Coverage Report

Created: 2023-02-22 06:51

/src/icu/source/common/caniter.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2016 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
/*
4
 *****************************************************************************
5
 * Copyright (C) 1996-2015, International Business Machines Corporation and
6
 * others. All Rights Reserved.
7
 *****************************************************************************
8
 */
9
10
#include "unicode/utypes.h"
11
12
#if !UCONFIG_NO_NORMALIZATION
13
14
#include "unicode/caniter.h"
15
#include "unicode/normalizer2.h"
16
#include "unicode/uchar.h"
17
#include "unicode/uniset.h"
18
#include "unicode/usetiter.h"
19
#include "unicode/ustring.h"
20
#include "unicode/utf16.h"
21
#include "cmemory.h"
22
#include "hash.h"
23
#include "normalizer2impl.h"
24
25
/**
26
 * This class allows one to iterate through all the strings that are canonically equivalent to a given
27
 * string. For example, here are some sample results:
28
Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
29
1: \u0041\u030A\u0064\u0307\u0327
30
 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
31
2: \u0041\u030A\u0064\u0327\u0307
32
 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
33
3: \u0041\u030A\u1E0B\u0327
34
 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
35
4: \u0041\u030A\u1E11\u0307
36
 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
37
5: \u00C5\u0064\u0307\u0327
38
 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
39
6: \u00C5\u0064\u0327\u0307
40
 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
41
7: \u00C5\u1E0B\u0327
42
 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
43
8: \u00C5\u1E11\u0307
44
 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
45
9: \u212B\u0064\u0307\u0327
46
 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
47
10: \u212B\u0064\u0327\u0307
48
 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
49
11: \u212B\u1E0B\u0327
50
 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
51
12: \u212B\u1E11\u0307
52
 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
53
 *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
54
 * since it has not been optimized for that situation.
55
 *@author M. Davis
56
 *@draft
57
 */
58
59
// public
60
61
U_NAMESPACE_BEGIN
62
63
// TODO: add boilerplate methods.
64
65
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)
66
67
/**
68
 *@param source string to get results for
69
 */
70
CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) :
71
    pieces(NULL),
72
    pieces_length(0),
73
    pieces_lengths(NULL),
74
    current(NULL),
75
    current_length(0),
76
    nfd(*Normalizer2::getNFDInstance(status)),
77
    nfcImpl(*Normalizer2Factory::getNFCImpl(status))
78
0
{
79
0
    if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) {
80
0
      setSource(sourceStr, status);
81
0
    }
82
0
}
83
84
0
CanonicalIterator::~CanonicalIterator() {
85
0
  cleanPieces();
86
0
}
87
88
0
void CanonicalIterator::cleanPieces() {
89
0
    int32_t i = 0;
90
0
    if(pieces != NULL) {
91
0
        for(i = 0; i < pieces_length; i++) {
92
0
            if(pieces[i] != NULL) {
93
0
                delete[] pieces[i];
94
0
            }
95
0
        }
96
0
        uprv_free(pieces);
97
0
        pieces = NULL;
98
0
        pieces_length = 0;
99
0
    }
100
0
    if(pieces_lengths != NULL) {
101
0
        uprv_free(pieces_lengths);
102
0
        pieces_lengths = NULL;
103
0
    }
104
0
    if(current != NULL) {
105
0
        uprv_free(current);
106
0
        current = NULL;
107
0
        current_length = 0;
108
0
    }
109
0
}
110
111
/**
112
 *@return gets the source: NOTE: it is the NFD form of source
113
 */
114
0
UnicodeString CanonicalIterator::getSource() {
115
0
  return source;
116
0
}
117
118
/**
119
 * Resets the iterator so that one can start again from the beginning.
120
 */
121
0
void CanonicalIterator::reset() {
122
0
    done = FALSE;
123
0
    for (int i = 0; i < current_length; ++i) {
124
0
        current[i] = 0;
125
0
    }
126
0
}
127
128
/**
129
 *@return the next string that is canonically equivalent. The value null is returned when
130
 * the iteration is done.
