/src/hermes/lib/VM/JSLib/DateUtil.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright (c) Meta Platforms, Inc. and affiliates.  | 
3  |  |  *  | 
4  |  |  * This source code is licensed under the MIT license found in the  | 
5  |  |  * LICENSE file in the root directory of this source tree.  | 
6  |  |  */  | 
7  |  |  | 
8  |  | #include "hermes/VM/JSLib/DateUtil.h"  | 
9  |  | #include "hermes/VM/JSLib/DateCache.h"  | 
10  |  |  | 
11  |  | #include "hermes/Platform/Unicode/PlatformUnicode.h"  | 
12  |  | #include "hermes/Support/Compiler.h"  | 
13  |  | #include "hermes/Support/OSCompat.h"  | 
14  |  | #include "hermes/VM/CallResult.h"  | 
15  |  | #include "hermes/VM/SmallXString.h"  | 
16  |  |  | 
17  |  | #include "llvh/Support/ErrorHandling.h"  | 
18  |  | #include "llvh/Support/Format.h"  | 
19  |  | #include "llvh/Support/raw_ostream.h"  | 
20  |  |  | 
21  |  | #include <cassert>  | 
22  |  | #include <cctype>  | 
23  |  | #include <cmath>  | 
24  |  | #include <ctime>  | 
25  |  | #pragma GCC diagnostic push  | 
26  |  |  | 
27  |  | #ifdef HERMES_COMPILER_SUPPORTS_WSHORTEN_64_TO_32  | 
28  |  | #pragma GCC diagnostic ignored "-Wshorten-64-to-32"  | 
29  |  | #endif  | 
30  |  | namespace hermes { | 
31  |  | namespace vm { | 
32  |  |  | 
33  |  | /// Set \p quot to the largest integral value that is smaller than or equal to  | 
34  |  | /// the algebraic quotient of \p x divided by \p y.  | 
35  |  | /// Set \p rem to the floor modulus of \p x divided by \p y.  | 
36  | 0  | static void floorDivMod(int64_t x, int64_t y, int64_t *quot, int64_t *rem) { | 
37  | 0  |   int64_t q = x / y;  | 
38  |  |   // signs are different && not evenly divisable  | 
39  | 0  |   if ((x ^ y) < 0 && q * y != x) { | 
40  | 0  |     q--;  | 
41  | 0  |   }  | 
42  | 0  |   *quot = q;  | 
43  | 0  |   *rem = x - y * q;  | 
44  | 0  | }  | 
45  |  |  | 
46  |  | /// \return the floor modulus of \p x divided by \p y.  | 
47  | 0  | static int64_t floorMod(int64_t x, int64_t y) { | 
48  | 0  |   int64_t quot, rem;  | 
49  | 0  |   floorDivMod(x, y, ", &rem);  | 
50  | 0  |   return rem;  | 
51  | 0  | }  | 
52  |  |  | 
53  |  | /// Perform the fmod operation and adjusts the result so that it's not negative.  | 
54  |  | /// Useful in computing dates before Jan 1 1970.  | 
55  | 0  | static inline double posfmod(double x, double y) { | 
56  | 0  |   double result = std::fmod(x, y);  | 
57  | 0  |   return result < 0 ? result + y : result;  | 
58  | 0  | }  | 
59  |  |  | 
60  |  | //===----------------------------------------------------------------------===//  | 
61  |  | // Current time  | 
62  |  |  | 
63  | 0  | std::chrono::milliseconds::rep curTime() { | 
64  |  |   // Use std::chrono here because we need millisecond precision, which  | 
65  |  |   // std::time() fails to provide.  | 
66  | 0  |   return std::chrono::duration_cast<std::chrono::milliseconds>(  | 
67  | 0  |              std::chrono::system_clock::now().time_since_epoch())  | 
68  | 0  |       .count();  | 
69  | 0  | }  | 
70  |  |  | 
71  |  | //===----------------------------------------------------------------------===//  | 
72  |  | // ES5.1 15.9.1.2  | 
73  |  |  | 
74  | 0  | double day(double t) { | 
75  | 0  |   return std::floor(t / MS_PER_DAY);  | 
76  | 0  | }  | 
77  |  |  | 
78  | 0  | double timeWithinDay(double t) { | 
79  | 0  |   return posfmod(t, MS_PER_DAY);  | 
80  | 0  | }  | 
81  |  |  | 
82  |  | //===----------------------------------------------------------------------===//  | 
83  |  | // ES5.1 15.9.1.3  | 
84  |  |  | 
85  |  | /// \return true if year \p y is a leap year.  | 
86  | 0  | static bool isLeapYear(double y) { | 
87  | 0  |   if (std::fmod(y, 4) != 0) { | 
88  | 0  |     return false;  | 
89  | 0  |   }  | 
90  |  |   // y % 4 == 0  | 
91  | 0  |   if (std::fmod(y, 100) != 0) { | 
92  | 0  |     return true;  | 
93  | 0  |   }  | 
94  |  |   // y % 100 == 0  | 
95  | 0  |   if (std::fmod(y, 400) != 0) { | 
96  | 0  |     return false;  | 
97  | 0  |   }  | 
98  |  |   // y % 400 == 0  | 
99  | 0  |   return true;  | 
100  | 0  | }  | 
101  |  |  | 
102  |  | /// \return true if year \p y is a leap year.  | 
103  | 0  | static bool isLeapYear(int32_t y) { | 
104  | 0  |   if (y % 4 != 0) { | 
105  | 0  |     return false;  | 
106  | 0  |   }  | 
107  |  |   // y % 4 == 0  | 
108  | 0  |   if (y % 100 != 0) { | 
109  | 0  |     return true;  | 
110  | 0  |   }  | 
111  |  |   // y % 100 == 0  | 
112  | 0  |   if (y % 400 != 0) { | 
113  | 0  |     return false;  | 
114  | 0  |   }  | 
115  |  |   // y % 400 == 0  | 
116  | 0  |   return true;  | 
117  | 0  | }  | 
118  |  |  | 
119  | 0  | uint32_t daysInYear(double y) { | 
120  | 0  |   return isLeapYear(y) ? 366 : 365;  | 
121  | 0  | }  | 
122  |  |  | 
123  | 0  | double dayFromYear(double y) { | 
124  |  |   // Use the formula given in the spec for computing the day from year.  | 
125  | 0  |   return 365 * (y - 1970) + std::floor((y - 1969) / 4.0) -  | 
126  | 0  |       std::floor((y - 1901) / 100.0) + std::floor((y - 1601) / 400.0);  | 
127  | 0  | }  | 
128  |  |  | 
129  | 0  | double timeFromYear(double y) { | 
130  | 0  |   return MS_PER_DAY * dayFromYear(y);  | 
131  | 0  | }  | 
132  |  |  | 
133  | 0  | double yearFromTime(double t) { | 
134  | 0  |   if (!std::isfinite(t)) { | 
135  |  |     // If t is infinitely in the future be done.  | 
136  | 0  |     return t;  | 
137  | 0  |   }  | 
138  |  |  | 
139  |  |   // Estimate y using the average year length.  | 
140  | 0  |   double y = std::floor(t / (MS_PER_DAY * 365.2425)) + 1970;  | 
141  |  |  | 
142  |  |   // Actual time for year y.  | 
143  | 0  |   double yt = timeFromYear(y);  | 
144  |  | 
  | 
145  | 0  |   while (yt > t) { | 
146  |  |     // Estimate was too high, decrement until we're correct.  | 
147  | 0  |     --y;  | 
148  | 0  |     yt = timeFromYear(y);  | 
149  | 0  |   }  | 
150  | 0  |   while (yt + daysInYear(y) * MS_PER_DAY <= t) { | 
151  |  |     // t is more than a year away from the start of y.  | 
152  |  |     // Increment y until we're correct.  | 
153  | 0  |     ++y;  | 
154  | 0  |     yt = timeFromYear(y);  | 
155  | 0  |   }  | 
156  |  | 
  | 
157  | 0  |   assert(  | 
158  | 0  |       timeFromYear(y) <= t && timeFromYear(y + 1) > t &&  | 
159  | 0  |       "yearFromTime incorrect");  | 
160  | 0  |   return y;  | 
