/src/icu/source/i18n/astro.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | // © 2016 and later: Unicode, Inc. and others.  | 
2  |  | // License & terms of use: http://www.unicode.org/copyright.html  | 
3  |  | /************************************************************************  | 
4  |  |  * Copyright (C) 1996-2012, International Business Machines Corporation  | 
5  |  |  * and others. All Rights Reserved.  | 
6  |  |  ************************************************************************  | 
7  |  |  *  2003-nov-07   srl       Port from Java  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include "astro.h"  | 
11  |  |  | 
12  |  | #if !UCONFIG_NO_FORMATTING  | 
13  |  |  | 
14  |  | #include "unicode/calendar.h"  | 
15  |  | #include <math.h>  | 
16  |  | #include <float.h>  | 
17  |  | #include "unicode/putil.h"  | 
18  |  | #include "uhash.h"  | 
19  |  | #include "umutex.h"  | 
20  |  | #include "ucln_in.h"  | 
21  |  | #include "putilimp.h"  | 
22  |  | #include <stdio.h>  // for toString()  | 
23  |  |  | 
24  |  | #if defined (PI)   | 
25  |  | #undef PI  | 
26  |  | #endif  | 
27  |  |  | 
28  |  | #ifdef U_DEBUG_ASTRO  | 
29  |  | # include "uresimp.h" // for debugging  | 
30  |  |  | 
31  |  | static void debug_astro_loc(const char *f, int32_t l)  | 
32  |  | { | 
33  |  |   fprintf(stderr, "%s:%d: ", f, l);  | 
34  |  | }  | 
35  |  |  | 
36  |  | static void debug_astro_msg(const char *pat, ...)  | 
37  |  | { | 
38  |  |   va_list ap;  | 
39  |  |   va_start(ap, pat);  | 
40  |  |   vfprintf(stderr, pat, ap);  | 
41  |  |   fflush(stderr);  | 
42  |  | }  | 
43  |  | #include "unicode/datefmt.h"  | 
44  |  | #include "unicode/ustring.h"  | 
45  |  | static const char * debug_astro_date(UDate d) { | 
46  |  |   static char gStrBuf[1024];  | 
47  |  |   static DateFormat *df = NULL;  | 
48  |  |   if(df == NULL) { | 
49  |  |     df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());  | 
50  |  |     df->adoptTimeZone(TimeZone::getGMT()->clone());  | 
51  |  |   }  | 
52  |  |   UnicodeString str;  | 
53  |  |   df->format(d,str);  | 
54  |  |   u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);  | 
55  |  |   return gStrBuf;  | 
56  |  | }  | 
57  |  |  | 
58  |  | // must use double parens, i.e.:  U_DEBUG_ASTRO_MSG(("four is: %d",4)); | 
59  |  | #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;} | 
60  |  | #else  | 
61  |  | #define U_DEBUG_ASTRO_MSG(x)  | 
62  |  | #endif  | 
63  |  |  | 
64  | 0  | static inline UBool isINVALID(double d) { | 
65  | 0  |   return(uprv_isNaN(d));  | 
66  | 0  | }  | 
67  |  |  | 
68  |  | static icu::UMutex ccLock;  | 
69  |  |  | 
70  |  | U_CDECL_BEGIN  | 
71  | 0  | static UBool calendar_astro_cleanup(void) { | 
72  | 0  |   return TRUE;  | 
73  | 0  | }  | 
74  |  | U_CDECL_END  | 
75  |  |  | 
76  |  | U_NAMESPACE_BEGIN  | 
77  |  |  | 
78  |  | /**  | 
79  |  |  * The number of standard hours in one sidereal day.  | 
80  |  |  * Approximately 24.93.  | 
81  |  |  * @internal  | 
82  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
83  |  |  */  | 
84  |  | #define SIDEREAL_DAY (23.93446960027)  | 
85  |  |  | 
86  |  | /**  | 
87  |  |  * The number of sidereal hours in one mean solar day.  | 
88  |  |  * Approximately 24.07.  | 
89  |  |  * @internal  | 
90  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
91  |  |  */  | 
92  |  | #define SOLAR_DAY  (24.065709816)  | 
93  |  |  | 
94  |  | /**  | 
95  |  |  * The average number of solar days from one new moon to the next.  This is the time  | 
96  |  |  * it takes for the moon to return the same ecliptic longitude as the sun.  | 
97  |  |  * It is longer than the sidereal month because the sun's longitude increases  | 
98  |  |  * during the year due to the revolution of the earth around the sun.  | 
99  |  |  * Approximately 29.53.  | 
100  |  |  *  | 
101  |  |  * @see #SIDEREAL_MONTH  | 
102  |  |  * @internal  | 
103  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
104  |  |  */  | 
105  |  | const double CalendarAstronomer::SYNODIC_MONTH  = 29.530588853;  | 
106  |  |  | 
107  |  | /**  | 
108  |  |  * The average number of days it takes  | 
109  |  |  * for the moon to return to the same ecliptic longitude relative to the  | 
110  |  |  * stellar background.  This is referred to as the sidereal month.  | 
111  |  |  * It is shorter than the synodic month due to  | 
112  |  |  * the revolution of the earth around the sun.  | 
113  |  |  * Approximately 27.32.  | 
114  |  |  *  | 
115  |  |  * @see #SYNODIC_MONTH  | 
116  |  |  * @internal  | 
117  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
118  |  |  */  | 
119  |  | #define SIDEREAL_MONTH  27.32166  | 
120  |  |  | 
121  |  | /**  | 
122  |  |  * The average number number of days between successive vernal equinoxes.  | 
123  |  |  * Due to the precession of the earth's  | 
124  |  |  * axis, this is not precisely the same as the sidereal year.  | 
125  |  |  * Approximately 365.24  | 
126  |  |  *  | 
127  |  |  * @see #SIDEREAL_YEAR  | 
128  |  |  * @internal  | 
129  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
130  |  |  */  | 
131  | 0  | #define TROPICAL_YEAR  365.242191  | 
132  |  |  | 
133  |  | /**  | 
134  |  |  * The average number of days it takes  | 
135  |  |  * for the sun to return to the same position against the fixed stellar  | 
136  |  |  * background.  This is the duration of one orbit of the earth about the sun  | 
137  |  |  * as it would appear to an outside observer.  | 
138  |  |  * Due to the precession of the earth's  | 
139  |  |  * axis, this is not precisely the same as the tropical year.  | 
140  |  |  * Approximately 365.25.  | 
141  |  |  *  | 
142  |  |  * @see #TROPICAL_YEAR  | 
143  |  |  * @internal  | 
144  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
145  |  |  */  | 
146  |  | #define SIDEREAL_YEAR  365.25636  | 
147  |  |  | 
148  |  | //-------------------------------------------------------------------------  | 
149  |  | // Time-related constants  | 
150  |  | //-------------------------------------------------------------------------  | 
151  |  |  | 
152  |  | /**  | 
153  |  |  * The number of milliseconds in one second.  | 
154  |  |  * @internal  | 
155  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
156  |  |  */  | 
157  | 0  | #define SECOND_MS  U_MILLIS_PER_SECOND  | 
158  |  |  | 
159  |  | /**  | 
160  |  |  * The number of milliseconds in one minute.  | 
161  |  |  * @internal  | 
162  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
163  |  |  */  | 
164  | 0  | #define MINUTE_MS  U_MILLIS_PER_MINUTE  | 
165  |  |  | 
166  |  | /**  | 
167  |  |  * The number of milliseconds in one hour.  | 
168  |  |  * @internal  | 
169  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
170  |  |  */  | 
171  | 0  | #define HOUR_MS   U_MILLIS_PER_HOUR  | 
172  |  |  | 
173  |  | /**  | 
174  |  |  * The number of milliseconds in one day.  | 
175  |  |  * @internal  | 
176  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
177  |  |  */  | 
178  | 0  | #define DAY_MS U_MILLIS_PER_DAY  | 
179  |  |  | 
180  |  | /**  | 
181  |  |  * The start of the julian day numbering scheme used by astronomers, which  | 
182  |  |  * is 1/1/4713 BC (Julian), 12:00 GMT.  This is given as the number of milliseconds  | 
183  |  |  * since 1/1/1970 AD (Gregorian), a negative number.  | 
184  |  |  * Note that julian day numbers and  | 
185  |  |  * the Julian calendar are <em>not</em> the same thing.  Also note that  | 
186  |  |  * julian days start at <em>noon</em>, not midnight.  | 
187  |  |  * @internal  | 
188  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
189  |  |  */  | 
190  | 0  | #define JULIAN_EPOCH_MS  -210866760000000.0  | 
191  |  |  | 
192  |  |  | 
193  |  | /**  | 
194  |  |  * Milliseconds value for 0.0 January 2000 AD.  | 
195  |  |  */  | 
196  |  | #define EPOCH_2000_MS  946598400000.0  | 
197  |  |  | 
198  |  | //-------------------------------------------------------------------------  | 
199  |  | // Assorted private data used for conversions  | 
200  |  | //-------------------------------------------------------------------------  | 
201  |  |  | 
202  |  | // My own copies of these so compilers are more likely to optimize them away  | 
203  |  | const double CalendarAstronomer::PI = 3.14159265358979323846;  | 
204  |  |  | 
205  | 0  | #define CalendarAstronomer_PI2  (CalendarAstronomer::PI*2.0)  | 
206  |  | #define RAD_HOUR  ( 12 / CalendarAstronomer::PI )     // radians -> hours  | 
207  | 0  | #define DEG_RAD ( CalendarAstronomer::PI / 180 )      // degrees -> radians  | 
208  | 0  | #define RAD_DEG  ( 180 / CalendarAstronomer::PI )     // radians -> degrees  | 
209  |  |  | 
210  |  | /***  | 
211  |  |  * Given 'value', add or subtract 'range' until 0 <= 'value' < range.  | 
212  |  |  * The modulus operator.  | 
213  |  |  */  | 
214  | 0  | inline static double normalize(double value, double range)  { | 
215  | 0  |     return value - range * ClockMath::floorDivide(value, range);  | 
216  | 0  | }  | 
217  |  |  | 
218  |  | /**  | 
219  |  |  * Normalize an angle so that it's in the range 0 - 2pi.  | 
220  |  |  * For positive angles this is just (angle % 2pi), but the Java  | 
221  |  |  * mod operator doesn't work that way for negative numbers....  | 
222  |  |  */  | 
223  | 0  | inline static double norm2PI(double angle)  { | 
224  | 0  |     return normalize(angle, CalendarAstronomer::PI * 2.0);  | 
225  | 0  | }  | 
226  |  |  | 
227  |  | /**  | 
228  |  |  * Normalize an angle into the range -PI - PI  | 
229  |  |  */  | 