131
 */
132
0
UnicodeString CanonicalIterator::next() {
133
0
    int32_t i = 0;
134
135
0
    if (done) {
136
0
      buffer.setToBogus();
137
0
      return buffer;
138
0
    }
139
140
    // delete old contents
141
0
    buffer.remove();
142
143
    // construct return value
144
145
0
    for (i = 0; i < pieces_length; ++i) {
146
0
        buffer.append(pieces[i][current[i]]);
147
0
    }
148
    //String result = buffer.toString(); // not needed
149
150
    // find next value for next time
151
152
0
    for (i = current_length - 1; ; --i) {
153
0
        if (i < 0) {
154
0
            done = TRUE;
155
0
            break;
156
0
        }
157
0
        current[i]++;
158
0
        if (current[i] < pieces_lengths[i]) break; // got sequence
159
0
        current[i] = 0;
160
0
    }
161
0
    return buffer;
162
0
}
163
164
/**
165
 *@param set the source string to iterate against. This allows the same iterator to be used
166
 * while changing the source string, saving object creation.
167
 */
168
0
void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) {
169
0
    int32_t list_length = 0;
170
0
    UChar32 cp = 0;
171
0
    int32_t start = 0;
172
0
    int32_t i = 0;
173
0
    UnicodeString *list = NULL;
174
175
0
    nfd.normalize(newSource, source, status);
176
0
    if(U_FAILURE(status)) {
177
0
      return;
178
0
    }
179
0
    done = FALSE;
180
181
0
    cleanPieces();
182
183
    // catch degenerate case
184
0
    if (newSource.length() == 0) {
185
0
        pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *));
186
0
        pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
187
0
        pieces_length = 1;
188
0
        current = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
189
0
        current_length = 1;
190
0
        if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
191
0
            status = U_MEMORY_ALLOCATION_ERROR;
192
0
            goto CleanPartialInitialization;
193
0
        }
194
0
        current[0] = 0;
195
0
        pieces[0] = new UnicodeString[1];
196
0
        pieces_lengths[0] = 1;
197
0
        if (pieces[0] == 0) {
198
0
            status = U_MEMORY_ALLOCATION_ERROR;
199
0
            goto CleanPartialInitialization;
200
0
        }
201
0
        return;
202
0
    }
203
204
205
0
    list = new UnicodeString[source.length()];
206
0
    if (list == 0) {
207
0
        status = U_MEMORY_ALLOCATION_ERROR;
208
0
        goto CleanPartialInitialization;
209
0
    }
210
211
    // i should initially be the number of code units at the 
212
    // start of the string
213
0
    i = U16_LENGTH(source.char32At(0));
214
    // int32_t i = 1;
215
    // find the segments
216
    // This code iterates through the source string and 
217
    // extracts segments that end up on a codepoint that
218
    // doesn't start any decompositions. (Analysis is done
219
    // on the NFD form - see above).
220
0
    for (; i < source.length(); i += U16_LENGTH(cp)) {
221
0
        cp = source.char32At(i);
222
0
        if (nfcImpl.isCanonSegmentStarter(cp)) {
223
0
            source.extract(start, i-start, list[list_length++]); // add up to i
224
0
            start = i;
225
0
        }
226
0
    }
227
0
    source.extract(start, i-start, list[list_length++]); // add last one
228
229
230
    // allocate the arrays, and find the strings that are CE to each segment
231
0
    pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *));
232
0
    pieces_length = list_length;
233
0
    pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
234
0
    current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
235
0
    current_length = list_length;
236
0
    if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
237
0
        status = U_MEMORY_ALLOCATION_ERROR;
238
0
        goto CleanPartialInitialization;
239
0
    }
240
241
0
    for (i = 0; i < current_length; i++) {
242
0
        current[i] = 0;
243
0
    }
244
    // for each segment, get all the combinations that can produce 
245
    // it after NFD normalization
246
0
    for (i = 0; i < pieces_length; ++i) {
247
        //if (PROGRESS) printf("SEGMENT\n");
248
0
        pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
249
0
    }
250
251
0
    delete[] list;
252
0
    return;
253
// Common section to cleanup all local variables and reset object variables.
