/src/icu/source/i18n/number_decimalquantity.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2017 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | |
4 | | #include "unicode/utypes.h" |
5 | | |
6 | | #if !UCONFIG_NO_FORMATTING |
7 | | |
8 | | #include <cstdlib> |
9 | | #include <cmath> |
10 | | #include <limits> |
11 | | #include <stdlib.h> |
12 | | |
13 | | #include "unicode/plurrule.h" |
14 | | #include "cmemory.h" |
15 | | #include "number_decnum.h" |
16 | | #include "putilimp.h" |
17 | | #include "number_decimalquantity.h" |
18 | | #include "number_roundingutils.h" |
19 | | #include "double-conversion.h" |
20 | | #include "charstr.h" |
21 | | #include "number_utils.h" |
22 | | #include "uassert.h" |
23 | | #include "util.h" |
24 | | |
25 | | using namespace icu; |
26 | | using namespace icu::number; |
27 | | using namespace icu::number::impl; |
28 | | |
29 | | using icu::double_conversion::DoubleToStringConverter; |
30 | | using icu::double_conversion::StringToDoubleConverter; |
31 | | |
32 | | namespace { |
33 | | |
34 | | int8_t NEGATIVE_FLAG = 1; |
35 | | int8_t INFINITY_FLAG = 2; |
36 | | int8_t NAN_FLAG = 4; |
37 | | |
38 | | /** Helper function for safe subtraction (no overflow). */ |
39 | 0 | inline int32_t safeSubtract(int32_t a, int32_t b) { |
40 | | // Note: In C++, signed integer subtraction is undefined behavior. |
41 | 0 | int32_t diff = static_cast<int32_t>(static_cast<uint32_t>(a) - static_cast<uint32_t>(b)); |
42 | 0 | if (b < 0 && diff < a) { return INT32_MAX; } |
43 | 0 | if (b > 0 && diff > a) { return INT32_MIN; } |
44 | 0 | return diff; |
45 | 0 | } |
46 | | |
47 | | static double DOUBLE_MULTIPLIERS[] = { |
48 | | 1e0, |
49 | | 1e1, |
50 | | 1e2, |
51 | | 1e3, |
52 | | 1e4, |
53 | | 1e5, |
54 | | 1e6, |
55 | | 1e7, |
56 | | 1e8, |
57 | | 1e9, |
58 | | 1e10, |
59 | | 1e11, |
60 | | 1e12, |
61 | | 1e13, |
62 | | 1e14, |
63 | | 1e15, |
64 | | 1e16, |
65 | | 1e17, |
66 | | 1e18, |
67 | | 1e19, |
68 | | 1e20, |
69 | | 1e21}; |
70 | | |
71 | | } // namespace |
72 | | |
73 | 0 | icu::IFixedDecimal::~IFixedDecimal() = default; |
74 | | |
75 | 0 | DecimalQuantity::DecimalQuantity() { |
76 | 0 | setBcdToZero(); |
77 | 0 | flags = 0; |
78 | 0 | } |
79 | | |
80 | 0 | DecimalQuantity::~DecimalQuantity() { |
81 | 0 | if (usingBytes) { |
82 | 0 | uprv_free(fBCD.bcdBytes.ptr); |
83 | 0 | fBCD.bcdBytes.ptr = nullptr; |
84 | 0 | usingBytes = false; |
85 | 0 | } |
86 | 0 | } |
87 | | |
88 | 0 | DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) { |
89 | 0 | *this = other; |
90 | 0 | } |
91 | | |
92 | 0 | DecimalQuantity::DecimalQuantity(DecimalQuantity&& src) U_NOEXCEPT { |
93 | 0 | *this = std::move(src); |
94 | 0 | } |
95 | | |
96 | 0 | DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) { |
97 | 0 | if (this == &other) { |
98 | 0 | return *this; |
99 | 0 | } |
100 | 0 | copyBcdFrom(other); |
101 | 0 | copyFieldsFrom(other); |
102 | 0 | return *this; |
103 | 0 | } |
104 | | |
105 | 0 | DecimalQuantity& DecimalQuantity::operator=(DecimalQuantity&& src) U_NOEXCEPT { |
106 | 0 | if (this == &src) { |
107 | 0 | return *this; |
108 | 0 | } |
109 | 0 | moveBcdFrom(src); |
110 | 0 | copyFieldsFrom(src); |
111 | 0 | return *this; |
112 | 0 | } |
113 | | |
114 | 0 | void DecimalQuantity::copyFieldsFrom(const DecimalQuantity& other) { |
115 | 0 | bogus = other.bogus; |
116 | 0 | lReqPos = other.lReqPos; |
117 | 0 | rReqPos = other.rReqPos; |
118 | 0 | scale = other.scale; |
119 | 0 | precision = other.precision; |
120 | 0 | flags = other.flags; |
121 | 0 | origDouble = other.origDouble; |
122 | 0 | origDelta = other.origDelta; |
123 | 0 | isApproximate = other.isApproximate; |
124 | 0 | exponent = other.exponent; |
125 | 0 | } |
126 | | |
127 | 0 | void DecimalQuantity::clear() { |
128 | 0 | lReqPos = 0; |
129 | 0 | rReqPos = 0; |
130 | 0 | flags = 0; |
131 | 0 | setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data |
132 | 0 | } |
133 | | |
134 | 0 | void DecimalQuantity::setMinInteger(int32_t minInt) { |
135 | | // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
136 | 0 | U_ASSERT(minInt >= 0); |
137 | | |
138 | | // Special behavior: do not set minInt to be less than what is already set. |
139 | | // This is so significant digits rounding can set the integer length. |
140 | 0 | if (minInt < lReqPos) { |
141 | 0 | minInt = lReqPos; |
142 | 0 | } |
143 | | |
144 | | // Save values into internal state |
145 | 0 | lReqPos = minInt; |
146 | 0 | } |
147 | | |
148 | 0 | void DecimalQuantity::setMinFraction(int32_t minFrac) { |
149 | | // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
150 | 0 | U_ASSERT(minFrac >= 0); |
151 | | |
152 | | // Save values into internal state |
153 | | // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE |
154 | 0 | rReqPos = -minFrac; |
155 | 0 | } |
156 | | |
157 | 0 | void DecimalQuantity::applyMaxInteger(int32_t maxInt) { |
158 | | // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
159 | 0 | U_ASSERT(maxInt >= 0); |
160 | |
|
161 | 0 | if (precision == 0) { |
162 | 0 | return; |
163 | 0 | } |
164 | | |
165 | 0 | if (maxInt <= scale) { |
166 | 0 | setBcdToZero(); |
167 | 0 | return; |
168 | 0 | } |
169 | | |
170 | 0 | int32_t magnitude = getMagnitude(); |
171 | 0 | if (maxInt <= magnitude) { |
172 | 0 | popFromLeft(magnitude - maxInt + 1); |
173 | 0 | compact(); |
174 | 0 | } |
175 | 0 | } |
176 | | |
177 | 0 | uint64_t DecimalQuantity::getPositionFingerprint() const { |
178 | 0 | uint64_t fingerprint = 0; |
179 | 0 | fingerprint ^= (lReqPos << 16); |
180 | 0 | fingerprint ^= (static_cast<uint64_t>(rReqPos) << 32); |
181 | 0 | return fingerprint; |
182 | 0 | } |
183 | | |
184 | | void DecimalQuantity::roundToIncrement(double roundingIncrement, RoundingMode roundingMode, |
185 | 0 | UErrorCode& status) { |
186 | | // Do not call this method with an increment having only a 1 or a 5 digit! |
187 | | // Use a more efficient call to either roundToMagnitude() or roundToNickel(). |
188 | | // Check a few popular rounding increments; a more thorough check is in Java. |
189 | 0 | U_ASSERT(roundingIncrement != 0.01); |
190 | 0 | U_ASSERT(roundingIncrement != 0.05); |
191 | 0 | U_ASSERT(roundingIncrement != 0.1); |
192 | 0 | U_ASSERT(roundingIncrement != 0.5); |
193 | 0 | U_ASSERT(roundingIncrement != 1); |
194 | 0 | U_ASSERT(roundingIncrement != 5); |
195 | |
|