230  | 0  | inline static  double normPI(double angle)  { | 
231  | 0  |     return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;  | 
232  | 0  | }  | 
233  |  |  | 
234  |  | //-------------------------------------------------------------------------  | 
235  |  | // Constructors  | 
236  |  | //-------------------------------------------------------------------------  | 
237  |  |  | 
238  |  | /**  | 
239  |  |  * Construct a new <code>CalendarAstronomer</code> object that is initialized to  | 
240  |  |  * the current date and time.  | 
241  |  |  * @internal  | 
242  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
243  |  |  */  | 
244  |  | CalendarAstronomer::CalendarAstronomer():  | 
245  | 0  |   fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { | 
246  | 0  |   clearCache();  | 
247  | 0  | }  | 
248  |  |  | 
249  |  | /**  | 
250  |  |  * Construct a new <code>CalendarAstronomer</code> object that is initialized to  | 
251  |  |  * the specified date and time.  | 
252  |  |  * @internal  | 
253  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
254  |  |  */  | 
255  | 0  | CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { | 
256  | 0  |   clearCache();  | 
257  | 0  | }  | 
258  |  |  | 
259  |  | /**  | 
260  |  |  * Construct a new <code>CalendarAstronomer</code> object with the given  | 
261  |  |  * latitude and longitude.  The object's time is set to the current  | 
262  |  |  * date and time.  | 
263  |  |  * <p>  | 
264  |  |  * @param longitude The desired longitude, in <em>degrees</em> east of  | 
265  |  |  *                  the Greenwich meridian.  | 
266  |  |  *  | 
267  |  |  * @param latitude  The desired latitude, in <em>degrees</em>.  Positive  | 
268  |  |  *                  values signify North, negative South.  | 
269  |  |  *  | 
270  |  |  * @see java.util.Date#getTime()  | 
271  |  |  * @internal  | 
272  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
273  |  |  */  | 
274  |  | CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) :  | 
275  | 0  |   fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) { | 
276  | 0  |   fLongitude = normPI(longitude * (double)DEG_RAD);  | 
277  | 0  |   fLatitude  = normPI(latitude  * (double)DEG_RAD);  | 
278  | 0  |   fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2);  | 
279  | 0  |   clearCache();  | 
280  | 0  | }  | 
281  |  |  | 
282  |  | CalendarAstronomer::~CalendarAstronomer()  | 
283  | 0  | { | 
284  | 0  | }  | 
285  |  |  | 
286  |  | //-------------------------------------------------------------------------  | 
287  |  | // Time and date getters and setters  | 
288  |  | //-------------------------------------------------------------------------  | 
289  |  |  | 
290  |  | /**  | 
291  |  |  * Set the current date and time of this <code>CalendarAstronomer</code> object.  All  | 
292  |  |  * astronomical calculations are performed based on this time setting.  | 
293  |  |  *  | 
294  |  |  * @param aTime the date and time, expressed as the number of milliseconds since  | 
295  |  |  *              1/1/1970 0:00 GMT (Gregorian).  | 
296  |  |  *  | 
297  |  |  * @see #setDate  | 
298  |  |  * @see #getTime  | 
299  |  |  * @internal  | 
300  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
301  |  |  */  | 
302  | 0  | void CalendarAstronomer::setTime(UDate aTime) { | 
303  | 0  |     fTime = aTime;  | 
304  | 0  |     U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset))); | 
305  | 0  |     clearCache();  | 
306  | 0  | }  | 
307  |  |  | 
308  |  | /**  | 
309  |  |  * Set the current date and time of this <code>CalendarAstronomer</code> object.  All  | 
310  |  |  * astronomical calculations are performed based on this time setting.  | 
311  |  |  *  | 
312  |  |  * @param jdn   the desired time, expressed as a "julian day number",  | 
313  |  |  *              which is the number of elapsed days since  | 
314  |  |  *              1/1/4713 BC (Julian), 12:00 GMT.  Note that julian day  | 
315  |  |  *              numbers start at <em>noon</em>.  To get the jdn for  | 
316  |  |  *              the corresponding midnight, subtract 0.5.  | 
317  |  |  *  | 
318  |  |  * @see #getJulianDay  | 
319  |  |  * @see #JULIAN_EPOCH_MS  | 
320  |  |  * @internal  | 
321  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
322  |  |  */  | 
323  | 0  | void CalendarAstronomer::setJulianDay(double jdn) { | 
324  | 0  |     fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS;  | 
325  | 0  |     clearCache();  | 
326  | 0  |     julianDay = jdn;  | 
327  | 0  | }  | 
328  |  |  | 
329  |  | /**  | 
330  |  |  * Get the current time of this <code>CalendarAstronomer</code> object,  | 
331  |  |  * represented as the number of milliseconds since  | 
332  |  |  * 1/1/1970 AD 0:00 GMT (Gregorian).  | 
333  |  |  *  | 
334  |  |  * @see #setTime  | 
335  |  |  * @see #getDate  | 
336  |  |  * @internal  | 
337  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
338  |  |  */  | 
339  | 0  | UDate CalendarAstronomer::getTime() { | 
340  | 0  |     return fTime;  | 
341  | 0  | }  | 
342  |  |  | 
343  |  | /**  | 
344  |  |  * Get the current time of this <code>CalendarAstronomer</code> object,  | 
345  |  |  * expressed as a "julian day number", which is the number of elapsed  | 
346  |  |  * days since 1/1/4713 BC (Julian), 12:00 GMT.  | 
347  |  |  *  | 
348  |  |  * @see #setJulianDay  | 
349  |  |  * @see #JULIAN_EPOCH_MS  | 
350  |  |  * @internal  | 
351  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
352  |  |  */  | 
353  | 0  | double CalendarAstronomer::getJulianDay() { | 
354  | 0  |     if (isINVALID(julianDay)) { | 
355  | 0  |         julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS;  | 
356  | 0  |     }  | 
357  | 0  |     return julianDay;  | 
358  | 0  | }  | 
359  |  |  | 
360  |  | /**  | 
361  |  |  * Return this object's time expressed in julian centuries:  | 
362  |  |  * the number of centuries after 1/1/1900 AD, 12:00 GMT  | 
363  |  |  *  | 
364  |  |  * @see #getJulianDay  | 
365  |  |  * @internal  | 
366  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
367  |  |  */  | 
368  | 0  | double CalendarAstronomer::getJulianCentury() { | 
369  | 0  |     if (isINVALID(julianCentury)) { | 
370  | 0  |         julianCentury = (getJulianDay() - 2415020.0) / 36525.0;  | 
371  | 0  |     }  | 
372  | 0  |     return julianCentury;  | 
373  | 0  | }  | 
374  |  |  | 
375  |  | /**  | 
376  |  |  * Returns the current Greenwich sidereal time, measured in hours  | 
377  |  |  * @internal  | 
378  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
379  |  |  */  | 
380  | 0  | double CalendarAstronomer::getGreenwichSidereal() { | 
381  | 0  |     if (isINVALID(siderealTime)) { | 
382  |  |         // See page 86 of "Practical Astronomy with your Calculator",  | 
383  |  |         // by Peter Duffet-Smith, for details on the algorithm.  | 
384  |  | 
  | 
385  | 0  |         double UT = normalize(fTime/(double)HOUR_MS, 24.);  | 
386  |  | 
  | 
387  | 0  |         siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.);  | 
388  | 0  |     }  | 
389  | 0  |     return siderealTime;  | 
390  | 0  | }  | 
391  |  |  | 
392  | 0  | double CalendarAstronomer::getSiderealOffset() { | 
393  | 0  |     if (isINVALID(siderealT0)) { | 
394  | 0  |         double JD  = uprv_floor(getJulianDay() - 0.5) + 0.5;  | 
395  | 0  |         double S   = JD - 2451545.0;  | 
396  | 0  |         double T   = S / 36525.0;  | 
397  | 0  |         siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);  | 
398  | 0  |     }  | 
399  | 0  |     return siderealT0;  | 
400  | 0  | }  | 
401  |  |  | 
402  |  | /**  | 
403  |  |  * Returns the current local sidereal time, measured in hours  | 
404  |  |  * @internal  | 
405  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
406  |  |  */  | 
407  | 0  | double CalendarAstronomer::getLocalSidereal() { | 
408  | 0  |     return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.);  | 
409  | 0  | }  | 
410  |  |  | 
411  |  | /**  | 
412  |  |  * Converts local sidereal time to Universal Time.  | 
413  |  |  *  | 
414  |  |  * @param lst   The Local Sidereal Time, in hours since sidereal midnight  | 
415  |  |  *              on this object's current date.  | 
416  |  |  *  | 
417  |  |  * @return      The corresponding Universal Time, in milliseconds since  | 
418  |  |  *              1 Jan 1970, GMT.  | 
419  |  |  */  | 
420  | 0  | double CalendarAstronomer::lstToUT(double lst) { | 
421  |  |     // Convert to local mean time  | 
422  | 0  |     double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);  | 
423  |  |  | 
424  |  |     // Then find local midnight on this day  | 
425  | 0  |     double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset;  | 
426  |  |  | 
427  |  |     //out("    lt  =" + lt + " hours"); | 
428  |  |     //out("    base=" + new Date(base)); | 
429  |  | 
  | 
430  | 0  |     return base + (long)(lt * HOUR_MS);  | 
431  | 0  | }  | 
432  |  |  | 
433  |  |  | 
434  |  | //-------------------------------------------------------------------------  | 
435  |  | // Coordinate transformations, all based on the current time of this object  | 
436  |  | //-------------------------------------------------------------------------  | 
437  |  |  | 
438  |  | /**  | 
439  |  |  * Convert from ecliptic to equatorial coordinates.  | 
440  |  |  *  | 
441  |  |  * @param ecliptic  A point in the sky in ecliptic coordinates.  | 
442  |  |  * @return          The corresponding point in equatorial coordinates.  | 
