/src/icu/source/i18n/decNumber.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | // © 2016 and later: Unicode, Inc. and others.  | 
2  |  | // License & terms of use: http://www.unicode.org/copyright.html  | 
3  |  | /* ------------------------------------------------------------------ */  | 
4  |  | /* Decimal Number arithmetic module                                   */  | 
5  |  | /* ------------------------------------------------------------------ */  | 
6  |  | /* Copyright (c) IBM Corporation, 2000-2014.  All rights reserved.    */  | 
7  |  | /*                                                                    */  | 
8  |  | /* This software is made available under the terms of the             */  | 
9  |  | /* ICU License -- ICU 1.8.1 and later.                                */  | 
10  |  | /*                                                                    */  | 
11  |  | /* The description and User's Guide ("The decNumber C Library") for   */ | 
12  |  | /* this software is called decNumber.pdf.  This document is           */  | 
13  |  | /* available, together with arithmetic and format specifications,     */  | 
14  |  | /* testcases, and Web links, on the General Decimal Arithmetic page.  */  | 
15  |  | /*                                                                    */  | 
16  |  | /* Please send comments, suggestions, and corrections to the author:  */  | 
17  |  | /*   mfc@uk.ibm.com                                                   */  | 
18  |  | /*   Mike Cowlishaw, IBM Fellow                                       */  | 
19  |  | /*   IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK         */  | 
20  |  | /* ------------------------------------------------------------------ */  | 
21  |  |  | 
22  |  | /* Modified version, for use from within ICU.  | 
23  |  |  *    Renamed public functions, to avoid an unwanted export of the   | 
24  |  |  *    standard names from the ICU library.  | 
25  |  |  *  | 
26  |  |  *    Use ICU's uprv_malloc() and uprv_free()  | 
27  |  |  *  | 
28  |  |  *    Revert comment syntax to plain C  | 
29  |  |  *  | 
30  |  |  *    Remove a few compiler warnings.  | 
31  |  |  */  | 
32  |  |  | 
33  |  | /* This module comprises the routines for arbitrary-precision General */  | 
34  |  | /* Decimal Arithmetic as defined in the specification which may be    */  | 
35  |  | /* found on the General Decimal Arithmetic pages.  It implements both */  | 
36  |  | /* the full ('extended') arithmetic and the simpler ('subset')        */ | 
37  |  | /* arithmetic.                                                        */  | 
38  |  | /*                                                                    */  | 
39  |  | /* Usage notes:                                                       */  | 
40  |  | /*                                                                    */  | 
41  |  | /* 1. This code is ANSI C89 except:                                   */  | 
42  |  | /*                                                                    */  | 
43  |  | /*    a) C99 line comments (double forward slash) are used.  (Most C  */  | 
44  |  | /*       compilers accept these.  If yours does not, a simple script  */  | 
45  |  | /*       can be used to convert them to ANSI C comments.)             */  | 
46  |  | /*                                                                    */  | 
47  |  | /*    b) Types from C99 stdint.h are used.  If you do not have this   */  | 
48  |  | /*       header file, see the User's Guide section of the decNumber   */  | 
49  |  | /*       documentation; this lists the necessary definitions.         */  | 
50  |  | /*                                                                    */  | 
51  |  | /*    c) If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and       */  | 
52  |  | /*       uint64_t types may be used.  To avoid these, set DECUSE64=0  */  | 
53  |  | /*       and DECDPUN<=4 (see documentation).                          */  | 
54  |  | /*                                                                    */  | 
55  |  | /*    The code also conforms to C99 restrictions; in particular,      */  | 
56  |  | /*    strict aliasing rules are observed.                             */  | 
57  |  | /*                                                                    */  | 
58  |  | /* 2. The decNumber format which this library uses is optimized for   */  | 
59  |  | /*    efficient processing of relatively short numbers; in particular */  | 
60  |  | /*    it allows the use of fixed sized structures and minimizes copy  */  | 
61  |  | /*    and move operations.  It does, however, support arbitrary       */  | 
62  |  | /*    precision (up to 999,999,999 digits) and arbitrary exponent     */  | 
63  |  | /*    range (Emax in the range 0 through 999,999,999 and Emin in the  */  | 
64  |  | /*    range -999,999,999 through 0).  Mathematical functions (for     */  | 
65  |  | /*    example decNumberExp) as identified below are restricted more   */  | 
66  |  | /*    tightly: digits, emax, and -emin in the context must be <=      */  | 
67  |  | /*    DEC_MAX_MATH (999999), and their operand(s) must be within      */  | 
68  |  | /*    these bounds.                                                   */  | 
69  |  | /*                                                                    */  | 
70  |  | /* 3. Logical functions are further restricted; their operands must   */  | 
71  |  | /*    be finite, positive, have an exponent of zero, and all digits   */  | 
72  |  | /*    must be either 0 or 1.  The result will only contain digits     */  | 
73  |  | /*    which are 0 or 1 (and will have exponent=0 and a sign of 0).    */  | 
74  |  | /*                                                                    */  | 
75  |  | /* 4. Operands to operator functions are never modified unless they   */  | 
76  |  | /*    are also specified to be the result number (which is always     */  | 
77  |  | /*    permitted).  Other than that case, operands must not overlap.   */  | 
78  |  | /*                                                                    */  | 
79  |  | /* 5. Error handling: the type of the error is ORed into the status   */  | 
80  |  | /*    flags in the current context (decContext structure).  The       */  | 
81  |  | /*    SIGFPE signal is then raised if the corresponding trap-enabler  */  | 
82  |  | /*    flag in the decContext is set (is 1).                           */  | 
83  |  | /*                                                                    */  | 
84  |  | /*    It is the responsibility of the caller to clear the status      */  | 
85  |  | /*    flags as required.                                              */  | 
86  |  | /*                                                                    */  | 
87  |  | /*    The result of any routine which returns a number will always    */  | 
88  |  | /*    be a valid number (which may be a special value, such as an     */  | 
89  |  | /*    Infinity or NaN).                                               */  | 
90  |  | /*                                                                    */  | 
91  |  | /* 6. The decNumber format is not an exchangeable concrete            */  | 
92  |  | /*    representation as it comprises fields which may be machine-     */  | 
93  |  | /*    dependent (packed or unpacked, or special length, for example). */  | 
94  |  | /*    Canonical conversions to and from strings are provided; other   */  | 
95  |  | /*    conversions are available in separate modules.                  */  | 
96  |  | /*                                                                    */  | 
97  |  | /* 7. Normally, input operands are assumed to be valid.  Set DECCHECK */  | 
98  |  | /*    to 1 for extended operand checking (including NULL operands).   */  | 
99  |  | /*    Results are undefined if a badly-formed structure (or a NULL    */  | 
100  |  | /*    pointer to a structure) is provided, though with DECCHECK       */  | 
101  |  | /*    enabled the operator routines are protected against exceptions. */  | 
102  |  | /*    (Except if the result pointer is NULL, which is unrecoverable.) */  | 
103  |  | /*                                                                    */  | 
104  |  | /*    However, the routines will never cause exceptions if they are   */  | 
105  |  | /*    given well-formed operands, even if the value of the operands   */  | 
106  |  | /*    is inappropriate for the operation and DECCHECK is not set.     */  | 
107  |  | /*    (Except for SIGFPE, as and where documented.)                   */  | 
108  |  | /*                                                                    */  | 
109  |  | /* 8. Subset arithmetic is available only if DECSUBSET is set to 1.   */  | 
110  |  | /* ------------------------------------------------------------------ */  | 
111  |  | /* Implementation notes for maintenance of this module:               */  | 
112  |  | /*                                                                    */  | 
113  |  | /* 1. Storage leak protection:  Routines which use malloc are not     */  | 
114  |  | /*    permitted to use return for fastpath or error exits (i.e.,      */  | 
115  |  | /*    they follow strict structured programming conventions).         */  | 
116  |  | /*    Instead they have a do{}while(0); construct surrounding the     */ | 
117  |  | /*    code which is protected -- break may be used to exit this.      */  | 
118  |  | /*    Other routines can safely use the return statement inline.      */  | 
119  |  | /*                                                                    */  | 
120  |  | /*    Storage leak accounting can be enabled using DECALLOC.          */  | 
121  |  | /*                                                                    */  | 
122  |  | /* 2. All loops use the for(;;) construct.  Any do construct does     */  | 
123  |  | /*    not loop; it is for allocation protection as just described.    */  | 
124  |  | /*                                                                    */  | 
125  |  | /* 3. Setting status in the context must always be the very last      */  | 
126  |  | /*    action in a routine, as non-0 status may raise a trap and hence */  | 
127  |  | /*    the call to set status may not return (if the handler uses long */  | 
128  |  | /*    jump).  Therefore all cleanup must be done first.  In general,  */  | 
129  |  | /*    to achieve this status is accumulated and is only applied just  */  | 
130  |  | /*    before return by calling decContextSetStatus (via decStatus).   */  | 
131  |  | /*                                                                    */  | 
132  |  | /*    Routines which allocate storage cannot, in general, use the     */  | 
133  |  | /*    'top level' routines which could cause a non-returning          */  | 
134  |  | /*    transfer of control.  The decXxxxOp routines are safe (do not   */  | 
135  |  | /*    call decStatus even if traps are set in the context) and should */  | 
136  |  | /*    be used instead (they are also a little faster).                */  | 
137  |  | /*                                                                    */  | 
138  |  | /* 4. Exponent checking is minimized by allowing the exponent to      */  | 
139  |  | /*    grow outside its limits during calculations, provided that      */  | 
140  |  | /*    the decFinalize function is called later.  Multiplication and   */  | 
141  |  | /*    division, and intermediate calculations in exponentiation,      */  | 
142  |  | /*    require more careful checks because of the risk of 31-bit       */  | 
143  |  | /*    overflow (the most negative valid exponent is -1999999997, for  */  | 
144  |  | /*    a 999999999-digit number with adjusted exponent of -999999999). */  | 
145  |  | /*                                                                    */  | 
146  |  | /* 5. Rounding is deferred until finalization of results, with any    */  | 
147  |  | /*    'off to the right' data being represented as a single digit     */  | 
148  |  | /*    residue (in the range -1 through 9).  This avoids any double-   */  | 
149  |  | /*    rounding when more than one shortening takes place (for         */  | 
150  |  | /*    example, when a result is subnormal).                           */  | 
151  |  | /*                                                                    */  | 
152  |  | /* 6. The digits count is allowed to rise to a multiple of DECDPUN    */  | 
153  |  | /*    during many operations, so whole Units are handled and exact    */  | 
154  |  | /*    accounting of digits is not needed.  The correct digits value   */  | 
155  |  | /*    is found by decGetDigits, which accounts for leading zeros.     */  | 
156  |  | /*    This must be called before any rounding if the number of digits */  | 
157  |  | /*    is not known exactly.                                           */  | 
158  |  | /*                                                                    */  | 
159  |  | /* 7. The multiply-by-reciprocal 'trick' is used for partitioning     */  | 
160  |  | /*    numbers up to four digits, using appropriate constants.  This   */  | 
161  |  | /*    is not useful for longer numbers because overflow of 32 bits    */  | 
162  |  | /*    would lead to 4 multiplies, which is almost as expensive as     */  | 
163  |  | /*    a divide (unless a floating-point or 64-bit multiply is         */  | 
164  |  | /*    assumed to be available).                                       */  | 
165  |  | /*                                                                    */  | 
166  |  | /* 8. Unusual abbreviations that may be used in the commentary:       */  | 
167  |  | /*      lhs -- left hand side (operand, of an operation)              */  | 
168  |  | /*      lsd -- least significant digit (of coefficient)               */  | 
169  |  | /*      lsu -- least significant Unit (of coefficient)                */  | 
170  |  | /*      msd -- most significant digit (of coefficient)                */  | 
171  |  | /*      msi -- most significant item (in an array)                    */  | 
172  |  | /*      msu -- most significant Unit (of coefficient)                 */  | 
173  |  | /*      rhs -- right hand side (operand, of an operation)             */  | 
174  |  | /*      +ve -- positive                                               */  | 
175  |  | /*      -ve -- negative                                               */  | 
176  |  | /*      **  -- raise to the power                                     */  | 
177  |  | /* ------------------------------------------------------------------ */  | 
178  |  |  | 
179  |  | #include <stdlib.h>                /* for malloc, free, etc.  */  | 
180  |  | /*  #include <stdio.h>   */        /* for printf [if needed]  */  | 
181  |  | #include <string.h>                /* for strcpy  */  | 
182  |  | #include <ctype.h>                 /* for lower  */  | 
183  |  | #include "cmemory.h"               /* for uprv_malloc, etc., in ICU */  | 
184  |  | #include "decNumber.h"             /* base number library  */  | 
185  |  | #include "decNumberLocal.h"        /* decNumber local types, etc.  */  | 
186  |  | #include "uassert.h"  | 
187  |  |  | 
188  |  | /* Constants */  | 
189  |  | /* Public lookup table used by the D2U macro  */  | 
190  |  | static const uByte d2utable[DECMAXD2U+1]=D2UTABLE;  | 
191  |  |  | 
192  |  | #define DECVERB     1              /* set to 1 for verbose DECCHECK  */  | 
193  | 0  | #define powers      DECPOWERS      /* old internal name  */  | 
194  |  |  | 
195  |  | /* Local constants  */  | 
196  | 0  | #define DIVIDE      0x80           /* Divide operators  */  | 
197  | 0  | #define REMAINDER   0x40           /* ..  */  | 
198  | 0  | #define DIVIDEINT   0x20           /* ..  */  | 
199  | 0  | #define REMNEAR     0x10           /* ..  */  | 
200  | 0  | #define COMPARE     0x01           /* Compare operators  */  | 
201  | 0  | #define COMPMAX     0x02           /* ..  */  | 
202  | 0  | #define COMPMIN     0x03           /* ..  */  | 
203  | 0  | #define COMPTOTAL   0x04           /* ..  */  | 
204  | 0  | #define COMPNAN     0x05           /* .. [NaN processing]  */  | 
205  | 0  | #define COMPSIG     0x06           /* .. [signaling COMPARE]  */  | 
206  | 0  | #define COMPMAXMAG  0x07           /* ..  */  | 
207  | 0  | #define COMPMINMAG  0x08           /* ..  */  | 
208  |  |  | 
209  | 0  | #define DEC_sNaN     0x40000000    /* local status: sNaN signal  */  | 
210  | 0  | #define BADINT  (Int)0x80000000    /* most-negative Int; error indicator  */  | 
211  |  | /* Next two indicate an integer >= 10**6, and its parity (bottom bit)  */  | 
212  | 0  | #define BIGEVEN (Int)0x80000002  | 
213  | 0  | #define BIGODD  (Int)0x80000003  | 
214  |  |  | 
215  |  | static const Unit uarrone[1]={1};   /* Unit array of 1, used for incrementing  */ | 
216  |  |  | 
217  |  | /* ------------------------------------------------------------------ */  | 
218  |  | /* round-for-reround digits                                           */  | 
219  |  | /* ------------------------------------------------------------------ */  | 
220  |  | #if 0  | 
221  |  | static const uByte DECSTICKYTAB[10]={1,1,2,3,4,6,6,7,8,9}; /* used if sticky */ | 
222  |  | #endif  | 
223  |  |  | 
224  |  | /* ------------------------------------------------------------------ */  | 
225  |  | /* Powers of ten (powers[n]==10**n, 0<=n<=9)                          */  | 
226  |  | /* ------------------------------------------------------------------ */  | 
227  |  | static const uInt DECPOWERS[10]={1, 10, 100, 1000, 10000, 100000, 1000000, | 
228  |  |                           10000000, 100000000, 1000000000};  | 
229  |  |  | 
230  |  |  | 
231  |  | /* Granularity-dependent code */  | 
232  |  | #if DECDPUN<=4  | 
233  | 0  |   #define eInt  Int           /* extended integer  */  | 
234  |  |   #define ueInt uInt          /* unsigned extended integer  */  | 
235  |  |   /* Constant multipliers for divide-by-power-of five using reciprocal  */  | 
236  |  |   /* multiply, after removing powers of 2 by shifting, and final shift  */  | 
237  |  |   /* of 17 [we only need up to **4]  */  | 
238  |  |   static const uInt multies[]={131073, 26215, 5243, 1049, 210}; | 
239  |  |   /* QUOT10 -- macro to return the quotient of unit u divided by 10**n  */  | 
240  | 0  |   #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)  | 
241  |  | #else  | 
242  |  |   /* For DECDPUN>4 non-ANSI-89 64-bit types are needed.  */  | 
243  |  |   #if !DECUSE64  | 
244  |  |     #error decNumber.c: DECUSE64 must be 1 when DECDPUN>4  | 
245  |  |   #endif  | 
246  |  |   #define eInt  Long          /* extended integer  */  | 
247  |  |   #define ueInt uLong         /* unsigned extended integer  */  | 
248  |  | #endif  | 
249  |  |  | 
250  |  | /* Local routines */  | 
251  |  | static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *,  | 
252  |  |                               decContext *, uByte, uInt *);  | 
253  |  | static Flag        decBiStr(const char *, const char *, const char *);  | 
254  |  | static uInt        decCheckMath(const decNumber *, decContext *, uInt *);  | 
255  |  | static void        decApplyRound(decNumber *, decContext *, Int, uInt *);  | 
256  |  | static Int         decCompare(const decNumber *lhs, const decNumber *rhs, Flag);  | 
257  |  | static decNumber * decCompareOp(decNumber *, const decNumber *,  | 
258  |  |                               const decNumber *, decContext *,  | 
259  |  |                               Flag, uInt *);  | 
260  |  | static void        decCopyFit(decNumber *, const decNumber *, decContext *,  | 
261  |  |                               Int *, uInt *);  | 
262  |  | static decNumber * decDecap(decNumber *, Int);  | 
263  |  | static decNumber * decDivideOp(decNumber *, const decNumber *,  | 
264  |  |                               const decNumber *, decContext *, Flag, uInt *);  | 
265  |  | static decNumber * decExpOp(decNumber *, const decNumber *,  | 
266  |  |                               decContext *, uInt *);  | 
267  |  | static void        decFinalize(decNumber *, decContext *, Int *, uInt *);  | 
268  |  | static Int         decGetDigits(Unit *, Int);  | 
269  |  | static Int         decGetInt(const decNumber *);  | 
270  |  | static decNumber * decLnOp(decNumber *, const decNumber *,  | 
271  |  |                               decContext *, uInt *);  | 
272  |  | static decNumber * decMultiplyOp(decNumber *, const decNumber *,  | 
273  |  |                               const decNumber *, decContext *,  | 
274  |  |                               uInt *);  | 
275  |  | static decNumber * decNaNs(decNumber *, const decNumber *,  | 