196 | 0 | DecNum incrementDN; |
197 | 0 | incrementDN.setTo(roundingIncrement, status); |
198 | 0 | if (U_FAILURE(status)) { return; } |
199 | | |
200 | | // Divide this DecimalQuantity by the increment, round, then multiply back. |
201 | 0 | divideBy(incrementDN, status); |
202 | 0 | if (U_FAILURE(status)) { return; } |
203 | 0 | roundToMagnitude(0, roundingMode, status); |
204 | 0 | if (U_FAILURE(status)) { return; } |
205 | 0 | multiplyBy(incrementDN, status); |
206 | 0 | if (U_FAILURE(status)) { return; } |
207 | 0 | } |
208 | | |
209 | 0 | void DecimalQuantity::multiplyBy(const DecNum& multiplicand, UErrorCode& status) { |
210 | 0 | if (isZeroish()) { |
211 | 0 | return; |
212 | 0 | } |
213 | | // Convert to DecNum, multiply, and convert back. |
214 | 0 | DecNum decnum; |
215 | 0 | toDecNum(decnum, status); |
216 | 0 | if (U_FAILURE(status)) { return; } |
217 | 0 | decnum.multiplyBy(multiplicand, status); |
218 | 0 | if (U_FAILURE(status)) { return; } |
219 | 0 | setToDecNum(decnum, status); |
220 | 0 | } |
221 | | |
222 | 0 | void DecimalQuantity::divideBy(const DecNum& divisor, UErrorCode& status) { |
223 | 0 | if (isZeroish()) { |
224 | 0 | return; |
225 | 0 | } |
226 | | // Convert to DecNum, multiply, and convert back. |
227 | 0 | DecNum decnum; |
228 | 0 | toDecNum(decnum, status); |
229 | 0 | if (U_FAILURE(status)) { return; } |
230 | 0 | decnum.divideBy(divisor, status); |
231 | 0 | if (U_FAILURE(status)) { return; } |
232 | 0 | setToDecNum(decnum, status); |
233 | 0 | } |
234 | | |
235 | 0 | void DecimalQuantity::negate() { |
236 | 0 | flags ^= NEGATIVE_FLAG; |
237 | 0 | } |
238 | | |
239 | 0 | int32_t DecimalQuantity::getMagnitude() const { |
240 | 0 | U_ASSERT(precision != 0); |
241 | 0 | return scale + precision - 1; |
242 | 0 | } |
243 | | |
244 | 0 | bool DecimalQuantity::adjustMagnitude(int32_t delta) { |
245 | 0 | if (precision != 0) { |
246 | | // i.e., scale += delta; origDelta += delta |
247 | 0 | bool overflow = uprv_add32_overflow(scale, delta, &scale); |
248 | 0 | overflow = uprv_add32_overflow(origDelta, delta, &origDelta) || overflow; |
249 | | // Make sure that precision + scale won't overflow, either |
250 | 0 | int32_t dummy; |
251 | 0 | overflow = overflow || uprv_add32_overflow(scale, precision, &dummy); |
252 | 0 | return overflow; |
253 | 0 | } |
254 | 0 | return false; |
255 | 0 | } |
256 | | |
257 | 0 | double DecimalQuantity::getPluralOperand(PluralOperand operand) const { |
258 | | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
259 | | // See the comment at the top of this file explaining the "isApproximate" field. |
260 | 0 | U_ASSERT(!isApproximate); |
261 | |
|
262 | 0 | switch (operand) { |
263 | 0 | case PLURAL_OPERAND_I: |
264 | | // Invert the negative sign if necessary |
265 | 0 | return static_cast<double>(isNegative() ? -toLong(true) : toLong(true)); |
266 | 0 | case PLURAL_OPERAND_F: |
267 | 0 | return static_cast<double>(toFractionLong(true)); |
268 | 0 | case PLURAL_OPERAND_T: |
269 | 0 | return static_cast<double>(toFractionLong(false)); |
270 | 0 | case PLURAL_OPERAND_V: |
271 | 0 | return fractionCount(); |
272 | 0 | case PLURAL_OPERAND_W: |
273 | 0 | return fractionCountWithoutTrailingZeros(); |
274 | 0 | case PLURAL_OPERAND_E: |
275 | 0 | return static_cast<double>(getExponent()); |
276 | 0 | case PLURAL_OPERAND_C: |
277 | | // Plural operand `c` is currently an alias for `e`. |
278 | 0 | return static_cast<double>(getExponent()); |
279 | 0 | default: |
280 | 0 | return std::abs(toDouble()); |
281 | 0 | } |
282 | 0 | } |
283 | | |
284 | 0 | int32_t DecimalQuantity::getExponent() const { |
285 | 0 | return exponent; |
286 | 0 | } |
287 | | |
288 | 0 | void DecimalQuantity::adjustExponent(int delta) { |
289 | 0 | exponent = exponent + delta; |
290 | 0 | } |
291 | | |
292 | 0 | void DecimalQuantity::resetExponent() { |
293 | 0 | adjustMagnitude(exponent); |
294 | 0 | exponent = 0; |
295 | 0 | } |
296 | | |
297 | 0 | bool DecimalQuantity::hasIntegerValue() const { |
298 | 0 | return scale >= 0; |
299 | 0 | } |
300 | | |
301 | 0 | int32_t DecimalQuantity::getUpperDisplayMagnitude() const { |
302 | | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
303 | | // See the comment in the header file explaining the "isApproximate" field. |
304 | 0 | U_ASSERT(!isApproximate); |
305 | |
|
306 | 0 | int32_t magnitude = scale + precision; |
307 | 0 | int32_t result = (lReqPos > magnitude) ? lReqPos : magnitude; |
308 | 0 | return result - 1; |
309 | 0 | } |
310 | | |
311 | 0 | int32_t DecimalQuantity::getLowerDisplayMagnitude() const { |
312 | | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
313 | | // See the comment in the header file explaining the "isApproximate" field. |
314 | 0 | U_ASSERT(!isApproximate); |
315 | |
|
316 | 0 | int32_t magnitude = scale; |
317 | 0 | int32_t result = (rReqPos < magnitude) ? rReqPos : magnitude; |
318 | 0 | return result; |
319 | 0 | } |
320 | | |
321 | 0 | int8_t DecimalQuantity::getDigit(int32_t magnitude) const { |
322 | | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
323 | | // See the comment at the top of this file explaining the "isApproximate" field. |
324 | 0 | U_ASSERT(!isApproximate); |
325 | |
|
326 | 0 | return getDigitPos(magnitude - scale); |
327 | 0 | } |
328 | | |
329 | 0 | int32_t DecimalQuantity::fractionCount() const { |
330 | 0 | int32_t fractionCountWithExponent = -getLowerDisplayMagnitude() - exponent; |
331 | 0 | return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0; |
332 | 0 | } |
333 | | |
334 | 0 | int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const { |
335 | 0 | int32_t fractionCountWithExponent = -scale - exponent; |
336 | 0 | return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0; // max(-fractionCountWithExponent, 0) |
337 | 0 | } |
338 | | |
339 | 0 | bool DecimalQuantity::isNegative() const { |
340 | 0 | return (flags & NEGATIVE_FLAG) != 0; |
341 | 0 | } |
342 | | |
343 | 0 | Signum DecimalQuantity::signum() const { |
344 | 0 | bool isZero = (isZeroish() && !isInfinite()); |
345 | 0 | bool isNeg = isNegative(); |
346 | 0 | if (isZero && isNeg) { |
347 | 0 | return SIGNUM_NEG_ZERO; |
348 | 0 | } else if (isZero) { |
349 | 0 | return SIGNUM_POS_ZERO; |
350 | 0 | } else if (isNeg) { |
351 | 0 | return SIGNUM_NEG; |
352 | 0 | } else { |
353 | 0 | return SIGNUM_POS; |
354 | 0 | } |
355 | 0 | } |