443  |  |  * @internal  | 
444  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
445  |  |  */  | 
446  |  | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic)  | 
447  | 0  | { | 
448  | 0  |     return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude);  | 
449  | 0  | }  | 
450  |  |  | 
451  |  | /**  | 
452  |  |  * Convert from ecliptic to equatorial coordinates.  | 
453  |  |  *  | 
454  |  |  * @param eclipLong     The ecliptic longitude  | 
455  |  |  * @param eclipLat      The ecliptic latitude  | 
456  |  |  *  | 
457  |  |  * @return              The corresponding point in equatorial coordinates.  | 
458  |  |  * @internal  | 
459  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
460  |  |  */  | 
461  |  | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)  | 
462  | 0  | { | 
463  |  |     // See page 42 of "Practical Astronomy with your Calculator",  | 
464  |  |     // by Peter Duffet-Smith, for details on the algorithm.  | 
465  |  | 
  | 
466  | 0  |     double obliq = eclipticObliquity();  | 
467  | 0  |     double sinE = ::sin(obliq);  | 
468  | 0  |     double cosE = cos(obliq);  | 
469  |  | 
  | 
470  | 0  |     double sinL = ::sin(eclipLong);  | 
471  | 0  |     double cosL = cos(eclipLong);  | 
472  |  | 
  | 
473  | 0  |     double sinB = ::sin(eclipLat);  | 
474  | 0  |     double cosB = cos(eclipLat);  | 
475  | 0  |     double tanB = tan(eclipLat);  | 
476  |  | 
  | 
477  | 0  |     result.set(atan2(sinL*cosE - tanB*sinE, cosL),  | 
478  | 0  |         asin(sinB*cosE + cosB*sinE*sinL) );  | 
479  | 0  |     return result;  | 
480  | 0  | }  | 
481  |  |  | 
482  |  | /**  | 
483  |  |  * Convert from ecliptic longitude to equatorial coordinates.  | 
484  |  |  *  | 
485  |  |  * @param eclipLong     The ecliptic longitude  | 
486  |  |  *  | 
487  |  |  * @return              The corresponding point in equatorial coordinates.  | 
488  |  |  * @internal  | 
489  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
490  |  |  */  | 
491  |  | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong)  | 
492  | 0  | { | 
493  | 0  |     return eclipticToEquatorial(result, eclipLong, 0);  // TODO: optimize  | 
494  | 0  | }  | 
495  |  |  | 
496  |  | /**  | 
497  |  |  * @internal  | 
498  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
499  |  |  */  | 
500  |  | CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong)  | 
501  | 0  | { | 
502  | 0  |     Equatorial equatorial;  | 
503  | 0  |     eclipticToEquatorial(equatorial, eclipLong);  | 
504  |  | 
  | 
505  | 0  |     double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension;     // Hour-angle  | 
506  |  | 
  | 
507  | 0  |     double sinH = ::sin(H);  | 
508  | 0  |     double cosH = cos(H);  | 
509  | 0  |     double sinD = ::sin(equatorial.declination);  | 
510  | 0  |     double cosD = cos(equatorial.declination);  | 
511  | 0  |     double sinL = ::sin(fLatitude);  | 
512  | 0  |     double cosL = cos(fLatitude);  | 
513  |  | 
  | 
514  | 0  |     double altitude = asin(sinD*sinL + cosD*cosL*cosH);  | 
515  | 0  |     double azimuth  = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude));  | 
516  |  | 
  | 
517  | 0  |     result.set(azimuth, altitude);  | 
518  | 0  |     return result;  | 
519  | 0  | }  | 
520  |  |  | 
521  |  |  | 
522  |  | //-------------------------------------------------------------------------  | 
523  |  | // The Sun  | 
524  |  | //-------------------------------------------------------------------------  | 
525  |  |  | 
526  |  | //  | 
527  |  | // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990  | 
528  |  | // Angles are in radians (after multiplying by CalendarAstronomer::PI/180)  | 
529  |  | //  | 
530  | 0  | #define JD_EPOCH  2447891.5 // Julian day of epoch  | 
531  |  |  | 
532  | 0  | #define SUN_ETA_G    (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch  | 
533  | 0  | #define SUN_OMEGA_G  (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee  | 
534  | 0  | #define SUN_E         0.016713          // Eccentricity of orbit  | 
535  |  | //double sunR0        1.495585e8        // Semi-major axis in KM  | 
536  |  | //double sunTheta0    (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0  | 
537  |  |  | 
538  |  | // The following three methods, which compute the sun parameters  | 
539  |  | // given above for an arbitrary epoch (whatever time the object is  | 
540  |  | // set to), make only a small difference as compared to using the  | 
541  |  | // above constants.  E.g., Sunset times might differ by ~12  | 
542  |  | // seconds.  Furthermore, the eta-g computation is befuddled by  | 
543  |  | // Duffet-Smith's incorrect coefficients (p.86).  I've corrected  | 
544  |  | // the first-order coefficient but the others may be off too - no  | 
545  |  | // way of knowing without consulting another source.  | 
546  |  |  | 
547  |  | //  /**  | 
548  |  | //   * Return the sun's ecliptic longitude at perigee for the current time.  | 
549  |  | //   * See Duffett-Smith, p. 86.  | 
550  |  | //   * @return radians  | 
551  |  | //   */  | 
552  |  | //  private double getSunOmegaG() { | 
553  |  | //      double T = getJulianCentury();  | 
554  |  | //      return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;  | 
555  |  | //  }  | 
556  |  |  | 
557  |  | //  /**  | 
558  |  | //   * Return the sun's ecliptic longitude for the current time.  | 
559  |  | //   * See Duffett-Smith, p. 86.  | 
560  |  | //   * @return radians  | 
561  |  | //   */  | 
562  |  | //  private double getSunEtaG() { | 
563  |  | //      double T = getJulianCentury();  | 
564  |  | //      //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;  | 
565  |  | //      //  | 
566  |  | //      // The above line is from Duffett-Smith, and yields manifestly wrong  | 
567  |  | //      // results.  The below constant is derived empirically to match the  | 
568  |  | //      // constant he gives for the 1990 EPOCH.  | 
569  |  | //      //  | 
570  |  | //      return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;  | 
571  |  | //  }  | 
572  |  |  | 
573  |  | //  /**  | 
574  |  | //   * Return the sun's eccentricity of orbit for the current time.  | 
575  |  | //   * See Duffett-Smith, p. 86.  | 
576  |  | //   * @return double  | 
577  |  | //   */  | 
578  |  | //  private double getSunE() { | 
579  |  | //      double T = getJulianCentury();  | 
580  |  | //      return 0.01675104 - (0.0000418 + 0.000000126*T)*T;  | 
581  |  | //  }  | 
582  |  |  | 
583  |  | /**  | 
584  |  |  * Find the "true anomaly" (longitude) of an object from  | 
585  |  |  * its mean anomaly and the eccentricity of its orbit.  This uses  | 
586  |  |  * an iterative solution to Kepler's equation.  | 
587  |  |  *  | 
588  |  |  * @param meanAnomaly   The object's longitude calculated as if it were in  | 
589  |  |  *                      a regular, circular orbit, measured in radians  | 
590  |  |  *                      from the point of perigee.  | 
591  |  |  *  | 
592  |  |  * @param eccentricity  The eccentricity of the orbit  | 
593  |  |  *  | 
594  |  |  * @return The true anomaly (longitude) measured in radians  | 
595  |  |  */  | 
596  |  | static double trueAnomaly(double meanAnomaly, double eccentricity)  | 
597  | 0  | { | 
598  |  |     // First, solve Kepler's equation iteratively  | 
599  |  |     // Duffett-Smith, p.90  | 
600  | 0  |     double delta;  | 
601  | 0  |     double E = meanAnomaly;  | 
602  | 0  |     do { | 
603  | 0  |         delta = E - eccentricity * ::sin(E) - meanAnomaly;  | 
604  | 0  |         E = E - delta / (1 - eccentricity * ::cos(E));  | 
605  | 0  |     }  | 
606  | 0  |     while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad  | 
607  |  | 
  | 
608  | 0  |     return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)  | 
609  | 0  |                                              /(1-eccentricity) ) );  | 
610  | 0  | }  | 
611  |  |  | 
612  |  | /**  | 
613  |  |  * The longitude of the sun at the time specified by this object.  | 
614  |  |  * The longitude is measured in radians along the ecliptic  | 
615  |  |  * from the "first point of Aries," the point at which the ecliptic  | 
616  |  |  * crosses the earth's equatorial plane at the vernal equinox.  | 
617  |  |  * <p>  | 
618  |  |  * Currently, this method uses an approximation of the two-body Kepler's  | 
619  |  |  * equation for the earth and the sun.  It does not take into account the  | 
620  |  |  * perturbations caused by the other planets, the moon, etc.  | 
621  |  |  * @internal  | 
622  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
623  |  |  */  | 
624  |  | double CalendarAstronomer::getSunLongitude()  | 
625  | 0  | { | 
626  |  |     // See page 86 of "Practical Astronomy with your Calculator",  | 
627  |  |     // by Peter Duffet-Smith, for details on the algorithm.  | 
628  |  | 
  | 
629  | 0  |     if (isINVALID(sunLongitude)) { | 
630  | 0  |         getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);  | 
631  | 0  |     }  | 
632  | 0  |     return sunLongitude;  | 
633  | 0  | }  | 
634  |  |  | 
635  |  | /**  | 
636  |  |  * TODO Make this public when the entire class is package-private.  | 
637  |  |  */  | 
638  |  | /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)  | 
639  | 0  | { | 
640  |  |     // See page 86 of "Practical Astronomy with your Calculator",  | 
641  |  |     // by Peter Duffet-Smith, for details on the algorithm.  | 
642  |  | 
  | 
643  | 0  |     double day = jDay - JD_EPOCH;       // Days since epoch  | 
644  |  |  | 