276  |  |                               const decNumber *, decContext *, uInt *);  | 
277  |  | static decNumber * decQuantizeOp(decNumber *, const decNumber *,  | 
278  |  |                               const decNumber *, decContext *, Flag,  | 
279  |  |                               uInt *);  | 
280  |  | static void        decReverse(Unit *, Unit *);  | 
281  |  | static void        decSetCoeff(decNumber *, decContext *, const Unit *,  | 
282  |  |                               Int, Int *, uInt *);  | 
283  |  | static void        decSetMaxValue(decNumber *, decContext *);  | 
284  |  | static void        decSetOverflow(decNumber *, decContext *, uInt *);  | 
285  |  | static void        decSetSubnormal(decNumber *, decContext *, Int *, uInt *);  | 
286  |  | static Int         decShiftToLeast(Unit *, Int, Int);  | 
287  |  | static Int         decShiftToMost(Unit *, Int, Int);  | 
288  |  | static void        decStatus(decNumber *, uInt, decContext *);  | 
289  |  | static void        decToString(const decNumber *, char[], Flag);  | 
290  |  | static decNumber * decTrim(decNumber *, decContext *, Flag, Flag, Int *);  | 
291  |  | static Int         decUnitAddSub(const Unit *, Int, const Unit *, Int, Int,  | 
292  |  |                               Unit *, Int);  | 
293  |  | static Int         decUnitCompare(const Unit *, Int, const Unit *, Int, Int);  | 
294  |  |  | 
295  |  | #if !DECSUBSET  | 
296  |  | /* decFinish == decFinalize when no subset arithmetic needed */  | 
297  | 0  | #define decFinish(a,b,c,d) decFinalize(a,b,c,d)  | 
298  |  | #else  | 
299  |  | static void        decFinish(decNumber *, decContext *, Int *, uInt *);  | 
300  |  | static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *);  | 
301  |  | #endif  | 
302  |  |  | 
303  |  | /* Local macros */  | 
304  |  | /* masked special-values bits  */  | 
305  | 0  | #define SPECIALARG  (rhs->bits & DECSPECIAL)  | 
306  | 0  | #define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL)  | 
307  |  |  | 
308  |  | /* For use in ICU */  | 
309  | 0  | #define malloc(a) uprv_malloc(a)  | 
310  | 0  | #define free(a) uprv_free(a)  | 
311  |  |  | 
312  |  | /* Diagnostic macros, etc. */  | 
313  |  | #if DECALLOC  | 
314  |  | /* Handle malloc/free accounting.  If enabled, our accountable routines  */  | 
315  |  | /* are used; otherwise the code just goes straight to the system malloc  */  | 
316  |  | /* and free routines.  */  | 
317  |  | #define malloc(a) decMalloc(a)  | 
318  |  | #define free(a) decFree(a)  | 
319  |  | #define DECFENCE 0x5a              /* corruption detector  */  | 
320  |  | /* 'Our' malloc and free:  */  | 
321  |  | static void *decMalloc(size_t);  | 
322  |  | static void  decFree(void *);  | 
323  |  | uInt decAllocBytes=0;              /* count of bytes allocated  */  | 
324  |  | /* Note that DECALLOC code only checks for storage buffer overflow.  */  | 
325  |  | /* To check for memory leaks, the decAllocBytes variable must be  */  | 
326  |  | /* checked to be 0 at appropriate times (e.g., after the test  */  | 
327  |  | /* harness completes a set of tests).  This checking may be unreliable  */  | 
328  |  | /* if the testing is done in a multi-thread environment.  */  | 
329  |  | #endif  | 
330  |  |  | 
331  |  | #if DECCHECK  | 
332  |  | /* Optional checking routines.  Enabling these means that decNumber  */  | 
333  |  | /* and decContext operands to operator routines are checked for  */  | 
334  |  | /* correctness.  This roughly doubles the execution time of the  */  | 
335  |  | /* fastest routines (and adds 600+ bytes), so should not normally be  */  | 
336  |  | /* used in 'production'.  */  | 
337  |  | /* decCheckInexact is used to check that inexact results have a full  */  | 
338  |  | /* complement of digits (where appropriate -- this is not the case  */  | 
339  |  | /* for Quantize, for example)  */  | 
340  |  | #define DECUNRESU ((decNumber *)(void *)0xffffffff)  | 
341  |  | #define DECUNUSED ((const decNumber *)(void *)0xffffffff)  | 
342  |  | #define DECUNCONT ((decContext *)(void *)(0xffffffff))  | 
343  |  | static Flag decCheckOperands(decNumber *, const decNumber *,  | 
344  |  |                              const decNumber *, decContext *);  | 
345  |  | static Flag decCheckNumber(const decNumber *);  | 
346  |  | static void decCheckInexact(const decNumber *, decContext *);  | 
347  |  | #endif  | 
348  |  |  | 
349  |  | #if DECTRACE || DECCHECK  | 
350  |  | /* Optional trace/debugging routines (may or may not be used)  */  | 
351  |  | void decNumberShow(const decNumber *);  /* displays the components of a number  */  | 
352  |  | static void decDumpAr(char, const Unit *, Int);  | 
353  |  | #endif  | 
354  |  |  | 
355  |  | /* ================================================================== */  | 
356  |  | /* Conversions                                                        */  | 
357  |  | /* ================================================================== */  | 
358  |  |  | 
359  |  | /* ------------------------------------------------------------------ */  | 
360  |  | /* from-int32 -- conversion from Int or uInt                          */  | 
361  |  | /*                                                                    */  | 
362  |  | /*  dn is the decNumber to receive the integer                        */  | 
363  |  | /*  in or uin is the integer to be converted                          */  | 
364  |  | /*  returns dn                                                        */  | 
365  |  | /*                                                                    */  | 
366  |  | /* No error is possible.                                              */  | 
367  |  | /* ------------------------------------------------------------------ */  | 
368  | 0  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromInt32(decNumber *dn, Int in) { | 
369  | 0  |   uInt unsig;  | 
370  | 0  |   if (in>=0) unsig=in;  | 
371  | 0  |    else {                               /* negative (possibly BADINT)  */ | 
372  | 0  |     if (in==BADINT) unsig=(uInt)1073741824*2; /* special case  */  | 
373  | 0  |      else unsig=-in;                    /* invert  */  | 
374  | 0  |     }  | 
375  |  |   /* in is now positive  */  | 
376  | 0  |   uprv_decNumberFromUInt32(dn, unsig);  | 
377  | 0  |   if (in<0) dn->bits=DECNEG;            /* sign needed  */  | 
378  | 0  |   return dn;  | 
379  | 0  |   } /* decNumberFromInt32  */  | 
380  |  |  | 
381  | 0  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromUInt32(decNumber *dn, uInt uin) { | 
382  | 0  |   Unit *up;                             /* work pointer  */  | 
383  | 0  |   uprv_decNumberZero(dn);                    /* clean  */  | 
384  | 0  |   if (uin==0) return dn;                /* [or decGetDigits bad call]  */  | 
385  | 0  |   for (up=dn->lsu; uin>0; up++) { | 
386  | 0  |     *up=(Unit)(uin%(DECDPUNMAX+1));  | 
387  | 0  |     uin=uin/(DECDPUNMAX+1);  | 
388  | 0  |     }  | 
389  | 0  |   dn->digits=decGetDigits(dn->lsu, static_cast<int32_t>(up - dn->lsu));  | 
390  | 0  |   return dn;  | 
391  | 0  |   } /* decNumberFromUInt32  */  | 
392  |  |  | 
393  |  | /* ------------------------------------------------------------------ */  | 
394  |  | /* to-int32 -- conversion to Int or uInt                              */  | 
395  |  | /*                                                                    */  | 
396  |  | /*  dn is the decNumber to convert                                    */  | 
397  |  | /*  set is the context for reporting errors                           */  | 
398  |  | /*  returns the converted decNumber, or 0 if Invalid is set           */  | 
399  |  | /*                                                                    */  | 
400  |  | /* Invalid is set if the decNumber does not have exponent==0 or if    */  | 
401  |  | /* it is a NaN, Infinite, or out-of-range.                            */  | 
402  |  | /* ------------------------------------------------------------------ */  | 
403  | 0  | U_CAPI Int U_EXPORT2 uprv_decNumberToInt32(const decNumber *dn, decContext *set) { | 
404  |  |   #if DECCHECK  | 
405  |  |   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;  | 
406  |  |   #endif  | 
407  |  |  | 
408  |  |   /* special or too many digits, or bad exponent  */  | 
409  | 0  |   if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; /* bad  */  | 
410  | 0  |    else { /* is a finite integer with 10 or fewer digits  */ | 
411  | 0  |     Int d;                         /* work  */  | 
412  | 0  |     const Unit *up;                /* ..  */  | 
413  | 0  |     uInt hi=0, lo;                 /* ..  */  | 
414  | 0  |     up=dn->lsu;                    /* -> lsu  */  | 
415  | 0  |     lo=*up;                        /* get 1 to 9 digits  */  | 
416  |  |     #if DECDPUN>1                  /* split to higher  */  | 
417  |  |       hi=lo/10;  | 
418  |  |       lo=lo%10;  | 
419  |  |     #endif  | 
420  | 0  |     up++;  | 
421  |  |     /* collect remaining Units, if any, into hi  */  | 
422  | 0  |     for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];  | 
423  |  |     /* now low has the lsd, hi the remainder  */  | 
424  | 0  |     if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range?  */ | 
425  |  |       /* most-negative is a reprieve  */  | 
426  | 0  |       if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000;  | 
427  |  |       /* bad -- drop through  */  | 
428  | 0  |       }  | 
429  | 0  |      else { /* in-range always  */ | 
430  | 0  |       Int i=X10(hi)+lo;  | 
431  | 0  |       if (dn->bits&DECNEG) return -i;  | 
432  | 0  |       return i;  | 
433  | 0  |       }  | 
434  | 0  |     } /* integer  */  | 
435  | 0  |   uprv_decContextSetStatus(set, DEC_Invalid_operation); /* [may not return]  */  | 
436  | 0  |   return 0;  | 
437  | 0  |   } /* decNumberToInt32  */  | 
438  |  |  | 
439  | 0  | U_CAPI uInt U_EXPORT2 uprv_decNumberToUInt32(const decNumber *dn, decContext *set) { | 
440  |  |   #if DECCHECK  | 
441  |  |   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;  | 
442  |  |   #endif  | 
443  |  |   /* special or too many digits, or bad exponent, or negative (<0)  */  | 
444  | 0  |   if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0  | 
445  | 0  |     || (dn->bits&DECNEG && !ISZERO(dn)));                   /* bad  */  | 
446  | 0  |    else { /* is a finite integer with 10 or fewer digits  */ | 
447  | 0  |     Int d;                         /* work  */  | 
448  | 0  |     const Unit *up;                /* ..  */  | 
449  | 0  |     uInt hi=0, lo;                 /* ..  */  | 
450  | 0  |     up=dn->lsu;                    /* -> lsu  */  | 
451  | 0  |     lo=*up;                        /* get 1 to 9 digits  */  | 
452  |  |     #if DECDPUN>1                  /* split to higher  */  | 
453  |  |       hi=lo/10;  | 
454  |  |       lo=lo%10;  | 
455  |  |     #endif  | 
456  | 0  |     up++;  | 
457  |  |     /* collect remaining Units, if any, into hi  */  | 
458  | 0  |     for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];  | 
459  |  |  | 
460  |  |     /* now low has the lsd, hi the remainder  */  | 
461  | 0  |     if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible  */  | 
462  | 0  |      else return X10(hi)+lo;  | 
463  | 0  |     } /* integer  */  | 
464  | 0  |   uprv_decContextSetStatus(set, DEC_Invalid_operation); /* [may not return]  */  | 
465  | 0  |   return 0;  | 
466  | 0  |   } /* decNumberToUInt32  */  | 
467  |  |  | 
468  |  | /* ------------------------------------------------------------------ */  | 
469  |  | /* to-scientific-string -- conversion to numeric string               */  | 
470  |  | /* to-engineering-string -- conversion to numeric string              */  | 
471  |  | /*                                                                    */  | 
472  |  | /*   decNumberToString(dn, string);                                   */  | 
473  |  | /*   decNumberToEngString(dn, string);                                */  | 
474  |  | /*                                                                    */  | 
475  |  | /*  dn is the decNumber to convert                                    */  | 
476  |  | /*  string is the string where the result will be laid out            */  | 
477  |  | /*                                                                    */  | 
478  |  | /*  string must be at least dn->digits+14 characters long             */  | 
479  |  | /*                                                                    */  | 
480  |  | /*  No error is possible, and no status can be set.                   */  | 
481  |  | /* ------------------------------------------------------------------ */  | 
482  | 0  | U_CAPI char * U_EXPORT2 uprv_decNumberToString(const decNumber *dn, char *string){ | 
483  | 0  |   decToString(dn, string, 0);  | 
484  | 0  |   return string;  | 
485  | 0  |   } /* DecNumberToString  */  | 
486  |  |  | 
487  | 0  | U_CAPI char * U_EXPORT2 uprv_decNumberToEngString(const decNumber *dn, char *string){ | 
488  | 0  |   decToString(dn, string, 1);  | 
489  | 0  |   return string;  | 
490  | 0  |   } /* DecNumberToEngString  */  | 
491  |  |  | 
492  |  | /* ------------------------------------------------------------------ */  | 
493  |  | /* to-number -- conversion from numeric string                        */  | 
494  |  | /*                                                                    */  | 
495  |  | /* decNumberFromString -- convert string to decNumber                 */  | 
496  |  | /*   dn        -- the number structure to fill                        */  | 
497  |  | /*   chars[]   -- the string to convert ('\0' terminated)             */ | 
498  |  | /*   set       -- the context used for processing any error,          */  | 
499  |  | /*                determining the maximum precision available         */  | 
500  |  | /*                (set.digits), determining the maximum and minimum   */  | 
501  |  | /*                exponent (set.emax and set.emin), determining if    */  | 
502  |  | /*                extended values are allowed, and checking the       */  | 
503  |  | /*                rounding mode if overflow occurs or rounding is     */  | 
504  |  | /*                needed.                                             */  | 
505  |  | /*                                                                    */  | 
506  |  | /* The length of the coefficient and the size of the exponent are     */  | 
507  |  | /* checked by this routine, so the correct error (Underflow or        */  | 
508  |  | /* Overflow) can be reported or rounding applied, as necessary.       */  | 
509  |  | /*                                                                    */  | 
510  |  | /* If bad syntax is detected, the result will be a quiet NaN.         */  | 
511  |  | /* ------------------------------------------------------------------ */  | 
512  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberFromString(decNumber *dn, const char chars[],  | 
513  | 0  |                                 decContext *set) { | 
514  | 0  |   Int   exponent=0;                /* working exponent [assume 0]  */  | 
515  | 0  |   uByte bits=0;                    /* working flags [assume +ve]  */  | 
516  | 0  |   Unit  *res;                      /* where result will be built  */  | 
517  | 0  |   Unit  resbuff[SD2U(DECBUFFER+9)];/* local buffer in case need temporary  */  | 
518  |  |                                    /* [+9 allows for ln() constants]  */  | 
519  | 0  |   Unit  *allocres=NULL;            /* -> allocated result, iff allocated  */  | 
520  | 0  |   Int   d=0;                       /* count of digits found in decimal part  */  | 
521  | 0  |   const char *dotchar=NULL;        /* where dot was found  */  | 
522  | 0  |   const char *cfirst=chars;        /* -> first character of decimal part  */  | 
523  | 0  |   const char *last=NULL;           /* -> last digit of decimal part  */  | 
524  | 0  |   const char *c;                   /* work  */  | 
525  | 0  |   Unit  *up;                       /* ..  */  | 
526  |  |   #if DECDPUN>1  | 
527  |  |   Int   cut, out;                  /* ..  */  | 
528  |  |   #endif  | 
529  | 0  |   Int   residue;                   /* rounding residue  */  | 
530  | 0  |   uInt  status=0;                  /* error code  */  | 
531  |  | 
  | 
532  |  |   #if DECCHECK  | 
533  |  |   if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set))  | 
534  |  |     return uprv_decNumberZero(dn);  | 
535  |  |   #endif  | 
536  |  | 
  | 
537  | 0  |   do {                             /* status & malloc protection  */ | 
538  | 0  |     for (c=chars;; c++) {          /* -> input character  */ | 
539  | 0  |       if (*c>='0' && *c<='9') {    /* test for Arabic digit  */ | 
540  | 0  |         last=c;  | 
541  | 0  |         d++;                       /* count of real digits  */  | 
542  | 0  |         continue;                  /* still in decimal part  */  | 
543  | 0  |         }  | 
544  | 0  |       if (*c=='.' && dotchar==NULL) { /* first '.'  */ | 
545  | 0  |         dotchar=c;                 /* record offset into decimal part  */  | 
546  | 0  |         if (c==cfirst) cfirst++;   /* first digit must follow  */  | 
547  | 0  |         continue;}  | 
548  | 0  |       if (c==chars) {              /* first in string...  */ | 
549  | 0  |         if (*c=='-') {             /* valid - sign  */ | 
550  | 0  |           cfirst++;  | 
551  | 0  |           bits=DECNEG;  | 
552  | 0  |           continue;}  | 
553  | 0  |         if (*c=='+') {             /* valid + sign  */ | 
554  | 0  |           cfirst++;  | 
555  | 0  |           continue;}  | 
556  | 0  |         }  | 
557  |  |       /* *c is not a digit, or a valid +, -, or '.'  */  | 
558  | 0  |       break;  | 
559  | 0  |       } /* c  */  | 
560  |  | 
  | 
561  | 0  |     if (last==NULL) {              /* no digits yet  */ | 
562  | 0  |       status=DEC_Conversion_syntax;/* assume the worst  */  | 
563  | 0  |       if (*c=='\0') break;         /* and no more to come...  */  | 
564  |  |       #if DECSUBSET  | 
565  |  |       /* if subset then infinities and NaNs are not allowed  */  | 
566  |  |       if (!set->extended) break;   /* hopeless  */  | 
567  |  |       #endif  | 
568  |  |       /* Infinities and NaNs are possible, here  */  | 
569  | 0  |       if (dotchar!=NULL) break;    /* .. unless had a dot  */  | 
570  | 0  |       uprv_decNumberZero(dn);           /* be optimistic  */  | 
571  | 0  |       if (decBiStr(c, "infinity", "INFINITY")  | 
572  | 0  |        || decBiStr(c, "inf", "INF")) { | 
573  | 0  |         dn->bits=bits | DECINF;  | 
574  | 0  |         status=0;                  /* is OK  */  | 
575  | 0  |         break; /* all done  */  | 
576  | 0  |         }  | 
577  |  |       /* a NaN expected  */  | 
578  |  |       /* 2003.09.10 NaNs are now permitted to have a sign  */  | 
579  | 0  |       dn->bits=bits | DECNAN;      /* assume simple NaN  */  | 
580  | 0  |       if (*c=='s' || *c=='S') {    /* looks like an sNaN  */ | 
581  | 0  |         c++;  | 
582  | 0  |         dn->bits=bits | DECSNAN;  | 
583  | 0  |         }  | 
584  | 0  |       if (*c!='n' && *c!='N') break;    /* check caseless "NaN"  */  | 
585  | 0  |       c++;  | 
586  | 0  |       if (*c!='a' && *c!='A') break;    /* ..  */  | 
587  | 0  |       c++;  | 
588  | 0  |       if (*c!='n' && *c!='N') break;    /* ..  */  | 
589  | 0  |       c++;  | 
590  |  |       /* now either nothing, or nnnn payload, expected  */  | 
591  |  |       /* -> start of integer and skip leading 0s [including plain 0]  */  | 
592  | 0  |       for (cfirst=c; *cfirst=='0';) cfirst++;  | 
593  | 0  |       if (*cfirst=='\0') {         /* "NaN" or "sNaN", maybe with all 0s  */ | 
594  | 0  |         status=0;                  /* it's good  */  | 
595  | 0  |         break;                     /* ..  */  | 
596  | 0  |         }  | 
597  |  |       /* something other than 0s; setup last and d as usual [no dots]  */  | 
598  | 0  |       for (c=cfirst;; c++, d++) { | 
599  | 0  |         if (*c<'0' || *c>'9') break; /* test for Arabic digit  */  | 
600  | 0  |         last=c;  | 
601  | 0  |         }  | 
602  | 0  |       if (*c!='\0') break;         /* not all digits  */  | 
603  | 0  |       if (d>set->digits-1) { | 
604  |  |         /* [NB: payload in a decNumber can be full length unless  */  | 
605  |  |         /* clamped, in which case can only be digits-1]  */  | 
606  | 0  |         if (set->clamp) break;  | 
607  | 0  |         if (d>set->digits) break;  | 
608  | 0  |         } /* too many digits?  */  | 
609  |  |       /* good; drop through to convert the integer to coefficient  */  | 