356 | | |
357 | 0 | bool DecimalQuantity::isInfinite() const { |
358 | 0 | return (flags & INFINITY_FLAG) != 0; |
359 | 0 | } |
360 | | |
361 | 0 | bool DecimalQuantity::isNaN() const { |
362 | 0 | return (flags & NAN_FLAG) != 0; |
363 | 0 | } |
364 | | |
365 | 0 | bool DecimalQuantity::isZeroish() const { |
366 | 0 | return precision == 0; |
367 | 0 | } |
368 | | |
369 | 0 | DecimalQuantity &DecimalQuantity::setToInt(int32_t n) { |
370 | 0 | setBcdToZero(); |
371 | 0 | flags = 0; |
372 | 0 | if (n == INT32_MIN) { |
373 | 0 | flags |= NEGATIVE_FLAG; |
374 | | // leave as INT32_MIN; handled below in _setToInt() |
375 | 0 | } else if (n < 0) { |
376 | 0 | flags |= NEGATIVE_FLAG; |
377 | 0 | n = -n; |
378 | 0 | } |
379 | 0 | if (n != 0) { |
380 | 0 | _setToInt(n); |
381 | 0 | compact(); |
382 | 0 | } |
383 | 0 | return *this; |
384 | 0 | } |
385 | | |
386 | 0 | void DecimalQuantity::_setToInt(int32_t n) { |
387 | 0 | if (n == INT32_MIN) { |
388 | 0 | readLongToBcd(-static_cast<int64_t>(n)); |
389 | 0 | } else { |
390 | 0 | readIntToBcd(n); |
391 | 0 | } |
392 | 0 | } |
393 | | |
394 | 0 | DecimalQuantity &DecimalQuantity::setToLong(int64_t n) { |
395 | 0 | setBcdToZero(); |
396 | 0 | flags = 0; |
397 | 0 | if (n < 0 && n > INT64_MIN) { |
398 | 0 | flags |= NEGATIVE_FLAG; |
399 | 0 | n = -n; |
400 | 0 | } |
401 | 0 | if (n != 0) { |
402 | 0 | _setToLong(n); |
403 | 0 | compact(); |
404 | 0 | } |
405 | 0 | return *this; |
406 | 0 | } |
407 | | |
408 | 0 | void DecimalQuantity::_setToLong(int64_t n) { |
409 | 0 | if (n == INT64_MIN) { |
410 | 0 | DecNum decnum; |
411 | 0 | UErrorCode localStatus = U_ZERO_ERROR; |
412 | 0 | decnum.setTo("9.223372036854775808E+18", localStatus); |
413 | 0 | if (U_FAILURE(localStatus)) { return; } // unexpected |
414 | 0 | flags |= NEGATIVE_FLAG; |
415 | 0 | readDecNumberToBcd(decnum); |
416 | 0 | } else if (n <= INT32_MAX) { |
417 | 0 | readIntToBcd(static_cast<int32_t>(n)); |
418 | 0 | } else { |
419 | 0 | readLongToBcd(n); |
420 | 0 | } |
421 | 0 | } |
422 | | |
423 | 0 | DecimalQuantity &DecimalQuantity::setToDouble(double n) { |
424 | 0 | setBcdToZero(); |
425 | 0 | flags = 0; |
426 | | // signbit() from <math.h> handles +0.0 vs -0.0 |
427 | 0 | if (std::signbit(n)) { |
428 | 0 | flags |= NEGATIVE_FLAG; |
429 | 0 | n = -n; |
430 | 0 | } |
431 | 0 | if (std::isnan(n) != 0) { |
432 | 0 | flags |= NAN_FLAG; |
433 | 0 | } else if (std::isfinite(n) == 0) { |
434 | 0 | flags |= INFINITY_FLAG; |
435 | 0 | } else if (n != 0) { |
436 | 0 | _setToDoubleFast(n); |
437 | 0 | compact(); |
438 | 0 | } |
439 | 0 | return *this; |
440 | 0 | } |
441 | | |
442 | 0 | void DecimalQuantity::_setToDoubleFast(double n) { |
443 | 0 | isApproximate = true; |
444 | 0 | origDouble = n; |
445 | 0 | origDelta = 0; |
446 | | |
447 | | // Make sure the double is an IEEE 754 double. If not, fall back to the slow path right now. |
448 | | // TODO: Make a fast path for other types of doubles. |
449 | 0 | if (!std::numeric_limits<double>::is_iec559) { |
450 | 0 | convertToAccurateDouble(); |
451 | 0 | return; |
452 | 0 | } |
453 | | |
454 | | // To get the bits from the double, use memcpy, which takes care of endianness. |
455 | 0 | uint64_t ieeeBits; |
456 | 0 | uprv_memcpy(&ieeeBits, &n, sizeof(n)); |
457 | 0 | int32_t exponent = static_cast<int32_t>((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff; |
458 | | |
459 | | // Not all integers can be represented exactly for exponent > 52 |
460 | 0 | if (exponent <= 52 && static_cast<int64_t>(n) == n) { |
461 | 0 | _setToLong(static_cast<int64_t>(n)); |
462 | 0 | return; |
463 | 0 | } |
464 | | |
465 | 0 | if (exponent == -1023 || exponent == 1024) { |
466 | | // The extreme values of exponent are special; use slow path. |
467 | 0 | convertToAccurateDouble(); |
468 | 0 | return; |
469 | 0 | } |
470 | | |
471 | | // 3.3219... is log2(10) |
472 | 0 | auto fracLength = static_cast<int32_t> ((52 - exponent) / 3.32192809488736234787031942948939017586); |
473 | 0 | if (fracLength >= 0) { |
474 | 0 | int32_t i = fracLength; |
475 | | // 1e22 is the largest exact double. |
476 | 0 | for (; i >= 22; i -= 22) n *= 1e22; |
477 | 0 | n *= DOUBLE_MULTIPLIERS[i]; |
478 | 0 | } else { |
479 | 0 | int32_t i = fracLength; |
480 | | // 1e22 is the largest exact double. |
481 | 0 | for (; i <= -22; i += 22) n /= 1e22; |
482 | 0 | n /= DOUBLE_MULTIPLIERS[-i]; |
483 | 0 | } |
484 | 0 | auto result = static_cast<int64_t>(uprv_round(n)); |
485 | 0 | if (result != 0) { |
486 | 0 | _setToLong(result); |
487 | 0 | scale -= fracLength; |
488 | 0 | } |
489 | 0 | } |
490 | | |
491 | 0 | void DecimalQuantity::convertToAccurateDouble() { |
492 | 0 | U_ASSERT(origDouble != 0); |
493 | 0 | int32_t delta = origDelta; |
494 | | |
495 | | // Call the slow oracle function (Double.toString in Java, DoubleToAscii in C++). |
496 | 0 | char buffer[DoubleToStringConverter::kBase10MaximalLength + 1]; |
497 | 0 | bool sign; // unused; always positive |
498 | 0 | int32_t length; |
499 | 0 | int32_t point; |
500 | 0 | DoubleToStringConverter::DoubleToAscii( |
501 | 0 | origDouble, |
502 | 0 | DoubleToStringConverter::DtoaMode::SHORTEST, |
503 | 0 | 0, |
504 | 0 | buffer, |
505 | 0 | sizeof(buffer), |
506 | 0 | &sign, |
507 | 0 | &length, |
508 | 0 | &point |
509 | 0 | ); |
510 | |
|
511 | 0 | setBcdToZero(); |
512 | 0 | readDoubleConversionToBcd(buffer, length, point); |
513 | 0 | scale += delta; |
514 | 0 | explicitExactDouble = true; |
515 | 0 | } |
516 | | |
517 | 0 | DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n, UErrorCode& status) { |
518 | 0 | setBcdToZero(); |
519 | 0 | flags = 0; |
520 | | |
521 | | // Compute the decNumber representation |
522 | 0 | DecNum decnum; |
523 | 0 | decnum.setTo(n, status); |
524 | |
|
525 | 0 | _setToDecNum(decnum, status); |
526 | 0 | return *this; |
527 | 0 | } |
528 | | |
529 | 0 | DecimalQuantity& DecimalQuantity::setToDecNum(const DecNum& decnum, UErrorCode& status) { |
530 | 0 | setBcdToZero(); |
531 | 0 | flags = 0; |
532 | |
|
533 | 0 | _setToDecNum(decnum, status); |
534 | 0 | return *this; |
535 | 0 | } |
536 | | |
537 | 0 | void DecimalQuantity::_setToDecNum(const DecNum& decnum, UErrorCode& status) { |
538 | 0 | if (U_FAILURE(status)) { return; } |
539 | 0 | if (decnum.isNegative()) { |
540 | 0 | flags |= NEGATIVE_FLAG; |
541 | 0 | } |
542 | 0 | if (!decnum.isZero()) { |