645  |  |     // Find the angular distance the sun in a fictitious  | 
646  |  |     // circular orbit has travelled since the epoch.  | 
647  | 0  |     double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);  | 
648  |  |  | 
649  |  |     // The epoch wasn't at the sun's perigee; find the angular distance  | 
650  |  |     // since perigee, which is called the "mean anomaly"  | 
651  | 0  |     meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);  | 
652  |  |  | 
653  |  |     // Now find the "true anomaly", e.g. the real solar longitude  | 
654  |  |     // by solving Kepler's equation for an elliptical orbit  | 
655  |  |     // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different  | 
656  |  |     // equations; omega_g is to be correct.  | 
657  | 0  |     longitude =  norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);  | 
658  | 0  | }  | 
659  |  |  | 
660  |  | /**  | 
661  |  |  * The position of the sun at this object's current date and time,  | 
662  |  |  * in equatorial coordinates.  | 
663  |  |  * @internal  | 
664  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
665  |  |  */  | 
666  | 0  | CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) { | 
667  | 0  |     return eclipticToEquatorial(result, getSunLongitude(), 0);  | 
668  | 0  | }  | 
669  |  |  | 
670  |  |  | 
671  |  | /**  | 
672  |  |  * Constant representing the vernal equinox.  | 
673  |  |  * For use with {@link #getSunTime getSunTime}. | 
674  |  |  * Note: In this case, "vernal" refers to the northern hemisphere's seasons.  | 
675  |  |  * @internal  | 
676  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
677  |  |  */  | 
678  |  | /*double CalendarAstronomer::VERNAL_EQUINOX() { | 
679  |  |   return 0;  | 
680  |  | }*/  | 
681  |  |  | 
682  |  | /**  | 
683  |  |  * Constant representing the summer solstice.  | 
684  |  |  * For use with {@link #getSunTime getSunTime}. | 
685  |  |  * Note: In this case, "summer" refers to the northern hemisphere's seasons.  | 
686  |  |  * @internal  | 
687  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
688  |  |  */  | 
689  | 0  | double CalendarAstronomer::SUMMER_SOLSTICE() { | 
690  | 0  |     return  (CalendarAstronomer::PI/2);  | 
691  | 0  | }  | 
692  |  |  | 
693  |  | /**  | 
694  |  |  * Constant representing the autumnal equinox.  | 
695  |  |  * For use with {@link #getSunTime getSunTime}. | 
696  |  |  * Note: In this case, "autumn" refers to the northern hemisphere's seasons.  | 
697  |  |  * @internal  | 
698  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
699  |  |  */  | 
700  |  | /*double CalendarAstronomer::AUTUMN_EQUINOX() { | 
701  |  |   return  (CalendarAstronomer::PI);  | 
702  |  | }*/  | 
703  |  |  | 
704  |  | /**  | 
705  |  |  * Constant representing the winter solstice.  | 
706  |  |  * For use with {@link #getSunTime getSunTime}. | 
707  |  |  * Note: In this case, "winter" refers to the northern hemisphere's seasons.  | 
708  |  |  * @internal  | 
709  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
710  |  |  */  | 
711  | 0  | double CalendarAstronomer::WINTER_SOLSTICE() { | 
712  | 0  |     return  ((CalendarAstronomer::PI*3)/2);  | 
713  | 0  | }  | 
714  |  |  | 
715  | 0  | CalendarAstronomer::AngleFunc::~AngleFunc() {} | 
716  |  |  | 
717  |  | /**  | 
718  |  |  * Find the next time at which the sun's ecliptic longitude will have  | 
719  |  |  * the desired value.  | 
720  |  |  * @internal  | 
721  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
722  |  |  */  | 
723  |  | class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc { | 
724  |  | public:  | 
725  |  |     virtual ~SunTimeAngleFunc();  | 
726  | 0  |     virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); } | 
727  |  | };  | 
728  |  |  | 
729  |  | SunTimeAngleFunc::~SunTimeAngleFunc() {} | 
730  |  |  | 
731  |  | UDate CalendarAstronomer::getSunTime(double desired, UBool next)  | 
732  | 0  | { | 
733  | 0  |     SunTimeAngleFunc func;  | 
734  | 0  |     return timeOfAngle( func,  | 
735  | 0  |                         desired,  | 
736  | 0  |                         TROPICAL_YEAR,  | 
737  | 0  |                         MINUTE_MS,  | 
738  | 0  |                         next);  | 
739  | 0  | }  | 
740  |  |  | 
741  | 0  | CalendarAstronomer::CoordFunc::~CoordFunc() {} | 
742  |  |  | 
743  |  | class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc { | 
744  |  | public:  | 
745  |  |     virtual ~RiseSetCoordFunc();  | 
746  | 0  |     virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) {  a.getSunPosition(result); } | 
747  |  | };  | 
748  |  |  | 
749  |  | RiseSetCoordFunc::~RiseSetCoordFunc() {} | 
750  |  |  | 
751  |  | UDate CalendarAstronomer::getSunRiseSet(UBool rise)  | 
752  | 0  | { | 
753  | 0  |     UDate t0 = fTime;  | 
754  |  |  | 
755  |  |     // Make a rough guess: 6am or 6pm local time on the current day  | 
756  | 0  |     double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS);  | 
757  |  | 
  | 
758  | 0  |     U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset)); | 
759  | 0  |     setTime(noon +  ((rise ? -6 : 6) * HOUR_MS));  | 
760  | 0  |     U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS))); | 
761  |  | 
  | 
762  | 0  |     RiseSetCoordFunc func;  | 
763  | 0  |     double t = riseOrSet(func,  | 
764  | 0  |                          rise,  | 
765  | 0  |                          .533 * DEG_RAD,        // Angular Diameter  | 
766  | 0  |                          34. /60.0 * DEG_RAD,    // Refraction correction  | 
767  | 0  |                          MINUTE_MS / 12.);       // Desired accuracy  | 
768  |  | 
  | 
769  | 0  |     setTime(t0);  | 
770  | 0  |     return t;  | 
771  | 0  | }  | 
772  |  |  | 
773  |  | // Commented out - currently unused. ICU 2.6, Alan  | 
774  |  | //    //-------------------------------------------------------------------------  | 
775  |  | //    // Alternate Sun Rise/Set  | 
776  |  | //    // See Duffett-Smith p.93  | 
777  |  | //    //-------------------------------------------------------------------------  | 
778  |  | //  | 
779  |  | //    // This yields worse results (as compared to USNO data) than getSunRiseSet().  | 
780  |  | //    /**  | 
781  |  | //     * TODO Make this when the entire class is package-private.  | 
782  |  | //     */  | 
783  |  | //    /*public*/ long getSunRiseSet2(boolean rise) { | 
784  |  | //        // 1. Calculate coordinates of the sun's center for midnight  | 
785  |  | //        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;  | 
786  |  | //        double[] sl = getSunLongitude(jd);//        double lambda1 = sl[0];  | 
787  |  | //        Equatorial pos1 = eclipticToEquatorial(lambda1, 0);  | 
788  |  | //  | 
789  |  | //        // 2. Add ... to lambda to get position 24 hours later  | 
790  |  | //        double lambda2 = lambda1 + 0.985647*DEG_RAD;  | 
791  |  | //        Equatorial pos2 = eclipticToEquatorial(lambda2, 0);  | 
792  |  | //  | 
793  |  | //        // 3. Calculate LSTs of rising and setting for these two positions  | 
794  |  | //        double tanL = ::tan(fLatitude);  | 
795  |  | //        double H = ::acos(-tanL * ::tan(pos1.declination));  | 
796  |  | //        double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;  | 
797  |  | //        double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;  | 
798  |  | //               H = ::acos(-tanL * ::tan(pos2.declination));  | 
799  |  | //        double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;  | 
800  |  | //        double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;  | 
801  |  | //        if (lst1r > 24) lst1r -= 24;  | 
802  |  | //        if (lst1s > 24) lst1s -= 24;  | 
803  |  | //        if (lst2r > 24) lst2r -= 24;  | 
804  |  | //        if (lst2s > 24) lst2s -= 24;  | 
805  |  | //  | 
806  |  | //        // 4. Convert LSTs to GSTs.  If GST1 > GST2, add 24 to GST2.  | 
807  |  | //        double gst1r = lstToGst(lst1r);  | 
808  |  | //        double gst1s = lstToGst(lst1s);  | 
809  |  | //        double gst2r = lstToGst(lst2r);  | 
810  |  | //        double gst2s = lstToGst(lst2s);  | 
811  |  | //        if (gst1r > gst2r) gst2r += 24;  | 
812  |  | //        if (gst1s > gst2s) gst2s += 24;  | 
813  |  | //  | 
814  |  | //        // 5. Calculate GST at 0h UT of this date  | 
815  |  | //        double t00 = utToGst(0);  | 
816  |  | //  | 
817  |  | //        // 6. Calculate GST at 0h on the observer's longitude  | 
818  |  | //        double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.  | 
819  |  | //        double t00p = t00 - offset*1.002737909;  | 
820  |  | //        if (t00p < 0) t00p += 24; // do NOT normalize  | 
821  |  | //  | 
822  |  | //        // 7. Adjust  | 
823  |  | //        if (gst1r < t00p) { | 
824  |  | //            gst1r += 24;  | 
825  |  | //            gst2r += 24;  | 
826  |  | //        }  | 
827  |  | //        if (gst1s < t00p) { | 
828  |  | //            gst1s += 24;  | 
829  |  | //            gst2s += 24;  | 
830  |  | //        }  | 
831  |  | //  | 
832  |  | //        // 8.  | 
833  |  | //        double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);  | 
834  |  | //        double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);  | 
835  |  | //  | 
836  |  | //        // 9. Correct for parallax, refraction, and sun's diameter  | 
837  |  | //        double dec = (pos1.declination + pos2.declination) / 2;  | 
838  |  | //        double psi = ::acos(sin(fLatitude) / cos(dec));  | 