161  | 0  | }  | 
162  |  |  | 
163  | 0  | bool inLeapYear(double t) { | 
164  | 0  |   return daysInYear(yearFromTime(t)) == 366;  | 
165  | 0  | }  | 
166  |  |  | 
167  |  | //===----------------------------------------------------------------------===//  | 
168  |  | // ES5.1 15.9.1.4  | 
169  |  |  | 
170  | 0  | uint32_t monthFromTime(double t) { | 
171  | 0  |   double dayWithinYear = day(t) - dayFromYear(yearFromTime(t));  | 
172  | 0  |   constexpr int8_t kDaysInMonthNonLeap[11] = { | 
173  | 0  |       31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30};  | 
174  | 0  |   double curDay = 0.0;  | 
175  | 0  |   for (uint32_t i = 0; i < 11; ++i) { | 
176  | 0  |     curDay += (i == 1 && inLeapYear(t)) ? kDaysInMonthNonLeap[i] + 1  | 
177  | 0  |                                         : kDaysInMonthNonLeap[i];  | 
178  | 0  |     if (dayWithinYear < curDay)  | 
179  | 0  |       return i;  | 
180  | 0  |   }  | 
181  |  |   // Must be December.  | 
182  | 0  |   return 11;  | 
183  | 0  | }  | 
184  |  |  | 
185  |  | //===----------------------------------------------------------------------===//  | 
186  |  | // ES5.1 15.9.1.5  | 
187  |  |  | 
188  |  | /// Gives the offset of the first day in month m.  | 
189  |  | /// \param leap indicates if \p m falls in a leap year.  | 
190  | 0  | static uint32_t dayFromMonth(uint32_t m, bool leap) { | 
191  | 0  |   static const uint16_t standardTable[]{ | 
192  | 0  |       0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365};  | 
193  | 0  |   static const uint16_t leapYearTable[]{ | 
194  | 0  |       0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366};  | 
195  | 0  |   assert(m < 12 && "invalid month supplied to dayFromMonth");  | 
196  | 0  |   return leap ? leapYearTable[m] : standardTable[m];  | 
197  | 0  | }  | 
198  |  |  | 
199  | 0  | double dateFromTime(double t) { | 
200  | 0  |   double dayWithinYear = day(t) - dayFromYear(yearFromTime(t));  | 
201  | 0  |   bool leap = inLeapYear(t);  | 
202  | 0  |   return dayWithinYear - dayFromMonth(monthFromTime(t), leap) + 1;  | 
203  | 0  | }  | 
204  |  |  | 
205  |  | //===----------------------------------------------------------------------===//  | 
206  |  | // ES5.1 15.9.1.6  | 
207  |  |  | 
208  | 0  | int32_t weekDay(double t) { | 
209  | 0  |   return posfmod((day(t) + 4), 7);  | 
210  | 0  | }  | 
211  |  |  | 
212  |  | //===----------------------------------------------------------------------===//  | 
213  |  | // ES5.1 15.9.1.7  | 
214  |  |  | 
215  | 160  | double localTZA() { | 
216  |  | #ifdef _WINDOWS  | 
217  |  |  | 
218  |  |   // TODO(T173336959): We should use a thread-safe API, and also be consistent  | 
219  |  |   // with daylightSavingTA().  | 
220  |  |   _tzset();  | 
221  |  |  | 
222  |  |   long gmtoff;  | 
223  |  |   int err = _get_timezone(&gmtoff);  | 
224  |  |   if (err)  | 
225  |  |     return 0;  | 
226  |  |  | 
227  |  |   // The result of _get_timezone is negated  | 
228  |  |   return -gmtoff * MS_PER_SECOND;  | 
229  |  |  | 
230  |  | #else  | 
231  |  |  | 
232  |  |   // Get the current time in seconds (might have DST adjustment included).  | 
233  | 160  |   std::time_t currentWithDST = std::time(nullptr);  | 
234  |  |  | 
235  |  |   // Deconstruct the time into localTime.  | 
236  |  |   // Note that localtime_r uses cached timezone information on Linux (glibc), so  | 
237  |  |   // the returned local time may not be computed using an updated timezone if  | 
238  |  |   // the timezone changes after this process has started.  | 
239  | 160  |   std::tm tm;  | 
240  | 160  |   std::tm *local = ::localtime_r(¤tWithDST, &tm);  | 
241  | 160  |   if (!local)  | 
242  | 0  |     return 0;  | 
243  |  |  | 
244  | 160  |   long gmtoff = local->tm_gmtoff;  | 
245  |  |  | 
246  |  |   // Use the gmtoff field and subtract an hour if currently in DST.  | 
247  | 160  |   return (gmtoff * MS_PER_SECOND) - (local->tm_isdst ? MS_PER_HOUR : 0);  | 
248  |  |  | 
249  | 160  | #endif  | 
250  | 160  | }  | 
251  |  |  | 
252  |  | //===----------------------------------------------------------------------===//  | 
253  |  | // ES5.1 15.9.1.8  | 
254  |  |  | 
255  |  | static const int32_t DAYS_IN_1_YEAR = 365;  | 
256  |  | static const int32_t DAYS_IN_4_YEARS = DAYS_IN_1_YEAR * 4 + 1;  | 
257  |  | static const int32_t DAYS_IN_100_YEARS = DAYS_IN_4_YEARS * 25 - 1;  | 
258  |  | static const int32_t DAYS_IN_400_YEARS = DAYS_IN_100_YEARS * 4 + 1;  | 
259  |  | // ES5.1 15.9.1.1  | 
260  |  | // The actual range of times supported by ECMAScript Date objects is slightly  | 
261  |  | // smaller: exactly –100,000,000 days to 100,000,000 days measured relative to  | 
262  |  | // midnight at the beginning of 01 January, 1970 UTC.  | 
263  |  | static const int32_t BASE_YEAR = -274000;  | 
264  |  | static const int32_t DAYS_FROM_BASE_YEAR_TO_1970 =  | 
265  |  |     (-BASE_YEAR / 400) * DAYS_IN_400_YEARS + 4 * DAYS_IN_400_YEARS +  | 
266  |  |     3 * DAYS_IN_100_YEARS + 17 * DAYS_IN_4_YEARS + 2 * DAYS_IN_1_YEAR;  | 
267  |  |  | 
268  |  | /// \p year will be set to the year the \p epochDays falls in.  | 
269  |  | /// \p yearAsEpochDays will be set to the number of days from 1970-01-01 to Jan  | 
270  |  | ///    1st of \p year (e.g. 0 represents 1970, 365 represents 1971,  | 
271  |  | ///    1096 represents 1973).  | 
272  |  | /// \p dayOfYear will be set to the date the \p epochDays fall on, represented  | 
273  |  | ///    as number of days since Jan 1st (e.g. 0 represents Jan 1;  | 
274  |  | ///    59 represents Feb 29 if \p year is a leap year, Mar 1 otherwise).  | 
275  |  | static void decomposeEpochDays(  | 
276  |  |     int32_t epochDays,  | 
277  |  |     int32_t *year,  | 
278  |  |     int32_t *yearAsEpochDays,  | 
279  | 0  |     int32_t *dayOfYear) { | 
280  | 0  |   *year = BASE_YEAR;  | 
281  | 0  |   *yearAsEpochDays = -DAYS_FROM_BASE_YEAR_TO_1970;  | 
282  | 0  |   *dayOfYear = epochDays + DAYS_FROM_BASE_YEAR_TO_1970;  | 
283  |  | 
  | 
284  | 0  |   int32_t countOf400Years = *dayOfYear / DAYS_IN_400_YEARS;  | 
285  | 0  |   *year += countOf400Years * 400;  | 
286  | 0  |   *yearAsEpochDays += countOf400Years * DAYS_IN_400_YEARS;  | 
287  | 0  |   *dayOfYear -= countOf400Years * DAYS_IN_400_YEARS;  | 
288  |  | 
  | 
289  | 0  |   int32_t countOf100Years = *dayOfYear / DAYS_IN_100_YEARS;  | 