610  | 0  |       status=0;                    /* syntax is OK  */  | 
611  | 0  |       bits=dn->bits;               /* for copy-back  */  | 
612  | 0  |       } /* last==NULL  */  | 
613  |  |  | 
614  | 0  |      else if (*c!='\0') {          /* more to process...  */ | 
615  |  |       /* had some digits; exponent is only valid sequence now  */  | 
616  | 0  |       Flag nege;                   /* 1=negative exponent  */  | 
617  | 0  |       const char *firstexp;        /* -> first significant exponent digit  */  | 
618  | 0  |       status=DEC_Conversion_syntax;/* assume the worst  */  | 
619  | 0  |       if (*c!='e' && *c!='E') break;  | 
620  |  |       /* Found 'e' or 'E' -- now process explicit exponent */  | 
621  |  |       /* 1998.07.11: sign no longer required  */  | 
622  | 0  |       nege=0;  | 
623  | 0  |       c++;                         /* to (possible) sign  */  | 
624  | 0  |       if (*c=='-') {nege=1; c++;} | 
625  | 0  |        else if (*c=='+') c++;  | 
626  | 0  |       if (*c=='\0') break;  | 
627  |  |  | 
628  | 0  |       for (; *c=='0' && *(c+1)!='\0';) c++;  /* strip insignificant zeros  */  | 
629  | 0  |       firstexp=c;                            /* save exponent digit place  */  | 
630  | 0  |       uInt uexponent = 0;   /* Avoid undefined behavior on signed int overflow */  | 
631  | 0  |       for (; ;c++) { | 
632  | 0  |         if (*c<'0' || *c>'9') break;         /* not a digit  */  | 
633  | 0  |         uexponent=X10(uexponent)+(uInt)*c-(uInt)'0';  | 
634  | 0  |         } /* c  */  | 
635  | 0  |       exponent = (Int)uexponent;  | 
636  |  |       /* if not now on a '\0', *c must not be a digit  */  | 
637  | 0  |       if (*c!='\0') break;  | 
638  |  |  | 
639  |  |       /* (this next test must be after the syntax checks)  */  | 
640  |  |       /* if it was too long the exponent may have wrapped, so check  */  | 
641  |  |       /* carefully and set it to a certain overflow if wrap possible  */  | 
642  | 0  |       if (c>=firstexp+9+1) { | 
643  | 0  |         if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2;  | 
644  |  |         /* [up to 1999999999 is OK, for example 1E-1000000998]  */  | 
645  | 0  |         }  | 
646  | 0  |       if (nege) exponent=-exponent;     /* was negative  */  | 
647  | 0  |       status=0;                         /* is OK  */  | 
648  | 0  |       } /* stuff after digits  */  | 
649  |  |  | 
650  |  |     /* Here when whole string has been inspected; syntax is good  */  | 
651  |  |     /* cfirst->first digit (never dot), last->last digit (ditto)  */  | 
652  |  |  | 
653  |  |     /* strip leading zeros/dot [leave final 0 if all 0's]  */  | 
654  | 0  |     if (*cfirst=='0') {                 /* [cfirst has stepped over .]  */ | 
655  | 0  |       for (c=cfirst; c<last; c++, cfirst++) { | 
656  | 0  |         if (*c=='.') continue;          /* ignore dots  */  | 
657  | 0  |         if (*c!='0') break;             /* non-zero found  */  | 
658  | 0  |         d--;                            /* 0 stripped  */  | 
659  | 0  |         } /* c  */  | 
660  |  |       #if DECSUBSET  | 
661  |  |       /* make a rapid exit for easy zeros if !extended  */  | 
662  |  |       if (*cfirst=='0' && !set->extended) { | 
663  |  |         uprv_decNumberZero(dn);              /* clean result  */  | 
664  |  |         break;                          /* [could be return]  */  | 
665  |  |         }  | 
666  |  |       #endif  | 
667  | 0  |       } /* at least one leading 0  */  | 
668  |  |  | 
669  |  |     /* Handle decimal point...  */  | 
670  | 0  |     if (dotchar!=NULL && dotchar<last)  /* non-trailing '.' found?  */  | 
671  | 0  |       exponent -= static_cast<int32_t>(last-dotchar);         /* adjust exponent  */  | 
672  |  |     /* [we can now ignore the .]  */  | 
673  |  |  | 
674  |  |     /* OK, the digits string is good.  Assemble in the decNumber, or in  */  | 
675  |  |     /* a temporary units array if rounding is needed  */  | 
676  | 0  |     if (d<=set->digits) res=dn->lsu;    /* fits into supplied decNumber  */  | 
677  | 0  |      else {                             /* rounding needed  */ | 
678  | 0  |       Int needbytes=D2U(d)*sizeof(Unit);/* bytes needed  */  | 
679  | 0  |       res=resbuff;                      /* assume use local buffer  */  | 
680  | 0  |       if (needbytes>(Int)sizeof(resbuff)) { /* too big for local  */ | 
681  | 0  |         allocres=(Unit *)malloc(needbytes);  | 
682  | 0  |         if (allocres==NULL) {status|=DEC_Insufficient_storage; break;} | 
683  | 0  |         res=allocres;  | 
684  | 0  |         }  | 
685  | 0  |       }  | 
686  |  |     /* res now -> number lsu, buffer, or allocated storage for Unit array  */  | 
687  |  |  | 
688  |  |     /* Place the coefficient into the selected Unit array  */  | 
689  |  |     /* [this is often 70% of the cost of this function when DECDPUN>1]  */  | 
690  |  |     #if DECDPUN>1  | 
691  |  |     out=0;                         /* accumulator  */  | 
692  |  |     up=res+D2U(d)-1;               /* -> msu  */  | 
693  |  |     cut=d-(up-res)*DECDPUN;        /* digits in top unit  */  | 
694  |  |     for (c=cfirst;; c++) {         /* along the digits  */ | 
695  |  |       if (*c=='.') continue;       /* ignore '.' [don't decrement cut]  */  | 
696  |  |       out=X10(out)+(Int)*c-(Int)'0';  | 
697  |  |       if (c==last) break;          /* done [never get to trailing '.']  */  | 
698  |  |       cut--;  | 
699  |  |       if (cut>0) continue;         /* more for this unit  */  | 
700  |  |       *up=(Unit)out;               /* write unit  */  | 
701  |  |       up--;                        /* prepare for unit below..  */  | 
702  |  |       cut=DECDPUN;                 /* ..  */  | 
703  |  |       out=0;                       /* ..  */  | 
704  |  |       } /* c  */  | 
705  |  |     *up=(Unit)out;                 /* write lsu  */  | 
706  |  |  | 
707  |  |     #else  | 
708  |  |     /* DECDPUN==1  */  | 
709  | 0  |     up=res;                        /* -> lsu  */  | 
710  | 0  |     for (c=last; c>=cfirst; c--) { /* over each character, from least  */ | 
711  | 0  |       if (*c=='.') continue;       /* ignore . [don't step up]  */  | 
712  | 0  |       *up=(Unit)((Int)*c-(Int)'0');  | 
713  | 0  |       up++;  | 
714  | 0  |       } /* c  */  | 
715  | 0  |     #endif  | 
716  |  | 
  | 
717  | 0  |     dn->bits=bits;  | 
718  | 0  |     dn->exponent=exponent;  | 
719  | 0  |     dn->digits=d;  | 
720  |  |  | 
721  |  |     /* if not in number (too long) shorten into the number  */  | 
722  | 0  |     if (d>set->digits) { | 
723  | 0  |       residue=0;  | 
724  | 0  |       decSetCoeff(dn, set, res, d, &residue, &status);  | 
725  |  |       /* always check for overflow or subnormal and round as needed  */  | 
726  | 0  |       decFinalize(dn, set, &residue, &status);  | 
727  | 0  |       }  | 
728  | 0  |      else { /* no rounding, but may still have overflow or subnormal  */ | 
729  |  |       /* [these tests are just for performance; finalize repeats them]  */  | 
730  | 0  |       if ((dn->exponent-1<set->emin-dn->digits)  | 
731  | 0  |        || (dn->exponent-1>set->emax-set->digits)) { | 
732  | 0  |         residue=0;  | 
733  | 0  |         decFinalize(dn, set, &residue, &status);  | 
734  | 0  |         }  | 
735  | 0  |       }  | 
736  |  |     /* decNumberShow(dn);  */  | 
737  | 0  |     } while(0);                         /* [for break]  */  | 
738  |  |  | 
739  | 0  |   if (allocres!=NULL) free(allocres);   /* drop any storage used  */  | 
740  | 0  |   if (status!=0) decStatus(dn, status, set);  | 
741  | 0  |   return dn;  | 
742  | 0  |   } /* decNumberFromString */  | 
743  |  |  | 
744  |  | /* ================================================================== */  | 
745  |  | /* Operators                                                          */  | 
746  |  | /* ================================================================== */  | 
747  |  |  | 
748  |  | /* ------------------------------------------------------------------ */  | 
749  |  | /* decNumberAbs -- absolute value operator                            */  | 
750  |  | /*                                                                    */  | 
751  |  | /*   This computes C = abs(A)                                         */  | 
752  |  | /*                                                                    */  | 
753  |  | /*   res is C, the result.  C may be A                                */  | 
754  |  | /*   rhs is A                                                         */  | 
755  |  | /*   set is the context                                               */  | 
756  |  | /*                                                                    */  | 
757  |  | /* See also decNumberCopyAbs for a quiet bitwise version of this.     */  | 
758  |  | /* C must have space for set->digits digits.                          */  | 
759  |  | /* ------------------------------------------------------------------ */  | 
760  |  | /* This has the same effect as decNumberPlus unless A is negative,    */  | 
761  |  | /* in which case it has the same effect as decNumberMinus.            */  | 
762  |  | /* ------------------------------------------------------------------ */  | 
763  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberAbs(decNumber *res, const decNumber *rhs,  | 
764  | 0  |                          decContext *set) { | 
765  | 0  |   decNumber dzero;                      /* for 0  */  | 
766  | 0  |   uInt status=0;                        /* accumulator  */  | 
767  |  | 
  | 
768  |  |   #if DECCHECK  | 
769  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
770  |  |   #endif  | 
771  |  | 
  | 
772  | 0  |   uprv_decNumberZero(&dzero);                /* set 0  */  | 
773  | 0  |   dzero.exponent=rhs->exponent;         /* [no coefficient expansion]  */  | 
774  | 0  |   decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status);  | 
775  | 0  |   if (status!=0) decStatus(res, status, set);  | 
776  |  |   #if DECCHECK  | 
777  |  |   decCheckInexact(res, set);  | 
778  |  |   #endif  | 
779  | 0  |   return res;  | 
780  | 0  |   } /* decNumberAbs  */  | 
781  |  |  | 
782  |  | /* ------------------------------------------------------------------ */  | 
783  |  | /* decNumberAdd -- add two Numbers                                    */  | 
784  |  | /*                                                                    */  | 
785  |  | /*   This computes C = A + B                                          */  | 
786  |  | /*                                                                    */  | 
787  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)         */  | 
788  |  | /*   lhs is A                                                         */  | 
789  |  | /*   rhs is B                                                         */  | 
790  |  | /*   set is the context                                               */  | 
791  |  | /*                                                                    */  | 
792  |  | /* C must have space for set->digits digits.                          */  | 
793  |  | /* ------------------------------------------------------------------ */  | 
794  |  | /* This just calls the routine shared with Subtract                   */  | 
795  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberAdd(decNumber *res, const decNumber *lhs,  | 
796  | 0  |                          const decNumber *rhs, decContext *set) { | 
797  | 0  |   uInt status=0;                        /* accumulator  */  | 
798  | 0  |   decAddOp(res, lhs, rhs, set, 0, &status);  | 
799  | 0  |   if (status!=0) decStatus(res, status, set);  | 
800  |  |   #if DECCHECK  | 
801  |  |   decCheckInexact(res, set);  | 
802  |  |   #endif  | 
803  | 0  |   return res;  | 
804  | 0  |   } /* decNumberAdd  */  | 
805  |  |  | 
806  |  | /* ------------------------------------------------------------------ */  | 
807  |  | /* decNumberAnd -- AND two Numbers, digitwise                         */  | 
808  |  | /*                                                                    */  | 
809  |  | /*   This computes C = A & B                                          */  | 
810  |  | /*                                                                    */  | 
811  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X&X)         */  | 
812  |  | /*   lhs is A                                                         */  | 
813  |  | /*   rhs is B                                                         */  | 
814  |  | /*   set is the context (used for result length and error report)     */  | 
815  |  | /*                                                                    */  | 
816  |  | /* C must have space for set->digits digits.                          */  | 
817  |  | /*                                                                    */  | 
818  |  | /* Logical function restrictions apply (see above); a NaN is          */  | 
819  |  | /* returned with Invalid_operation if a restriction is violated.      */  | 
820  |  | /* ------------------------------------------------------------------ */  | 
821  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberAnd(decNumber *res, const decNumber *lhs,  | 
822  | 0  |                          const decNumber *rhs, decContext *set) { | 
823  | 0  |   const Unit *ua, *ub;                  /* -> operands  */  | 
824  | 0  |   const Unit *msua, *msub;              /* -> operand msus  */  | 
825  | 0  |   Unit *uc,  *msuc;                     /* -> result and its msu  */  | 
826  | 0  |   Int   msudigs;                        /* digits in res msu  */  | 
827  |  |   #if DECCHECK  | 
828  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
829  |  |   #endif  | 
830  |  | 
  | 
831  | 0  |   if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)  | 
832  | 0  |    || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { | 
833  | 0  |     decStatus(res, DEC_Invalid_operation, set);  | 
834  | 0  |     return res;  | 
835  | 0  |     }  | 
836  |  |  | 
837  |  |   /* operands are valid  */  | 
838  | 0  |   ua=lhs->lsu;                          /* bottom-up  */  | 
839  | 0  |   ub=rhs->lsu;                          /* ..  */  | 
840  | 0  |   uc=res->lsu;                          /* ..  */  | 
841  | 0  |   msua=ua+D2U(lhs->digits)-1;           /* -> msu of lhs  */  | 
842  | 0  |   msub=ub+D2U(rhs->digits)-1;           /* -> msu of rhs  */  | 
843  | 0  |   msuc=uc+D2U(set->digits)-1;           /* -> msu of result  */  | 
844  | 0  |   msudigs=MSUDIGITS(set->digits);       /* [faster than remainder]  */  | 
845  | 0  |   for (; uc<=msuc; ua++, ub++, uc++) {  /* Unit loop  */ | 
846  | 0  |     Unit a, b;                          /* extract units  */  | 
847  | 0  |     if (ua>msua) a=0;  | 
848  | 0  |      else a=*ua;  | 
849  | 0  |     if (ub>msub) b=0;  | 
850  | 0  |      else b=*ub;  | 
851  | 0  |     *uc=0;                              /* can now write back  */  | 
852  | 0  |     if (a|b) {                          /* maybe 1 bits to examine  */ | 
853  | 0  |       Int i, j;  | 
854  | 0  |       *uc=0;                            /* can now write back  */  | 
855  |  |       /* This loop could be unrolled and/or use BIN2BCD tables  */  | 
856  | 0  |       for (i=0; i<DECDPUN; i++) { | 
857  | 0  |         if (a&b&1) *uc=*uc+(Unit)powers[i];  /* effect AND  */  | 
858  | 0  |         j=a%10;  | 
859  | 0  |         a=a/10;  | 
860  | 0  |         j|=b%10;  | 
861  | 0  |         b=b/10;  | 
862  | 0  |         if (j>1) { | 
863  | 0  |           decStatus(res, DEC_Invalid_operation, set);  | 
864  | 0  |           return res;  | 
865  | 0  |           }  | 
866  | 0  |         if (uc==msuc && i==msudigs-1) break; /* just did final digit  */  | 
867  | 0  |         } /* each digit  */  | 
868  | 0  |       } /* both OK  */  | 
869  | 0  |     } /* each unit  */  | 
870  |  |   /* [here uc-1 is the msu of the result]  */  | 
871  | 0  |   res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc - res->lsu));  | 
872  | 0  |   res->exponent=0;                      /* integer  */  | 
873  | 0  |   res->bits=0;                          /* sign=0  */  | 
874  | 0  |   return res;  /* [no status to set]  */  | 
875  | 0  |   } /* decNumberAnd  */  | 
876  |  |  | 
877  |  | /* ------------------------------------------------------------------ */  | 
878  |  | /* decNumberCompare -- compare two Numbers                            */  | 
879  |  | /*                                                                    */  | 
880  |  | /*   This computes C = A ? B                                          */  | 
881  |  | /*                                                                    */  | 
882  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */  | 
883  |  | /*   lhs is A                                                         */  | 
884  |  | /*   rhs is B                                                         */  | 
885  |  | /*   set is the context                                               */  | 
886  |  | /*                                                                    */  | 
887  |  | /* C must have space for one digit (or NaN).                          */  | 
888  |  | /* ------------------------------------------------------------------ */  | 
889  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompare(decNumber *res, const decNumber *lhs,  | 
890  | 0  |                              const decNumber *rhs, decContext *set) { | 
891  | 0  |   uInt status=0;                        /* accumulator  */  | 
892  | 0  |   decCompareOp(res, lhs, rhs, set, COMPARE, &status);  | 
893  | 0  |   if (status!=0) decStatus(res, status, set);  | 
894  | 0  |   return res;  | 
895  | 0  |   } /* decNumberCompare  */  | 
896  |  |  | 
897  |  | /* ------------------------------------------------------------------ */  | 
898  |  | /* decNumberCompareSignal -- compare, signalling on all NaNs          */  | 
899  |  | /*                                                                    */  | 
900  |  | /*   This computes C = A ? B                                          */  | 
901  |  | /*                                                                    */  | 
902  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */  | 
903  |  | /*   lhs is A                                                         */  | 
904  |  | /*   rhs is B                                                         */  | 
905  |  | /*   set is the context                                               */  | 
906  |  | /*                                                                    */  | 
907  |  | /* C must have space for one digit (or NaN).                          */  | 
908  |  | /* ------------------------------------------------------------------ */  | 
909  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareSignal(decNumber *res, const decNumber *lhs,  | 
910  | 0  |                                    const decNumber *rhs, decContext *set) { | 
911  | 0  |   uInt status=0;                        /* accumulator  */  | 
912  | 0  |   decCompareOp(res, lhs, rhs, set, COMPSIG, &status);  | 
913  | 0  |   if (status!=0) decStatus(res, status, set);  | 
914  | 0  |   return res;  | 
915  | 0  |   } /* decNumberCompareSignal  */  | 
916  |  |  | 
917  |  | /* ------------------------------------------------------------------ */  | 
918  |  | /* decNumberCompareTotal -- compare two Numbers, using total ordering */  | 
919  |  | /*                                                                    */  | 
920  |  | /*   This computes C = A ? B, under total ordering                    */  | 
921  |  | /*                                                                    */  | 
922  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */  | 
923  |  | /*   lhs is A                                                         */  | 
924  |  | /*   rhs is B                                                         */  | 
925  |  | /*   set is the context                                               */  | 
926  |  | /*                                                                    */  | 
927  |  | /* C must have space for one digit; the result will always be one of  */  | 
928  |  | /* -1, 0, or 1.                                                       */  | 
929  |  | /* ------------------------------------------------------------------ */  | 
930  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareTotal(decNumber *res, const decNumber *lhs,  | 
931  | 0  |                                   const decNumber *rhs, decContext *set) { | 
932  | 0  |   uInt status=0;                        /* accumulator  */  | 
933  | 0  |   decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);  | 