839  |  | //        double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter  | 
840  |  | //        double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;  | 
841  |  | //        double delta_t = 240 * y / cos(dec) / 3600; // hours  | 
842  |  | //  | 
843  |  | //        // 10. Add correction to GSTs, subtract from GSTr  | 
844  |  | //        gstr -= delta_t;  | 
845  |  | //        gsts += delta_t;  | 
846  |  | //  | 
847  |  | //        // 11. Convert GST to UT and then to local civil time  | 
848  |  | //        double ut = gstToUt(rise ? gstr : gsts);  | 
849  |  | //        //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);  | 
850  |  | //        long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day  | 
851  |  | //        return midnight + (long) (ut * 3600000);  | 
852  |  | //    }  | 
853  |  |  | 
854  |  | // Commented out - currently unused. ICU 2.6, Alan  | 
855  |  | //    /**  | 
856  |  | //     * Convert local sidereal time to Greenwich sidereal time.  | 
857  |  | //     * Section 15.  Duffett-Smith p.21  | 
858  |  | //     * @param lst in hours (0..24)  | 
859  |  | //     * @return GST in hours (0..24)  | 
860  |  | //     */  | 
861  |  | //    double lstToGst(double lst) { | 
862  |  | //        double delta = fLongitude * 24 / CalendarAstronomer_PI2;  | 
863  |  | //        return normalize(lst - delta, 24);  | 
864  |  | //    }  | 
865  |  |  | 
866  |  | // Commented out - currently unused. ICU 2.6, Alan  | 
867  |  | //    /**  | 
868  |  | //     * Convert UT to GST on this date.  | 
869  |  | //     * Section 12.  Duffett-Smith p.17  | 
870  |  | //     * @param ut in hours  | 
871  |  | //     * @return GST in hours  | 
872  |  | //     */  | 
873  |  | //    double utToGst(double ut) { | 
874  |  | //        return normalize(getT0() + ut*1.002737909, 24);  | 
875  |  | //    }  | 
876  |  |  | 
877  |  | // Commented out - currently unused. ICU 2.6, Alan  | 
878  |  | //    /**  | 
879  |  | //     * Convert GST to UT on this date.  | 
880  |  | //     * Section 13.  Duffett-Smith p.18  | 
881  |  | //     * @param gst in hours  | 
882  |  | //     * @return UT in hours  | 
883  |  | //     */  | 
884  |  | //    double gstToUt(double gst) { | 
885  |  | //        return normalize(gst - getT0(), 24) * 0.9972695663;  | 
886  |  | //    }  | 
887  |  |  | 
888  |  | // Commented out - currently unused. ICU 2.6, Alan  | 
889  |  | //    double getT0() { | 
890  |  | //        // Common computation for UT <=> GST  | 
891  |  | //  | 
892  |  | //        // Find JD for 0h UT  | 
893  |  | //        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;  | 
894  |  | //  | 
895  |  | //        double s = jd - 2451545.0;  | 
896  |  | //        double t = s / 36525.0;  | 
897  |  | //        double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;  | 
898  |  | //        return t0;  | 
899  |  | //    }  | 
900  |  |  | 
901  |  | // Commented out - currently unused. ICU 2.6, Alan  | 
902  |  | //    //-------------------------------------------------------------------------  | 
903  |  | //    // Alternate Sun Rise/Set  | 
904  |  | //    // See sci.astro FAQ  | 
905  |  | //    // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html  | 
906  |  | //    //-------------------------------------------------------------------------  | 
907  |  | //  | 
908  |  | //    // Note: This method appears to produce inferior accuracy as  | 
909  |  | //    // compared to getSunRiseSet().  | 
910  |  | //  | 
911  |  | //    /**  | 
912  |  | //     * TODO Make this when the entire class is package-private.  | 
913  |  | //     */  | 
914  |  | //    /*public*/ long getSunRiseSet3(boolean rise) { | 
915  |  | //  | 
916  |  | //        // Compute day number for 0.0 Jan 2000 epoch  | 
917  |  | //        double d = (double)(time - EPOCH_2000_MS) / DAY_MS;  | 
918  |  | //  | 
919  |  | //        // Now compute the Local Sidereal Time, LST:  | 
920  |  | //        //  | 
921  |  | //        double LST  =  98.9818  +  0.985647352 * d  +  /*UT*15  +  long*/  | 
922  |  | //            fLongitude*RAD_DEG;  | 
923  |  | //        //  | 
924  |  | //        // (east long. positive).  Note that LST is here expressed in degrees,  | 
925  |  | //        // where 15 degrees corresponds to one hour.  Since LST really is an angle,  | 
926  |  | //        // it's convenient to use one unit---degrees---throughout.  | 
927  |  | //  | 
928  |  | //        //    COMPUTING THE SUN'S POSITION  | 
929  |  | //        //    ----------------------------  | 
930  |  | //        //  | 
931  |  | //        // To be able to compute the Sun's rise/set times, you need to be able to  | 
932  |  | //        // compute the Sun's position at any time.  First compute the "day  | 
933  |  | //        // number" d as outlined above, for the desired moment.  Next compute:  | 
934  |  | //        //  | 
935  |  | //        double oblecl = 23.4393 - 3.563E-7 * d;  | 
936  |  | //        //  | 
937  |  | //        double w  =  282.9404  +  4.70935E-5   * d;  | 
938  |  | //        double M  =  356.0470  +  0.9856002585 * d;  | 
939  |  | //        double e  =  0.016709  -  1.151E-9     * d;  | 
940  |  | //        //  | 
941  |  | //        // This is the obliquity of the ecliptic, plus some of the elements of  | 
942  |  | //        // the Sun's apparent orbit (i.e., really the Earth's orbit): w =  | 
943  |  | //        // argument of perihelion, M = mean anomaly, e = eccentricity.  | 
944  |  | //        // Semi-major axis is here assumed to be exactly 1.0 (while not strictly  | 
945  |  | //        // true, this is still an accurate approximation).  Next compute E, the  | 
946  |  | //        // eccentric anomaly:  | 
947  |  | //        //  | 
948  |  | //        double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );  | 
949  |  | //        //  | 
950  |  | //        // where E and M are in degrees.  This is it---no further iterations are  | 
951  |  | //        // needed because we know e has a sufficiently small value.  Next compute  | 
952  |  | //        // the true anomaly, v, and the distance, r:  | 
953  |  | //        //  | 
954  |  | //        /*      r * cos(v)  =  */ double A  =  cos(E*DEG_RAD) - e;  | 
955  |  | //        /*      r * ::sin(v)  =  */ double B  =  ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);  | 
956  |  | //        //  | 
957  |  | //        // and  | 
958  |  | //        //  | 
959  |  | //        //      r  =  sqrt( A*A + B*B )  | 
960  |  | //        double v  =  ::atan2( B, A )*RAD_DEG;  | 
961  |  | //        //  | 
962  |  | //        // The Sun's true longitude, slon, can now be computed:  | 
963  |  | //        //  | 
964  |  | //        double slon  =  v + w;  | 
965  |  | //        //  | 
966  |  | //        // Since the Sun is always at the ecliptic (or at least very very close to  | 
967  |  | //        // it), we can use simplified formulae to convert slon (the Sun's ecliptic  | 
968  |  | //        // longitude) to sRA and sDec (the Sun's RA and Dec):  | 
969  |  | //        //  | 
970  |  | //        //                   ::sin(slon) * cos(oblecl)  | 
971  |  | //        //     tan(sRA)  =  -------------------------  | 
972  |  | //        //            cos(slon)  | 
973  |  | //        //  | 
974  |  | //        //     ::sin(sDec) =  ::sin(oblecl) * ::sin(slon)  | 
975  |  | //        //  | 
976  |  | //        // As was the case when computing az, the Azimuth, if possible use an  | 
977  |  | //        // atan2() function to compute sRA.  | 
978  |  | //  | 
979  |  | //        double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;  | 
980  |  | //  | 
981  |  | //        double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);  | 
982  |  | //        double sDec = ::asin(sin_sDec)*RAD_DEG;  | 
983  |  | //  | 
984  |  | //        //    COMPUTING RISE AND SET TIMES  | 
985  |  | //        //    ----------------------------  | 
986  |  | //        //  | 
987  |  | //        // To compute when an object rises or sets, you must compute when it  | 
988  |  | //        // passes the meridian and the HA of rise/set.  Then the rise time is  | 
989  |  | //        // the meridian time minus HA for rise/set, and the set time is the  | 
990  |  | //        // meridian time plus the HA for rise/set.  | 
991  |  | //        //  | 
992  |  | //        // To find the meridian time, compute the Local Sidereal Time at 0h local  | 
993  |  | //        // time (or 0h UT if you prefer to work in UT) as outlined above---name  | 
994  |  | //        // that quantity LST0.  The Meridian Time, MT, will now be:  | 
995  |  | //        //  | 
996  |  | //        //     MT  =  RA - LST0  | 
997  |  | //        double MT = normalize(sRA - LST, 360);  | 
998  |  | //        //  | 
999  |  | //        // where "RA" is the object's Right Ascension (in degrees!).  If negative,  | 
1000  |  | //        // add 360 deg to MT.  If the object is the Sun, leave the time as it is,  | 
1001  |  | //        // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from  | 
1002  |  | //        // sidereal to solar time.  Now, compute HA for rise/set, name that  | 
1003  |  | //        // quantity HA0:  | 
1004  |  | //        //  | 
1005  |  | //        //                 ::sin(h0)  -  ::sin(lat) * ::sin(Dec)  | 
1006  |  | //        // cos(HA0)  =  ---------------------------------  | 
1007  |  | //        //                      cos(lat) * cos(Dec)  | 
1008  |  | //        //  | 
1009  |  | //        // where h0 is the altitude selected to represent rise/set.  For a purely  | 
1010  |  | //        // mathematical horizon, set h0 = 0 and simplify to:  | 