290  | 0  |   *year += countOf100Years * 100;  | 
291  | 0  |   *yearAsEpochDays += countOf100Years * DAYS_IN_100_YEARS;  | 
292  | 0  |   *dayOfYear -= countOf100Years * DAYS_IN_100_YEARS;  | 
293  |  | 
  | 
294  | 0  |   int32_t countOf4Years = *dayOfYear / DAYS_IN_4_YEARS;  | 
295  | 0  |   *year += countOf4Years * 4;  | 
296  | 0  |   *yearAsEpochDays += countOf4Years * DAYS_IN_4_YEARS;  | 
297  | 0  |   *dayOfYear -= countOf4Years * DAYS_IN_4_YEARS;  | 
298  |  | 
  | 
299  | 0  |   int32_t countOf1Year = *dayOfYear / DAYS_IN_1_YEAR;  | 
300  | 0  |   *year += countOf1Year * 1;  | 
301  | 0  |   *yearAsEpochDays += countOf1Year * DAYS_IN_1_YEAR;  | 
302  | 0  |   *dayOfYear -= countOf1Year * DAYS_IN_1_YEAR;  | 
303  | 0  | }  | 
304  |  |  | 
305  | 0  | static int32_t weekDayFromEpochDays(int32_t epochDays) { | 
306  | 0  |   return floorMod(epochDays + 4, 7);  | 
307  | 0  | }  | 
308  |  |  | 
309  |  | static int32_t epochDaysForYear2006To2033[] = { | 
310  |  |     13149, 13514, 13879, 14245, 14610, 14975, 15340, 15706, 16071, 16436,  | 
311  |  |     16801, 17167, 17532, 17897, 18262, 18628, 18993, 19358, 19723, 20089,  | 
312  |  |     20454, 20819, 21184, 21550, 21915, 22280, 22645, 23011};  | 
313  |  |  | 
314  |  | /// Returns an equivalent year, represented as number of days since 1970-01-01,  | 
315  |  | /// for the purpose of determining DST using the rules in ES5.1 15.9.1.8  | 
316  |  | /// Daylight Saving Time Adjustment.  | 
317  |  | /// The returned year is guaranteed to be in range [1970, 2037].  | 
318  |  | /// \p yearAsEpochDays must be set to the number of days from 1970-01-01 to Jan  | 
319  |  | /// 1st of \p year.  | 
320  |  | static int32_t equivalentYearAsEpochDays(  | 
321  |  |     int32_t year,  | 
322  | 0  |     int32_t yearAsEpochDays) { | 
323  | 0  |   if (year >= 1970 && year <= 2037) { | 
324  |  |     // This avoids surprising results for current year and nearby years.  | 
325  |  |     // It also reduces overhead for the most common cases.  | 
326  | 0  |     return yearAsEpochDays;  | 
327  | 0  |   }  | 
328  | 0  |   int32_t wkDay = weekDayFromEpochDays(yearAsEpochDays);  | 
329  |  |   // * 2006-01-01 and 2012-01-01 are both Sundays.  | 
330  |  |   // * Starting 2006/2012, for the 40 years after it, there is a leap year  | 
331  |  |   //   every 4 years, with no exceptions (i.e. 100 year rules).  | 
332  |  |   //   This is the basis of the following two bullet points.  | 
333  |  |   // * any_int * 12 % 28 is guaranteed to be a multiple of 4.  | 
334  |  |   //   As a result, the following operations does not change  | 
335  |  |   //   whether a year is a leap year or not.  | 
336  |  |   // * Every 4 years, there is 1 leap year and 3 non-leap years.  | 
337  |  |   //   (365*3+366) % 7 = 5. This is the number of extra days on top of  | 
338  |  |   //   full weeks we get every 4 years.  | 
339  |  |   //   * After 28 (4 * 7) years, we get (5 * 7) % 7 = 0 day of extra day.  | 
340  |  |   //     This is why subtracting 28 years does not change whether a year  | 
341  |  |   //     is a leap year.  | 
342  |  |   //   * After 12 (4 * 3) years, we get (5 * 3) % 7 = 1 day of extra day.  | 
343  |  |   //     That's why adding 12 years increments weekday by 1.  | 
344  | 0  |   int32_t eqYear = (isLeapYear(year) ? 2012 : 2006) + (wkDay * 12) % 28;  | 
345  |  |   // Find the year in the range 2006..2033 that is equivalent mod 28.  | 
346  |  |   // This is to avoid anything above year 2037.  | 
347  | 0  |   eqYear = 2006 + (eqYear - 2006) % 28;  | 
348  | 0  |   return epochDaysForYear2006To2033[eqYear - 2006];  | 
349  | 0  | }  | 
350  |  |  | 
351  |  | /// Returns an equivalent time for the purpose of determining DST using the  | 
352  |  | /// rules in ES5.1 15.9.1.8 Daylight Saving Time Adjustment  | 
353  |  | ///  | 
354  |  | /// \p time_ms must be within the range specified by  | 
355  |  | /// ES5.1 15.9.1.1 Time Values and Time Range.  | 
356  |  | ///  | 
357  |  | /// Some library calls doesn't work when the input date-time cannot be  | 
358  |  | /// represented as a 32-bit non-negative number of seconds since  | 
359  |  | /// 1970-01-01T00:00:00. (e.g. std::localtime on Windows)  | 
360  |  | ///  | 
361  |  | /// Note: not "static" so that it can be tested directly.  | 
362  | 0  | int32_t detail::equivalentTime(int64_t epochSecs) { | 
363  |  |   // The math behind this implementation is similar to the EquivalentTime  | 
364  |  |   // function in https://github.com/v8/v8/blob/master/src/date.h  | 
365  | 0  |   assert(epochSecs >= -TIME_RANGE_SECS && epochSecs <= TIME_RANGE_SECS);  | 
366  | 0  |   int64_t epochDays, secsOfDay;  | 
367  | 0  |   floorDivMod(epochSecs, SECONDS_PER_DAY, &epochDays, &secsOfDay);  | 
368  | 0  |   int32_t year, yearAsEpochDays, dayOfYear;  | 
369  |  |   // Narrowing of epochDays will not result in truncation  | 
370  | 0  |   decomposeEpochDays(epochDays, &year, &yearAsEpochDays, &dayOfYear);  | 
371  | 0  |   int32_t eqYearAsEpochDays = equivalentYearAsEpochDays(year, yearAsEpochDays);  | 
372  | 0  |   return (eqYearAsEpochDays + dayOfYear) * SECONDS_PER_DAY + secsOfDay;  | 
373  | 0  | }  | 
374  |  |  | 
375  |  | //===----------------------------------------------------------------------===//  | 
376  |  | // ES5.1 15.9.1.9  | 
377  |  |  | 
378  |  | /// https://tc39.es/ecma262/#sec-localtime  | 
379  |  | /// Conversion from UTC to local time.  | 
380  | 0  | double localTime(double t, LocalTimeOffsetCache &localTimeOffsetCache) { | 
381  |  |   // The spec requires that localTime() accepts only finite time value, but for  | 
382  |  |   // simplicity, we do the check here instead of the caller site.  | 
383  | 0  |   if (!std::isfinite(t)) { | 
384  | 0  |     return std::numeric_limits<double>::quiet_NaN();  | 
385  | 0  |   }  | 
386  | 0  |   return t + localTimeOffsetCache.getLocalTimeOffset(t, TimeType::Utc);  | 
387  | 0  | }  | 
388  |  |  | 
389  |  | /// https://tc39.es/ecma262/#sec-utc-t  | 
390  |  | /// Conversion from local time to UTC.  | 
391  |  | ///  | 
392  |  | /// There is time ambiguity when converting local time to UTC time. For example,  | 
393  |  | /// when offsets change in backward direction (transition from DST), the same  | 
394  |  | /// local time is repeated, and mapped to two different UTC times. When  | 