934  | 0  |   if (status!=0) decStatus(res, status, set);  | 
935  | 0  |   return res;  | 
936  | 0  |   } /* decNumberCompareTotal  */  | 
937  |  |  | 
938  |  | /* ------------------------------------------------------------------ */  | 
939  |  | /* decNumberCompareTotalMag -- compare, total ordering of magnitudes  */  | 
940  |  | /*                                                                    */  | 
941  |  | /*   This computes C = |A| ? |B|, under total ordering                */  | 
942  |  | /*                                                                    */  | 
943  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */  | 
944  |  | /*   lhs is A                                                         */  | 
945  |  | /*   rhs is B                                                         */  | 
946  |  | /*   set is the context                                               */  | 
947  |  | /*                                                                    */  | 
948  |  | /* C must have space for one digit; the result will always be one of  */  | 
949  |  | /* -1, 0, or 1.                                                       */  | 
950  |  | /* ------------------------------------------------------------------ */  | 
951  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCompareTotalMag(decNumber *res, const decNumber *lhs,  | 
952  | 0  |                                      const decNumber *rhs, decContext *set) { | 
953  | 0  |   uInt status=0;                   /* accumulator  */  | 
954  | 0  |   uInt needbytes;                  /* for space calculations  */  | 
955  | 0  |   decNumber bufa[D2N(DECBUFFER+1)];/* +1 in case DECBUFFER=0  */  | 
956  | 0  |   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */  | 
957  | 0  |   decNumber bufb[D2N(DECBUFFER+1)];  | 
958  | 0  |   decNumber *allocbufb=NULL;       /* -> allocated bufb, iff allocated  */  | 
959  | 0  |   decNumber *a, *b;                /* temporary pointers  */  | 
960  |  | 
  | 
961  |  |   #if DECCHECK  | 
962  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
963  |  |   #endif  | 
964  |  | 
  | 
965  | 0  |   do {                                  /* protect allocated storage  */ | 
966  |  |     /* if either is negative, take a copy and absolute  */  | 
967  | 0  |     if (decNumberIsNegative(lhs)) {     /* lhs<0  */ | 
968  | 0  |       a=bufa;  | 
969  | 0  |       needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit);  | 
970  | 0  |       if (needbytes>sizeof(bufa)) {     /* need malloc space  */ | 
971  | 0  |         allocbufa=(decNumber *)malloc(needbytes);  | 
972  | 0  |         if (allocbufa==NULL) {          /* hopeless -- abandon  */ | 
973  | 0  |           status|=DEC_Insufficient_storage;  | 
974  | 0  |           break;}  | 
975  | 0  |         a=allocbufa;                    /* use the allocated space  */  | 
976  | 0  |         }  | 
977  | 0  |       uprv_decNumberCopy(a, lhs);            /* copy content  */  | 
978  | 0  |       a->bits&=~DECNEG;                 /* .. and clear the sign  */  | 
979  | 0  |       lhs=a;                            /* use copy from here on  */  | 
980  | 0  |       }  | 
981  | 0  |     if (decNumberIsNegative(rhs)) {     /* rhs<0  */ | 
982  | 0  |       b=bufb;  | 
983  | 0  |       needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);  | 
984  | 0  |       if (needbytes>sizeof(bufb)) {     /* need malloc space  */ | 
985  | 0  |         allocbufb=(decNumber *)malloc(needbytes);  | 
986  | 0  |         if (allocbufb==NULL) {          /* hopeless -- abandon  */ | 
987  | 0  |           status|=DEC_Insufficient_storage;  | 
988  | 0  |           break;}  | 
989  | 0  |         b=allocbufb;                    /* use the allocated space  */  | 
990  | 0  |         }  | 
991  | 0  |       uprv_decNumberCopy(b, rhs);            /* copy content  */  | 
992  | 0  |       b->bits&=~DECNEG;                 /* .. and clear the sign  */  | 
993  | 0  |       rhs=b;                            /* use copy from here on  */  | 
994  | 0  |       }  | 
995  | 0  |     decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);  | 
996  | 0  |     } while(0);                         /* end protected  */  | 
997  |  |  | 
998  | 0  |   if (allocbufa!=NULL) free(allocbufa); /* drop any storage used  */  | 
999  | 0  |   if (allocbufb!=NULL) free(allocbufb); /* ..  */  | 
1000  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1001  | 0  |   return res;  | 
1002  | 0  |   } /* decNumberCompareTotalMag  */  | 
1003  |  |  | 
1004  |  | /* ------------------------------------------------------------------ */  | 
1005  |  | /* decNumberDivide -- divide one number by another                    */  | 
1006  |  | /*                                                                    */  | 
1007  |  | /*   This computes C = A / B                                          */  | 
1008  |  | /*                                                                    */  | 
1009  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X/X)         */  | 
1010  |  | /*   lhs is A                                                         */  | 
1011  |  | /*   rhs is B                                                         */  | 
1012  |  | /*   set is the context                                               */  | 
1013  |  | /*                                                                    */  | 
1014  |  | /* C must have space for set->digits digits.                          */  | 
1015  |  | /* ------------------------------------------------------------------ */  | 
1016  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberDivide(decNumber *res, const decNumber *lhs,  | 
1017  | 0  |                             const decNumber *rhs, decContext *set) { | 
1018  | 0  |   uInt status=0;                        /* accumulator  */  | 
1019  | 0  |   decDivideOp(res, lhs, rhs, set, DIVIDE, &status);  | 
1020  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1021  |  |   #if DECCHECK  | 
1022  |  |   decCheckInexact(res, set);  | 
1023  |  |   #endif  | 
1024  | 0  |   return res;  | 
1025  | 0  |   } /* decNumberDivide  */  | 
1026  |  |  | 
1027  |  | /* ------------------------------------------------------------------ */  | 
1028  |  | /* decNumberDivideInteger -- divide and return integer quotient       */  | 
1029  |  | /*                                                                    */  | 
1030  |  | /*   This computes C = A # B, where # is the integer divide operator  */  | 
1031  |  | /*                                                                    */  | 
1032  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X#X)         */  | 
1033  |  | /*   lhs is A                                                         */  | 
1034  |  | /*   rhs is B                                                         */  | 
1035  |  | /*   set is the context                                               */  | 
1036  |  | /*                                                                    */  | 
1037  |  | /* C must have space for set->digits digits.                          */  | 
1038  |  | /* ------------------------------------------------------------------ */  | 
1039  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberDivideInteger(decNumber *res, const decNumber *lhs,  | 
1040  | 0  |                                    const decNumber *rhs, decContext *set) { | 
1041  | 0  |   uInt status=0;                        /* accumulator  */  | 
1042  | 0  |   decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status);  | 
1043  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1044  | 0  |   return res;  | 
1045  | 0  |   } /* decNumberDivideInteger  */  | 
1046  |  |  | 
1047  |  | /* ------------------------------------------------------------------ */  | 
1048  |  | /* decNumberExp -- exponentiation                                     */  | 
1049  |  | /*                                                                    */  | 
1050  |  | /*   This computes C = exp(A)                                         */  | 
1051  |  | /*                                                                    */  | 
1052  |  | /*   res is C, the result.  C may be A                                */  | 
1053  |  | /*   rhs is A                                                         */  | 
1054  |  | /*   set is the context; note that rounding mode has no effect        */  | 
1055  |  | /*                                                                    */  | 
1056  |  | /* C must have space for set->digits digits.                          */  | 
1057  |  | /*                                                                    */  | 
1058  |  | /* Mathematical function restrictions apply (see above); a NaN is     */  | 
1059  |  | /* returned with Invalid_operation if a restriction is violated.      */  | 
1060  |  | /*                                                                    */  | 
1061  |  | /* Finite results will always be full precision and Inexact, except   */  | 
1062  |  | /* when A is a zero or -Infinity (giving 1 or 0 respectively).        */  | 
1063  |  | /*                                                                    */  | 
1064  |  | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */  | 
1065  |  | /* almost always be correctly rounded, but may be up to 1 ulp in      */  | 
1066  |  | /* error in rare cases.                                               */  | 
1067  |  | /* ------------------------------------------------------------------ */  | 
1068  |  | /* This is a wrapper for decExpOp which can handle the slightly wider */  | 
1069  |  | /* (double) range needed by Ln (which has to be able to calculate     */  | 
1070  |  | /* exp(-a) where a can be the tiniest number (Ntiny).                 */  | 
1071  |  | /* ------------------------------------------------------------------ */  | 
1072  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberExp(decNumber *res, const decNumber *rhs,  | 
1073  | 0  |                          decContext *set) { | 
1074  | 0  |   uInt status=0;                        /* accumulator  */  | 
1075  |  |   #if DECSUBSET  | 
1076  |  |   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */  | 
1077  |  |   #endif  | 
1078  |  | 
  | 
1079  |  |   #if DECCHECK  | 
1080  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
1081  |  |   #endif  | 
1082  |  |  | 
1083  |  |   /* Check restrictions; these restrictions ensure that if h=8 (see  */  | 
1084  |  |   /* decExpOp) then the result will either overflow or underflow to 0.  */  | 
1085  |  |   /* Other math functions restrict the input range, too, for inverses.  */  | 
1086  |  |   /* If not violated then carry out the operation.  */  | 
1087  | 0  |   if (!decCheckMath(rhs, set, &status)) do { /* protect allocation  */ | 
1088  |  |     #if DECSUBSET  | 
1089  |  |     if (!set->extended) { | 
1090  |  |       /* reduce operand and set lostDigits status, as needed  */  | 
1091  |  |       if (rhs->digits>set->digits) { | 
1092  |  |         allocrhs=decRoundOperand(rhs, set, &status);  | 
1093  |  |         if (allocrhs==NULL) break;  | 
1094  |  |         rhs=allocrhs;  | 
1095  |  |         }  | 
1096  |  |       }  | 
1097  |  |     #endif  | 
1098  | 0  |     decExpOp(res, rhs, set, &status);  | 
1099  | 0  |     } while(0);                         /* end protected  */  | 
1100  |  | 
  | 
1101  |  |   #if DECSUBSET  | 
1102  |  |   if (allocrhs !=NULL) free(allocrhs);  /* drop any storage used  */  | 
1103  |  |   #endif  | 
1104  |  |   /* apply significant status  */  | 
1105  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1106  |  |   #if DECCHECK  | 
1107  |  |   decCheckInexact(res, set);  | 
1108  |  |   #endif  | 
1109  | 0  |   return res;  | 
1110  | 0  |   } /* decNumberExp  */  | 
1111  |  |  | 
1112  |  | /* ------------------------------------------------------------------ */  | 
1113  |  | /* decNumberFMA -- fused multiply add                                 */  | 
1114  |  | /*                                                                    */  | 
1115  |  | /*   This computes D = (A * B) + C with only one rounding             */  | 
1116  |  | /*                                                                    */  | 
1117  |  | /*   res is D, the result.  D may be A or B or C (e.g., X=FMA(X,X,X)) */  | 
1118  |  | /*   lhs is A                                                         */  | 
1119  |  | /*   rhs is B                                                         */  | 
1120  |  | /*   fhs is C [far hand side]                                         */  | 
1121  |  | /*   set is the context                                               */  | 
1122  |  | /*                                                                    */  | 
1123  |  | /* Mathematical function restrictions apply (see above); a NaN is     */  | 
1124  |  | /* returned with Invalid_operation if a restriction is violated.      */  | 
1125  |  | /*                                                                    */  | 
1126  |  | /* C must have space for set->digits digits.                          */  | 
1127  |  | /* ------------------------------------------------------------------ */  | 
1128  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberFMA(decNumber *res, const decNumber *lhs,  | 
1129  |  |                          const decNumber *rhs, const decNumber *fhs,  | 
1130  | 0  |                          decContext *set) { | 
1131  | 0  |   uInt status=0;                   /* accumulator  */  | 
1132  | 0  |   decContext dcmul;                /* context for the multiplication  */  | 
1133  | 0  |   uInt needbytes;                  /* for space calculations  */  | 
1134  | 0  |   decNumber bufa[D2N(DECBUFFER*2+1)];  | 
1135  | 0  |   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */  | 
1136  | 0  |   decNumber *acc;                  /* accumulator pointer  */  | 
1137  | 0  |   decNumber dzero;                 /* work  */  | 
1138  |  | 
  | 
1139  |  |   #if DECCHECK  | 
1140  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
1141  |  |   if (decCheckOperands(res, fhs, DECUNUSED, set)) return res;  | 
1142  |  |   #endif  | 
1143  |  | 
  | 
1144  | 0  |   do {                                  /* protect allocated storage  */ | 
1145  |  |     #if DECSUBSET  | 
1146  |  |     if (!set->extended) {               /* [undefined if subset]  */ | 
1147  |  |       status|=DEC_Invalid_operation;  | 
1148  |  |       break;}  | 
1149  |  |     #endif  | 
1150  |  |     /* Check math restrictions [these ensure no overflow or underflow]  */  | 
1151  | 0  |     if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status))  | 
1152  | 0  |      || (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status))  | 
1153  | 0  |      || (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break;  | 
1154  |  |     /* set up context for multiply  */  | 
1155  | 0  |     dcmul=*set;  | 
1156  | 0  |     dcmul.digits=lhs->digits+rhs->digits; /* just enough  */  | 
1157  |  |     /* [The above may be an over-estimate for subset arithmetic, but that's OK]  */  | 
1158  | 0  |     dcmul.emax=DEC_MAX_EMAX;            /* effectively unbounded ..  */  | 
1159  | 0  |     dcmul.emin=DEC_MIN_EMIN;            /* [thanks to Math restrictions]  */  | 
1160  |  |     /* set up decNumber space to receive the result of the multiply  */  | 
1161  | 0  |     acc=bufa;                           /* may fit  */  | 
1162  | 0  |     needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit);  | 
1163  | 0  |     if (needbytes>sizeof(bufa)) {       /* need malloc space  */ | 
1164  | 0  |       allocbufa=(decNumber *)malloc(needbytes);  | 
1165  | 0  |       if (allocbufa==NULL) {            /* hopeless -- abandon  */ | 
1166  | 0  |         status|=DEC_Insufficient_storage;  | 
1167  | 0  |         break;}  | 
1168  | 0  |       acc=allocbufa;                    /* use the allocated space  */  | 
1169  | 0  |       }  | 
1170  |  |     /* multiply with extended range and necessary precision  */  | 
1171  |  |     /*printf("emin=%ld\n", dcmul.emin);  */ | 
1172  | 0  |     decMultiplyOp(acc, lhs, rhs, &dcmul, &status);  | 
1173  |  |     /* Only Invalid operation (from sNaN or Inf * 0) is possible in  */  | 
1174  |  |     /* status; if either is seen than ignore fhs (in case it is  */  | 
1175  |  |     /* another sNaN) and set acc to NaN unless we had an sNaN  */  | 
1176  |  |     /* [decMultiplyOp leaves that to caller]  */  | 
1177  |  |     /* Note sNaN has to go through addOp to shorten payload if  */  | 
1178  |  |     /* necessary  */  | 
1179  | 0  |     if ((status&DEC_Invalid_operation)!=0) { | 
1180  | 0  |       if (!(status&DEC_sNaN)) {         /* but be true invalid  */ | 
1181  | 0  |         uprv_decNumberZero(res);             /* acc not yet set  */  | 
1182  | 0  |         res->bits=DECNAN;  | 
1183  | 0  |         break;  | 
1184  | 0  |         }  | 
1185  | 0  |       uprv_decNumberZero(&dzero);            /* make 0 (any non-NaN would do)  */  | 
1186  | 0  |       fhs=&dzero;                       /* use that  */  | 
1187  | 0  |       }  | 
1188  |  |     #if DECCHECK  | 
1189  |  |      else { /* multiply was OK  */ | 
1190  |  |       if (status!=0) printf("Status=%08lx after FMA multiply\n", (LI)status); | 
1191  |  |       }  | 
1192  |  |     #endif  | 
1193  |  |     /* add the third operand and result -> res, and all is done  */  | 
1194  | 0  |     decAddOp(res, acc, fhs, set, 0, &status);  | 
1195  | 0  |     } while(0);                         /* end protected  */  | 
1196  |  |  | 
1197  | 0  |   if (allocbufa!=NULL) free(allocbufa); /* drop any storage used  */  | 
1198  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1199  |  |   #if DECCHECK  | 
1200  |  |   decCheckInexact(res, set);  | 
1201  |  |   #endif  | 
1202  | 0  |   return res;  | 
1203  | 0  |   } /* decNumberFMA  */  | 
1204  |  |  | 
1205  |  | /* ------------------------------------------------------------------ */  | 
1206  |  | /* decNumberInvert -- invert a Number, digitwise                      */  | 
1207  |  | /*                                                                    */  | 
1208  |  | /*   This computes C = ~A                                             */  | 
1209  |  | /*                                                                    */  | 
1210  |  | /*   res is C, the result.  C may be A (e.g., X=~X)                   */  | 
1211  |  | /*   rhs is A                                                         */  | 
1212  |  | /*   set is the context (used for result length and error report)     */  | 
1213  |  | /*                                                                    */  | 
1214  |  | /* C must have space for set->digits digits.                          */  | 
1215  |  | /*                                                                    */  | 
1216  |  | /* Logical function restrictions apply (see above); a NaN is          */  | 
1217  |  | /* returned with Invalid_operation if a restriction is violated.      */  | 
1218  |  | /* ------------------------------------------------------------------ */  | 
1219  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberInvert(decNumber *res, const decNumber *rhs,  | 
1220  | 0  |                             decContext *set) { | 
1221  | 0  |   const Unit *ua, *msua;                /* -> operand and its msu  */  | 
1222  | 0  |   Unit  *uc, *msuc;                     /* -> result and its msu  */  | 
1223  | 0  |   Int   msudigs;                        /* digits in res msu  */  | 
1224  |  |   #if DECCHECK  | 
1225  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
1226  |  |   #endif  | 
1227  |  | 
  | 
1228  | 0  |   if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { | 
1229  | 0  |     decStatus(res, DEC_Invalid_operation, set);  | 
1230  | 0  |     return res;  | 
1231  | 0  |     }  | 
1232  |  |   /* operand is valid  */  | 
1233  | 0  |   ua=rhs->lsu;                          /* bottom-up  */  | 
1234  | 0  |   uc=res->lsu;                          /* ..  */  | 
1235  | 0  |   msua=ua+D2U(rhs->digits)-1;           /* -> msu of rhs  */  | 
1236  | 0  |   msuc=uc+D2U(set->digits)-1;           /* -> msu of result  */  | 
1237  | 0  |   msudigs=MSUDIGITS(set->digits);       /* [faster than remainder]  */  | 
1238  | 0  |   for (; uc<=msuc; ua++, uc++) {        /* Unit loop  */ | 
1239  | 0  |     Unit a;                             /* extract unit  */  | 
1240  | 0  |     Int  i, j;                          /* work  */  | 
1241  | 0  |     if (ua>msua) a=0;  | 
1242  | 0  |      else a=*ua;  | 
1243  | 0  |     *uc=0;                              /* can now write back  */  | 
1244  |  |     /* always need to examine all bits in rhs  */  | 