1011  |  | //        //  | 
1012  |  | //        //    cos(HA0)  =  - tan(lat) * tan(Dec)  | 
1013  |  | //        //  | 
1014  |  | //        // If you want to account for refraction on the atmosphere, set h0 = -35/60  | 
1015  |  | //        // degrees (-35 arc minutes), and if you want to compute the rise/set times  | 
1016  |  | //        // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).  | 
1017  |  | //        //  | 
1018  |  | //        double h0 = -50/60 * DEG_RAD;  | 
1019  |  | //  | 
1020  |  | //        double HA0 = ::acos(  | 
1021  |  | //          (sin(h0) - ::sin(fLatitude) * sin_sDec) /  | 
1022  |  | //          (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;  | 
1023  |  | //  | 
1024  |  | //        // When HA0 has been computed, leave it as it is for the Sun but multiply  | 
1025  |  | //        // by 365.2422/366.2422 for stellar objects, to convert from sidereal to  | 
1026  |  | //        // solar time.  Finally compute:  | 
1027  |  | //        //  | 
1028  |  | //        //    Rise time  =  MT - HA0  | 
1029  |  | //        //    Set  time  =  MT + HA0  | 
1030  |  | //        //  | 
1031  |  | //        // convert the times from degrees to hours by dividing by 15.  | 
1032  |  | //        //  | 
1033  |  | //        // If you'd like to check that your calculations are accurate or just  | 
1034  |  | //        // need a quick result, check the USNO's Sun or Moon Rise/Set Table,  | 
1035  |  | //        // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.  | 
1036  |  | //  | 
1037  |  | //        double result = MT + (rise ? -HA0 : HA0); // in degrees  | 
1038  |  | //  | 
1039  |  | //        // Find UT midnight on this day  | 
1040  |  | //        long midnight = DAY_MS * (time / DAY_MS);  | 
1041  |  | //  | 
1042  |  | //        return midnight + (long) (result * 3600000 / 15);  | 
1043  |  | //    }  | 
1044  |  |  | 
1045  |  | //-------------------------------------------------------------------------  | 
1046  |  | // The Moon  | 
1047  |  | //-------------------------------------------------------------------------  | 
1048  |  |  | 
1049  | 0  | #define moonL0  (318.351648 * CalendarAstronomer::PI/180 )   // Mean long. at epoch  | 
1050  | 0  | #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 )   // Mean long. of perigee  | 
1051  | 0  | #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 )   // Mean long. of node  | 
1052  | 0  | #define moonI  (   5.145366 * CalendarAstronomer::PI/180 )   // Inclination of orbit  | 
1053  |  | #define moonE  (   0.054900 )            // Eccentricity of orbit  | 
1054  |  |  | 
1055  |  | // These aren't used right now  | 
1056  |  | #define moonA  (   3.84401e5 )           // semi-major axis (km)  | 
1057  |  | #define moonT0 (   0.5181 * CalendarAstronomer::PI/180 )     // Angular size at distance A  | 
1058  |  | #define moonPi (   0.9507 * CalendarAstronomer::PI/180 )     // Parallax at distance A  | 
1059  |  |  | 
1060  |  | /**  | 
1061  |  |  * The position of the moon at the time set on this  | 
1062  |  |  * object, in equatorial coordinates.  | 
1063  |  |  * @internal  | 
1064  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
1065  |  |  */  | 
1066  |  | const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()  | 
1067  | 0  | { | 
1068  |  |     //  | 
1069  |  |     // See page 142 of "Practical Astronomy with your Calculator",  | 
1070  |  |     // by Peter Duffet-Smith, for details on the algorithm.  | 
1071  |  |     //  | 
1072  | 0  |     if (moonPositionSet == FALSE) { | 
1073  |  |         // Calculate the solar longitude.  Has the side effect of  | 
1074  |  |         // filling in "meanAnomalySun" as well.  | 
1075  | 0  |         getSunLongitude();  | 
1076  |  |  | 
1077  |  |         //  | 
1078  |  |         // Find the # of days since the epoch of our orbital parameters.  | 
1079  |  |         // TODO: Convert the time of day portion into ephemeris time  | 
1080  |  |         //  | 
1081  | 0  |         double day = getJulianDay() - JD_EPOCH;       // Days since epoch  | 
1082  |  |  | 
1083  |  |         // Calculate the mean longitude and anomaly of the moon, based on  | 
1084  |  |         // a circular orbit.  Similar to the corresponding solar calculation.  | 
1085  | 0  |         double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);  | 
1086  | 0  |         meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);  | 
1087  |  |  | 
1088  |  |         //  | 
1089  |  |         // Calculate the following corrections:  | 
1090  |  |         //  Evection:   the sun's gravity affects the moon's eccentricity  | 
1091  |  |         //  Annual Eqn: variation in the effect due to earth-sun distance  | 
1092  |  |         //  A3:         correction factor (for ???)  | 
1093  |  |         //  | 
1094  | 0  |         double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)  | 
1095  | 0  |             - meanAnomalyMoon);  | 
1096  | 0  |         double annual   = 0.1858*PI/180 * ::sin(meanAnomalySun);  | 
1097  | 0  |         double a3       = 0.3700*PI/180 * ::sin(meanAnomalySun);  | 
1098  |  | 
  | 
1099  | 0  |         meanAnomalyMoon += evection - annual - a3;  | 
1100  |  |  | 
1101  |  |         //  | 
1102  |  |         // More correction factors:  | 
1103  |  |         //  center  equation of the center correction  | 
1104  |  |         //  a4      yet another error correction (???)  | 
1105  |  |         //  | 
1106  |  |         // TODO: Skip the equation of the center correction and solve Kepler's eqn?  | 
1107  |  |         //  | 
1108  | 0  |         double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);  | 
1109  | 0  |         double a4 =     0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);  | 
1110  |  |  | 
1111  |  |         // Now find the moon's corrected longitude  | 
1112  | 0  |         moonLongitude = meanLongitude + evection + center - annual + a4;  | 
1113  |  |  | 
1114  |  |         //  | 
1115  |  |         // And finally, find the variation, caused by the fact that the sun's  | 
1116  |  |         // gravitational pull on the moon varies depending on which side of  | 
1117  |  |         // the earth the moon is on  | 
1118  |  |         //  | 
1119  | 0  |         double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));  | 
1120  |  | 
  | 
1121  | 0  |         moonLongitude += variation;  | 
1122  |  |  | 
1123  |  |         //  | 
1124  |  |         // What we've calculated so far is the moon's longitude in the plane  | 
1125  |  |         // of its own orbit.  Now map to the ecliptic to get the latitude  | 
1126  |  |         // and longitude.  First we need to find the longitude of the ascending  | 
1127  |  |         // node, the position on the ecliptic where it is crossed by the moon's  | 
1128  |  |         // orbit as it crosses from the southern to the northern hemisphere.  | 
1129  |  |         //  | 
1130  | 0  |         double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);  | 
1131  |  | 
  | 
1132  | 0  |         nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);  | 
1133  |  | 
  | 
1134  | 0  |         double y = ::sin(moonLongitude - nodeLongitude);  | 
1135  | 0  |         double x = cos(moonLongitude - nodeLongitude);  | 
1136  |  | 
  | 
1137  | 0  |         moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;  | 
1138  | 0  |         double moonEclipLat = ::asin(y * ::sin(moonI));  | 
1139  |  | 
  | 
1140  | 0  |         eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);  | 
1141  | 0  |         moonPositionSet = TRUE;  | 
1142  | 0  |     }  | 
1143  | 0  |     return moonPosition;  | 
1144  | 0  | }  | 
1145  |  |  | 
1146  |  | /**  | 
1147  |  |  * The "age" of the moon at the time specified in this object.  | 
1148  |  |  * This is really the angle between the  | 
1149  |  |  * current ecliptic longitudes of the sun and the moon,  | 
1150  |  |  * measured in radians.  | 
1151  |  |  *  | 
1152  |  |  * @see #getMoonPhase  | 
1153  |  |  * @internal  | 
1154  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
1155  |  |  */  | 
1156  | 0  | double CalendarAstronomer::getMoonAge() { | 
1157  |  |     // See page 147 of "Practical Astronomy with your Calculator",  | 
1158  |  |     // by Peter Duffet-Smith, for details on the algorithm.  | 
1159  |  |     //  | 
1160  |  |     // Force the moon's position to be calculated.  We're going to use  | 
1161  |  |     // some the intermediate results cached during that calculation.  | 
1162  |  |     //  | 
1163  | 0  |     getMoonPosition();  | 
1164  |  | 
  | 
1165  | 0  |     return norm2PI(moonEclipLong - sunLongitude);  | 
1166  | 0  | }  | 
1167  |  |  | 
1168  |  | /**  | 
1169  |  |  * Calculate the phase of the moon at the time set in this object.  | 
1170  |  |  * The returned phase is a <code>double</code> in the range  | 
1171  |  |  * <code>0 <= phase < 1</code>, interpreted as follows:  | 
1172  |  |  * <ul>  | 
1173  |  |  * <li>0.00: New moon  | 
1174  |  |  * <li>0.25: First quarter  | 
1175  |  |  * <li>0.50: Full moon  | 
1176  |  |  * <li>0.75: Last quarter  | 
1177  |  |  * </ul>  | 
1178  |  |  *  | 
1179  |  |  * @see #getMoonAge  | 
1180  |  |  * @internal  | 
1181  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
1182  |  |  */  | 
1183  | 0  | double CalendarAstronomer::getMoonPhase() { | 
1184  |  |     // See page 147 of "Practical Astronomy with your Calculator",  | 
1185  |  |     // by Peter Duffet-Smith, for details on the algorithm.  | 
1186  | 0  |     return 0.5 * (1 - cos(getMoonAge()));  | 
1187  | 0  | }  | 
1188  |  |  | 