543 | 0 | readDecNumberToBcd(decnum); |
544 | 0 | compact(); |
545 | 0 | } |
546 | 0 | } |
547 | | |
548 | 0 | int64_t DecimalQuantity::toLong(bool truncateIfOverflow) const { |
549 | | // NOTE: Call sites should be guarded by fitsInLong(), like this: |
550 | | // if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ } |
551 | | // Fallback behavior upon truncateIfOverflow is to truncate at 17 digits. |
552 | 0 | uint64_t result = 0L; |
553 | 0 | int32_t upperMagnitude = exponent + scale + precision - 1; |
554 | 0 | if (truncateIfOverflow) { |
555 | 0 | upperMagnitude = std::min(upperMagnitude, 17); |
556 | 0 | } |
557 | 0 | for (int32_t magnitude = upperMagnitude; magnitude >= 0; magnitude--) { |
558 | 0 | result = result * 10 + getDigitPos(magnitude - scale - exponent); |
559 | 0 | } |
560 | 0 | if (isNegative()) { |
561 | 0 | return static_cast<int64_t>(0LL - result); // i.e., -result |
562 | 0 | } |
563 | 0 | return static_cast<int64_t>(result); |
564 | 0 | } |
565 | | |
566 | 0 | uint64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const { |
567 | 0 | uint64_t result = 0L; |
568 | 0 | int32_t magnitude = -1 - exponent; |
569 | 0 | int32_t lowerMagnitude = scale; |
570 | 0 | if (includeTrailingZeros) { |
571 | 0 | lowerMagnitude = std::min(lowerMagnitude, rReqPos); |
572 | 0 | } |
573 | 0 | for (; magnitude >= lowerMagnitude && result <= 1e18L; magnitude--) { |
574 | 0 | result = result * 10 + getDigitPos(magnitude - scale); |
575 | 0 | } |
576 | | // Remove trailing zeros; this can happen during integer overflow cases. |
577 | 0 | if (!includeTrailingZeros) { |
578 | 0 | while (result > 0 && (result % 10) == 0) { |
579 | 0 | result /= 10; |
580 | 0 | } |
581 | 0 | } |
582 | 0 | return result; |
583 | 0 | } |
584 | | |
585 | 0 | bool DecimalQuantity::fitsInLong(bool ignoreFraction) const { |
586 | 0 | if (isInfinite() || isNaN()) { |
587 | 0 | return false; |
588 | 0 | } |
589 | 0 | if (isZeroish()) { |
590 | 0 | return true; |
591 | 0 | } |
592 | 0 | if (exponent + scale < 0 && !ignoreFraction) { |
593 | 0 | return false; |
594 | 0 | } |
595 | 0 | int magnitude = getMagnitude(); |
596 | 0 | if (magnitude < 18) { |
597 | 0 | return true; |
598 | 0 | } |
599 | 0 | if (magnitude > 18) { |
600 | 0 | return false; |
601 | 0 | } |
602 | | // Hard case: the magnitude is 10^18. |
603 | | // The largest int64 is: 9,223,372,036,854,775,807 |
604 | 0 | for (int p = 0; p < precision; p++) { |
605 | 0 | int8_t digit = getDigit(18 - p); |
606 | 0 | static int8_t INT64_BCD[] = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 }; |
607 | 0 | if (digit < INT64_BCD[p]) { |
608 | 0 | return true; |
609 | 0 | } else if (digit > INT64_BCD[p]) { |
610 | 0 | return false; |
611 | 0 | } |
612 | 0 | } |
613 | | // Exactly equal to max long plus one. |
614 | 0 | return isNegative(); |
615 | 0 | } |
616 | | |
617 | 0 | double DecimalQuantity::toDouble() const { |
618 | | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
619 | | // See the comment in the header file explaining the "isApproximate" field. |
620 | 0 | U_ASSERT(!isApproximate); |
621 | |
|
622 | 0 | if (isNaN()) { |
623 | 0 | return NAN; |
624 | 0 | } else if (isInfinite()) { |
625 | 0 | return isNegative() ? -INFINITY : INFINITY; |
626 | 0 | } |
627 | | |
628 | | // We are processing well-formed input, so we don't need any special options to StringToDoubleConverter. |
629 | 0 | StringToDoubleConverter converter(0, 0, 0, "", ""); |
630 | 0 | UnicodeString numberString = this->toScientificString(); |
631 | 0 | int32_t count; |
632 | 0 | return converter.StringToDouble( |
633 | 0 | reinterpret_cast<const uint16_t*>(numberString.getBuffer()), |
634 | 0 | numberString.length(), |
635 | 0 | &count); |
636 | 0 | } |
637 | | |
638 | 0 | DecNum& DecimalQuantity::toDecNum(DecNum& output, UErrorCode& status) const { |
639 | | // Special handling for zero |
640 | 0 | if (precision == 0) { |
641 | 0 | output.setTo("0", status); |
642 | 0 | return output; |
643 | 0 | } |
644 | | |
645 | | // Use the BCD constructor. We need to do a little bit of work to convert, though. |
646 | | // The decNumber constructor expects most-significant first, but we store least-significant first. |
647 | 0 | MaybeStackArray<uint8_t, 20> ubcd(precision, status); |
648 | 0 | if (U_FAILURE(status)) { |
649 | 0 | return output; |
650 | 0 | } |
651 | 0 | for (int32_t m = 0; m < precision; m++) { |
652 | 0 | ubcd[precision - m - 1] = static_cast<uint8_t>(getDigitPos(m)); |
653 | 0 | } |
654 | 0 | output.setTo(ubcd.getAlias(), precision, scale, isNegative(), status); |
655 | 0 | return output; |
656 | 0 | } |
657 | | |
658 | 0 | void DecimalQuantity::truncate() { |
659 | 0 | if (scale < 0) { |
660 | 0 | shiftRight(-scale); |
661 | 0 | scale = 0; |
662 | 0 | compact(); |
663 | 0 | } |
664 | 0 | } |
665 | | |
666 | 0 | void DecimalQuantity::roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) { |
667 | 0 | roundToMagnitude(magnitude, roundingMode, true, status); |
668 | 0 | } |
669 | | |
670 | 0 | void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) { |
671 | 0 | roundToMagnitude(magnitude, roundingMode, false, status); |
672 | 0 | } |
673 | | |
674 | 0 | void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status) { |
675 | | // The position in the BCD at which rounding will be performed; digits to the right of position |
676 | | // will be rounded away. |
677 | 0 | int position = safeSubtract(magnitude, scale); |
678 | | |
679 | | // "trailing" = least significant digit to the left of rounding |
680 | 0 | int8_t trailingDigit = getDigitPos(position); |
681 | |
|
682 | 0 | if (position <= 0 && !isApproximate && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
683 | | // All digits are to the left of the rounding magnitude. |
684 | 0 | } else if (precision == 0) { |
685 | | // No rounding for zero. |
686 | 0 | } else { |
687 | | // Perform rounding logic. |
688 | | // "leading" = most significant digit to the right of rounding |
689 | 0 | int8_t leadingDigit = getDigitPos(safeSubtract(position, 1)); |
690 | | |
691 | | // Compute which section of the number we are in. |
692 | | // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles) |
693 | | // LOWER means we are between the bottom edge and the midpoint, like 1.391 |
694 | | // MIDPOINT means we are exactly in the middle, like 1.500 |