1245  |  |     /* This loop could be unrolled and/or use BIN2BCD tables  */  | 
1246  | 0  |     for (i=0; i<DECDPUN; i++) { | 
1247  | 0  |       if ((~a)&1) *uc=*uc+(Unit)powers[i];   /* effect INVERT  */  | 
1248  | 0  |       j=a%10;  | 
1249  | 0  |       a=a/10;  | 
1250  | 0  |       if (j>1) { | 
1251  | 0  |         decStatus(res, DEC_Invalid_operation, set);  | 
1252  | 0  |         return res;  | 
1253  | 0  |         }  | 
1254  | 0  |       if (uc==msuc && i==msudigs-1) break;   /* just did final digit  */  | 
1255  | 0  |       } /* each digit  */  | 
1256  | 0  |     } /* each unit  */  | 
1257  |  |   /* [here uc-1 is the msu of the result]  */  | 
1258  | 0  |   res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc - res->lsu));  | 
1259  | 0  |   res->exponent=0;                      /* integer  */  | 
1260  | 0  |   res->bits=0;                          /* sign=0  */  | 
1261  | 0  |   return res;  /* [no status to set]  */  | 
1262  | 0  |   } /* decNumberInvert  */  | 
1263  |  |  | 
1264  |  | /* ------------------------------------------------------------------ */  | 
1265  |  | /* decNumberLn -- natural logarithm                                   */  | 
1266  |  | /*                                                                    */  | 
1267  |  | /*   This computes C = ln(A)                                          */  | 
1268  |  | /*                                                                    */  | 
1269  |  | /*   res is C, the result.  C may be A                                */  | 
1270  |  | /*   rhs is A                                                         */  | 
1271  |  | /*   set is the context; note that rounding mode has no effect        */  | 
1272  |  | /*                                                                    */  | 
1273  |  | /* C must have space for set->digits digits.                          */  | 
1274  |  | /*                                                                    */  | 
1275  |  | /* Notable cases:                                                     */  | 
1276  |  | /*   A<0 -> Invalid                                                   */  | 
1277  |  | /*   A=0 -> -Infinity (Exact)                                         */  | 
1278  |  | /*   A=+Infinity -> +Infinity (Exact)                                 */  | 
1279  |  | /*   A=1 exactly -> 0 (Exact)                                         */  | 
1280  |  | /*                                                                    */  | 
1281  |  | /* Mathematical function restrictions apply (see above); a NaN is     */  | 
1282  |  | /* returned with Invalid_operation if a restriction is violated.      */  | 
1283  |  | /*                                                                    */  | 
1284  |  | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */  | 
1285  |  | /* almost always be correctly rounded, but may be up to 1 ulp in      */  | 
1286  |  | /* error in rare cases.                                               */  | 
1287  |  | /* ------------------------------------------------------------------ */  | 
1288  |  | /* This is a wrapper for decLnOp which can handle the slightly wider  */  | 
1289  |  | /* (+11) range needed by Ln, Log10, etc. (which may have to be able   */  | 
1290  |  | /* to calculate at p+e+2).                                            */  | 
1291  |  | /* ------------------------------------------------------------------ */  | 
1292  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberLn(decNumber *res, const decNumber *rhs,  | 
1293  | 0  |                         decContext *set) { | 
1294  | 0  |   uInt status=0;                   /* accumulator  */  | 
1295  |  |   #if DECSUBSET  | 
1296  |  |   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */  | 
1297  |  |   #endif  | 
1298  |  | 
  | 
1299  |  |   #if DECCHECK  | 
1300  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
1301  |  |   #endif  | 
1302  |  |  | 
1303  |  |   /* Check restrictions; this is a math function; if not violated  */  | 
1304  |  |   /* then carry out the operation.  */  | 
1305  | 0  |   if (!decCheckMath(rhs, set, &status)) do { /* protect allocation  */ | 
1306  |  |     #if DECSUBSET  | 
1307  |  |     if (!set->extended) { | 
1308  |  |       /* reduce operand and set lostDigits status, as needed  */  | 
1309  |  |       if (rhs->digits>set->digits) { | 
1310  |  |         allocrhs=decRoundOperand(rhs, set, &status);  | 
1311  |  |         if (allocrhs==NULL) break;  | 
1312  |  |         rhs=allocrhs;  | 
1313  |  |         }  | 
1314  |  |       /* special check in subset for rhs=0  */  | 
1315  |  |       if (ISZERO(rhs)) {                /* +/- zeros -> error  */ | 
1316  |  |         status|=DEC_Invalid_operation;  | 
1317  |  |         break;}  | 
1318  |  |       } /* extended=0  */  | 
1319  |  |     #endif  | 
1320  | 0  |     decLnOp(res, rhs, set, &status);  | 
1321  | 0  |     } while(0);                         /* end protected  */  | 
1322  |  | 
  | 
1323  |  |   #if DECSUBSET  | 
1324  |  |   if (allocrhs !=NULL) free(allocrhs);  /* drop any storage used  */  | 
1325  |  |   #endif  | 
1326  |  |   /* apply significant status  */  | 
1327  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1328  |  |   #if DECCHECK  | 
1329  |  |   decCheckInexact(res, set);  | 
1330  |  |   #endif  | 
1331  | 0  |   return res;  | 
1332  | 0  |   } /* decNumberLn  */  | 
1333  |  |  | 
1334  |  | /* ------------------------------------------------------------------ */  | 
1335  |  | /* decNumberLogB - get adjusted exponent, by 754 rules                */  | 
1336  |  | /*                                                                    */  | 
1337  |  | /*   This computes C = adjustedexponent(A)                            */  | 
1338  |  | /*                                                                    */  | 
1339  |  | /*   res is C, the result.  C may be A                                */  | 
1340  |  | /*   rhs is A                                                         */  | 
1341  |  | /*   set is the context, used only for digits and status              */  | 
1342  |  | /*                                                                    */  | 
1343  |  | /* C must have space for 10 digits (A might have 10**9 digits and     */  | 
1344  |  | /* an exponent of +999999999, or one digit and an exponent of         */  | 
1345  |  | /* -1999999999).                                                      */  | 
1346  |  | /*                                                                    */  | 
1347  |  | /* This returns the adjusted exponent of A after (in theory) padding  */  | 
1348  |  | /* with zeros on the right to set->digits digits while keeping the    */  | 
1349  |  | /* same value.  The exponent is not limited by emin/emax.             */  | 
1350  |  | /*                                                                    */  | 
1351  |  | /* Notable cases:                                                     */  | 
1352  |  | /*   A<0 -> Use |A|                                                   */  | 
1353  |  | /*   A=0 -> -Infinity (Division by zero)                              */  | 
1354  |  | /*   A=Infinite -> +Infinity (Exact)                                  */  | 
1355  |  | /*   A=1 exactly -> 0 (Exact)                                         */  | 
1356  |  | /*   NaNs are propagated as usual                                     */  | 
1357  |  | /* ------------------------------------------------------------------ */  | 
1358  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberLogB(decNumber *res, const decNumber *rhs,  | 
1359  | 0  |                           decContext *set) { | 
1360  | 0  |   uInt status=0;                   /* accumulator  */  | 
1361  |  | 
  | 
1362  |  |   #if DECCHECK  | 
1363  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
1364  |  |   #endif  | 
1365  |  |  | 
1366  |  |   /* NaNs as usual; Infinities return +Infinity; 0->oops  */  | 
1367  | 0  |   if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status);  | 
1368  | 0  |    else if (decNumberIsInfinite(rhs)) uprv_decNumberCopyAbs(res, rhs);  | 
1369  | 0  |    else if (decNumberIsZero(rhs)) { | 
1370  | 0  |     uprv_decNumberZero(res);                 /* prepare for Infinity  */  | 
1371  | 0  |     res->bits=DECNEG|DECINF;            /* -Infinity  */  | 
1372  | 0  |     status|=DEC_Division_by_zero;       /* as per 754  */  | 
1373  | 0  |     }  | 
1374  | 0  |    else { /* finite non-zero  */ | 
1375  | 0  |     Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent  */  | 
1376  | 0  |     uprv_decNumberFromInt32(res, ae);        /* lay it out  */  | 
1377  | 0  |     }  | 
1378  |  | 
  | 
1379  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1380  | 0  |   return res;  | 
1381  | 0  |   } /* decNumberLogB  */  | 
1382  |  |  | 
1383  |  | /* ------------------------------------------------------------------ */  | 
1384  |  | /* decNumberLog10 -- logarithm in base 10                             */  | 
1385  |  | /*                                                                    */  | 
1386  |  | /*   This computes C = log10(A)                                       */  | 
1387  |  | /*                                                                    */  | 
1388  |  | /*   res is C, the result.  C may be A                                */  | 
1389  |  | /*   rhs is A                                                         */  | 
1390  |  | /*   set is the context; note that rounding mode has no effect        */  | 
1391  |  | /*                                                                    */  | 
1392  |  | /* C must have space for set->digits digits.                          */  | 
1393  |  | /*                                                                    */  | 
1394  |  | /* Notable cases:                                                     */  | 
1395  |  | /*   A<0 -> Invalid                                                   */  | 
1396  |  | /*   A=0 -> -Infinity (Exact)                                         */  | 
1397  |  | /*   A=+Infinity -> +Infinity (Exact)                                 */  | 
1398  |  | /*   A=10**n (if n is an integer) -> n (Exact)                        */  | 
1399  |  | /*                                                                    */  | 
1400  |  | /* Mathematical function restrictions apply (see above); a NaN is     */  | 
1401  |  | /* returned with Invalid_operation if a restriction is violated.      */  | 
1402  |  | /*                                                                    */  | 
1403  |  | /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will    */  | 
1404  |  | /* almost always be correctly rounded, but may be up to 1 ulp in      */  | 
1405  |  | /* error in rare cases.                                               */  | 
1406  |  | /* ------------------------------------------------------------------ */  | 
1407  |  | /* This calculates ln(A)/ln(10) using appropriate precision.  For     */  | 
1408  |  | /* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the      */  | 
1409  |  | /* requested digits and t is the number of digits in the exponent     */  | 
1410  |  | /* (maximum 6).  For ln(10) it is p + 3; this is often handled by the */  | 
1411  |  | /* fastpath in decLnOp.  The final division is done to the requested  */  | 
1412  |  | /* precision.                                                         */  | 
1413  |  | /* ------------------------------------------------------------------ */  | 
1414  |  | #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406  | 
1415  |  | #pragma GCC diagnostic push  | 
1416  |  | #pragma GCC diagnostic ignored "-Warray-bounds"  | 
1417  |  | #endif  | 
1418  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberLog10(decNumber *res, const decNumber *rhs,  | 
1419  | 0  |                           decContext *set) { | 
1420  | 0  |   uInt status=0, ignore=0;         /* status accumulators  */  | 
1421  | 0  |   uInt needbytes;                  /* for space calculations  */  | 
1422  | 0  |   Int p;                           /* working precision  */  | 
1423  | 0  |   Int t;                           /* digits in exponent of A  */  | 
1424  |  |  | 
1425  |  |   /* buffers for a and b working decimals  */  | 
1426  |  |   /* (adjustment calculator, same size)  */  | 
1427  | 0  |   decNumber bufa[D2N(DECBUFFER+2)];  | 
1428  | 0  |   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */  | 
1429  | 0  |   decNumber *a=bufa;               /* temporary a  */  | 
1430  | 0  |   decNumber bufb[D2N(DECBUFFER+2)];  | 
1431  | 0  |   decNumber *allocbufb=NULL;       /* -> allocated bufb, iff allocated  */  | 
1432  | 0  |   decNumber *b=bufb;               /* temporary b  */  | 
1433  | 0  |   decNumber bufw[D2N(10)];         /* working 2-10 digit number  */  | 
1434  | 0  |   decNumber *w=bufw;               /* ..  */  | 
1435  |  |   #if DECSUBSET  | 
1436  |  |   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */  | 
1437  |  |   #endif  | 
1438  |  | 
  | 
1439  | 0  |   decContext aset;                 /* working context  */  | 
1440  |  | 
  | 
1441  |  |   #if DECCHECK  | 
1442  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
1443  |  |   #endif  | 
1444  |  |  | 
1445  |  |   /* Check restrictions; this is a math function; if not violated  */  | 
1446  |  |   /* then carry out the operation.  */  | 
1447  | 0  |   if (!decCheckMath(rhs, set, &status)) do { /* protect malloc  */ | 
1448  |  |     #if DECSUBSET  | 
1449  |  |     if (!set->extended) { | 
1450  |  |       /* reduce operand and set lostDigits status, as needed  */  | 
1451  |  |       if (rhs->digits>set->digits) { | 
1452  |  |         allocrhs=decRoundOperand(rhs, set, &status);  | 
1453  |  |         if (allocrhs==NULL) break;  | 
1454  |  |         rhs=allocrhs;  | 
1455  |  |         }  | 
1456  |  |       /* special check in subset for rhs=0  */  | 
1457  |  |       if (ISZERO(rhs)) {                /* +/- zeros -> error  */ | 
1458  |  |         status|=DEC_Invalid_operation;  | 
1459  |  |         break;}  | 
1460  |  |       } /* extended=0  */  | 
1461  |  |     #endif  | 
1462  |  | 
  | 
1463  | 0  |     uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context  */  | 
1464  |  |  | 
1465  |  |     /* handle exact powers of 10; only check if +ve finite  */  | 
1466  | 0  |     if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) { | 
1467  | 0  |       Int residue=0;               /* (no residue)  */  | 
1468  | 0  |       uInt copystat=0;             /* clean status  */  | 
1469  |  |  | 
1470  |  |       /* round to a single digit...  */  | 
1471  | 0  |       aset.digits=1;  | 
1472  | 0  |       decCopyFit(w, rhs, &aset, &residue, ©stat); /* copy & shorten  */  | 
1473  |  |       /* if exact and the digit is 1, rhs is a power of 10  */  | 
1474  | 0  |       if (!(copystat&DEC_Inexact) && w->lsu[0]==1) { | 
1475  |  |         /* the exponent, conveniently, is the power of 10; making  */  | 
1476  |  |         /* this the result needs a little care as it might not fit,  */  | 
1477  |  |         /* so first convert it into the working number, and then move  */  | 
1478  |  |         /* to res  */  | 
1479  | 0  |         uprv_decNumberFromInt32(w, w->exponent);  | 
1480  | 0  |         residue=0;  | 
1481  | 0  |         decCopyFit(res, w, set, &residue, &status); /* copy & round  */  | 
1482  | 0  |         decFinish(res, set, &residue, &status);     /* cleanup/set flags  */  | 
1483  | 0  |         break;  | 
1484  | 0  |         } /* not a power of 10  */  | 
1485  | 0  |       } /* not a candidate for exact  */  | 
1486  |  |  | 
1487  |  |     /* simplify the information-content calculation to use 'total  */  | 
1488  |  |     /* number of digits in a, including exponent' as compared to the  */  | 
1489  |  |     /* requested digits, as increasing this will only rarely cost an  */  | 
1490  |  |     /* iteration in ln(a) anyway  */  | 
1491  | 0  |     t=6;                                /* it can never be >6  */  | 
1492  |  |  | 
1493  |  |     /* allocate space when needed...  */  | 
1494  | 0  |     p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3;  | 
1495  | 0  |     needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);  | 
1496  | 0  |     if (needbytes>sizeof(bufa)) {       /* need malloc space  */ | 
1497  | 0  |       allocbufa=(decNumber *)malloc(needbytes);  | 
1498  | 0  |       if (allocbufa==NULL) {            /* hopeless -- abandon  */ | 
1499  | 0  |         status|=DEC_Insufficient_storage;  | 
1500  | 0  |         break;}  | 
1501  | 0  |       a=allocbufa;                      /* use the allocated space  */  | 
1502  | 0  |       }  | 
1503  | 0  |     aset.digits=p;                      /* as calculated  */  | 
1504  | 0  |     aset.emax=DEC_MAX_MATH;             /* usual bounds  */  | 
1505  | 0  |     aset.emin=-DEC_MAX_MATH;            /* ..  */  | 
1506  | 0  |     aset.clamp=0;                       /* and no concrete format  */  | 
1507  | 0  |     decLnOp(a, rhs, &aset, &status);    /* a=ln(rhs)  */  | 
1508  |  |  | 
1509  |  |     /* skip the division if the result so far is infinite, NaN, or  */  | 
1510  |  |     /* zero, or there was an error; note NaN from sNaN needs copy  */  | 
1511  | 0  |     if (status&DEC_NaNs && !(status&DEC_sNaN)) break;  | 
1512  | 0  |     if (a->bits&DECSPECIAL || ISZERO(a)) { | 
1513  | 0  |       uprv_decNumberCopy(res, a);            /* [will fit]  */  | 
1514  | 0  |       break;}  | 
1515  |  |  | 
1516  |  |     /* for ln(10) an extra 3 digits of precision are needed  */  | 
1517  | 0  |     p=set->digits+3;  | 
1518  | 0  |     needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);  | 
1519  | 0  |     if (needbytes>sizeof(bufb)) {       /* need malloc space  */ | 
1520  | 0  |       allocbufb=(decNumber *)malloc(needbytes);  | 
1521  | 0  |       if (allocbufb==NULL) {            /* hopeless -- abandon  */ | 
1522  | 0  |         status|=DEC_Insufficient_storage;  | 
1523  | 0  |         break;}  | 
1524  | 0  |       b=allocbufb;                      /* use the allocated space  */  | 
1525  | 0  |       }  | 
1526  | 0  |     uprv_decNumberZero(w);                   /* set up 10...  */  | 
1527  | 0  |     #if DECDPUN==1  | 
1528  | 0  |     w->lsu[1]=1; w->lsu[0]=0;           /* ..  */  | 
1529  |  |     #else  | 
1530  |  |     w->lsu[0]=10;                       /* ..  */  | 
1531  |  |     #endif  | 
1532  | 0  |     w->digits=2;                        /* ..  */  | 
1533  |  | 
  | 
1534  | 0  |     aset.digits=p;  | 
1535  | 0  |     decLnOp(b, w, &aset, &ignore);      /* b=ln(10)  */  | 
1536  |  | 
  | 
1537  | 0  |     aset.digits=set->digits;            /* for final divide  */  | 
1538  | 0  |     decDivideOp(res, a, b, &aset, DIVIDE, &status); /* into result  */  | 
1539  | 0  |     } while(0);                         /* [for break]  */  | 
1540  |  |  | 
1541  | 0  |   if (allocbufa!=NULL) free(allocbufa); /* drop any storage used  */  | 
1542  | 0  |   if (allocbufb!=NULL) free(allocbufb); /* ..  */  | 
1543  |  |   #if DECSUBSET  | 
1544  |  |   if (allocrhs !=NULL) free(allocrhs);  /* ..  */  | 
1545  |  |   #endif  | 
1546  |  |   /* apply significant status  */  | 
1547  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1548  |  |   #if DECCHECK  | 
1549  |  |   decCheckInexact(res, set);  | 
1550  |  |   #endif  | 
1551  | 0  |   return res;  | 
1552  | 0  |   } /* decNumberLog10  */  | 
1553  |  | #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406  | 
1554  |  | #pragma GCC diagnostic pop  | 
1555  |  | #endif  | 
1556  |  |  | 
1557  |  | /* ------------------------------------------------------------------ */  | 
1558  |  | /* decNumberMax -- compare two Numbers and return the maximum         */  | 
1559  |  | /*                                                                    */  | 
1560  |  | /*   This computes C = A ? B, returning the maximum by 754 rules      */  | 
1561  |  | /*                                                                    */  | 
1562  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */  | 
1563  |  | /*   lhs is A                                                         */  | 
1564  |  | /*   rhs is B                                                         */  | 
1565  |  | /*   set is the context                                               */  | 
1566  |  | /*                                                                    */  | 
1567  |  | /* C must have space for set->digits digits.                          */  | 
1568  |  | /* ------------------------------------------------------------------ */  | 