1189  |  | /**  | 
1190  |  |  * Constant representing a new moon.  | 
1191  |  |  * For use with {@link #getMoonTime getMoonTime} | 
1192  |  |  * @internal  | 
1193  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
1194  |  |  */  | 
1195  | 0  | const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() { | 
1196  | 0  |     return  CalendarAstronomer::MoonAge(0);  | 
1197  | 0  | }  | 
1198  |  |  | 
1199  |  | /**  | 
1200  |  |  * Constant representing the moon's first quarter.  | 
1201  |  |  * For use with {@link #getMoonTime getMoonTime} | 
1202  |  |  * @internal  | 
1203  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
1204  |  |  */  | 
1205  |  | /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() { | 
1206  |  |   return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);  | 
1207  |  | }*/  | 
1208  |  |  | 
1209  |  | /**  | 
1210  |  |  * Constant representing a full moon.  | 
1211  |  |  * For use with {@link #getMoonTime getMoonTime} | 
1212  |  |  * @internal  | 
1213  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
1214  |  |  */  | 
1215  | 0  | const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() { | 
1216  | 0  |     return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI);  | 
1217  | 0  | }  | 
1218  |  | /**  | 
1219  |  |  * Constant representing the moon's last quarter.  | 
1220  |  |  * For use with {@link #getMoonTime getMoonTime} | 
1221  |  |  * @internal  | 
1222  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
1223  |  |  */  | 
1224  |  |  | 
1225  |  | class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc { | 
1226  |  | public:  | 
1227  |  |     virtual ~MoonTimeAngleFunc();  | 
1228  | 0  |     virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); } | 
1229  |  | };  | 
1230  |  |  | 
1231  |  | MoonTimeAngleFunc::~MoonTimeAngleFunc() {} | 
1232  |  |  | 
1233  |  | /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() { | 
1234  |  |   return  CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);  | 
1235  |  | }*/  | 
1236  |  |  | 
1237  |  | /**  | 
1238  |  |  * Find the next or previous time at which the Moon's ecliptic  | 
1239  |  |  * longitude will have the desired value.  | 
1240  |  |  * <p>  | 
1241  |  |  * @param desired   The desired longitude.  | 
1242  |  |  * @param next      <tt>true</tt> if the next occurrence of the phase  | 
1243  |  |  *                  is desired, <tt>false</tt> for the previous occurrence.  | 
1244  |  |  * @internal  | 
1245  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
1246  |  |  */  | 
1247  |  | UDate CalendarAstronomer::getMoonTime(double desired, UBool next)  | 
1248  | 0  | { | 
1249  | 0  |     MoonTimeAngleFunc func;  | 
1250  | 0  |     return timeOfAngle( func,  | 
1251  | 0  |                         desired,  | 
1252  | 0  |                         SYNODIC_MONTH,  | 
1253  | 0  |                         MINUTE_MS,  | 
1254  | 0  |                         next);  | 
1255  | 0  | }  | 
1256  |  |  | 
1257  |  | /**  | 
1258  |  |  * Find the next or previous time at which the moon will be in the  | 
1259  |  |  * desired phase.  | 
1260  |  |  * <p>  | 
1261  |  |  * @param desired   The desired phase of the moon.  | 
1262  |  |  * @param next      <tt>true</tt> if the next occurrence of the phase  | 
1263  |  |  *                  is desired, <tt>false</tt> for the previous occurrence.  | 
1264  |  |  * @internal  | 
1265  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
1266  |  |  */  | 
1267  | 0  | UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) { | 
1268  | 0  |     return getMoonTime(desired.value, next);  | 
1269  | 0  | }  | 
1270  |  |  | 
1271  |  | class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc { | 
1272  |  | public:  | 
1273  |  |     virtual ~MoonRiseSetCoordFunc();  | 
1274  | 0  |     virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); } | 
1275  |  | };  | 
1276  |  |  | 
1277  |  | MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {} | 
1278  |  |  | 
1279  |  | /**  | 
1280  |  |  * Returns the time (GMT) of sunrise or sunset on the local date to which  | 
1281  |  |  * this calendar is currently set.  | 
1282  |  |  * @internal  | 
1283  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
1284  |  |  */  | 
1285  |  | UDate CalendarAstronomer::getMoonRiseSet(UBool rise)  | 
1286  | 0  | { | 
1287  | 0  |     MoonRiseSetCoordFunc func;  | 
1288  | 0  |     return riseOrSet(func,  | 
1289  | 0  |                      rise,  | 
1290  | 0  |                      .533 * DEG_RAD,        // Angular Diameter  | 
1291  | 0  |                      34 /60.0 * DEG_RAD,    // Refraction correction  | 
1292  | 0  |                      MINUTE_MS);            // Desired accuracy  | 
1293  | 0  | }  | 
1294  |  |  | 
1295  |  | //-------------------------------------------------------------------------  | 
1296  |  | // Interpolation methods for finding the time at which a given event occurs  | 
1297  |  | //-------------------------------------------------------------------------  | 
1298  |  |  | 
1299  |  | UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,  | 
1300  |  |                                       double periodDays, double epsilon, UBool next)  | 
1301  | 0  | { | 
1302  |  |     // Find the value of the function at the current time  | 
1303  | 0  |     double lastAngle = func.eval(*this);  | 
1304  |  |  | 
1305  |  |     // Find out how far we are from the desired angle  | 
1306  | 0  |     double deltaAngle = norm2PI(desired - lastAngle) ;  | 
1307  |  |  | 
1308  |  |     // Using the average period, estimate the next (or previous) time at  | 
1309  |  |     // which the desired angle occurs.  | 
1310  | 0  |     double deltaT =  (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;  | 
1311  |  | 
  | 
1312  | 0  |     double lastDeltaT = deltaT; // Liu  | 
1313  | 0  |     UDate startTime = fTime; // Liu  | 
1314  |  | 
  | 
1315  | 0  |     setTime(fTime + uprv_ceil(deltaT));  | 
1316  |  |  | 
1317  |  |     // Now iterate until we get the error below epsilon.  Throughout  | 
1318  |  |     // this loop we use normPI to get values in the range -Pi to Pi,  | 
1319  |  |     // since we're using them as correction factors rather than absolute angles.  | 
1320  | 0  |     do { | 
1321  |  |         // Evaluate the function at the time we've estimated  | 
1322  | 0  |         double angle = func.eval(*this);  | 
1323  |  |  | 
1324  |  |         // Find the # of milliseconds per radian at this point on the curve  | 
1325  | 0  |         double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));  | 
1326  |  |  | 
1327  |  |         // Correct the time estimate based on how far off the angle is  | 
1328  | 0  |         deltaT = normPI(desired - angle) * factor;  | 
1329  |  |  | 
1330  |  |         // HACK:  | 
1331  |  |         //  | 
1332  |  |         // If abs(deltaT) begins to diverge we need to quit this loop.  | 
1333  |  |         // This only appears to happen when attempting to locate, for  | 
1334  |  |         // example, a new moon on the day of the new moon.  E.g.:  | 
1335  |  |         //  | 
1336  |  |         // This result is correct:  | 
1337  |  |         // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=  | 
1338  |  |         //   Sun Jul 22 10:57:41 CST 1990  | 
1339  |  |         //  | 
1340  |  |         // But attempting to make the same call a day earlier causes deltaT  | 
1341  |  |         // to diverge:  | 
1342  |  |         // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->  | 
1343  |  |         //   1.3649828540224032E9  | 
1344  |  |         // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=  | 
1345  |  |         //   Sun Jul 08 13:56:15 CST 1990  | 
1346  |  |         //  | 
1347  |  |         // As a temporary solution, we catch this specific condition and  | 
1348  |  |         // adjust our start time by one eighth period days (either forward  | 
1349  |  |         // or backward) and try again.  | 
1350  |  |         // Liu 11/9/00  | 
1351  | 0  |         if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) { | 
1352  | 0  |             double delta = uprv_ceil (periodDays * DAY_MS / 8.0);  | 
1353  | 0  |             setTime(startTime + (next ? delta : -delta));  | 
1354  | 0  |             return timeOfAngle(func, desired, periodDays, epsilon, next);  | 
1355  | 0  |         }  | 
1356  |  |  | 
1357  | 0  |         lastDeltaT = deltaT;  | 
1358  | 0  |         lastAngle = angle;  | 
1359  |  | 
  | 
1360  | 0  |         setTime(fTime + uprv_ceil(deltaT));  | 
1361  | 0  |     }  | 
1362  | 0  |     while (uprv_fabs(deltaT) > epsilon);  | 
1363  |  |  | 
1364  | 0  |     return fTime;  | 
1365  | 0  | }  | 
1366  |  |  | 
1367  |  | UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,  | 
1368  |  |                                     double diameter, double refraction,  | 
1369  |  |                                     double epsilon)  | 
1370  | 0  | { | 
1371  | 0  |     Equatorial pos;  | 
1372  | 0  |     double      tanL   = ::tan(fLatitude);  | 
1373  | 0  |     double     deltaT = 0;  | 
1374  | 0  |     int32_t         count = 0;  | 
1375  |  |  | 
1376  |  |     //  | 
1377  |  |     // Calculate the object's position at the current time, then use that  | 
1378  |  |     // position to calculate the time of rising or setting.  The position  | 
1379  |  |     // will be different at that time, so iterate until the error is allowable.  | 
1380  |  |     //  | 
1381  | 0  |     U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n", | 