695 | | // UPPER means we are between the midpoint and the top edge, like 1.916 |
696 | 0 | roundingutils::Section section; |
697 | 0 | if (!isApproximate) { |
698 | 0 | if (nickel && trailingDigit != 2 && trailingDigit != 7) { |
699 | | // Nickel rounding, and not at .02x or .07x |
700 | 0 | if (trailingDigit < 2) { |
701 | | // .00, .01 => down to .00 |
702 | 0 | section = roundingutils::SECTION_LOWER; |
703 | 0 | } else if (trailingDigit < 5) { |
704 | | // .03, .04 => up to .05 |
705 | 0 | section = roundingutils::SECTION_UPPER; |
706 | 0 | } else if (trailingDigit < 7) { |
707 | | // .05, .06 => down to .05 |
708 | 0 | section = roundingutils::SECTION_LOWER; |
709 | 0 | } else { |
710 | | // .08, .09 => up to .10 |
711 | 0 | section = roundingutils::SECTION_UPPER; |
712 | 0 | } |
713 | 0 | } else if (leadingDigit < 5) { |
714 | | // Includes nickel rounding .020-.024 and .070-.074 |
715 | 0 | section = roundingutils::SECTION_LOWER; |
716 | 0 | } else if (leadingDigit > 5) { |
717 | | // Includes nickel rounding .026-.029 and .076-.079 |
718 | 0 | section = roundingutils::SECTION_UPPER; |
719 | 0 | } else { |
720 | | // Includes nickel rounding .025 and .075 |
721 | 0 | section = roundingutils::SECTION_MIDPOINT; |
722 | 0 | for (int p = safeSubtract(position, 2); p >= 0; p--) { |
723 | 0 | if (getDigitPos(p) != 0) { |
724 | 0 | section = roundingutils::SECTION_UPPER; |
725 | 0 | break; |
726 | 0 | } |
727 | 0 | } |
728 | 0 | } |
729 | 0 | } else { |
730 | 0 | int32_t p = safeSubtract(position, 2); |
731 | 0 | int32_t minP = uprv_max(0, precision - 14); |
732 | 0 | if (leadingDigit == 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
733 | 0 | section = roundingutils::SECTION_LOWER_EDGE; |
734 | 0 | for (; p >= minP; p--) { |
735 | 0 | if (getDigitPos(p) != 0) { |
736 | 0 | section = roundingutils::SECTION_LOWER; |
737 | 0 | break; |
738 | 0 | } |
739 | 0 | } |
740 | 0 | } else if (leadingDigit == 4 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) { |
741 | 0 | section = roundingutils::SECTION_MIDPOINT; |
742 | 0 | for (; p >= minP; p--) { |
743 | 0 | if (getDigitPos(p) != 9) { |
744 | 0 | section = roundingutils::SECTION_LOWER; |
745 | 0 | break; |
746 | 0 | } |
747 | 0 | } |
748 | 0 | } else if (leadingDigit == 5 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) { |
749 | 0 | section = roundingutils::SECTION_MIDPOINT; |
750 | 0 | for (; p >= minP; p--) { |
751 | 0 | if (getDigitPos(p) != 0) { |
752 | 0 | section = roundingutils::SECTION_UPPER; |
753 | 0 | break; |
754 | 0 | } |
755 | 0 | } |
756 | 0 | } else if (leadingDigit == 9 && (!nickel || trailingDigit == 4 || trailingDigit == 9)) { |
757 | 0 | section = roundingutils::SECTION_UPPER_EDGE; |
758 | 0 | for (; p >= minP; p--) { |
759 | 0 | if (getDigitPos(p) != 9) { |
760 | 0 | section = roundingutils::SECTION_UPPER; |
761 | 0 | break; |
762 | 0 | } |
763 | 0 | } |
764 | 0 | } else if (nickel && trailingDigit != 2 && trailingDigit != 7) { |
765 | | // Nickel rounding, and not at .02x or .07x |
766 | 0 | if (trailingDigit < 2) { |
767 | | // .00, .01 => down to .00 |
768 | 0 | section = roundingutils::SECTION_LOWER; |
769 | 0 | } else if (trailingDigit < 5) { |
770 | | // .03, .04 => up to .05 |
771 | 0 | section = roundingutils::SECTION_UPPER; |
772 | 0 | } else if (trailingDigit < 7) { |
773 | | // .05, .06 => down to .05 |
774 | 0 | section = roundingutils::SECTION_LOWER; |
775 | 0 | } else { |
776 | | // .08, .09 => up to .10 |
777 | 0 | section = roundingutils::SECTION_UPPER; |
778 | 0 | } |
779 | 0 | } else if (leadingDigit < 5) { |
780 | | // Includes nickel rounding .020-.024 and .070-.074 |
781 | 0 | section = roundingutils::SECTION_LOWER; |
782 | 0 | } else { |
783 | | // Includes nickel rounding .026-.029 and .076-.079 |
784 | 0 | section = roundingutils::SECTION_UPPER; |
785 | 0 | } |
786 | |
|
787 | 0 | bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode); |
788 | 0 | if (safeSubtract(position, 1) < precision - 14 || |
789 | 0 | (roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) || |
790 | 0 | (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) { |
791 | | // Oops! This means that we have to get the exact representation of the double, |
792 | | // because the zone of uncertainty is along the rounding boundary. |
793 | 0 | convertToAccurateDouble(); |
794 | 0 | roundToMagnitude(magnitude, roundingMode, nickel, status); // start over |
795 | 0 | return; |
796 | 0 | } |
797 | | |
798 | | // Turn off the approximate double flag, since the value is now confirmed to be exact. |
799 | 0 | isApproximate = false; |
800 | 0 | origDouble = 0.0; |
801 | 0 | origDelta = 0; |
802 | |
|
803 | 0 | if (position <= 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
804 | | // All digits are to the left of the rounding magnitude. |
805 | 0 | return; |
806 | 0 | } |
807 | | |
808 | | // Good to continue rounding. |
809 | 0 | if (section == -1) { section = roundingutils::SECTION_LOWER; } |
810 | 0 | if (section == -2) { section = roundingutils::SECTION_UPPER; } |
811 | 0 | } |
812 | | |
813 | | // Nickel rounding "half even" goes to the nearest whole (away from the 5). |
814 | 0 | bool isEven = nickel |
815 | 0 | ? (trailingDigit < 2 || trailingDigit > 7 |
816 | 0 | || (trailingDigit == 2 && section != roundingutils::SECTION_UPPER) |
817 | 0 | || (trailingDigit == 7 && section == roundingutils::SECTION_UPPER)) |
818 | 0 | : (trailingDigit % 2) == 0; |
819 | |
|
820 | 0 | bool roundDown = roundingutils::getRoundingDirection(isEven, |
821 | 0 | isNegative(), |
822 | 0 | section, |
823 | 0 | roundingMode, |
824 | 0 | status); |
825 | 0 | if (U_FAILURE(status)) { |
826 | 0 | return; |
827 | 0 | } |
828 | | |
829 | | // Perform truncation |
830 | 0 | if (position >= precision) { |
831 | 0 | setBcdToZero(); |
832 | 0 | scale = magnitude; |
833 | 0 | } else { |
834 | 0 | shiftRight(position); |
835 | 0 | } |
836 | |
|
837 | 0 | if (nickel) { |
838 | 0 | if (trailingDigit < 5 && roundDown) { |
839 | 0 | setDigitPos(0, 0); |
840 | 0 | compact(); |
841 | 0 | return; |
842 | 0 | } else if (trailingDigit >= 5 && !roundDown) { |
843 | 0 | setDigitPos(0, 9); |
844 | 0 | trailingDigit = 9; |
845 | | // do not return: use the bubbling logic below |
846 | 0 | } else { |
847 | 0 | setDigitPos(0, 5); |
848 | | // compact not necessary: digit at position 0 is nonzero |
849 | 0 | return; |