1569  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberMax(decNumber *res, const decNumber *lhs,  | 
1570  | 0  |                          const decNumber *rhs, decContext *set) { | 
1571  | 0  |   uInt status=0;                        /* accumulator  */  | 
1572  | 0  |   decCompareOp(res, lhs, rhs, set, COMPMAX, &status);  | 
1573  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1574  |  |   #if DECCHECK  | 
1575  |  |   decCheckInexact(res, set);  | 
1576  |  |   #endif  | 
1577  | 0  |   return res;  | 
1578  | 0  |   } /* decNumberMax  */  | 
1579  |  |  | 
1580  |  | /* ------------------------------------------------------------------ */  | 
1581  |  | /* decNumberMaxMag -- compare and return the maximum by magnitude     */  | 
1582  |  | /*                                                                    */  | 
1583  |  | /*   This computes C = A ? B, returning the maximum by 754 rules      */  | 
1584  |  | /*                                                                    */  | 
1585  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */  | 
1586  |  | /*   lhs is A                                                         */  | 
1587  |  | /*   rhs is B                                                         */  | 
1588  |  | /*   set is the context                                               */  | 
1589  |  | /*                                                                    */  | 
1590  |  | /* C must have space for set->digits digits.                          */  | 
1591  |  | /* ------------------------------------------------------------------ */  | 
1592  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberMaxMag(decNumber *res, const decNumber *lhs,  | 
1593  | 0  |                          const decNumber *rhs, decContext *set) { | 
1594  | 0  |   uInt status=0;                        /* accumulator  */  | 
1595  | 0  |   decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status);  | 
1596  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1597  |  |   #if DECCHECK  | 
1598  |  |   decCheckInexact(res, set);  | 
1599  |  |   #endif  | 
1600  | 0  |   return res;  | 
1601  | 0  |   } /* decNumberMaxMag  */  | 
1602  |  |  | 
1603  |  | /* ------------------------------------------------------------------ */  | 
1604  |  | /* decNumberMin -- compare two Numbers and return the minimum         */  | 
1605  |  | /*                                                                    */  | 
1606  |  | /*   This computes C = A ? B, returning the minimum by 754 rules      */  | 
1607  |  | /*                                                                    */  | 
1608  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */  | 
1609  |  | /*   lhs is A                                                         */  | 
1610  |  | /*   rhs is B                                                         */  | 
1611  |  | /*   set is the context                                               */  | 
1612  |  | /*                                                                    */  | 
1613  |  | /* C must have space for set->digits digits.                          */  | 
1614  |  | /* ------------------------------------------------------------------ */  | 
1615  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberMin(decNumber *res, const decNumber *lhs,  | 
1616  | 0  |                          const decNumber *rhs, decContext *set) { | 
1617  | 0  |   uInt status=0;                        /* accumulator  */  | 
1618  | 0  |   decCompareOp(res, lhs, rhs, set, COMPMIN, &status);  | 
1619  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1620  |  |   #if DECCHECK  | 
1621  |  |   decCheckInexact(res, set);  | 
1622  |  |   #endif  | 
1623  | 0  |   return res;  | 
1624  | 0  |   } /* decNumberMin  */  | 
1625  |  |  | 
1626  |  | /* ------------------------------------------------------------------ */  | 
1627  |  | /* decNumberMinMag -- compare and return the minimum by magnitude     */  | 
1628  |  | /*                                                                    */  | 
1629  |  | /*   This computes C = A ? B, returning the minimum by 754 rules      */  | 
1630  |  | /*                                                                    */  | 
1631  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */  | 
1632  |  | /*   lhs is A                                                         */  | 
1633  |  | /*   rhs is B                                                         */  | 
1634  |  | /*   set is the context                                               */  | 
1635  |  | /*                                                                    */  | 
1636  |  | /* C must have space for set->digits digits.                          */  | 
1637  |  | /* ------------------------------------------------------------------ */  | 
1638  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberMinMag(decNumber *res, const decNumber *lhs,  | 
1639  | 0  |                          const decNumber *rhs, decContext *set) { | 
1640  | 0  |   uInt status=0;                        /* accumulator  */  | 
1641  | 0  |   decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status);  | 
1642  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1643  |  |   #if DECCHECK  | 
1644  |  |   decCheckInexact(res, set);  | 
1645  |  |   #endif  | 
1646  | 0  |   return res;  | 
1647  | 0  |   } /* decNumberMinMag  */  | 
1648  |  |  | 
1649  |  | /* ------------------------------------------------------------------ */  | 
1650  |  | /* decNumberMinus -- prefix minus operator                            */  | 
1651  |  | /*                                                                    */  | 
1652  |  | /*   This computes C = 0 - A                                          */  | 
1653  |  | /*                                                                    */  | 
1654  |  | /*   res is C, the result.  C may be A                                */  | 
1655  |  | /*   rhs is A                                                         */  | 
1656  |  | /*   set is the context                                               */  | 
1657  |  | /*                                                                    */  | 
1658  |  | /* See also decNumberCopyNegate for a quiet bitwise version of this.  */  | 
1659  |  | /* C must have space for set->digits digits.                          */  | 
1660  |  | /* ------------------------------------------------------------------ */  | 
1661  |  | /* Simply use AddOp for the subtract, which will do the necessary.    */  | 
1662  |  | /* ------------------------------------------------------------------ */  | 
1663  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberMinus(decNumber *res, const decNumber *rhs,  | 
1664  | 0  |                            decContext *set) { | 
1665  | 0  |   decNumber dzero;  | 
1666  | 0  |   uInt status=0;                        /* accumulator  */  | 
1667  |  | 
  | 
1668  |  |   #if DECCHECK  | 
1669  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
1670  |  |   #endif  | 
1671  |  | 
  | 
1672  | 0  |   uprv_decNumberZero(&dzero);                /* make 0  */  | 
1673  | 0  |   dzero.exponent=rhs->exponent;         /* [no coefficient expansion]  */  | 
1674  | 0  |   decAddOp(res, &dzero, rhs, set, DECNEG, &status);  | 
1675  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1676  |  |   #if DECCHECK  | 
1677  |  |   decCheckInexact(res, set);  | 
1678  |  |   #endif  | 
1679  | 0  |   return res;  | 
1680  | 0  |   } /* decNumberMinus  */  | 
1681  |  |  | 
1682  |  | /* ------------------------------------------------------------------ */  | 
1683  |  | /* decNumberNextMinus -- next towards -Infinity                       */  | 
1684  |  | /*                                                                    */  | 
1685  |  | /*   This computes C = A - infinitesimal, rounded towards -Infinity   */  | 
1686  |  | /*                                                                    */  | 
1687  |  | /*   res is C, the result.  C may be A                                */  | 
1688  |  | /*   rhs is A                                                         */  | 
1689  |  | /*   set is the context                                               */  | 
1690  |  | /*                                                                    */  | 
1691  |  | /* This is a generalization of 754 NextDown.                          */  | 
1692  |  | /* ------------------------------------------------------------------ */  | 
1693  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextMinus(decNumber *res, const decNumber *rhs,  | 
1694  | 0  |                                decContext *set) { | 
1695  | 0  |   decNumber dtiny;                           /* constant  */  | 
1696  | 0  |   decContext workset=*set;                   /* work  */  | 
1697  | 0  |   uInt status=0;                             /* accumulator  */  | 
1698  |  |   #if DECCHECK  | 
1699  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
1700  |  |   #endif  | 
1701  |  |  | 
1702  |  |   /* +Infinity is the special case  */  | 
1703  | 0  |   if ((rhs->bits&(DECINF|DECNEG))==DECINF) { | 
1704  | 0  |     decSetMaxValue(res, set);                /* is +ve  */  | 
1705  |  |     /* there is no status to set  */  | 
1706  | 0  |     return res;  | 
1707  | 0  |     }  | 
1708  | 0  |   uprv_decNumberZero(&dtiny);                     /* start with 0  */  | 
1709  | 0  |   dtiny.lsu[0]=1;                            /* make number that is ..  */  | 
1710  | 0  |   dtiny.exponent=DEC_MIN_EMIN-1;             /* .. smaller than tiniest  */  | 
1711  | 0  |   workset.round=DEC_ROUND_FLOOR;  | 
1712  | 0  |   decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status);  | 
1713  | 0  |   status&=DEC_Invalid_operation|DEC_sNaN;    /* only sNaN Invalid please  */  | 
1714  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1715  | 0  |   return res;  | 
1716  | 0  |   } /* decNumberNextMinus  */  | 
1717  |  |  | 
1718  |  | /* ------------------------------------------------------------------ */  | 
1719  |  | /* decNumberNextPlus -- next towards +Infinity                        */  | 
1720  |  | /*                                                                    */  | 
1721  |  | /*   This computes C = A + infinitesimal, rounded towards +Infinity   */  | 
1722  |  | /*                                                                    */  | 
1723  |  | /*   res is C, the result.  C may be A                                */  | 
1724  |  | /*   rhs is A                                                         */  | 
1725  |  | /*   set is the context                                               */  | 
1726  |  | /*                                                                    */  | 
1727  |  | /* This is a generalization of 754 NextUp.                            */  | 
1728  |  | /* ------------------------------------------------------------------ */  | 
1729  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextPlus(decNumber *res, const decNumber *rhs,  | 
1730  | 0  |                               decContext *set) { | 
1731  | 0  |   decNumber dtiny;                           /* constant  */  | 
1732  | 0  |   decContext workset=*set;                   /* work  */  | 
1733  | 0  |   uInt status=0;                             /* accumulator  */  | 
1734  |  |   #if DECCHECK  | 
1735  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
1736  |  |   #endif  | 
1737  |  |  | 
1738  |  |   /* -Infinity is the special case  */  | 
1739  | 0  |   if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) { | 
1740  | 0  |     decSetMaxValue(res, set);  | 
1741  | 0  |     res->bits=DECNEG;                        /* negative  */  | 
1742  |  |     /* there is no status to set  */  | 
1743  | 0  |     return res;  | 
1744  | 0  |     }  | 
1745  | 0  |   uprv_decNumberZero(&dtiny);                     /* start with 0  */  | 
1746  | 0  |   dtiny.lsu[0]=1;                            /* make number that is ..  */  | 
1747  | 0  |   dtiny.exponent=DEC_MIN_EMIN-1;             /* .. smaller than tiniest  */  | 
1748  | 0  |   workset.round=DEC_ROUND_CEILING;  | 
1749  | 0  |   decAddOp(res, rhs, &dtiny, &workset, 0, &status);  | 
1750  | 0  |   status&=DEC_Invalid_operation|DEC_sNaN;    /* only sNaN Invalid please  */  | 
1751  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1752  | 0  |   return res;  | 
1753  | 0  |   } /* decNumberNextPlus  */  | 
1754  |  |  | 
1755  |  | /* ------------------------------------------------------------------ */  | 
1756  |  | /* decNumberNextToward -- next towards rhs                            */  | 
1757  |  | /*                                                                    */  | 
1758  |  | /*   This computes C = A +/- infinitesimal, rounded towards           */  | 
1759  |  | /*   +/-Infinity in the direction of B, as per 754-1985 nextafter     */  | 
1760  |  | /*   modified during revision but dropped from 754-2008.              */  | 
1761  |  | /*                                                                    */  | 
1762  |  | /*   res is C, the result.  C may be A or B.                          */  | 
1763  |  | /*   lhs is A                                                         */  | 
1764  |  | /*   rhs is B                                                         */  | 
1765  |  | /*   set is the context                                               */  | 
1766  |  | /*                                                                    */  | 
1767  |  | /* This is a generalization of 754-1985 NextAfter.                    */  | 
1768  |  | /* ------------------------------------------------------------------ */  | 
1769  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberNextToward(decNumber *res, const decNumber *lhs,  | 
1770  | 0  |                                 const decNumber *rhs, decContext *set) { | 
1771  | 0  |   decNumber dtiny;                           /* constant  */  | 
1772  | 0  |   decContext workset=*set;                   /* work  */  | 
1773  | 0  |   Int result;                                /* ..  */  | 
1774  | 0  |   uInt status=0;                             /* accumulator  */  | 
1775  |  |   #if DECCHECK  | 
1776  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
1777  |  |   #endif  | 
1778  |  | 
  | 
1779  | 0  |   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { | 
1780  | 0  |     decNaNs(res, lhs, rhs, set, &status);  | 
1781  | 0  |     }  | 
1782  | 0  |    else { /* Is numeric, so no chance of sNaN Invalid, etc.  */ | 
1783  | 0  |     result=decCompare(lhs, rhs, 0);     /* sign matters  */  | 
1784  | 0  |     if (result==BADINT) status|=DEC_Insufficient_storage; /* rare  */  | 
1785  | 0  |      else { /* valid compare  */ | 
1786  | 0  |       if (result==0) uprv_decNumberCopySign(res, lhs, rhs); /* easy  */  | 
1787  | 0  |        else { /* differ: need NextPlus or NextMinus  */ | 
1788  | 0  |         uByte sub;                      /* add or subtract  */  | 
1789  | 0  |         if (result<0) {                 /* lhs<rhs, do nextplus  */ | 
1790  |  |           /* -Infinity is the special case  */  | 
1791  | 0  |           if ((lhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) { | 
1792  | 0  |             decSetMaxValue(res, set);  | 
1793  | 0  |             res->bits=DECNEG;           /* negative  */  | 
1794  | 0  |             return res;                 /* there is no status to set  */  | 
1795  | 0  |             }  | 
1796  | 0  |           workset.round=DEC_ROUND_CEILING;  | 
1797  | 0  |           sub=0;                        /* add, please  */  | 
1798  | 0  |           } /* plus  */  | 
1799  | 0  |          else {                         /* lhs>rhs, do nextminus  */ | 
1800  |  |           /* +Infinity is the special case  */  | 
1801  | 0  |           if ((lhs->bits&(DECINF|DECNEG))==DECINF) { | 
1802  | 0  |             decSetMaxValue(res, set);  | 
1803  | 0  |             return res;                 /* there is no status to set  */  | 
1804  | 0  |             }  | 
1805  | 0  |           workset.round=DEC_ROUND_FLOOR;  | 
1806  | 0  |           sub=DECNEG;                   /* subtract, please  */  | 
1807  | 0  |           } /* minus  */  | 
1808  | 0  |         uprv_decNumberZero(&dtiny);          /* start with 0  */  | 
1809  | 0  |         dtiny.lsu[0]=1;                 /* make number that is ..  */  | 
1810  | 0  |         dtiny.exponent=DEC_MIN_EMIN-1;  /* .. smaller than tiniest  */  | 
1811  | 0  |         decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or -  */  | 
1812  |  |         /* turn off exceptions if the result is a normal number  */  | 
1813  |  |         /* (including Nmin), otherwise let all status through  */  | 
1814  | 0  |         if (uprv_decNumberIsNormal(res, set)) status=0;  | 
1815  | 0  |         } /* unequal  */  | 
1816  | 0  |       } /* compare OK  */  | 
1817  | 0  |     } /* numeric  */  | 
1818  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1819  | 0  |   return res;  | 
1820  | 0  |   } /* decNumberNextToward  */  | 
1821  |  |  | 
1822  |  | /* ------------------------------------------------------------------ */  | 
1823  |  | /* decNumberOr -- OR two Numbers, digitwise                           */  | 
1824  |  | /*                                                                    */  | 
1825  |  | /*   This computes C = A | B                                          */  | 
1826  |  | /*                                                                    */  | 
1827  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X|X)         */  | 
1828  |  | /*   lhs is A                                                         */  | 
1829  |  | /*   rhs is B                                                         */  | 
1830  |  | /*   set is the context (used for result length and error report)     */  | 
1831  |  | /*                                                                    */  | 
1832  |  | /* C must have space for set->digits digits.                          */  | 
1833  |  | /*                                                                    */  | 
1834  |  | /* Logical function restrictions apply (see above); a NaN is          */  | 
1835  |  | /* returned with Invalid_operation if a restriction is violated.      */  | 
1836  |  | /* ------------------------------------------------------------------ */  | 
1837  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberOr(decNumber *res, const decNumber *lhs,  | 
1838  | 0  |                         const decNumber *rhs, decContext *set) { | 
1839  | 0  |   const Unit *ua, *ub;                  /* -> operands  */  | 
1840  | 0  |   const Unit *msua, *msub;              /* -> operand msus  */  | 
1841  | 0  |   Unit  *uc, *msuc;                     /* -> result and its msu  */  | 
1842  | 0  |   Int   msudigs;                        /* digits in res msu  */  | 
1843  |  |   #if DECCHECK  | 
1844  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
1845  |  |   #endif  | 
1846  |  | 
  | 
1847  | 0  |   if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)  | 
1848  | 0  |    || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { | 
1849  | 0  |     decStatus(res, DEC_Invalid_operation, set);  | 
1850  | 0  |     return res;  | 
1851  | 0  |     }  | 
1852  |  |   /* operands are valid  */  | 
1853  | 0  |   ua=lhs->lsu;                          /* bottom-up  */  | 
1854  | 0  |   ub=rhs->lsu;                          /* ..  */  | 
1855  | 0  |   uc=res->lsu;                          /* ..  */  | 
1856  | 0  |   msua=ua+D2U(lhs->digits)-1;           /* -> msu of lhs  */  | 
1857  | 0  |   msub=ub+D2U(rhs->digits)-1;           /* -> msu of rhs  */  | 
1858  | 0  |   msuc=uc+D2U(set->digits)-1;           /* -> msu of result  */  | 
1859  | 0  |   msudigs=MSUDIGITS(set->digits);       /* [faster than remainder]  */  | 
1860  | 0  |   for (; uc<=msuc; ua++, ub++, uc++) {  /* Unit loop  */ | 
1861  | 0  |     Unit a, b;                          /* extract units  */  | 
1862  | 0  |     if (ua>msua) a=0;  | 
1863  | 0  |      else a=*ua;  | 
1864  | 0  |     if (ub>msub) b=0;  | 
1865  | 0  |      else b=*ub;  | 
1866  | 0  |     *uc=0;                              /* can now write back  */  | 
1867  | 0  |     if (a|b) {                          /* maybe 1 bits to examine  */ | 
1868  | 0  |       Int i, j;  | 
1869  |  |       /* This loop could be unrolled and/or use BIN2BCD tables  */  | 
1870  | 0  |       for (i=0; i<DECDPUN; i++) { | 
1871  | 0  |         if ((a|b)&1) *uc=*uc+(Unit)powers[i];     /* effect OR  */  | 
1872  | 0  |         j=a%10;  | 
1873  | 0  |         a=a/10;  | 
1874  | 0  |         j|=b%10;  | 
1875  | 0  |         b=b/10;  | 
1876  | 0  |         if (j>1) { | 