254
0
CleanPartialInitialization:
255
0
    if (list != NULL) {
256
0
        delete[] list;
257
0
    }
258
0
    cleanPieces();
259
0
}
260
261
/**
262
 * Dumb recursive implementation of permutation.
263
 * TODO: optimize
264
 * @param source the string to find permutations for
265
 * @return the results in a set.
266
 */
267
0
void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) {
268
0
    if(U_FAILURE(status)) {
269
0
        return;
270
0
    }
271
    //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
272
0
    int32_t i = 0;
273
274
    // optimization:
275
    // if zero or one character, just return a set with it
276
    // we check for length < 2 to keep from counting code points all the time
277
0
    if (source.length() <= 2 && source.countChar32() <= 1) {
278
0
        UnicodeString *toPut = new UnicodeString(source);
279
        /* test for NULL */
280
0
        if (toPut == 0) {
281
0
            status = U_MEMORY_ALLOCATION_ERROR;
282
0
            return;
283
0
        }
284
0
        result->put(source, toPut, status);
285
0
        return;
286
0
    }
287
288
    // otherwise iterate through the string, and recursively permute all the other characters
289
0
    UChar32 cp;
290
0
    Hashtable subpermute(status);
291
0
    if(U_FAILURE(status)) {
292
0
        return;
293
0
    }
294
0
    subpermute.setValueDeleter(uprv_deleteUObject);
295
296
0
    for (i = 0; i < source.length(); i += U16_LENGTH(cp)) {
297
0
        cp = source.char32At(i);
298
0
        const UHashElement *ne = NULL;
299
0
        int32_t el = UHASH_FIRST;
300
0
        UnicodeString subPermuteString = source;
301
302
        // optimization:
303
        // if the character is canonical combining class zero,
304
        // don't permute it
305
0
        if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) {
306
            //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
307
0
            continue;
308
0
        }
309
310
0
        subpermute.removeAll();
311
312
        // see what the permutations of the characters before and after this one are
313
        //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
314
0
        permute(subPermuteString.remove(i, U16_LENGTH(cp)), skipZeros, &subpermute, status);
315
        /* Test for buffer overflows */
316
0
        if(U_FAILURE(status)) {
317
0
            return;
318
0
        }
319
        // The upper remove is destructive. The question is do we have to make a copy, or we don't care about the contents 
320
        // of source at this point.
321
322
        // prefix this character to all of them
323
0
        ne = subpermute.nextElement(el);
324
0
        while (ne != NULL) {
325
0
            UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
326
0
            UnicodeString *chStr = new UnicodeString(cp);
327
            //test for  NULL
328
0
            if (chStr == NULL) {
329
0
                status = U_MEMORY_ALLOCATION_ERROR;
330
0
                return;
331
0
            }
332
0
            chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
333
            //if (PROGRESS) printf("  Piece: %s\n", UToS(*chStr));
334
0
            result->put(*chStr, chStr, status);
335
0
            ne = subpermute.nextElement(el);
336
0
        }
337
0
    }
338
    //return result;
339
0
}
340
341
// privates
342
343
// we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
344
0
UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) {
345
0
    Hashtable result(status);
346
0
    Hashtable permutations(status);
347
0
    Hashtable basic(status);
348
0
    if (U_FAILURE(status)) {
349
0
        return 0;
350
0
    }
351
0
    result.setValueDeleter(uprv_deleteUObject);
352
0
    permutations.setValueDeleter(uprv_deleteUObject);
353
0
    basic.setValueDeleter(uprv_deleteUObject);
354
355
0
    UChar USeg[256];
356
0
    int32_t segLen = segment.extract(USeg, 256, status);
357
0
    getEquivalents2(&basic, USeg, segLen, status);
358
359
    // now get all the permutations
360
    // add only the ones that are canonically equivalent
361
    // TODO: optimize by not permuting any class zero.