850 | 0 | } |
851 | 0 | } |
852 | | |
853 | | // Bubble the result to the higher digits |
854 | 0 | if (!roundDown) { |
855 | 0 | if (trailingDigit == 9) { |
856 | 0 | int bubblePos = 0; |
857 | | // Note: in the long implementation, the most digits BCD can have at this point is |
858 | | // 15, so bubblePos <= 15 and getDigitPos(bubblePos) is safe. |
859 | 0 | for (; getDigitPos(bubblePos) == 9; bubblePos++) {} |
860 | 0 | shiftRight(bubblePos); // shift off the trailing 9s |
861 | 0 | } |
862 | 0 | int8_t digit0 = getDigitPos(0); |
863 | 0 | U_ASSERT(digit0 != 9); |
864 | 0 | setDigitPos(0, static_cast<int8_t>(digit0 + 1)); |
865 | 0 | precision += 1; // in case an extra digit got added |
866 | 0 | } |
867 | |
|
868 | 0 | compact(); |
869 | 0 | } |
870 | 0 | } |
871 | | |
872 | 0 | void DecimalQuantity::roundToInfinity() { |
873 | 0 | if (isApproximate) { |
874 | 0 | convertToAccurateDouble(); |
875 | 0 | } |
876 | 0 | } |
877 | | |
878 | 0 | void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) { |
879 | 0 | U_ASSERT(leadingZeros >= 0); |
880 | | |
881 | | // Zero requires special handling to maintain the invariant that the least-significant digit |
882 | | // in the BCD is nonzero. |
883 | 0 | if (value == 0) { |
884 | 0 | if (appendAsInteger && precision != 0) { |
885 | 0 | scale += leadingZeros + 1; |
886 | 0 | } |
887 | 0 | return; |
888 | 0 | } |
889 | | |
890 | | // Deal with trailing zeros |
891 | 0 | if (scale > 0) { |
892 | 0 | leadingZeros += scale; |
893 | 0 | if (appendAsInteger) { |
894 | 0 | scale = 0; |
895 | 0 | } |
896 | 0 | } |
897 | | |
898 | | // Append digit |
899 | 0 | shiftLeft(leadingZeros + 1); |
900 | 0 | setDigitPos(0, value); |
901 | | |
902 | | // Fix scale if in integer mode |
903 | 0 | if (appendAsInteger) { |
904 | 0 | scale += leadingZeros + 1; |
905 | 0 | } |
906 | 0 | } |
907 | | |
908 | 0 | UnicodeString DecimalQuantity::toPlainString() const { |
909 | 0 | U_ASSERT(!isApproximate); |
910 | 0 | UnicodeString sb; |
911 | 0 | if (isNegative()) { |
912 | 0 | sb.append(u'-'); |
913 | 0 | } |
914 | 0 | if (precision == 0) { |
915 | 0 | sb.append(u'0'); |
916 | 0 | return sb; |
917 | 0 | } |
918 | 0 | int32_t upper = scale + precision + exponent - 1; |
919 | 0 | int32_t lower = scale + exponent; |
920 | 0 | if (upper < lReqPos - 1) { |
921 | 0 | upper = lReqPos - 1; |
922 | 0 | } |
923 | 0 | if (lower > rReqPos) { |
924 | 0 | lower = rReqPos; |
925 | 0 | } |
926 | 0 | int32_t p = upper; |
927 | 0 | if (p < 0) { |
928 | 0 | sb.append(u'0'); |
929 | 0 | } |
930 | 0 | for (; p >= 0; p--) { |
931 | 0 | sb.append(u'0' + getDigitPos(p - scale - exponent)); |
932 | 0 | } |
933 | 0 | if (lower < 0) { |
934 | 0 | sb.append(u'.'); |
935 | 0 | } |
936 | 0 | for(; p >= lower; p--) { |
937 | 0 | sb.append(u'0' + getDigitPos(p - scale - exponent)); |
938 | 0 | } |
939 | 0 | return sb; |
940 | 0 | } |
941 | | |
942 | 0 | UnicodeString DecimalQuantity::toScientificString() const { |
943 | 0 | U_ASSERT(!isApproximate); |
944 | 0 | UnicodeString result; |
945 | 0 | if (isNegative()) { |
946 | 0 | result.append(u'-'); |
947 | 0 | } |
948 | 0 | if (precision == 0) { |
949 | 0 | result.append(u"0E+0", -1); |
950 | 0 | return result; |
951 | 0 | } |
952 | 0 | int32_t upperPos = precision - 1; |
953 | 0 | int32_t lowerPos = 0; |
954 | 0 | int32_t p = upperPos; |
955 | 0 | result.append(u'0' + getDigitPos(p)); |
956 | 0 | if ((--p) >= lowerPos) { |
957 | 0 | result.append(u'.'); |
958 | 0 | for (; p >= lowerPos; p--) { |
959 | 0 | result.append(u'0' + getDigitPos(p)); |
960 | 0 | } |
961 | 0 | } |
962 | 0 | result.append(u'E'); |
963 | 0 | int32_t _scale = upperPos + scale + exponent; |
964 | 0 | if (_scale == INT32_MIN) { |
965 | 0 | result.append({u"-2147483648", -1}); |
966 | 0 | return result; |
967 | 0 | } else if (_scale < 0) { |
968 | 0 | _scale *= -1; |
969 | 0 | result.append(u'-'); |
970 | 0 | } else { |
971 | 0 | result.append(u'+'); |
972 | 0 | } |
973 | 0 | if (_scale == 0) { |
974 | 0 | result.append(u'0'); |
975 | 0 | } |
976 | 0 | int32_t insertIndex = result.length(); |
977 | 0 | while (_scale > 0) { |
978 | 0 | std::div_t res = std::div(_scale, 10); |
979 | 0 | result.insert(insertIndex, u'0' + res.rem); |
980 | 0 | _scale = res.quot; |
981 | 0 | } |
982 | 0 | return result; |
983 | 0 | } |
984 | | |
985 | | //////////////////////////////////////////////////// |
986 | | /// End of DecimalQuantity_AbstractBCD.java /// |
987 | | /// Start of DecimalQuantity_DualStorageBCD.java /// |
988 | | //////////////////////////////////////////////////// |
989 | | |
990 | 0 | int8_t DecimalQuantity::getDigitPos(int32_t position) const { |
991 | 0 | if (usingBytes) { |
992 | 0 | if (position < 0 || position >= precision) { return 0; } |
993 | 0 | return fBCD.bcdBytes.ptr[position]; |
994 | 0 | } else { |
995 | 0 | if (position < 0 || position >= 16) { return 0; } |
996 | 0 | return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf); |
997 | 0 | } |
998 | 0 | } |
999 | | |
1000 | 0 | void DecimalQuantity::setDigitPos(int32_t position, int8_t value) { |
1001 | 0 | U_ASSERT(position >= 0); |
1002 | 0 | if (usingBytes) { |
1003 | 0 | ensureCapacity(position + 1); |
1004 | 0 | fBCD.bcdBytes.ptr[position] = value; |
1005 | 0 | } else if (position >= 16) { |
1006 | 0 | switchStorage(); |
1007 | 0 | ensureCapacity(position + 1); |
1008 | 0 | fBCD.bcdBytes.ptr[position] = value; |
1009 | 0 | } else { |
1010 | 0 | int shift = position * 4; |
1011 | 0 | fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift); |
1012 | 0 | } |
1013 | 0 | } |
1014 | | |
1015 | 0 | void DecimalQuantity::shiftLeft(int32_t numDigits) { |
1016 | 0 | if (!usingBytes && precision + numDigits > 16) { |
1017 | 0 | switchStorage(); |
1018 | 0 | } |
1019 | 0 | if (usingBytes) { |
1020 | 0 | ensureCapacity(precision + numDigits); |
1021 | 0 | uprv_memmove(fBCD.bcdBytes.ptr + numDigits, fBCD.bcdBytes.ptr, precision); |
1022 | 0 | uprv_memset(fBCD.bcdBytes.ptr, 0, numDigits); |
1023 | 0 | } else { |
1024 | 0 | fBCD.bcdLong <<= (numDigits * 4); |
1025 | 0 | } |
1026 | 0 | scale -= numDigits; |
1027 | 0 | precision += numDigits; |
1028 | 0 | } |
1029 | | |
1030 | 0 | void DecimalQuantity::shiftRight(int32_t numDigits) { |
1031 | 0 | if (usingBytes) { |
1032 | 0 | int i = 0; |
1033 | 0 | for (; i < precision - numDigits; i++) { |