1877  | 0  |           decStatus(res, DEC_Invalid_operation, set);  | 
1878  | 0  |           return res;  | 
1879  | 0  |           }  | 
1880  | 0  |         if (uc==msuc && i==msudigs-1) break;      /* just did final digit  */  | 
1881  | 0  |         } /* each digit  */  | 
1882  | 0  |       } /* non-zero  */  | 
1883  | 0  |     } /* each unit  */  | 
1884  |  |   /* [here uc-1 is the msu of the result]  */  | 
1885  | 0  |   res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc-res->lsu));  | 
1886  | 0  |   res->exponent=0;                      /* integer  */  | 
1887  | 0  |   res->bits=0;                          /* sign=0  */  | 
1888  | 0  |   return res;  /* [no status to set]  */  | 
1889  | 0  |   } /* decNumberOr  */  | 
1890  |  |  | 
1891  |  | /* ------------------------------------------------------------------ */  | 
1892  |  | /* decNumberPlus -- prefix plus operator                              */  | 
1893  |  | /*                                                                    */  | 
1894  |  | /*   This computes C = 0 + A                                          */  | 
1895  |  | /*                                                                    */  | 
1896  |  | /*   res is C, the result.  C may be A                                */  | 
1897  |  | /*   rhs is A                                                         */  | 
1898  |  | /*   set is the context                                               */  | 
1899  |  | /*                                                                    */  | 
1900  |  | /* See also decNumberCopy for a quiet bitwise version of this.        */  | 
1901  |  | /* C must have space for set->digits digits.                          */  | 
1902  |  | /* ------------------------------------------------------------------ */  | 
1903  |  | /* This simply uses AddOp; Add will take fast path after preparing A. */  | 
1904  |  | /* Performance is a concern here, as this routine is often used to    */  | 
1905  |  | /* check operands and apply rounding and overflow/underflow testing.  */  | 
1906  |  | /* ------------------------------------------------------------------ */  | 
1907  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberPlus(decNumber *res, const decNumber *rhs,  | 
1908  | 0  |                           decContext *set) { | 
1909  | 0  |   decNumber dzero;  | 
1910  | 0  |   uInt status=0;                        /* accumulator  */  | 
1911  |  |   #if DECCHECK  | 
1912  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
1913  |  |   #endif  | 
1914  |  | 
  | 
1915  | 0  |   uprv_decNumberZero(&dzero);                /* make 0  */  | 
1916  | 0  |   dzero.exponent=rhs->exponent;         /* [no coefficient expansion]  */  | 
1917  | 0  |   decAddOp(res, &dzero, rhs, set, 0, &status);  | 
1918  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1919  |  |   #if DECCHECK  | 
1920  |  |   decCheckInexact(res, set);  | 
1921  |  |   #endif  | 
1922  | 0  |   return res;  | 
1923  | 0  |   } /* decNumberPlus  */  | 
1924  |  |  | 
1925  |  | /* ------------------------------------------------------------------ */  | 
1926  |  | /* decNumberMultiply -- multiply two Numbers                          */  | 
1927  |  | /*                                                                    */  | 
1928  |  | /*   This computes C = A x B                                          */  | 
1929  |  | /*                                                                    */  | 
1930  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)         */  | 
1931  |  | /*   lhs is A                                                         */  | 
1932  |  | /*   rhs is B                                                         */  | 
1933  |  | /*   set is the context                                               */  | 
1934  |  | /*                                                                    */  | 
1935  |  | /* C must have space for set->digits digits.                          */  | 
1936  |  | /* ------------------------------------------------------------------ */  | 
1937  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberMultiply(decNumber *res, const decNumber *lhs,  | 
1938  | 0  |                               const decNumber *rhs, decContext *set) { | 
1939  | 0  |   uInt status=0;                   /* accumulator  */  | 
1940  | 0  |   decMultiplyOp(res, lhs, rhs, set, &status);  | 
1941  | 0  |   if (status!=0) decStatus(res, status, set);  | 
1942  |  |   #if DECCHECK  | 
1943  |  |   decCheckInexact(res, set);  | 
1944  |  |   #endif  | 
1945  | 0  |   return res;  | 
1946  | 0  |   } /* decNumberMultiply  */  | 
1947  |  |  | 
1948  |  | /* ------------------------------------------------------------------ */  | 
1949  |  | /* decNumberPower -- raise a number to a power                        */  | 
1950  |  | /*                                                                    */  | 
1951  |  | /*   This computes C = A ** B                                         */  | 
1952  |  | /*                                                                    */  | 
1953  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X**X)        */  | 
1954  |  | /*   lhs is A                                                         */  | 
1955  |  | /*   rhs is B                                                         */  | 
1956  |  | /*   set is the context                                               */  | 
1957  |  | /*                                                                    */  | 
1958  |  | /* C must have space for set->digits digits.                          */  | 
1959  |  | /*                                                                    */  | 
1960  |  | /* Mathematical function restrictions apply (see above); a NaN is     */  | 
1961  |  | /* returned with Invalid_operation if a restriction is violated.      */  | 
1962  |  | /*                                                                    */  | 
1963  |  | /* However, if 1999999997<=B<=999999999 and B is an integer then the  */  | 
1964  |  | /* restrictions on A and the context are relaxed to the usual bounds, */  | 
1965  |  | /* for compatibility with the earlier (integer power only) version    */  | 
1966  |  | /* of this function.                                                  */  | 
1967  |  | /*                                                                    */  | 
1968  |  | /* When B is an integer, the result may be exact, even if rounded.    */  | 
1969  |  | /*                                                                    */  | 
1970  |  | /* The final result is rounded according to the context; it will      */  | 
1971  |  | /* almost always be correctly rounded, but may be up to 1 ulp in      */  | 
1972  |  | /* error in rare cases.                                               */  | 
1973  |  | /* ------------------------------------------------------------------ */  | 
1974  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberPower(decNumber *res, const decNumber *lhs,  | 
1975  | 0  |                            const decNumber *rhs, decContext *set) { | 
1976  |  |   #if DECSUBSET  | 
1977  |  |   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */  | 
1978  |  |   decNumber *allocrhs=NULL;        /* .., rhs  */  | 
1979  |  |   #endif  | 
1980  | 0  |   decNumber *allocdac=NULL;        /* -> allocated acc buffer, iff used  */  | 
1981  | 0  |   decNumber *allocinv=NULL;        /* -> allocated 1/x buffer, iff used  */  | 
1982  | 0  |   Int   reqdigits=set->digits;     /* requested DIGITS  */  | 
1983  | 0  |   Int   n;                         /* rhs in binary  */  | 
1984  | 0  |   Flag  rhsint=0;                  /* 1 if rhs is an integer  */  | 
1985  | 0  |   Flag  useint=0;                  /* 1 if can use integer calculation  */  | 
1986  | 0  |   Flag  isoddint=0;                /* 1 if rhs is an integer and odd  */  | 
1987  | 0  |   Int   i;                         /* work  */  | 
1988  |  |   #if DECSUBSET  | 
1989  |  |   Int   dropped;                   /* ..  */  | 
1990  |  |   #endif  | 
1991  | 0  |   uInt  needbytes;                 /* buffer size needed  */  | 
1992  | 0  |   Flag  seenbit;                   /* seen a bit while powering  */  | 
1993  | 0  |   Int   residue=0;                 /* rounding residue  */  | 
1994  | 0  |   uInt  status=0;                  /* accumulators  */  | 
1995  | 0  |   uByte bits=0;                    /* result sign if errors  */  | 
1996  | 0  |   decContext aset;                 /* working context  */  | 
1997  | 0  |   decNumber dnOne;                 /* work value 1...  */  | 
1998  |  |   /* local accumulator buffer [a decNumber, with digits+elength+1 digits]  */  | 
1999  | 0  |   decNumber dacbuff[D2N(DECBUFFER+9)];  | 
2000  | 0  |   decNumber *dac=dacbuff;          /* -> result accumulator  */  | 
2001  |  |   /* same again for possible 1/lhs calculation  */  | 
2002  | 0  |   decNumber invbuff[D2N(DECBUFFER+9)];  | 
2003  |  | 
  | 
2004  |  |   #if DECCHECK  | 
2005  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
2006  |  |   #endif  | 
2007  |  | 
  | 
2008  | 0  |   do {                             /* protect allocated storage  */ | 
2009  |  |     #if DECSUBSET  | 
2010  |  |     if (!set->extended) { /* reduce operands and set status, as needed  */ | 
2011  |  |       if (lhs->digits>reqdigits) { | 
2012  |  |         alloclhs=decRoundOperand(lhs, set, &status);  | 
2013  |  |         if (alloclhs==NULL) break;  | 
2014  |  |         lhs=alloclhs;  | 
2015  |  |         }  | 
2016  |  |       if (rhs->digits>reqdigits) { | 
2017  |  |         allocrhs=decRoundOperand(rhs, set, &status);  | 
2018  |  |         if (allocrhs==NULL) break;  | 
2019  |  |         rhs=allocrhs;  | 
2020  |  |         }  | 
2021  |  |       }  | 
2022  |  |     #endif  | 
2023  |  |     /* [following code does not require input rounding]  */  | 
2024  |  |  | 
2025  |  |     /* handle NaNs and rhs Infinity (lhs infinity is harder)  */  | 
2026  | 0  |     if (SPECIALARGS) { | 
2027  | 0  |       if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { /* NaNs  */ | 
2028  | 0  |         decNaNs(res, lhs, rhs, set, &status);  | 
2029  | 0  |         break;}  | 
2030  | 0  |       if (decNumberIsInfinite(rhs)) {   /* rhs Infinity  */ | 
2031  | 0  |         Flag rhsneg=rhs->bits&DECNEG;   /* save rhs sign  */  | 
2032  | 0  |         if (decNumberIsNegative(lhs)    /* lhs<0  */  | 
2033  | 0  |          && !decNumberIsZero(lhs))      /* ..  */  | 
2034  | 0  |           status|=DEC_Invalid_operation;  | 
2035  | 0  |          else {                         /* lhs >=0  */ | 
2036  | 0  |           uprv_decNumberZero(&dnOne);        /* set up 1  */  | 
2037  | 0  |           dnOne.lsu[0]=1;  | 
2038  | 0  |           uprv_decNumberCompare(dac, lhs, &dnOne, set); /* lhs ? 1  */  | 
2039  | 0  |           uprv_decNumberZero(res);           /* prepare for 0/1/Infinity  */  | 
2040  | 0  |           if (decNumberIsNegative(dac)) {    /* lhs<1  */ | 
2041  | 0  |             if (rhsneg) res->bits|=DECINF;   /* +Infinity [else is +0]  */  | 
2042  | 0  |             }  | 
2043  | 0  |            else if (dac->lsu[0]==0) {        /* lhs=1  */ | 
2044  |  |             /* 1**Infinity is inexact, so return fully-padded 1.0000  */  | 
2045  | 0  |             Int shift=set->digits-1;  | 
2046  | 0  |             *res->lsu=1;                     /* was 0, make int 1  */  | 
2047  | 0  |             res->digits=decShiftToMost(res->lsu, 1, shift);  | 
2048  | 0  |             res->exponent=-shift;            /* make 1.0000...  */  | 
2049  | 0  |             status|=DEC_Inexact|DEC_Rounded; /* deemed inexact  */  | 
2050  | 0  |             }  | 
2051  | 0  |            else {                            /* lhs>1  */ | 
2052  | 0  |             if (!rhsneg) res->bits|=DECINF;  /* +Infinity [else is +0]  */  | 
2053  | 0  |             }  | 
2054  | 0  |           } /* lhs>=0  */  | 
2055  | 0  |         break;}  | 
2056  |  |       /* [lhs infinity drops through]  */  | 
2057  | 0  |       } /* specials  */  | 
2058  |  |  | 
2059  |  |     /* Original rhs may be an integer that fits and is in range  */  | 
2060  | 0  |     n=decGetInt(rhs);  | 
2061  | 0  |     if (n!=BADINT) {                    /* it is an integer  */ | 
2062  | 0  |       rhsint=1;                         /* record the fact for 1**n  */  | 
2063  | 0  |       isoddint=(Flag)n&1;               /* [works even if big]  */  | 
2064  | 0  |       if (n!=BIGEVEN && n!=BIGODD)      /* can use integer path?  */  | 
2065  | 0  |         useint=1;                       /* looks good  */  | 
2066  | 0  |       }  | 
2067  |  | 
  | 
2068  | 0  |     if (decNumberIsNegative(lhs)        /* -x ..  */  | 
2069  | 0  |       && isoddint) bits=DECNEG;         /* .. to an odd power  */  | 
2070  |  |  | 
2071  |  |     /* handle LHS infinity  */  | 
2072  | 0  |     if (decNumberIsInfinite(lhs)) {     /* [NaNs already handled]  */ | 
2073  | 0  |       uByte rbits=rhs->bits;            /* save  */  | 
2074  | 0  |       uprv_decNumberZero(res);               /* prepare  */  | 
2075  | 0  |       if (n==0) *res->lsu=1;            /* [-]Inf**0 => 1  */  | 
2076  | 0  |        else { | 
2077  |  |         /* -Inf**nonint -> error  */  | 
2078  | 0  |         if (!rhsint && decNumberIsNegative(lhs)) { | 
2079  | 0  |           status|=DEC_Invalid_operation;     /* -Inf**nonint is error  */  | 
2080  | 0  |           break;}  | 
2081  | 0  |         if (!(rbits & DECNEG)) bits|=DECINF; /* was not a **-n  */  | 
2082  |  |         /* [otherwise will be 0 or -0]  */  | 
2083  | 0  |         res->bits=bits;  | 
2084  | 0  |         }  | 
2085  | 0  |       break;}  | 
2086  |  |  | 
2087  |  |     /* similarly handle LHS zero  */  | 
2088  | 0  |     if (decNumberIsZero(lhs)) { | 
2089  | 0  |       if (n==0) {                            /* 0**0 => Error  */ | 
2090  |  |         #if DECSUBSET  | 
2091  |  |         if (!set->extended) {                /* [unless subset]  */ | 
2092  |  |           uprv_decNumberZero(res);  | 
2093  |  |           *res->lsu=1;                       /* return 1  */  | 
2094  |  |           break;}  | 
2095  |  |         #endif  | 
2096  | 0  |         status|=DEC_Invalid_operation;  | 
2097  | 0  |         }  | 
2098  | 0  |        else {                                /* 0**x  */ | 
2099  | 0  |         uByte rbits=rhs->bits;               /* save  */  | 
2100  | 0  |         if (rbits & DECNEG) {                /* was a 0**(-n)  */ | 
2101  |  |           #if DECSUBSET  | 
2102  |  |           if (!set->extended) {              /* [bad if subset]  */ | 
2103  |  |             status|=DEC_Invalid_operation;  | 
2104  |  |             break;}  | 
2105  |  |           #endif  | 
2106  | 0  |           bits|=DECINF;  | 
2107  | 0  |           }  | 
2108  | 0  |         uprv_decNumberZero(res);                  /* prepare  */  | 
2109  |  |         /* [otherwise will be 0 or -0]  */  | 
2110  | 0  |         res->bits=bits;  | 
2111  | 0  |         }  | 
2112  | 0  |       break;}  | 
2113  |  |  | 
2114  |  |     /* here both lhs and rhs are finite; rhs==0 is handled in the  */  | 
2115  |  |     /* integer path.  Next handle the non-integer cases  */  | 
2116  | 0  |     if (!useint) {                      /* non-integral rhs  */ | 
2117  |  |       /* any -ve lhs is bad, as is either operand or context out of  */  | 
2118  |  |       /* bounds  */  | 
2119  | 0  |       if (decNumberIsNegative(lhs)) { | 
2120  | 0  |         status|=DEC_Invalid_operation;  | 
2121  | 0  |         break;}  | 
2122  | 0  |       if (decCheckMath(lhs, set, &status)  | 
2123  | 0  |        || decCheckMath(rhs, set, &status)) break; /* variable status  */  | 
2124  |  |  | 
2125  | 0  |       uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context  */  | 
2126  | 0  |       aset.emax=DEC_MAX_MATH;           /* usual bounds  */  | 
2127  | 0  |       aset.emin=-DEC_MAX_MATH;          /* ..  */  | 
2128  | 0  |       aset.clamp=0;                     /* and no concrete format  */  | 
2129  |  |  | 
2130  |  |       /* calculate the result using exp(ln(lhs)*rhs), which can  */  | 
2131  |  |       /* all be done into the accumulator, dac.  The precision needed  */  | 
2132  |  |       /* is enough to contain the full information in the lhs (which  */  | 
2133  |  |       /* is the total digits, including exponent), or the requested  */  | 
2134  |  |       /* precision, if larger, + 4; 6 is used for the exponent  */  | 
2135  |  |       /* maximum length, and this is also used when it is shorter  */  | 
2136  |  |       /* than the requested digits as it greatly reduces the >0.5 ulp  */  | 
2137  |  |       /* cases at little cost (because Ln doubles digits each  */  | 
2138  |  |       /* iteration so a few extra digits rarely causes an extra  */  | 
2139  |  |       /* iteration)  */  | 
2140  | 0  |       aset.digits=MAXI(lhs->digits, set->digits)+6+4;  | 
2141  | 0  |       } /* non-integer rhs  */  | 
2142  |  |  | 
2143  | 0  |      else { /* rhs is in-range integer  */ | 
2144  | 0  |       if (n==0) {                       /* x**0 = 1  */ | 
2145  |  |         /* (0**0 was handled above)  */  | 
2146  | 0  |         uprv_decNumberZero(res);             /* result=1  */  | 
2147  | 0  |         *res->lsu=1;                    /* ..  */  | 
2148  | 0  |         break;}  | 
2149  |  |       /* rhs is a non-zero integer  */  | 
2150  | 0  |       if (n<0) n=-n;                    /* use abs(n)  */  | 
2151  |  | 
  | 
2152  | 0  |       aset=*set;                        /* clone the context  */  | 
2153  | 0  |       aset.round=DEC_ROUND_HALF_EVEN;   /* internally use balanced  */  | 
2154  |  |       /* calculate the working DIGITS  */  | 
2155  | 0  |       aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2;  | 
2156  |  |       #if DECSUBSET  | 
2157  |  |       if (!set->extended) aset.digits--;     /* use classic precision  */  | 
2158  |  |       #endif  | 
2159  |  |       /* it's an error if this is more than can be handled  */  | 
2160  | 0  |       if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;} | 
2161  | 0  |       } /* integer path  */  | 
2162  |  |  | 
2163  |  |     /* aset.digits is the count of digits for the accumulator needed  */  | 
2164  |  |     /* if accumulator is too long for local storage, then allocate  */  | 
2165  | 0  |     needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit);  | 
2166  |  |     /* [needbytes also used below if 1/lhs needed]  */  | 
2167  | 0  |     if (needbytes>sizeof(dacbuff)) { | 
2168  | 0  |       allocdac=(decNumber *)malloc(needbytes);  | 
2169  | 0  |       if (allocdac==NULL) {   /* hopeless -- abandon  */ | 
2170  | 0  |         status|=DEC_Insufficient_storage;  | 
2171  | 0  |         break;}  | 
2172  | 0  |       dac=allocdac;           /* use the allocated space  */  | 
2173  | 0  |       }  | 
2174  |  |     /* here, aset is set up and accumulator is ready for use  */  | 
2175  |  |  | 
2176  | 0  |     if (!useint) {                           /* non-integral rhs  */ | 
2177  |  |       /* x ** y; special-case x=1 here as it will otherwise always  */  | 
2178  |  |       /* reduce to integer 1; decLnOp has a fastpath which detects  */  | 
2179  |  |       /* the case of x=1  */  | 
2180  | 0  |       decLnOp(dac, lhs, &aset, &status);     /* dac=ln(lhs)  */  | 
2181  |  |       /* [no error possible, as lhs 0 already handled]  */  | 
2182  | 0  |       if (ISZERO(dac)) {                     /* x==1, 1.0, etc.  */ | 
2183  |  |         /* need to return fully-padded 1.0000 etc., but rhsint->1  */  | 
2184  | 0  |         *dac->lsu=1;                         /* was 0, make int 1  */  | 
2185  | 0  |         if (!rhsint) {                       /* add padding  */ | 
2186  | 0  |           Int shift=set->digits-1;  | 
2187  | 0  |           dac->digits=decShiftToMost(dac->lsu, 1, shift);  | 
2188  | 0  |           dac->exponent=-shift;              /* make 1.0000...  */  | 
2189  | 0  |           status|=DEC_Inexact|DEC_Rounded;   /* deemed inexact  */  | 
2190  | 0  |           }  | 
2191  | 0  |         }  | 
2192  | 0  |        else { | 
2193  | 0  |         decMultiplyOp(dac, dac, rhs, &aset, &status);  /* dac=dac*rhs  */  | 
2194  | 0  |         decExpOp(dac, dac, &aset, &status);            /* dac=exp(dac)  */  | 
2195  | 0  |         }  | 
2196  |  |       /* and drop through for final rounding  */  | 
2197  | 0  |       } /* non-integer rhs  */  | 
2198  |  |  | 
2199  | 0  |      else {                             /* carry on with integer  */ | 
2200  | 0  |       uprv_decNumberZero(dac);               /* acc=1  */  | 
2201  | 0  |       *dac->lsu=1;                      /* ..  */  | 
2202  |  |  | 