362
363
0
    const UHashElement *ne = NULL;
364
0
    int32_t el = UHASH_FIRST;
365
    //Iterator it = basic.iterator();
366
0
    ne = basic.nextElement(el);
367
    //while (it.hasNext())
368
0
    while (ne != NULL) {
369
        //String item = (String) it.next();
370
0
        UnicodeString item = *((UnicodeString *)(ne->value.pointer));
371
372
0
        permutations.removeAll();
373
0
        permute(item, CANITER_SKIP_ZEROES, &permutations, status);
374
0
        const UHashElement *ne2 = NULL;
375
0
        int32_t el2 = UHASH_FIRST;
376
        //Iterator it2 = permutations.iterator();
377
0
        ne2 = permutations.nextElement(el2);
378
        //while (it2.hasNext())
379
0
        while (ne2 != NULL) {
380
            //String possible = (String) it2.next();
381
            //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
382
0
            UnicodeString possible(*((UnicodeString *)(ne2->value.pointer)));
383
0
            UnicodeString attempt;
384
0
            nfd.normalize(possible, attempt, status);
385
386
            // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
387
0
            if (attempt==segment) {
388
                //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
389
                // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
390
0
                result.put(possible, new UnicodeString(possible), status); //add(possible);
391
0
            } else {
392
                //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
393
0
            }
394
395
0
            ne2 = permutations.nextElement(el2);
396
0
        }
397
0
        ne = basic.nextElement(el);
398
0
    }
399
400
    /* Test for buffer overflows */
401
0
    if(U_FAILURE(status)) {
402
0
        return 0;
403
0
    }
404
    // convert into a String[] to clean up storage
405
    //String[] finalResult = new String[result.size()];
406
0
    UnicodeString *finalResult = NULL;
407
0
    int32_t resultCount;
408
0
    if((resultCount = result.count()) != 0) {
409
0
        finalResult = new UnicodeString[resultCount];
410
0
        if (finalResult == 0) {
411
0
            status = U_MEMORY_ALLOCATION_ERROR;
412
0
            return NULL;
413
0
        }
414
0
    }
415
0
    else {
416
0
        status = U_ILLEGAL_ARGUMENT_ERROR;
417
0
        return NULL;
418
0
    }
419
    //result.toArray(finalResult);
420
0
    result_len = 0;
421
0
    el = UHASH_FIRST;
422
0
    ne = result.nextElement(el);
423
0
    while(ne != NULL) {
424
0
        finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer));
425
0
        ne = result.nextElement(el);
426
0
    }
427
428
429
0
    return finalResult;
430
0
}
431
432
0
Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) {
433
434
0
    if (U_FAILURE(status)) {
435
0
        return NULL;
436
0
    }
437
438
    //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
439
440
0
    UnicodeString toPut(segment, segLen);
441
442
0
    fillinResult->put(toPut, new UnicodeString(toPut), status);
443
444
0
    UnicodeSet starts;
445
446
    // cycle through all the characters
447
0
    UChar32 cp;
448
0
    for (int32_t i = 0; i < segLen; i += U16_LENGTH(cp)) {
449
        // see if any character is at the start of some decomposition
450
0
        U16_GET(segment, 0, i, segLen, cp);
451
0
        if (!nfcImpl.getCanonStartSet(cp, starts)) {
452
0
            continue;
453
0
        }
454
        // if so, see which decompositions match
455
0
        UnicodeSetIterator iter(starts);
456
0
        while (iter.next()) {
457
0
            UChar32 cp2 = iter.getCodepoint();
458
0
            Hashtable remainder(status);
459
0
            remainder.setValueDeleter(uprv_deleteUObject);
460
0
            if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) {
461
0
                continue;
462
0
            }
463
464
            // there were some matches, so add all the possibilities to the set.