395  |  | /// offsets change in forward direction (transition to DST), local times are  | 
396  |  | /// skipped. ECMA262 requires that for both cases, time \t should be interpreted  | 
397  |  | /// using the time zone offset *before* the transition.  | 
398  |  | /// Consider time zone `America/New_York`, 1:30 AM on 5 November 2017 is  | 
399  |  | /// repeated twice, it should be converted to UTC epoch 1509859800000  | 
400  |  | /// (1:30 AM UTC-04) instead of 1509863400000 (1:30 AM UTC-05). And 2:30 AM on  | 
401  |  | /// 12 March 2017 is skipped, it should be interpreted as 2:30 AM UTC-05  | 
402  |  | /// instead of 3:30 AM UTC-04. However, in this case, both have the same UTC  | 
403  |  | /// epoch.  | 
404  | 0  | double utcTime(double t, LocalTimeOffsetCache &localTimeOffsetCache) { | 
405  | 0  |   if (!std::isfinite(t)) { | 
406  | 0  |     return std::numeric_limits<double>::quiet_NaN();  | 
407  | 0  |   }  | 
408  | 0  |   return t - localTimeOffsetCache.getLocalTimeOffset(t, TimeType::Local);  | 
409  | 0  | }  | 
410  |  |  | 
411  |  | //===----------------------------------------------------------------------===//  | 
412  |  | // ES5.1 15.9.1.10  | 
413  |  |  | 
414  | 0  | double hourFromTime(double t) { | 
415  | 0  |   return posfmod(std::floor(t / MS_PER_HOUR), HOURS_PER_DAY);  | 
416  | 0  | }  | 
417  |  |  | 
418  | 0  | double minFromTime(double t) { | 
419  | 0  |   return posfmod(std::floor(t / MS_PER_MINUTE), MINUTES_PER_HOUR);  | 
420  | 0  | }  | 
421  |  |  | 
422  | 0  | double secFromTime(double t) { | 
423  | 0  |   return posfmod(std::floor(t / MS_PER_SECOND), SECONDS_PER_MINUTE);  | 
424  | 0  | }  | 
425  |  |  | 
426  | 0  | double msFromTime(double t) { | 
427  | 0  |   return posfmod(t, MS_PER_SECOND);  | 
428  | 0  | }  | 
429  |  |  | 
430  |  | //===----------------------------------------------------------------------===//  | 
431  |  | // ES5.1 15.9.1.11  | 
432  |  |  | 
433  | 0  | double makeTime(double hour, double min, double sec, double ms) { | 
434  | 0  |   if (!std::isfinite(hour) || !std::isfinite(min) || !std::isfinite(sec) ||  | 
435  | 0  |       !std::isfinite(ms)) { | 
436  | 0  |     return std::numeric_limits<double>::quiet_NaN();  | 
437  | 0  |   }  | 
438  | 0  |   double h = std::trunc(hour);  | 
439  | 0  |   double m = std::trunc(min);  | 
440  | 0  |   double s = std::trunc(sec);  | 
441  | 0  |   double milli = trunc(ms);  | 
442  | 0  |   return h * MS_PER_HOUR + m * MS_PER_MINUTE + s * MS_PER_SECOND + milli;  | 
443  | 0  | }  | 
444  |  |  | 
445  |  | //===----------------------------------------------------------------------===//  | 
446  |  | // ES5.1 15.9.1.12  | 
447  |  |  | 
448  | 0  | double makeDay(double year, double month, double date) { | 
449  | 0  |   if (!std::isfinite(year) || !std::isfinite(month) || !std::isfinite(date)) { | 
450  | 0  |     return std::numeric_limits<double>::quiet_NaN();  | 
451  | 0  |   }  | 
452  | 0  |   double y = std::trunc(year);  | 
453  | 0  |   double m = std::trunc(month);  | 
454  | 0  |   double dt = std::trunc(date);  | 
455  |  |  | 
456  |  |   // Actual year and month, accounting for the month being greater than 11.  | 
457  |  |   // Need to do this because it changes the leap year calculations.  | 
458  | 0  |   double ym = y + std::floor(m / 12);  | 
459  | 0  |   double mn = posfmod(m, 12);  | 
460  |  | 
  | 
461  | 0  |   bool leap = isLeapYear(ym);  | 
462  |  |  | 
463  |  |   // Day of the first day of the year ym.  | 
464  | 0  |   double yd = std::floor(timeFromYear(ym) / MS_PER_DAY);  | 
465  |  |   // Day of the first day of the month mn.  | 
466  | 0  |   double md = dayFromMonth(mn, leap);  | 
467  |  |  | 
468  |  |   // Final date is the first day of the year, offset by the first day of the  | 
469  |  |   // month, with dt - 1 to account for the day within the month.  | 
470  | 0  |   return yd + md + dt - 1;  | 
471  | 0  | }  | 
472  |  |  | 
473  |  | //===----------------------------------------------------------------------===//  | 
474  |  | // ES5.1 15.9.1.13  | 
475  |  |  | 
476  | 0  | double makeDate(double day, double t) { | 
477  | 0  |   if (!std::isfinite(day) || !std::isfinite(t)) { | 
478  | 0  |     return std::numeric_limits<double>::quiet_NaN();  | 
479  | 0  |   }  | 
480  |  |  | 
481  |  |   // Some compilers may contract the multiplication and addition into a single  | 
482  |  |   // FMA when they are part of the same expression. This would result in  | 
483  |  |   // non-standard results, so to avoid it, split them into separate expressions.  | 
484  |  |   // Note that this applies only when compiling with -ffp-contract=on. If  | 
485  |  |   // -ffp-contract=fast is used, the compiler will still be permitted to emit an  | 
486  |  |   // FMA operation for the separate expressions.  | 
487  | 0  |   double dayMs = day * MS_PER_DAY;  | 
488  | 0  |   return dayMs + t;  | 
489  | 0  | }  | 
490  |  |  | 
491  |  | //===----------------------------------------------------------------------===//  | 
492  |  | // ES5.1 15.9.1.14  | 
493  |  |  | 
494  | 0  | double timeClip(double t) { | 
495  | 0  |   if (!std::isfinite(t) || std::abs(t) > 8.64e15) { | 
496  | 0  |     return std::numeric_limits<double>::quiet_NaN();  | 
497  | 0  |   }  | 
498  |  |  | 
499  |  |   // Truncate and make -0 into +0.  | 
500  | 0  |   return std::trunc(t) + 0;  | 
501  | 0  | }  | 
502  |  |  | 
503  |  | //===----------------------------------------------------------------------===//  | 
504  |  | // toString Functions  | 
505  |  |  | 
506  | 0  | void dateToISOString(double t, double, llvh::SmallVectorImpl<char> &buf) { | 
507  | 0  |   llvh::raw_svector_ostream os{buf}; | 
508  |  |  | 
509  |  |   /// Make these ints here because we're printing and we have bounds on  | 
510  |  |   /// their values. Makes printing very easy.  | 
511  | 0  |   int32_t y = yearFromTime(t);  | 
512  | 0  |   int32_t m = monthFromTime(t) + 1; // monthFromTime(t) is 0-indexed.  | 
513  | 0  |   int32_t d = dateFromTime(t);  | 
514  |  | 
  | 
515  | 0  |   if (y < 0 || y > 9999) { | 
516  |  |     // Handle extended years.  | 
517  | 0  |     os << llvh::format("%+07d-%02d-%02d", y, m, d); | 
518  | 0  |   } else { | 
519  | 0  |     os << llvh::format("%04d-%02d-%02d", y, m, d); | 
520  | 0  |   }  | 
521  | 0  | }  | 