1382  | 0  |         rise?"T":"F", diameter, refraction, epsilon));  | 
1383  | 0  |     do { | 
1384  |  |         // See "Practical Astronomy With Your Calculator, section 33.  | 
1385  | 0  |         func.eval(pos, *this);  | 
1386  | 0  |         double angle = ::acos(-tanL * ::tan(pos.declination));  | 
1387  | 0  |         double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2;  | 
1388  |  |  | 
1389  |  |         // Convert from LST to Universal Time.  | 
1390  | 0  |         UDate newTime = lstToUT( lst );  | 
1391  |  | 
  | 
1392  | 0  |         deltaT = newTime - fTime;  | 
1393  | 0  |         setTime(newTime);  | 
1394  | 0  |         U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf,   A=%.3lf/D=%.3lf\n", | 
1395  | 0  |             count, deltaT, angle, lst, pos.ascension, pos.declination));  | 
1396  | 0  |     }  | 
1397  | 0  |     while (++ count < 5 && uprv_fabs(deltaT) > epsilon);  | 
1398  |  |  | 
1399  |  |     // Calculate the correction due to refraction and the object's angular diameter  | 
1400  | 0  |     double cosD  = ::cos(pos.declination);  | 
1401  | 0  |     double psi   = ::acos(sin(fLatitude) / cosD);  | 
1402  | 0  |     double x     = diameter / 2 + refraction;  | 
1403  | 0  |     double y     = ::asin(sin(x) / ::sin(psi));  | 
1404  | 0  |     long  delta  = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);  | 
1405  |  | 
  | 
1406  | 0  |     return fTime + (rise ? -delta : delta);  | 
1407  | 0  | }  | 
1408  |  |                          /**  | 
1409  |  |  * Return the obliquity of the ecliptic (the angle between the ecliptic  | 
1410  |  |  * and the earth's equator) at the current time.  This varies due to  | 
1411  |  |  * the precession of the earth's axis.  | 
1412  |  |  *  | 
1413  |  |  * @return  the obliquity of the ecliptic relative to the equator,  | 
1414  |  |  *          measured in radians.  | 
1415  |  |  */  | 
1416  | 0  | double CalendarAstronomer::eclipticObliquity() { | 
1417  | 0  |     if (isINVALID(eclipObliquity)) { | 
1418  | 0  |         const double epoch = 2451545.0;     // 2000 AD, January 1.5  | 
1419  |  | 
  | 
1420  | 0  |         double T = (getJulianDay() - epoch) / 36525;  | 
1421  |  | 
  | 
1422  | 0  |         eclipObliquity = 23.439292  | 
1423  | 0  |             - 46.815/3600 * T  | 
1424  | 0  |             - 0.0006/3600 * T*T  | 
1425  | 0  |             + 0.00181/3600 * T*T*T;  | 
1426  |  | 
  | 
1427  | 0  |         eclipObliquity *= DEG_RAD;  | 
1428  | 0  |     }  | 
1429  | 0  |     return eclipObliquity;  | 
1430  | 0  | }  | 
1431  |  |  | 
1432  |  |  | 
1433  |  | //-------------------------------------------------------------------------  | 
1434  |  | // Private data  | 
1435  |  | //-------------------------------------------------------------------------  | 
1436  | 0  | void CalendarAstronomer::clearCache() { | 
1437  | 0  |     const double INVALID = uprv_getNaN();  | 
1438  |  | 
  | 
1439  | 0  |     julianDay       = INVALID;  | 
1440  | 0  |     julianCentury   = INVALID;  | 
1441  | 0  |     sunLongitude    = INVALID;  | 
1442  | 0  |     meanAnomalySun  = INVALID;  | 
1443  | 0  |     moonLongitude   = INVALID;  | 
1444  | 0  |     moonEclipLong   = INVALID;  | 
1445  | 0  |     meanAnomalyMoon = INVALID;  | 
1446  | 0  |     eclipObliquity  = INVALID;  | 
1447  | 0  |     siderealTime    = INVALID;  | 
1448  | 0  |     siderealT0      = INVALID;  | 
1449  | 0  |     moonPositionSet = FALSE;  | 
1450  | 0  | }  | 
1451  |  |  | 
1452  |  | //private static void out(String s) { | 
1453  |  | //    System.out.println(s);  | 
1454  |  | //}  | 
1455  |  |  | 
1456  |  | //private static String deg(double rad) { | 
1457  |  | //    return Double.toString(rad * RAD_DEG);  | 
1458  |  | //}  | 
1459  |  |  | 
1460  |  | //private static String hours(long ms) { | 
1461  |  | //    return Double.toString((double)ms / HOUR_MS) + " hours";  | 
1462  |  | //}  | 
1463  |  |  | 
1464  |  | /**  | 
1465  |  |  * @internal  | 
1466  |  |  * @deprecated ICU 2.4. This class may be removed or modified.  | 
1467  |  |  */  | 
1468  |  | /*UDate CalendarAstronomer::local(UDate localMillis) { | 
1469  |  |   // TODO - srl ?  | 
1470  |  |   TimeZone *tz = TimeZone::createDefault();  | 
1471  |  |   int32_t rawOffset;  | 
1472  |  |   int32_t dstOffset;  | 
1473  |  |   UErrorCode status = U_ZERO_ERROR;  | 
1474  |  |   tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status);  | 
1475  |  |   delete tz;  | 
1476  |  |   return localMillis - rawOffset;  | 
1477  |  | }*/  | 
1478  |  |  | 
1479  |  | // Debugging functions  | 
1480  |  | UnicodeString CalendarAstronomer::Ecliptic::toString() const  | 
1481  | 0  | { | 
1482  |  | #ifdef U_DEBUG_ASTRO  | 
1483  |  |     char tmp[800];  | 
1484  |  |     sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);  | 
1485  |  |     return UnicodeString(tmp, "");  | 
1486  |  | #else  | 
1487  | 0  |     return UnicodeString();  | 
1488  | 0  | #endif  | 
1489  | 0  | }  | 
1490  |  |  | 
1491  |  | UnicodeString CalendarAstronomer::Equatorial::toString() const  | 
1492  | 0  | { | 
1493  |  | #ifdef U_DEBUG_ASTRO  | 
1494  |  |     char tmp[400];  | 
1495  |  |     sprintf(tmp, "%f,%f",  | 
1496  |  |         (ascension*RAD_DEG), (declination*RAD_DEG));  | 
1497  |  |     return UnicodeString(tmp, "");  | 
1498  |  | #else  | 
1499  | 0  |     return UnicodeString();  | 
1500  | 0  | #endif  | 
1501  | 0  | }  | 
1502  |  |  | 
1503  |  | UnicodeString CalendarAstronomer::Horizon::toString() const  | 
1504  | 0  | { | 
1505  |  | #ifdef U_DEBUG_ASTRO  | 
1506  |  |     char tmp[800];  | 
1507  |  |     sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG);  | 
1508  |  |     return UnicodeString(tmp, "");  | 
1509  |  | #else  | 
1510  | 0  |     return UnicodeString();  | 
1511  | 0  | #endif  | 
1512  | 0  | }  | 
1513  |  |  | 
1514  |  |  | 
1515  |  | //  static private String radToHms(double angle) { | 
1516  |  | //    int hrs = (int) (angle*RAD_HOUR);  | 
1517  |  | //    int min = (int)((angle*RAD_HOUR - hrs) * 60);  | 
1518  |  | //    int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);  | 
1519  |  |  | 
1520  |  | //    return Integer.toString(hrs) + "h" + min + "m" + sec + "s";  | 
1521  |  | //  }  | 
1522  |  |  | 
1523  |  | //  static private String radToDms(double angle) { | 
1524  |  | //    int deg = (int) (angle*RAD_DEG);  | 
1525  |  | //    int min = (int)((angle*RAD_DEG - deg) * 60);  | 
1526  |  | //    int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);  | 
1527  |  |  | 
1528  |  | //    return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";  | 
1529  |  | //  }  | 
1530  |  |  | 
1531  |  | // =============== Calendar Cache ================  | 
1532  |  |  | 
1533  | 0  | void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) { | 
1534  | 0  |     ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);  | 
1535  | 0  |     if(cache == NULL) { | 
1536  | 0  |         status = U_MEMORY_ALLOCATION_ERROR;  | 
1537  | 0  |     } else { | 
1538  | 0  |         *cache = new CalendarCache(32, status);  | 
1539  | 0  |         if(U_FAILURE(status)) { | 
1540  | 0  |             delete *cache;  | 
1541  | 0  |             *cache = NULL;  | 
1542  | 0  |         }  | 
1543  | 0  |     }  | 
1544  | 0  | }  | 
1545  |  |  | 
1546  | 0  | int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) { | 
1547  | 0  |     int32_t res;  | 
1548  |  | 
  | 
1549  | 0  |     if(U_FAILURE(status)) { | 
1550  | 0  |         return 0;  | 
1551  | 0  |     }  | 
1552  | 0  |     umtx_lock(&ccLock);  | 
1553  |  | 
  | 
1554  | 0  |     if(*cache == NULL) { | 
1555  | 0  |         createCache(cache, status);  | 
1556  | 0  |         if(U_FAILURE(status)) { | 
1557  | 0  |             umtx_unlock(&ccLock);  | 
1558  | 0  |             return 0;  | 
1559  | 0  |         }  | 
1560  | 0  |     }  | 
1561  |  |  | 
1562  | 0  |     res = uhash_igeti((*cache)->fTable, key);  | 
1563  | 0  |     U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res)); | 
1564  |  | 
  | 
1565  | 0  |     umtx_unlock(&ccLock);  | 
1566  | 0  |     return res;  | 
1567  | 0  | }  | 
1568  |  |  | 
1569  | 0  | void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) { | 
1570  | 0  |     if(U_FAILURE(status)) { | 
1571  | 0  |         return;  | 
1572  | 0  |     }  | 
1573  | 0  |     umtx_lock(&ccLock);  | 
1574  |  | 
  | 
1575  | 0  |     if(*cache == NULL) { | 
1576  | 0  |         createCache(cache, status);  | 
1577  | 0  |         if(U_FAILURE(status)) { | 
1578  | 0  |             umtx_unlock(&ccLock);  | 
1579  | 0  |             return;  | 
1580  | 0  |         }  | 
1581  | 0  |     }  | 
1582  |  |  | 
1583  | 0  |     uhash_iputi((*cache)->fTable, key, value, &status);  | 
1584  | 0  |     U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value)); | 
1585  |  | 
  | 
1586  | 0  |     umtx_unlock(&ccLock);  | 
1587  | 0  | }  | 
1588  |  |  | 
1589  | 0  | CalendarCache::CalendarCache(int32_t size, UErrorCode &status) { | 
1590  | 0  |     fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status);  | 
1591  | 0  |     U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable)); | 
1592  | 0  | }  | 
1593  |  |  | 
1594  | 0  | CalendarCache::~CalendarCache() { | 
1595  | 0  |     if(fTable != NULL) { | 
1596  | 0  |         U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable)); | 
1597  | 0  |         uhash_close(fTable);  | 
1598  | 0  |     }  | 
1599  | 0  | }  | 
1600  |  |  | 
1601  |  | U_NAMESPACE_END  | 
1602  |  |  | 
1603  |  | #endif //  !UCONFIG_NO_FORMATTING  |