1034 | 0 | fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits]; |
1035 | 0 | } |
1036 | 0 | for (; i < precision; i++) { |
1037 | 0 | fBCD.bcdBytes.ptr[i] = 0; |
1038 | 0 | } |
1039 | 0 | } else { |
1040 | 0 | fBCD.bcdLong >>= (numDigits * 4); |
1041 | 0 | } |
1042 | 0 | scale += numDigits; |
1043 | 0 | precision -= numDigits; |
1044 | 0 | } |
1045 | | |
1046 | 0 | void DecimalQuantity::popFromLeft(int32_t numDigits) { |
1047 | 0 | U_ASSERT(numDigits <= precision); |
1048 | 0 | if (usingBytes) { |
1049 | 0 | int i = precision - 1; |
1050 | 0 | for (; i >= precision - numDigits; i--) { |
1051 | 0 | fBCD.bcdBytes.ptr[i] = 0; |
1052 | 0 | } |
1053 | 0 | } else { |
1054 | 0 | fBCD.bcdLong &= (static_cast<uint64_t>(1) << ((precision - numDigits) * 4)) - 1; |
1055 | 0 | } |
1056 | 0 | precision -= numDigits; |
1057 | 0 | } |
1058 | | |
1059 | 0 | void DecimalQuantity::setBcdToZero() { |
1060 | 0 | if (usingBytes) { |
1061 | 0 | uprv_free(fBCD.bcdBytes.ptr); |
1062 | 0 | fBCD.bcdBytes.ptr = nullptr; |
1063 | 0 | usingBytes = false; |
1064 | 0 | } |
1065 | 0 | fBCD.bcdLong = 0L; |
1066 | 0 | scale = 0; |
1067 | 0 | precision = 0; |
1068 | 0 | isApproximate = false; |
1069 | 0 | origDouble = 0; |
1070 | 0 | origDelta = 0; |
1071 | 0 | exponent = 0; |
1072 | 0 | } |
1073 | | |
1074 | 0 | void DecimalQuantity::readIntToBcd(int32_t n) { |
1075 | 0 | U_ASSERT(n != 0); |
1076 | | // ints always fit inside the long implementation. |
1077 | 0 | uint64_t result = 0L; |
1078 | 0 | int i = 16; |
1079 | 0 | for (; n != 0; n /= 10, i--) { |
1080 | 0 | result = (result >> 4) + ((static_cast<uint64_t>(n) % 10) << 60); |
1081 | 0 | } |
1082 | 0 | U_ASSERT(!usingBytes); |
1083 | 0 | fBCD.bcdLong = result >> (i * 4); |
1084 | 0 | scale = 0; |
1085 | 0 | precision = 16 - i; |
1086 | 0 | } |
1087 | | |
1088 | 0 | void DecimalQuantity::readLongToBcd(int64_t n) { |
1089 | 0 | U_ASSERT(n != 0); |
1090 | 0 | if (n >= 10000000000000000L) { |
1091 | 0 | ensureCapacity(); |
1092 | 0 | int i = 0; |
1093 | 0 | for (; n != 0L; n /= 10L, i++) { |
1094 | 0 | fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(n % 10); |
1095 | 0 | } |
1096 | 0 | U_ASSERT(usingBytes); |
1097 | 0 | scale = 0; |
1098 | 0 | precision = i; |
1099 | 0 | } else { |
1100 | 0 | uint64_t result = 0L; |
1101 | 0 | int i = 16; |
1102 | 0 | for (; n != 0L; n /= 10L, i--) { |
1103 | 0 | result = (result >> 4) + ((n % 10) << 60); |
1104 | 0 | } |
1105 | 0 | U_ASSERT(i >= 0); |
1106 | 0 | U_ASSERT(!usingBytes); |
1107 | 0 | fBCD.bcdLong = result >> (i * 4); |
1108 | 0 | scale = 0; |
1109 | 0 | precision = 16 - i; |
1110 | 0 | } |
1111 | 0 | } |
1112 | | |
1113 | 0 | void DecimalQuantity::readDecNumberToBcd(const DecNum& decnum) { |
1114 | 0 | const decNumber* dn = decnum.getRawDecNumber(); |
1115 | 0 | if (dn->digits > 16) { |
1116 | 0 | ensureCapacity(dn->digits); |
1117 | 0 | for (int32_t i = 0; i < dn->digits; i++) { |
1118 | 0 | fBCD.bcdBytes.ptr[i] = dn->lsu[i]; |
1119 | 0 | } |
1120 | 0 | } else { |
1121 | 0 | uint64_t result = 0L; |
1122 | 0 | for (int32_t i = 0; i < dn->digits; i++) { |
1123 | 0 | result |= static_cast<uint64_t>(dn->lsu[i]) << (4 * i); |
1124 | 0 | } |
1125 | 0 | fBCD.bcdLong = result; |
1126 | 0 | } |
1127 | 0 | scale = dn->exponent; |
1128 | 0 | precision = dn->digits; |
1129 | 0 | } |
1130 | | |
1131 | | void DecimalQuantity::readDoubleConversionToBcd( |
1132 | 0 | const char* buffer, int32_t length, int32_t point) { |
1133 | | // NOTE: Despite the fact that double-conversion's API is called |
1134 | | // "DoubleToAscii", they actually use '0' (as opposed to u8'0'). |
1135 | 0 | if (length > 16) { |
1136 | 0 | ensureCapacity(length); |
1137 | 0 | for (int32_t i = 0; i < length; i++) { |
1138 | 0 | fBCD.bcdBytes.ptr[i] = buffer[length-i-1] - '0'; |
1139 | 0 | } |
1140 | 0 | } else { |
1141 | 0 | uint64_t result = 0L; |
1142 | 0 | for (int32_t i = 0; i < length; i++) { |
1143 | 0 | result |= static_cast<uint64_t>(buffer[length-i-1] - '0') << (4 * i); |
1144 | 0 | } |
1145 | 0 | fBCD.bcdLong = result; |
1146 | 0 | } |
1147 | 0 | scale = point - length; |
1148 | 0 | precision = length; |
1149 | 0 | } |
1150 | | |
1151 | 0 | void DecimalQuantity::compact() { |
1152 | 0 | if (usingBytes) { |
1153 | 0 | int32_t delta = 0; |
1154 | 0 | for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++); |
1155 | 0 | if (delta == precision) { |
1156 | | // Number is zero |
1157 | 0 | setBcdToZero(); |
1158 | 0 | return; |
1159 | 0 | } else { |
1160 | | // Remove trailing zeros |
1161 | 0 | shiftRight(delta); |
1162 | 0 | } |
1163 | | |
1164 | | // Compute precision |
1165 | 0 | int32_t leading = precision - 1; |
1166 | 0 | for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--); |
1167 | 0 | precision = leading + 1; |
1168 | | |
1169 | | // Switch storage mechanism if possible |
1170 | 0 | if (precision <= 16) { |
1171 | 0 | switchStorage(); |
1172 | 0 | } |
1173 | |
|
1174 | 0 | } else { |
1175 | 0 | if (fBCD.bcdLong == 0L) { |
1176 | | // Number is zero |
1177 | 0 | setBcdToZero(); |
1178 | 0 | return; |
1179 | 0 | } |
1180 | | |
1181 | | // Compact the number (remove trailing zeros) |
1182 | | // TODO: Use a more efficient algorithm here and below. There is a logarithmic one. |
1183 | 0 | int32_t delta = 0; |
1184 | 0 | for (; delta < precision && getDigitPos(delta) == 0; delta++); |
1185 | 0 | fBCD.bcdLong >>= delta * 4; |
1186 | 0 | scale += delta; |
1187 | | |
1188 | | // Compute precision |
1189 | 0 | int32_t leading = precision - 1; |
1190 | 0 | for (; leading >= 0 && getDigitPos(leading) == 0; leading--); |
1191 | 0 | precision = leading + 1; |
1192 | 0 | } |
1193 | 0 | } |
1194 | | |
1195 | 0 | void DecimalQuantity::ensureCapacity() { |
1196 | 0 | ensureCapacity(40); |
1197 | 0 | } |
1198 | | |
1199 | 0 | void DecimalQuantity::ensureCapacity(int32_t capacity) { |
1200 | 0 | if (capacity == 0) { return; } |
1201 | 0 | int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0; |
1202 | 0 | if (!usingBytes) { |
1203 | | // TODO: There is nothing being done to check for memory allocation failures. |
1204 | | // TODO: Consider indexing by nybbles instead of bytes in C++, so that we can |
1205 | | // make these arrays half the size. |
1206 | 0 | fBCD.bcdBytes.ptr = static_cast<int8_t*>(uprv_malloc(capacity * sizeof(int8_t))); |
1207 | 0 | fBCD.bcdBytes.len = capacity; |