522  |  |  | 
523  | 0  | void timeToISOString(double t, double tza, llvh::SmallVectorImpl<char> &buf) { | 
524  | 0  |   llvh::raw_svector_ostream os{buf}; | 
525  |  |  | 
526  |  |   /// Make all of these ints here because we're printing and we have bounds on  | 
527  |  |   /// their values. Makes printing very easy.  | 
528  | 0  |   int32_t h = hourFromTime(t);  | 
529  | 0  |   int32_t min = minFromTime(t);  | 
530  | 0  |   int32_t s = secFromTime(t);  | 
531  | 0  |   int32_t ms = msFromTime(t);  | 
532  |  | 
  | 
533  | 0  |   if (tza == 0) { | 
534  |  |     // Zulu time, output Z as the time zone.  | 
535  | 0  |     os << llvh::format("%02d:%02d:%02d.%03dZ", h, min, s, ms); | 
536  | 0  |   } else { | 
537  |  |     // Calculate the +HH:mm expression for the time zone adjustment.  | 
538  |  |     // First account for the sign, then perform calculations on positive TZA.  | 
539  | 0  |     char sign = tza >= 0 ? '+' : '-';  | 
540  | 0  |     double tzaPos = std::abs(tza);  | 
541  | 0  |     int32_t tzh = hourFromTime(tzaPos);  | 
542  | 0  |     int32_t tzm = minFromTime(tzaPos);  | 
543  | 0  |     os << llvh::format(  | 
544  | 0  |         "%02d:%02d:%02d.%03d%c%02d:%02d", h, min, s, ms, sign, tzh, tzm);  | 
545  | 0  |   }  | 
546  | 0  | }  | 
547  |  |  | 
548  |  | static void datetimeToISOString(  | 
549  |  |     double t,  | 
550  |  |     double tza,  | 
551  |  |     llvh::SmallVectorImpl<char> &buf,  | 
552  | 0  |     char separator) { | 
553  | 0  |   dateToISOString(t, tza, buf);  | 
554  | 0  |   buf.push_back(separator);  | 
555  | 0  |   timeToISOString(t, tza, buf);  | 
556  | 0  | }  | 
557  |  |  | 
558  |  | void datetimeToISOString(  | 
559  |  |     double t,  | 
560  |  |     double tza,  | 
561  | 0  |     llvh::SmallVectorImpl<char> &buf) { | 
562  | 0  |   return datetimeToISOString(t, tza, buf, 'T');  | 
563  | 0  | }  | 
564  |  |  | 
565  | 0  | void datetimeToLocaleString(double t, llvh::SmallVectorImpl<char16_t> &buf) { | 
566  | 0  |   return platform_unicode::dateFormat(t, true, true, buf);  | 
567  | 0  | }  | 
568  |  |  | 
569  | 0  | void dateToLocaleString(double t, llvh::SmallVectorImpl<char16_t> &buf) { | 
570  | 0  |   return platform_unicode::dateFormat(t, true, false, buf);  | 
571  | 0  | }  | 
572  |  |  | 
573  | 0  | void timeToLocaleString(double t, llvh::SmallVectorImpl<char16_t> &buf) { | 
574  | 0  |   return platform_unicode::dateFormat(t, false, true, buf);  | 
575  | 0  | }  | 
576  |  |  | 
577  |  | // ES9.0 Table 46  | 
578  |  | static const char *const weekdayNames[7]{ | 
579  |  |     "Sun",  | 
580  |  |     "Mon",  | 
581  |  |     "Tue",  | 
582  |  |     "Wed",  | 
583  |  |     "Thu",  | 
584  |  |     "Fri",  | 
585  |  |     "Sat",  | 
586  |  | };  | 
587  |  |  | 
588  |  | // ES9.0 Table 47  | 
589  |  | static const char *const monthNames[12]{ | 
590  |  |     "Jan",  | 
591  |  |     "Feb",  | 
592  |  |     "Mar",  | 
593  |  |     "Apr",  | 
594  |  |     "May",  | 
595  |  |     "Jun",  | 
596  |  |     "Jul",  | 
597  |  |     "Aug",  | 
598  |  |     "Sep",  | 
599  |  |     "Oct",  | 
600  |  |     "Nov",  | 
601  |  |     "Dec",  | 
602  |  | };  | 
603  |  |  | 
604  | 0  | void dateString(double t, double, llvh::SmallVectorImpl<char> &buf) { | 
605  | 0  |   llvh::raw_svector_ostream os{buf}; | 
606  |  |  | 
607  |  |   // Make these ints here because we're printing and we have bounds on  | 
608  |  |   // their values. Makes printing very easy.  | 
609  | 0  |   int32_t y = yearFromTime(t);  | 
610  | 0  |   int32_t m = monthFromTime(t); // monthFromTime(t) is 0-indexed.  | 
611  | 0  |   int32_t d = dateFromTime(t);  | 
612  | 0  |   int32_t wd = weekDay(t);  | 
613  |  |  | 
614  |  |   // 7. Return the string-concatenation of weekday, the code unit 0x0020  | 
615  |  |   // (SPACE), month, the code unit 0x0020 (SPACE), day, the code unit 0x0020  | 
616  |  |   // (SPACE), and year.  | 
617  |  |   // Example: Mon Jul 22 2019  | 
618  | 0  |   os << llvh::format("%s %s %02d %0.4d", weekdayNames[wd], monthNames[m], d, y); | 
619  | 0  | }  | 
620  |  |  | 
621  | 0  | void timeString(double t, double tza, llvh::SmallVectorImpl<char> &buf) { | 
622  | 0  |   llvh::raw_svector_ostream os{buf}; | 
623  |  | 
  | 
624  | 0  |   int32_t hour = hourFromTime(t);  | 
625  | 0  |   int32_t minute = minFromTime(t);  | 
626  | 0  |   int32_t second = secFromTime(t);  | 
627  |  |  | 
628  |  |   // Example: 15:50:49 GMT  | 
629  | 0  |   os << llvh::format("%02d:%02d:%02d GMT", hour, minute, second); | 
630  | 0  | }  | 
631  |  |  | 
632  | 0  | void timeZoneString(double t, double tza, llvh::SmallVectorImpl<char> &buf) { | 
633  | 0  |   llvh::raw_svector_ostream os{buf}; | 
634  |  |  | 
635  |  |   // We've already computed the TZA, so use that as the offset.  | 
636  | 0  |   double offset = tza;  | 
637  |  |  | 
638  |  |   // 4. If offset >= 0, let offsetSign be "+"; otherwise, let offsetSign be "-".  | 
639  | 0  |   char offsetSign = offset >= 0 ? '+' : '-';  | 
640  |  |  | 
641  |  |   // 5. Let offsetMin be the String representation of MinFromTime(abs(offset)),  | 
642  |  |   // formatted as a two-digit decimal number, padded to the left with a zero if  | 
643  |  |   // necessary.  | 
644  | 0  |   int32_t offsetMin = minFromTime(std::abs(offset));  | 
645  |  |  | 
646  |  |   // 6. Let offsetHour be the String representation of  | 
647  |  |   // HourFromTime(abs(offset)), formatted as a two-digit decimal number, padded  | 
648  |  |   // to the left with a zero if necessary.  | 
649  | 0  |   int32_t offsetHour = hourFromTime(std::abs(offset));  | 
650  |  |  | 
651  |  |   // 7. Let tzName be an implementation-defined string that is either the empty  | 
652  |  |   // string or the string-concatenation of the code unit 0x0020 (SPACE), the  | 
653  |  |   // code unit 0x0028 (LEFT PARENTHESIS), an implementation-dependent timezone  | 
654  |  |   // name, and the code unit 0x0029 (RIGHT PARENTHESIS).  | 
655  |  |   // TODO: Make this something other than empty string.  | 
656  |  |  | 
657  |  |   // 8. Return the string-concatenation of offsetSign, offsetHour, offsetMin,  | 
658  |  |   // and tzName.  | 
659  |  |   // Example: -0700  | 
660  | 0  |   os << llvh::format("%c%02d%02d", offsetSign, offsetHour, offsetMin); | 
661  | 0  | }  | 
662  |  |  | 
