |
1194 | | static Constant *getInsertValue(Constant *Agg, Constant *Val, |
1195 | | ArrayRef<unsigned> Idxs, |
1196 | | Type *OnlyIfReducedTy = nullptr); |
1197 | | |
1198 | | /// Return the opcode at the root of this constant expression |
1199 | 0 | unsigned getOpcode() const { return getSubclassDataFromValue(); } |
1200 | | |
1201 | | /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or |
1202 | | /// FCMP constant expression. |
1203 | | unsigned getPredicate() const; |
1204 | | |
1205 | | /// Assert that this is an insertvalue or exactvalue |
1206 | | /// expression and return the list of indices. |
1207 | | ArrayRef<unsigned> getIndices() const; |
1208 | | |
1209 | | /// Return a string representation for an opcode. |
1210 | | const char *getOpcodeName() const; |
1211 | | |
1212 | | /// Return a constant expression identical to this one, but with the specified |
1213 | | /// operand set to the specified value. |
1214 | | Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const; |
1215 | | |
1216 | | /// This returns the current constant expression with the operands replaced |
1217 | | /// with the specified values. The specified array must have the same number |
1218 | | /// of operands as our current one. |
1219 | 0 | Constant *getWithOperands(ArrayRef<Constant*> Ops) const { |
1220 | 0 | return getWithOperands(Ops, getType()); |
1221 | 0 | } |
1222 | | |
1223 | | /// Get the current expression with the operands replaced. |
1224 | | /// |
1225 | | /// Return the current constant expression with the operands replaced with \c |
1226 | | /// Ops and the type with \c Ty. The new operands must have the same number |
1227 | | /// as the current ones. |
1228 | | /// |
1229 | | /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something |
1230 | | /// gets constant-folded, the type changes, or the expression is otherwise |
1231 | | /// canonicalized. This parameter should almost always be \c false. |
1232 | | Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, |
1233 | | bool OnlyIfReduced = false, |
1234 | | Type *SrcTy = nullptr) const; |
1235 | | |
1236 | | /// Returns an Instruction which implements the same operation as this |
1237 | | /// ConstantExpr. The instruction is not linked to any basic block. |
1238 | | /// |
1239 | | /// A better approach to this could be to have a constructor for Instruction |
1240 | | /// which would take a ConstantExpr parameter, but that would have spread |
1241 | | /// implementation details of ConstantExpr outside of Constants.cpp, which |
1242 | | /// would make it harder to remove ConstantExprs altogether. |
1243 | | Instruction *getAsInstruction(); |
1244 | | |
1245 | | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
1246 | 0 | static bool classof(const Value *V) { |
1247 | 0 | return V->getValueID() == ConstantExprVal; |
1248 | 0 | } |
1249 | | |
1250 | | private: |
1251 | | // Shadow Value::setValueSubclassData with a private forwarding method so that |
1252 | | // subclasses cannot accidentally use it. |
1253 | 0 | void setValueSubclassData(unsigned short D) { |
1254 | 0 | Value::setValueSubclassData(D); |
1255 | 0 | } |
1256 | | }; |
1257 | | |
1258 | | template <> |
1259 | | struct OperandTraits<ConstantExpr> : |
1260 | | public VariadicOperandTraits<ConstantExpr, 1> { |
1261 | | }; |
1262 | | |
1263 | | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant) |
1264 | | |
1265 | | //===----------------------------------------------------------------------===// |
1266 | | /// 'undef' values are things that do not have specified contents. |
1267 | | /// These are used for a variety of purposes, including global variable |
1268 | | /// initializers and operands to instructions. 'undef' values can occur with |
1269 | | /// any first-class type. |
1270 | | /// |
1271 | | /// Undef values aren't exactly constants; if they have multiple uses, they |
1272 | | /// can appear to have different bit patterns at each use. See |
1273 | | /// LangRef.html#undefvalues for details. |
1274 | | /// |
1275 | | class UndefValue final : public ConstantData { |
1276 | | friend class Constant; |
1277 | | |
1278 | 0 | explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {} |
1279 | | |
1280 | | void destroyConstantImpl(); |
1281 | | |
1282 | | public: |
1283 | | UndefValue(const UndefValue &) = delete; |
1284 | | |
1285 | | /// Static factory methods - Return an 'undef' object of the specified type. |
1286 | | static UndefValue *get(Type *T); |
1287 | | |
1288 | | /// If this Undef has array or vector type, return a undef with the right |
1289 | | /// element type. |
1290 | | UndefValue *getSequentialElement() const; |
1291 | | |
1292 | | /// If this undef has struct type, return a undef with the right element type |
1293 | | /// for the specified element. |
1294 | | UndefValue *getStructElement(unsigned Elt) const; |
1295 | | |
1296 | | /// Return an undef of the right value for the specified GEP index if we can, |
1297 | | /// otherwise return null (e.g. if C is a ConstantExpr). |
1298 | | UndefValue *getElementValue(Constant *C) const; |
1299 | | |
1300 | | /// Return an undef of the right value for the specified GEP index. |
1301 | | UndefValue *getElementValue(unsigned Idx) const; |
1302 | | |
1303 | | /// Return the number of elements in the array, vector, or struct. |
1304 | | unsigned getNumElements() const; |
1305 | | |
1306 | | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
1307 | 0 | static bool classof(const Value *V) { |
1308 | 0 | return V->getValueID() == UndefValueVal; |
1309 | 0 | } |
1310 | | }; |
1311 | | |
1312 | | } // end namespace llvh |
1313 | | |
1314 | | #endif // LLVM_IR_CONSTANTS_H |