1208 | | // Initialize the byte array to zeros (this is done automatically in Java) |
1209 | 0 | uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t)); |
1210 | 0 | } else if (oldCapacity < capacity) { |
1211 | 0 | auto bcd1 = static_cast<int8_t*>(uprv_malloc(capacity * 2 * sizeof(int8_t))); |
1212 | 0 | uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t)); |
1213 | | // Initialize the rest of the byte array to zeros (this is done automatically in Java) |
1214 | 0 | uprv_memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t)); |
1215 | 0 | uprv_free(fBCD.bcdBytes.ptr); |
1216 | 0 | fBCD.bcdBytes.ptr = bcd1; |
1217 | 0 | fBCD.bcdBytes.len = capacity * 2; |
1218 | 0 | } |
1219 | 0 | usingBytes = true; |
1220 | 0 | } |
1221 | | |
1222 | 0 | void DecimalQuantity::switchStorage() { |
1223 | 0 | if (usingBytes) { |
1224 | | // Change from bytes to long |
1225 | 0 | uint64_t bcdLong = 0L; |
1226 | 0 | for (int i = precision - 1; i >= 0; i--) { |
1227 | 0 | bcdLong <<= 4; |
1228 | 0 | bcdLong |= fBCD.bcdBytes.ptr[i]; |
1229 | 0 | } |
1230 | 0 | uprv_free(fBCD.bcdBytes.ptr); |
1231 | 0 | fBCD.bcdBytes.ptr = nullptr; |
1232 | 0 | fBCD.bcdLong = bcdLong; |
1233 | 0 | usingBytes = false; |
1234 | 0 | } else { |
1235 | | // Change from long to bytes |
1236 | | // Copy the long into a local variable since it will get munged when we allocate the bytes |
1237 | 0 | uint64_t bcdLong = fBCD.bcdLong; |
1238 | 0 | ensureCapacity(); |
1239 | 0 | for (int i = 0; i < precision; i++) { |
1240 | 0 | fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(bcdLong & 0xf); |
1241 | 0 | bcdLong >>= 4; |
1242 | 0 | } |
1243 | 0 | U_ASSERT(usingBytes); |
1244 | 0 | } |
1245 | 0 | } |
1246 | | |
1247 | 0 | void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) { |
1248 | 0 | setBcdToZero(); |
1249 | 0 | if (other.usingBytes) { |
1250 | 0 | ensureCapacity(other.precision); |
1251 | 0 | uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t)); |
1252 | 0 | } else { |
1253 | 0 | fBCD.bcdLong = other.fBCD.bcdLong; |
1254 | 0 | } |
1255 | 0 | } |
1256 | | |
1257 | 0 | void DecimalQuantity::moveBcdFrom(DecimalQuantity &other) { |
1258 | 0 | setBcdToZero(); |
1259 | 0 | if (other.usingBytes) { |
1260 | 0 | usingBytes = true; |
1261 | 0 | fBCD.bcdBytes.ptr = other.fBCD.bcdBytes.ptr; |
1262 | 0 | fBCD.bcdBytes.len = other.fBCD.bcdBytes.len; |
1263 | | // Take ownership away from the old instance: |
1264 | 0 | other.fBCD.bcdBytes.ptr = nullptr; |
1265 | 0 | other.usingBytes = false; |
1266 | 0 | } else { |
1267 | 0 | fBCD.bcdLong = other.fBCD.bcdLong; |
1268 | 0 | } |
1269 | 0 | } |
1270 | | |
1271 | 0 | const char16_t* DecimalQuantity::checkHealth() const { |
1272 | 0 | if (usingBytes) { |
1273 | 0 | if (precision == 0) { return u"Zero precision but we are in byte mode"; } |
1274 | 0 | int32_t capacity = fBCD.bcdBytes.len; |
1275 | 0 | if (precision > capacity) { return u"Precision exceeds length of byte array"; } |
1276 | 0 | if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode"; } |
1277 | 0 | if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode"; } |
1278 | 0 | for (int i = 0; i < precision; i++) { |
1279 | 0 | if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array"; } |
1280 | 0 | if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array"; } |
1281 | 0 | } |
1282 | 0 | for (int i = precision; i < capacity; i++) { |
1283 | 0 | if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array"; } |
1284 | 0 | } |
1285 | 0 | } else { |
1286 | 0 | if (precision == 0 && fBCD.bcdLong != 0) { |
1287 | 0 | return u"Value in bcdLong even though precision is zero"; |
1288 | 0 | } |
1289 | 0 | if (precision > 16) { return u"Precision exceeds length of long"; } |
1290 | 0 | if (precision != 0 && getDigitPos(precision - 1) == 0) { |
1291 | 0 | return u"Most significant digit is zero in long mode"; |
1292 | 0 | } |
1293 | 0 | if (precision != 0 && getDigitPos(0) == 0) { |
1294 | 0 | return u"Least significant digit is zero in long mode"; |
1295 | 0 | } |
1296 | 0 | for (int i = 0; i < precision; i++) { |
1297 | 0 | if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long"; } |
1298 | 0 | if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)"; } |
1299 | 0 | } |
1300 | 0 | for (int i = precision; i < 16; i++) { |
1301 | 0 | if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long"; } |
1302 | 0 | } |
1303 | 0 | } |
1304 | | |
1305 | | // No error |
1306 | 0 | return nullptr; |
1307 | 0 | } |
1308 | | |
1309 | 0 | bool DecimalQuantity::operator==(const DecimalQuantity& other) const { |
1310 | 0 | bool basicEquals = |
1311 | 0 | scale == other.scale |
1312 | 0 | && precision == other.precision |
1313 | 0 | && flags == other.flags |
1314 | 0 | && lReqPos == other.lReqPos |
1315 | 0 | && rReqPos == other.rReqPos |
1316 | 0 | && isApproximate == other.isApproximate; |
1317 | 0 | if (!basicEquals) { |
1318 | 0 | return false; |
1319 | 0 | } |
1320 | | |
1321 | 0 | if (precision == 0) { |
1322 | 0 | return true; |
1323 | 0 | } else if (isApproximate) { |
1324 | 0 | return origDouble == other.origDouble && origDelta == other.origDelta; |
1325 | 0 | } else { |
1326 | 0 | for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) { |
1327 | 0 | if (getDigit(m) != other.getDigit(m)) { |
1328 | 0 | return false; |
1329 | 0 | } |
1330 | 0 | } |
1331 | 0 | return true; |
1332 | 0 | } |
1333 | 0 | } |
1334 | | |
1335 | 0 | UnicodeString DecimalQuantity::toString() const { |
1336 | 0 | UErrorCode localStatus = U_ZERO_ERROR; |
1337 | 0 | MaybeStackArray<char, 30> digits(precision + 1, localStatus); |
1338 | 0 | if (U_FAILURE(localStatus)) { |
1339 | 0 | return ICU_Utility::makeBogusString(); |
1340 | 0 | } |
1341 | 0 | for (int32_t i = 0; i < precision; i++) { |
1342 | 0 | digits[i] = getDigitPos(precision - i - 1) + '0'; |
1343 | 0 | } |
1344 | 0 | digits[precision] = 0; // terminate buffer |
1345 | 0 | char buffer8[100]; |
1346 | 0 | snprintf( |
1347 | 0 | buffer8, |
1348 | 0 | sizeof(buffer8), |
1349 | 0 | "<DecimalQuantity %d:%d %s %s%s%s%d>", |
1350 | 0 | lReqPos, |
1351 | 0 | rReqPos, |
1352 | 0 | (usingBytes ? "bytes" : "long"), |
1353 | 0 | (isNegative() ? "-" : ""), |
1354 | 0 | (precision == 0 ? "0" : digits.getAlias()), |
1355 | 0 | "E", |
1356 | 0 | scale); |
1357 | 0 | return UnicodeString(buffer8, -1, US_INV); |
1358 | 0 | } |
1359 | | |
1360 | | #endif /* #if !UCONFIG_NO_FORMATTING */ |