663  | 0  | void dateTimeString(double tv, double tza, llvh::SmallVectorImpl<char> &buf) { | 
664  | 0  |   llvh::raw_svector_ostream os{buf}; | 
665  | 0  |   dateString(tv, tza, buf);  | 
666  |  |   // Return the string-concatenation of DateString(t), the code unit 0x0020  | 
667  |  |   // (SPACE), TimeString(t), and TimeZoneString(tv).  | 
668  |  |   // Example: Mon Jul 22 2019 15:51:50 GMT-0700  | 
669  | 0  |   os << " ";  | 
670  | 0  |   timeString(tv, tza, buf);  | 
671  | 0  |   timeZoneString(tv, tza, buf);  | 
672  | 0  | }  | 
673  |  |  | 
674  |  | void dateTimeUTCString(  | 
675  |  |     double tv,  | 
676  |  |     double tza,  | 
677  | 0  |     llvh::SmallVectorImpl<char> &buf) { | 
678  | 0  |   llvh::raw_svector_ostream os{buf}; | 
679  |  |  | 
680  |  |   // Make these ints here because we're printing and we have bounds on  | 
681  |  |   // their values. Makes printing very easy.  | 
682  | 0  |   int32_t y = yearFromTime(tv);  | 
683  | 0  |   int32_t m = monthFromTime(tv); // monthFromTime(t) is 0-indexed.  | 
684  | 0  |   int32_t d = dateFromTime(tv);  | 
685  | 0  |   int32_t wd = weekDay(tv);  | 
686  |  |  | 
687  |  |   // 8. Return the string-concatenation of weekday, ",", the code unit 0x0020  | 
688  |  |   // (SPACE), day, the code unit 0x0020 (SPACE), month, the code unit 0x0020  | 
689  |  |   // (SPACE), year, the code unit 0x0020 (SPACE), and TimeString(tv).  | 
690  |  |   // Example: Mon Jul 22 2019 15:51:50 GMT  | 
691  | 0  |   os << llvh::format(  | 
692  | 0  |       "%s, %02d %s %0.4d ", weekdayNames[wd], d, monthNames[m], y);  | 
693  | 0  |   timeString(tv, tza, buf);  | 
694  | 0  | }  | 
695  |  |  | 
696  | 0  | void timeTZString(double tv, double tza, llvh::SmallVectorImpl<char> &buf) { | 
697  |  |   // Return the string-concatenation of TimeString(t) and TimeZoneString(tv).  | 
698  |  |   // Example: 15:51:50 GMT-0700  | 
699  | 0  |   timeString(tv, tza, buf);  | 
700  | 0  |   timeZoneString(tv, tza, buf);  | 
701  | 0  | }  | 
702  |  |  | 
703  |  | //===----------------------------------------------------------------------===//  | 
704  |  | // Date parsing  | 
705  |  |  | 
706  |  | /// \return true if c represents a digit between 0 and 9.  | 
707  | 0  | static inline bool isDigit(char16_t c) { | 
708  | 0  |   return u'0' <= c && c <= u'9';  | 
709  | 0  | }  | 
710  |  |  | 
711  |  | /// \return true if c represents an alphabet letter.  | 
712  | 0  | static inline bool isAlpha(char16_t c) { | 
713  | 0  |   c |= 'a' ^ 'A'; // Lowercase  | 
714  | 0  |   return 'a' <= c && c <= 'z';  | 
715  | 0  | }  | 
716  |  |  | 
717  |  | /// Read a number from the iterator at \p it into \p x.  | 
718  |  | /// Can read integers that consist entirely of digits.  | 
719  |  | /// \param[in,out] it is modified to the new start point of the scan if  | 
720  |  | /// successful.  | 
721  |  | /// \param end the end of the string.  | 
722  |  | /// \param[out] x modified to contain the scanned integer.  | 
723  |  | /// \return true if successful, false if failed.  | 
724  |  | template <class InputIter>  | 
725  | 0  | static bool scanInt(InputIter &it, const InputIter end, int32_t &x) { | 
726  | 0  |   llvh::SmallString<16> str{}; | 
727  | 0  |   if (it == end) { | 
728  | 0  |     return false;  | 
729  | 0  |   }  | 
730  | 0  |   for (; it != end && isDigit(*it); ++it) { | 
731  | 0  |     str += static_cast<char>(*it);  | 
732  | 0  |   }  | 
733  | 0  |   llvh::StringRef ref{str}; | 
734  |  |   // getAsInteger returns false to signify success.  | 
735  | 0  |   return !ref.getAsInteger(10, x);  | 
736  | 0  | }  | 
737  |  |  | 
738  |  | static double parseISODate(  | 
739  |  |     StringView u16str,  | 
740  | 0  |     LocalTimeOffsetCache &localTimeOffsetCache) { | 
741  | 0  |   constexpr double nan = std::numeric_limits<double>::quiet_NaN();  | 
742  |  | 
  | 
743  | 0  |   auto it = u16str.begin();  | 
744  | 0  |   auto end = u16str.end();  | 
745  |  |  | 
746  |  |   // Used to indicate the negation multiplier on an integer.  | 
747  |  |   // 1 for positive, -1 for negative.  | 
748  | 0  |   double sign;  | 
749  |  |  | 
750  |  |   // Initialize these fields to their defaults.  | 
751  | 0  |   int32_t y, m{1}, d{1}, h{0}, min{0}, s{0}, ms{0}, tzh{0}, tzm{0}; | 
752  |  | 
  | 
753  | 0  |   auto consume = [&](char16_t ch) { | 
754  | 0  |     if (it != end && *it == ch) { | 
755  | 0  |       ++it;  | 
756  | 0  |       return true;  | 
757  | 0  |     }  | 
758  | 0  |     return false;  | 
759  | 0  |   };  | 
760  |  |  | 
761  |  |   // Must read the year.  | 
762  | 0  |   sign = 1;  | 
763  | 0  |   if (consume(u'+')) { | 
764  | 0  |     sign = 1;  | 
765  | 0  |   } else if (consume(u'-')) { | 
766  | 0  |     sign = -1;  | 
767  | 0  |   }  | 
768  | 0  |   if (!scanInt(it, end, y)) { | 
769  | 0  |     return nan;  | 
770  | 0  |   }  | 
771  | 0  |   y *= sign;  | 
772  | 0  |   if (consume(u'-')) { | 
773  |  |     // Try to read the month.  | 
774  | 0  |     if (!scanInt(it, end, m)) { | 
775  | 0  |       return nan;  | 
776  | 0  |     }  | 
777  | 0  |     if (consume(u'-')) { | 
778  |  |       // Try to read the date.  | 
779  | 0  |       if (!scanInt(it, end, d)) { | 
780  | 0  |         return nan;  | 
781  | 0  |       }  | 
782  | 0  |     }  | 
783  | 0  |   }  | 
784  |  |  | 
785  |  |   // See if there's a time.  | 
786  | 0  |   if (consume(u'T') || consume(u' ')) { | 
787  |  |     // Hours and minutes must exist.  | 
788  | 0  |     if (!scanInt(it, end, h)) { | 
789  | 0  |       return nan;  | 
790  | 0  |     }  | 
791  | 0  |     if (!consume(u':')) { | 
792  | 0  |       return nan;  | 
793  | 0  |     }  | 
794  | 0  |     if (!scanInt(it, end, min)) { | 
795  | 0  |       return nan;  | 
796  | 0  |     }  | 
797  | 0  |     if (consume(u':')) { | 
798  |  |       // Try to read seconds.  | 
799  | 0  |       if (!scanInt(it, end, s)) { | 
800  | 0  |         return nan;  | 
801  | 0  |       }  | 
802  | 0  |       if (consume(u'.')) { | 
803  |  |         // Try to read fraction of a second.  | 
804  | 0  |         if (it == end || !isDigit(*it)) { | 
805  | 0  |           return nan;  | 
806  | 0  |         }  | 
807  |  |  | 
808  |  |         // Position of the milliseconds counter.  | 
809  |  |         // Start at the 100s place and discard anything after the third digit by  | 