465
0
            UnicodeString prefix(segment, i);
466
0
            prefix += cp2;
467
468
0
            int32_t el = UHASH_FIRST;
469
0
            const UHashElement *ne = remainder.nextElement(el);
470
0
            while (ne != NULL) {
471
0
                UnicodeString item = *((UnicodeString *)(ne->value.pointer));
472
0
                UnicodeString *toAdd = new UnicodeString(prefix);
473
                /* test for NULL */
474
0
                if (toAdd == 0) {
475
0
                    status = U_MEMORY_ALLOCATION_ERROR;
476
0
                    return NULL;
477
0
                }
478
0
                *toAdd += item;
479
0
                fillinResult->put(*toAdd, toAdd, status);
480
481
                //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
482
483
0
                ne = remainder.nextElement(el);
484
0
            }
485
0
        }
486
0
    }
487
488
    /* Test for buffer overflows */
489
0
    if(U_FAILURE(status)) {
490
0
        return NULL;
491
0
    }
492
0
    return fillinResult;
493
0
}
494
495
/**
496
 * See if the decomposition of cp2 is at segment starting at segmentPos 
497
 * (with canonical rearrangement!)
498
 * If so, take the remainder, and return the equivalents 
499
 */
500
0
Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
501
//Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
502
    //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
503
    //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
504
505
0
    if (U_FAILURE(status)) {
506
0
        return NULL;
507
0
    }
508
509
0
    UnicodeString temp(comp);
510
0
    int32_t inputLen=temp.length();
511
0
    UnicodeString decompString;
512
0
    nfd.normalize(temp, decompString, status);
513
0
    if (U_FAILURE(status)) {
514
0
        return NULL;
515
0
    }
516
0
    if (decompString.isBogus()) {
517
0
        status = U_MEMORY_ALLOCATION_ERROR;
518
0
        return NULL;
519
0
    }
520
0
    const UChar *decomp=decompString.getBuffer();
521
0
    int32_t decompLen=decompString.length();
522
523
    // See if it matches the start of segment (at segmentPos)
524
0
    UBool ok = FALSE;
525
0
    UChar32 cp;
526
0
    int32_t decompPos = 0;
527
0
    UChar32 decompCp;
528
0
    U16_NEXT(decomp, decompPos, decompLen, decompCp);
529
530
0
    int32_t i = segmentPos;
531
0
    while(i < segLen) {
532
0
        U16_NEXT(segment, i, segLen, cp);
533
534
0
        if (cp == decompCp) { // if equal, eat another cp from decomp
535
536
            //if (PROGRESS) printf("  matches: %s\n", UToS(Tr(UnicodeString(cp))));
537
538
0
            if (decompPos == decompLen) { // done, have all decomp characters!
539
0
                temp.append(segment+i, segLen-i);
540
0
                ok = TRUE;
541
0
                break;
542
0
            }
543
0
            U16_NEXT(decomp, decompPos, decompLen, decompCp);
544
0
        } else {
545
            //if (PROGRESS) printf("  buffer: %s\n", UToS(Tr(UnicodeString(cp))));
546
547
            // brute force approach
548
0
            temp.append(cp);
549
550
            /* TODO: optimize
551
            // since we know that the classes are monotonically increasing, after zero
552
            // e.g. 0 5 7 9 0 3
553
            // we can do an optimization
554
            // there are only a few cases that work: zero, less, same, greater
555
            // if both classes are the same, we fail
556
            // if the decomp class < the segment class, we fail
557
558
            segClass = getClass(cp);
559
            if (decompClass <= segClass) return null;
560
            */
561
0
        }
562
0
    }
563
0
    if (!ok)
564
0
        return NULL; // we failed, characters left over
565
566
    //if (PROGRESS) printf("Matches\n");
567
568
0
    if (inputLen == temp.length()) {
569
0
        fillinResult->put(UnicodeString(), new UnicodeString(), status);
570
0
        return fillinResult; // succeed, but no remainder
571
0
    }
572
573
    // brute force approach
574
    // check to make sure result is canonically equivalent
575
0
    UnicodeString trial;
576
0
    nfd.normalize(temp, trial, status);
577
0
    if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) {
578
0
        return NULL;
579
0
    }
580
581
0
    return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status);
582
0
}
583
584
U_NAMESPACE_END
585
586
#endif /* #if !UCONFIG_NO_NORMALIZATION */