810  |  |         // dividing by 10 every iteration.  | 
811  | 0  |         int32_t pos = 100;  | 
812  |  | 
  | 
813  | 0  |         for (; it != end && isDigit(*it); ++it) { | 
814  | 0  |           ms += pos * (*it - '0');  | 
815  | 0  |           pos /= 10;  | 
816  | 0  |         }  | 
817  | 0  |       }  | 
818  | 0  |     }  | 
819  |  |  | 
820  | 0  |     if (it == end) { | 
821  |  |       // ES12 21.4.3.2: When the UTC offset representation is absent, date-only  | 
822  |  |       // forms are interpreted as a UTC time and date-time forms are interpreted  | 
823  |  |       // as a local time.  | 
824  | 0  |       double t = makeDate(makeDay(y, m - 1, d), makeTime(h, min, s, ms));  | 
825  | 0  |       t = utcTime(t, localTimeOffsetCache);  | 
826  | 0  |       return t;  | 
827  | 0  |     }  | 
828  |  |  | 
829  |  |     // Try to parse a timezone.  | 
830  | 0  |     if (consume(u'Z')) { | 
831  | 0  |       tzh = 0;  | 
832  | 0  |       tzm = 0;  | 
833  | 0  |     } else { | 
834  |  |       // Try to parse the fully specified timezone: [+/-]HH:mm.  | 
835  | 0  |       if (consume(u'+')) { | 
836  | 0  |         sign = 1;  | 
837  | 0  |       } else if (consume(u'-')) { | 
838  | 0  |         sign = -1;  | 
839  | 0  |       } else { | 
840  |  |         // Need a + or a -.  | 
841  | 0  |         return nan;  | 
842  | 0  |       }  | 
843  | 0  |       if (it > end - 2) { | 
844  | 0  |         return nan;  | 
845  | 0  |       }  | 
846  | 0  |       if (!scanInt(it, it + 2, tzh)) { | 
847  | 0  |         return nan;  | 
848  | 0  |       }  | 
849  | 0  |       tzh *= sign;  | 
850  | 0  |       consume(u':');  | 
851  | 0  |       if (it > end - 2) { | 
852  | 0  |         return nan;  | 
853  | 0  |       }  | 
854  | 0  |       if (!scanInt(it, it + 2, tzm)) { | 
855  | 0  |         return nan;  | 
856  | 0  |       }  | 
857  | 0  |       tzm *= sign;  | 
858  | 0  |     }  | 
859  | 0  |   }  | 
860  |  |  | 
861  | 0  |   if (it != end) { | 
862  |  |     // Should be done parsing.  | 
863  | 0  |     return nan;  | 
864  | 0  |   }  | 
865  |  |  | 
866  |  |   // Account for the fact that m was 1-indexed and the timezone offset.  | 
867  | 0  |   return makeDate(makeDay(y, m - 1, d), makeTime(h - tzh, min - tzm, s, ms));  | 
868  | 0  | }  | 
869  |  |  | 
870  |  | static double parseESDate(  | 
871  |  |     StringView str,  | 
872  | 0  |     LocalTimeOffsetCache &localTimeOffsetCache) { | 
873  | 0  |   constexpr double nan = std::numeric_limits<double>::quiet_NaN();  | 
874  | 0  |   StringView tok = str;  | 
875  |  |  | 
876  |  |   // Initialize these fields to their defaults.  | 
877  | 0  |   int32_t y, m{1}, d{1}, h{0}, min{0}, s{0}, ms{0}, tzh{0}, tzm{0}; | 
878  | 0  |   double sign = 1;  | 
879  |  |  | 
880  |  |   // Example strings to parse:  | 
881  |  |   // Mon Jul 15 2019 14:33:22 GMT-0700 (PDT)  | 
882  |  |   // Mon, 15 Jul 2019 14:33:22 GMT  | 
883  |  |   // The comma, time zone adjustment, and description are optional,  | 
884  |  |  | 
885  |  |   // Current index we are parsing.  | 
886  | 0  |   auto it = str.begin();  | 
887  | 0  |   auto end = str.end();  | 
888  |  |  | 
889  |  |   /// Read a string starting at `it` into `tok`.  | 
890  |  |   /// \p len the number of characters to scan in the string.  | 
891  |  |   /// \return true if successful, false if failed.  | 
892  | 0  |   auto scanStr = [&str, &tok, &it](int32_t len) -> bool { | 
893  | 0  |     if (it + len > str.end()) { | 
894  | 0  |       return false;  | 
895  | 0  |     }  | 
896  | 0  |     tok = str.slice(it, it + len);  | 
897  | 0  |     it += len;  | 
898  | 0  |     return true;  | 
899  | 0  |   };  | 
900  |  |  | 
901  |  |   /// Reads the next \p len characters into `tok`,  | 
902  |  |   /// but instead of consuming \p len chars, it consumes a single word  | 
903  |  |   /// whatever how long it is (i.e. until a space or dash is encountered).  | 
904  |  |   /// e.g.  | 
905  |  |   ///     &str ="Garbage G MayG"  | 
906  |  |   ///     scanStrAndSkipWord(3); consumeSpaces();  // &str="G MayG", &tok="Gar"  | 
907  |  |   ///     scanStrAndSkipWord(3); consumeSpaces();  // &str="MayG"  , &tok="G M"  | 
908  |  |   ///     scanStrAndSkipWord(3); consumeSpaces();  // &str=""      , &tok="May"  | 
909  |  |   ///     scanStrAndSkipWord(3);                   // -> false  | 
910  |  |   /// \return true if successful, false if failed.  | 
911  | 0  |   auto scanStrAndSkipWord = [&str, &tok, &it](int32_t len) -> bool { | 
912  | 0  |     if (it + len > str.end())  | 
913  | 0  |       return false;  | 
914  | 0  |     tok = str.slice(it, it + len);  | 
915  | 0  |     while (it != str.end() && !std::isspace(*it) && *it != '-')  | 
916  | 0  |       it++;  | 
917  | 0  |     return true;  | 
918  | 0  |   };  | 
919  |  | 
  | 
920  | 0  |   auto consume = [&](char16_t ch) { | 
921  | 0  |     if (it != str.end() && *it == ch) { | 
922  | 0  |       ++it;  | 
923  | 0  |       return true;  | 
924  | 0  |     }  | 
925  | 0  |     return false;  | 
926  | 0  |   };  | 
927  |  | 
  | 
928  | 0  |   auto consumeSpaces = [&]() { | 
929  | 0  |     while (it != str.end() && std::isspace(*it))  | 
930  | 0  |       ++it;  | 
931  | 0  |   };  | 
932  |  |  | 
933  |  |   /// Only one dash is ever allowed, and the dash must come first.  | 
934  |  |   /// There is no limit to the number of spaces.  | 
935  |  |   /// This is in line with V8's behavior.  | 
936  | 0  |   auto consumeSpacesOrDash = [&]() { | 
937  | 0  |     auto first = true;  | 
938  | 0  |     while (it != str.end()) { | 
939  | 0  |       if (std::isspace(*it) || (first && *it == '-')) { | 
940  | 0  |         ++it;  | 
941  | 0  |       } else { | 
942  | 0  |         return;  | 
943  | 0  |       }  | 
944  | 0  |       first = false;  | 
945  | 0  |     }  | 
946  | 0  |   };  | 
947  |  |  | 
948  |  |   // Weekday  | 
949  | 0  |   if (!scanStr(3))  | 
950  | 0  |     return nan;  | 
951  | 0  |   bool foundWeekday = false;  | 
952  | 0  |   for (const char *name : weekdayNames) { | 
953  | 0  |     if (tok.equals(llvh::arrayRefFromStringRef(name))) { | 
954  | 0  |       foundWeekday = true;  | 
955  | 0  |       break;  | 
956  | 0  |     }  | 
957  | 0  |   }  | 
958  | 0  |   if (!foundWeekday)  | 
959  | 0  |     return nan;  | 
960  |  |  | 
961  |  |   /// If we found a valid Month string from the current `tok`.  | 
962  | 0  |   auto tokIsMonth = [&]() -> bool { | 
963  | 0  |     for (uint32_t i = 0; i < sizeof(monthNames) / sizeof(monthNames[0]); ++i) { | 
964  | 0  |       if (tok.equals(llvh::arrayRefFromStringRef(monthNames[i]))) { | 
965  |  |         // m is 1-indexed.  | 
966  | 0  |         m = i + 1;  | 
967  | 0  |         return true;  | 
968  | 0  |       }  | 
969  | 0  |     }  | 
970  | 0  |     return false;  | 
971  | 0  |   };  | 
972  |  |  | 
973  |  |   // Day Month Year  | 
974  |  |   // or  | 
975  |  |   // Month Day Year  | 
976  | 0  |   while (it != str.end()) { | 
977  | 0  |     if (isDigit(*it)) { | 
978  |  |       // Day  | 
979  | 0  |       scanInt(it, end, d);  | 
980  |  |       // Month  | 
981  | 0  |       consumeSpacesOrDash();  | 
982  |  |       // e.g. `Janwhatever` will get read as `Jan`  | 
983  | 0  |       if (!scanStrAndSkipWord(3))  | 
984  | 0  |         return nan;  | 
985  |  |       // `tok` is now set to the Month candidate.  | 
986  | 0  |       if (!tokIsMonth())  | 
987  | 0  |         return nan;  | 
988  | 0  |       break;  | 
989  | 0  |     }  | 
990  | 0  |     if (isAlpha(*it)) { | 
991  |  |       // try Month  | 
992  | 0  |       if (!scanStrAndSkipWord(3))  | 
993  | 0  |         return nan;  | 
994  |  |       // `tok` is now set to the Month candidate.  | 
995  | 0  |       if (tokIsMonth()) { | 
996  |  |         // Day  | 
997  | 0  |         consumeSpacesOrDash();  | 
998  | 0  |         if (!scanInt(it, end, d))  | 
999  | 0  |           return nan;  | 
1000  | 0  |         break;  | 
1001  | 0  |       }  | 
1002  |  |       // Continue scanning for Month.  | 
1003  | 0  |       continue;  | 
1004  | 0  |     }  | 
1005  |  |     // Ignore any garbage.  | 
1006  | 0  |     ++it;  | 
1007  | 0  |   }  | 
1008  |  |  | 
1009  |  |   // Year  | 
1010  | 0  |   consumeSpacesOrDash();  | 
1011  | 0  |   if (!scanInt(it, end, y))  | 
1012  | 0  |     return nan;  | 
1013  |  |  | 
1014  |  |   // Hour:minute:second.  | 
1015  | 0  |   consumeSpacesOrDash();  | 
1016  |  | 
  | 
1017  | 0  |   if (it != end) { | 
1018  | 0  |     if (!scanInt(it, end, h))  | 
1019  | 0  |       return nan;  | 
1020  | 0  |     if (!consume(':')) | 
1021  | 0  |       return nan;  | 
1022  | 0  |     if (!scanInt(it, end, min))  | 
1023  | 0  |       return nan;  | 
1024  | 0  |     if (!consume(':')) | 
1025  | 0  |       return nan;  | 
1026  | 0  |     if (!scanInt(it, end, s))  | 
1027  | 0  |       return nan;  | 
1028  | 0  |   }  | 
1029  |  |  | 
1030  |  |   // Space and time zone.  | 
1031  | 0  |   consumeSpaces();  | 
1032  |  | 
  | 
1033  | 0  |   if (it == end) { | 
1034  |  |     // Default to local time zone if no time zone provided  | 
1035  | 0  |     double t = makeDate(makeDay(y, m - 1, d), makeTime(h, min, s, ms));  | 
1036  | 0  |     t = utcTime(t, localTimeOffsetCache);  | 
1037  | 0  |     return t;  | 
1038  | 0  |   }  | 
1039  |  |  | 
1040  | 0  |   struct KnownTZ { | 
1041  | 0  |     const char *tz;  | 
1042  | 0  |     int32_t tzh;  | 
1043  | 0  |   };  | 
1044  |  |  | 
1045  |  |   // Known time zones per RFC 2822.  | 
1046  |  |   // All other obsolete time zones that aren't in this array treated as +00:00.  | 
1047  | 0  |   static constexpr KnownTZ knownTZs[] = { | 
1048  | 0  |       {"GMT", 0}, | 
1049  | 0  |       {"EDT", -4}, | 
1050  | 0  |       {"EST", -5}, | 
1051  | 0  |       {"CDT", -5}, | 
1052  | 0  |       {"CST", -6}, | 
1053  | 0  |       {"MDT", -6}, | 
1054  | 0  |       {"MST", -7}, | 
1055  | 0  |       {"PDT", -7}, | 
1056  | 0  |       {"PST", -8}, | 
1057  | 0  |   };  | 
1058  |  |  | 
1059  |  |   // TZ name is optional, but if there is a letter, it is the only option.  | 
1060  | 0  |   if ('A' <= *it && *it <= 'Z') { | 
1061  | 0  |     if (!scanStr(3))  | 
1062  | 0  |       return nan;  | 
1063  | 0  |     for (const KnownTZ &knownTZ : knownTZs) { | 
1064  | 0  |       if (tok.equals(llvh::arrayRefFromStringRef(knownTZ.tz))) { | 
1065  | 0  |         tzh = knownTZ.tzh;  | 
1066  | 0  |         break;  | 
1067  | 0  |       }  | 
1068  | 0  |     }  | 
1069  | 0  |   }  | 
1070  |  |  | 
1071  | 0  |   if (it == end)  | 
1072  | 0  |     goto complete;  | 
1073  |  |  | 
1074  |  |   // Prevent "CDT+0700", for example.  | 
1075  | 0  |   if (tzh != 0 && it != end)  | 
1076  | 0  |     return nan;  | 
1077  |  |  | 
1078  |  |   // Sign of the timezone adjustment.  | 
1079  | 0  |   if (consume('+')) | 
1080  | 0  |     sign = 1;  | 
1081  | 0  |   else if (consume('-')) | 
1082  | 0  |     sign = -1;  | 
1083  | 0  |   else  | 
1084  | 0  |     return nan;  | 
1085  |  |  | 
1086  |  |   // Hour and minute of timezone adjustment.  | 
1087  | 0  |   if (it > end - 4)  | 
1088  | 0  |     return nan;  | 
1089  | 0  |   if (!scanInt(it, it + 2, tzh))  | 
1090  | 0  |     return nan;  | 
1091  | 0  |   tzh *= sign;  | 
1092  | 0  |   if (!scanInt(it, it + 2, tzm))  | 
1093  | 0  |     return nan;  | 
1094  | 0  |   tzm *= sign;  | 
1095  |  | 
  | 
1096  | 0  |   if (it != end) { | 
1097  |  |     // Optional parenthesized description of timezone (must be at the end).  | 
1098  | 0  |     if (!consume(' ')) | 
1099  | 0  |       return nan;  | 
1100  | 0  |     if (!consume('(')) | 
1101  | 0  |       return nan;  | 
1102  | 0  |     while (it != end && *it != ')')  | 
1103  | 0  |       ++it;  | 
1104  | 0  |     if (!consume(')')) | 
1105  | 0  |       return nan;  | 
1106  | 0  |   }  | 
1107  |  |  | 
1108  | 0  |   if (it != end)  | 
1109  | 0  |     return nan;  | 
1110  |  |  | 
1111  | 0  | complete:  | 
1112  |  |   // Account for the fact that m was 1-indexed and the timezone offset.  | 
1113  | 0  |   return makeDate(makeDay(y, m - 1, d), makeTime(h - tzh, min - tzm, s, ms));  | 
1114  | 0  | }  | 
1115  |  |  | 
1116  | 0  | double parseDate(StringView str, LocalTimeOffsetCache &localTimeOffsetCache) { | 
1117  | 0  |   double result = parseISODate(str, localTimeOffsetCache);  | 
1118  | 0  |   if (!std::isnan(result)) { | 
1119  | 0  |     return result;  | 
1120  | 0  |   }  | 
1121  |  |  | 
1122  | 0  |   return parseESDate(str, localTimeOffsetCache);  | 
1123  | 0  | }  | 
1124  |  |  | 
1125  |  | } // namespace vm  | 
1126  |  | } // namespace hermes  |