2203  |  |       /* if a negative power the constant 1 is needed, and if not subset  */  | 
2204  |  |       /* invert the lhs now rather than inverting the result later  */  | 
2205  | 0  |       if (decNumberIsNegative(rhs)) {   /* was a **-n [hence digits>0]  */ | 
2206  | 0  |         decNumber *inv=invbuff;         /* assume use fixed buffer  */  | 
2207  | 0  |         uprv_decNumberCopy(&dnOne, dac);     /* dnOne=1;  [needed now or later]  */  | 
2208  |  |         #if DECSUBSET  | 
2209  |  |         if (set->extended) {            /* need to calculate 1/lhs  */ | 
2210  |  |         #endif  | 
2211  |  |           /* divide lhs into 1, putting result in dac [dac=1/dac]  */  | 
2212  | 0  |           decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status);  | 
2213  |  |           /* now locate or allocate space for the inverted lhs  */  | 
2214  | 0  |           if (needbytes>sizeof(invbuff)) { | 
2215  | 0  |             allocinv=(decNumber *)malloc(needbytes);  | 
2216  | 0  |             if (allocinv==NULL) {       /* hopeless -- abandon  */ | 
2217  | 0  |               status|=DEC_Insufficient_storage;  | 
2218  | 0  |               break;}  | 
2219  | 0  |             inv=allocinv;               /* use the allocated space  */  | 
2220  | 0  |             }  | 
2221  |  |           /* [inv now points to big-enough buffer or allocated storage]  */  | 
2222  | 0  |           uprv_decNumberCopy(inv, dac);      /* copy the 1/lhs  */  | 
2223  | 0  |           uprv_decNumberCopy(dac, &dnOne);   /* restore acc=1  */  | 
2224  | 0  |           lhs=inv;                      /* .. and go forward with new lhs  */  | 
2225  |  |         #if DECSUBSET  | 
2226  |  |           }  | 
2227  |  |         #endif  | 
2228  | 0  |         }  | 
2229  |  |  | 
2230  |  |       /* Raise-to-the-power loop...  */  | 
2231  | 0  |       seenbit=0;                   /* set once a 1-bit is encountered  */  | 
2232  | 0  |       for (i=1;;i++){              /* for each bit [top bit ignored]  */ | 
2233  |  |         /* abandon if had overflow or terminal underflow  */  | 
2234  | 0  |         if (status & (DEC_Overflow|DEC_Underflow)) { /* interesting?  */ | 
2235  | 0  |           if (status&DEC_Overflow || ISZERO(dac)) break;  | 
2236  | 0  |           }  | 
2237  |  |         /* [the following two lines revealed an optimizer bug in a C++  */  | 
2238  |  |         /* compiler, with symptom: 5**3 -> 25, when n=n+n was used]  */  | 
2239  | 0  |         n=n<<1;                    /* move next bit to testable position  */  | 
2240  | 0  |         if (n<0) {                 /* top bit is set  */ | 
2241  | 0  |           seenbit=1;               /* OK, significant bit seen  */  | 
2242  | 0  |           decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x  */  | 
2243  | 0  |           }  | 
2244  | 0  |         if (i==31) break;          /* that was the last bit  */  | 
2245  | 0  |         if (!seenbit) continue;    /* no need to square 1  */  | 
2246  | 0  |         decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square]  */  | 
2247  | 0  |         } /*i*/ /* 32 bits  */  | 
2248  |  |  | 
2249  |  |       /* complete internal overflow or underflow processing  */  | 
2250  | 0  |       if (status & (DEC_Overflow|DEC_Underflow)) { | 
2251  |  |         #if DECSUBSET  | 
2252  |  |         /* If subset, and power was negative, reverse the kind of -erflow  */  | 
2253  |  |         /* [1/x not yet done]  */  | 
2254  |  |         if (!set->extended && decNumberIsNegative(rhs)) { | 
2255  |  |           if (status & DEC_Overflow)  | 
2256  |  |             status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal;  | 
2257  |  |            else { /* trickier -- Underflow may or may not be set  */ | 
2258  |  |             status&=~(DEC_Underflow | DEC_Subnormal); /* [one or both]  */  | 
2259  |  |             status|=DEC_Overflow;  | 
2260  |  |             }  | 
2261  |  |           }  | 
2262  |  |         #endif  | 
2263  | 0  |         dac->bits=(dac->bits & ~DECNEG) | bits; /* force correct sign  */  | 
2264  |  |         /* round subnormals [to set.digits rather than aset.digits]  */  | 
2265  |  |         /* or set overflow result similarly as required  */  | 
2266  | 0  |         decFinalize(dac, set, &residue, &status);  | 
2267  | 0  |         uprv_decNumberCopy(res, dac);   /* copy to result (is now OK length)  */  | 
2268  | 0  |         break;  | 
2269  | 0  |         }  | 
2270  |  | 
  | 
2271  |  |       #if DECSUBSET  | 
2272  |  |       if (!set->extended &&                  /* subset math  */  | 
2273  |  |           decNumberIsNegative(rhs)) {        /* was a **-n [hence digits>0]  */ | 
2274  |  |         /* so divide result into 1 [dac=1/dac]  */  | 
2275  |  |         decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status);  | 
2276  |  |         }  | 
2277  |  |       #endif  | 
2278  | 0  |       } /* rhs integer path  */  | 
2279  |  |  | 
2280  |  |     /* reduce result to the requested length and copy to result  */  | 
2281  | 0  |     decCopyFit(res, dac, set, &residue, &status);  | 
2282  | 0  |     decFinish(res, set, &residue, &status);  /* final cleanup  */  | 
2283  |  |     #if DECSUBSET  | 
2284  |  |     if (!set->extended) decTrim(res, set, 0, 1, &dropped); /* trailing zeros  */  | 
2285  |  |     #endif  | 
2286  | 0  |     } while(0);                         /* end protected  */  | 
2287  |  |  | 
2288  | 0  |   if (allocdac!=NULL) free(allocdac);   /* drop any storage used  */  | 
2289  | 0  |   if (allocinv!=NULL) free(allocinv);   /* ..  */  | 
2290  |  |   #if DECSUBSET  | 
2291  |  |   if (alloclhs!=NULL) free(alloclhs);   /* ..  */  | 
2292  |  |   if (allocrhs!=NULL) free(allocrhs);   /* ..  */  | 
2293  |  |   #endif  | 
2294  | 0  |   if (status!=0) decStatus(res, status, set);  | 
2295  |  |   #if DECCHECK  | 
2296  |  |   decCheckInexact(res, set);  | 
2297  |  |   #endif  | 
2298  | 0  |   return res;  | 
2299  | 0  |   } /* decNumberPower  */  | 
2300  |  |  | 
2301  |  | /* ------------------------------------------------------------------ */  | 
2302  |  | /* decNumberQuantize -- force exponent to requested value             */  | 
2303  |  | /*                                                                    */  | 
2304  |  | /*   This computes C = op(A, B), where op adjusts the coefficient     */  | 
2305  |  | /*   of C (by rounding or shifting) such that the exponent (-scale)   */  | 
2306  |  | /*   of C has exponent of B.  The numerical value of C will equal A,  */  | 
2307  |  | /*   except for the effects of any rounding that occurred.            */  | 
2308  |  | /*                                                                    */  | 
2309  |  | /*   res is C, the result.  C may be A or B                           */  | 
2310  |  | /*   lhs is A, the number to adjust                                   */  | 
2311  |  | /*   rhs is B, the number with exponent to match                      */  | 
2312  |  | /*   set is the context                                               */  | 
2313  |  | /*                                                                    */  | 
2314  |  | /* C must have space for set->digits digits.                          */  | 
2315  |  | /*                                                                    */  | 
2316  |  | /* Unless there is an error or the result is infinite, the exponent   */  | 
2317  |  | /* after the operation is guaranteed to be equal to that of B.        */  | 
2318  |  | /* ------------------------------------------------------------------ */  | 
2319  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberQuantize(decNumber *res, const decNumber *lhs,  | 
2320  | 0  |                               const decNumber *rhs, decContext *set) { | 
2321  | 0  |   uInt status=0;                        /* accumulator  */  | 
2322  | 0  |   decQuantizeOp(res, lhs, rhs, set, 1, &status);  | 
2323  | 0  |   if (status!=0) decStatus(res, status, set);  | 
2324  | 0  |   return res;  | 
2325  | 0  |   } /* decNumberQuantize  */  | 
2326  |  |  | 
2327  |  | /* ------------------------------------------------------------------ */  | 
2328  |  | /* decNumberReduce -- remove trailing zeros                           */  | 
2329  |  | /*                                                                    */  | 
2330  |  | /*   This computes C = 0 + A, and normalizes the result               */  | 
2331  |  | /*                                                                    */  | 
2332  |  | /*   res is C, the result.  C may be A                                */  | 
2333  |  | /*   rhs is A                                                         */  | 
2334  |  | /*   set is the context                                               */  | 
2335  |  | /*                                                                    */  | 
2336  |  | /* C must have space for set->digits digits.                          */  | 
2337  |  | /* ------------------------------------------------------------------ */  | 
2338  |  | /* Previously known as Normalize  */  | 
2339  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberNormalize(decNumber *res, const decNumber *rhs,  | 
2340  | 0  |                                decContext *set) { | 
2341  | 0  |   return uprv_decNumberReduce(res, rhs, set);  | 
2342  | 0  |   } /* decNumberNormalize  */  | 
2343  |  |  | 
2344  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberReduce(decNumber *res, const decNumber *rhs,  | 
2345  | 0  |                             decContext *set) { | 
2346  |  |   #if DECSUBSET  | 
2347  |  |   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */  | 
2348  |  |   #endif  | 
2349  | 0  |   uInt status=0;                   /* as usual  */  | 
2350  | 0  |   Int  residue=0;                  /* as usual  */  | 
2351  | 0  |   Int  dropped;                    /* work  */  | 
2352  |  | 
  | 
2353  |  |   #if DECCHECK  | 
2354  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
2355  |  |   #endif  | 
2356  |  | 
  | 
2357  | 0  |   do {                             /* protect allocated storage  */ | 
2358  |  |     #if DECSUBSET  | 
2359  |  |     if (!set->extended) { | 
2360  |  |       /* reduce operand and set lostDigits status, as needed  */  | 
2361  |  |       if (rhs->digits>set->digits) { | 
2362  |  |         allocrhs=decRoundOperand(rhs, set, &status);  | 
2363  |  |         if (allocrhs==NULL) break;  | 
2364  |  |         rhs=allocrhs;  | 
2365  |  |         }  | 
2366  |  |       }  | 
2367  |  |     #endif  | 
2368  |  |     /* [following code does not require input rounding]  */  | 
2369  |  |  | 
2370  |  |     /* Infinities copy through; NaNs need usual treatment  */  | 
2371  | 0  |     if (decNumberIsNaN(rhs)) { | 
2372  | 0  |       decNaNs(res, rhs, NULL, set, &status);  | 
2373  | 0  |       break;  | 
2374  | 0  |       }  | 
2375  |  |  | 
2376  |  |     /* reduce result to the requested length and copy to result  */  | 
2377  | 0  |     decCopyFit(res, rhs, set, &residue, &status); /* copy & round  */  | 
2378  | 0  |     decFinish(res, set, &residue, &status);       /* cleanup/set flags  */  | 
2379  | 0  |     decTrim(res, set, 1, 0, &dropped);            /* normalize in place  */  | 
2380  |  |                                                   /* [may clamp]  */  | 
2381  | 0  |     } while(0);                              /* end protected  */  | 
2382  |  |  | 
2383  |  |   #if DECSUBSET  | 
2384  |  |   if (allocrhs !=NULL) free(allocrhs);       /* ..  */  | 
2385  |  |   #endif  | 
2386  | 0  |   if (status!=0) decStatus(res, status, set);/* then report status  */  | 
2387  | 0  |   return res;  | 
2388  | 0  |   } /* decNumberReduce  */  | 
2389  |  |  | 
2390  |  | /* ------------------------------------------------------------------ */  | 
2391  |  | /* decNumberRescale -- force exponent to requested value              */  | 
2392  |  | /*                                                                    */  | 
2393  |  | /*   This computes C = op(A, B), where op adjusts the coefficient     */  | 
2394  |  | /*   of C (by rounding or shifting) such that the exponent (-scale)   */  | 
2395  |  | /*   of C has the value B.  The numerical value of C will equal A,    */  | 
2396  |  | /*   except for the effects of any rounding that occurred.            */  | 
2397  |  | /*                                                                    */  | 
2398  |  | /*   res is C, the result.  C may be A or B                           */  | 
2399  |  | /*   lhs is A, the number to adjust                                   */  | 
2400  |  | /*   rhs is B, the requested exponent                                 */  | 
2401  |  | /*   set is the context                                               */  | 
2402  |  | /*                                                                    */  | 
2403  |  | /* C must have space for set->digits digits.                          */  | 
2404  |  | /*                                                                    */  | 
2405  |  | /* Unless there is an error or the result is infinite, the exponent   */  | 
2406  |  | /* after the operation is guaranteed to be equal to B.                */  | 
2407  |  | /* ------------------------------------------------------------------ */  | 
2408  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberRescale(decNumber *res, const decNumber *lhs,  | 
2409  | 0  |                              const decNumber *rhs, decContext *set) { | 
2410  | 0  |   uInt status=0;                        /* accumulator  */  | 
2411  | 0  |   decQuantizeOp(res, lhs, rhs, set, 0, &status);  | 
2412  | 0  |   if (status!=0) decStatus(res, status, set);  | 
2413  | 0  |   return res;  | 
2414  | 0  |   } /* decNumberRescale  */  | 
2415  |  |  | 
2416  |  | /* ------------------------------------------------------------------ */  | 
2417  |  | /* decNumberRemainder -- divide and return remainder                  */  | 
2418  |  | /*                                                                    */  | 
2419  |  | /*   This computes C = A % B                                          */  | 
2420  |  | /*                                                                    */  | 
2421  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X%X)         */  | 
2422  |  | /*   lhs is A                                                         */  | 
2423  |  | /*   rhs is B                                                         */  | 
2424  |  | /*   set is the context                                               */  | 
2425  |  | /*                                                                    */  | 
2426  |  | /* C must have space for set->digits digits.                          */  | 
2427  |  | /* ------------------------------------------------------------------ */  | 
2428  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberRemainder(decNumber *res, const decNumber *lhs,  | 
2429  | 0  |                                const decNumber *rhs, decContext *set) { | 
2430  | 0  |   uInt status=0;                        /* accumulator  */  | 
2431  | 0  |   decDivideOp(res, lhs, rhs, set, REMAINDER, &status);  | 
2432  | 0  |   if (status!=0) decStatus(res, status, set);  | 
2433  |  |   #if DECCHECK  | 
2434  |  |   decCheckInexact(res, set);  | 
2435  |  |   #endif  | 
2436  | 0  |   return res;  | 
2437  | 0  |   } /* decNumberRemainder  */  | 
2438  |  |  | 
2439  |  | /* ------------------------------------------------------------------ */  | 
2440  |  | /* decNumberRemainderNear -- divide and return remainder from nearest */  | 
2441  |  | /*                                                                    */  | 
2442  |  | /*   This computes C = A % B, where % is the IEEE remainder operator  */  | 
2443  |  | /*                                                                    */  | 
2444  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X%X)         */  | 
2445  |  | /*   lhs is A                                                         */  | 
2446  |  | /*   rhs is B                                                         */  | 
2447  |  | /*   set is the context                                               */  | 
2448  |  | /*                                                                    */  | 
2449  |  | /* C must have space for set->digits digits.                          */  | 
2450  |  | /* ------------------------------------------------------------------ */  | 
2451  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberRemainderNear(decNumber *res, const decNumber *lhs,  | 
2452  | 0  |                                    const decNumber *rhs, decContext *set) { | 
2453  | 0  |   uInt status=0;                        /* accumulator  */  | 
2454  | 0  |   decDivideOp(res, lhs, rhs, set, REMNEAR, &status);  | 
2455  | 0  |   if (status!=0) decStatus(res, status, set);  | 
2456  |  |   #if DECCHECK  | 
2457  |  |   decCheckInexact(res, set);  | 
2458  |  |   #endif  | 
2459  | 0  |   return res;  | 
2460  | 0  |   } /* decNumberRemainderNear  */  | 
2461  |  |  | 
2462  |  | /* ------------------------------------------------------------------ */  | 
2463  |  | /* decNumberRotate -- rotate the coefficient of a Number left/right   */  | 
2464  |  | /*                                                                    */  | 
2465  |  | /*   This computes C = A rot B  (in base ten and rotating set->digits */  | 
2466  |  | /*   digits).                                                         */  | 
2467  |  | /*                                                                    */  | 
2468  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=XrotX)       */  | 
2469  |  | /*   lhs is A                                                         */  | 
2470  |  | /*   rhs is B, the number of digits to rotate (-ve to right)          */  | 
2471  |  | /*   set is the context                                               */  | 
2472  |  | /*                                                                    */  | 
2473  |  | /* The digits of the coefficient of A are rotated to the left (if B   */  | 
2474  |  | /* is positive) or to the right (if B is negative) without adjusting  */  | 
2475  |  | /* the exponent or the sign of A.  If lhs->digits is less than        */  | 
2476  |  | /* set->digits the coefficient is padded with zeros on the left       */  | 
2477  |  | /* before the rotate.  Any leading zeros in the result are removed    */  | 
2478  |  | /* as usual.                                                          */  | 
2479  |  | /*                                                                    */  | 
2480  |  | /* B must be an integer (q=0) and in the range -set->digits through   */  | 
2481  |  | /* +set->digits.                                                      */  | 
2482  |  | /* C must have space for set->digits digits.                          */  | 
2483  |  | /* NaNs are propagated as usual.  Infinities are unaffected (but      */  | 
2484  |  | /* B must be valid).  No status is set unless B is invalid or an      */  | 
2485  |  | /* operand is an sNaN.                                                */  | 
2486  |  | /* ------------------------------------------------------------------ */  | 
2487  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberRotate(decNumber *res, const decNumber *lhs,  | 
2488  | 0  |                            const decNumber *rhs, decContext *set) { | 
2489  | 0  |   uInt status=0;              /* accumulator  */  | 
2490  | 0  |   Int  rotate;                /* rhs as an Int  */  | 
2491  |  | 
  | 
2492  |  |   #if DECCHECK  | 
2493  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
2494  |  |   #endif  | 
2495  |  |  | 
2496  |  |   /* NaNs propagate as normal  */  | 
2497  | 0  |   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))  | 
2498  | 0  |     decNaNs(res, lhs, rhs, set, &status);  | 
2499  |  |    /* rhs must be an integer  */  | 
2500  | 0  |    else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)  | 
2501  | 0  |     status=DEC_Invalid_operation;  | 
2502  | 0  |    else { /* both numeric, rhs is an integer  */ | 
2503  | 0  |     rotate=decGetInt(rhs);                   /* [cannot fail]  */  | 
2504  | 0  |     if (rotate==BADINT                       /* something bad ..  */  | 
2505  | 0  |      || rotate==BIGODD || rotate==BIGEVEN    /* .. very big ..  */  | 
2506  | 0  |      || abs(rotate)>set->digits)             /* .. or out of range  */  | 
2507  | 0  |       status=DEC_Invalid_operation;  | 
2508  | 0  |      else {                                  /* rhs is OK  */ | 
2509  | 0  |       uprv_decNumberCopy(res, lhs);  | 
2510  |  |       /* convert -ve rotate to equivalent positive rotation  */  | 
2511  | 0  |       if (rotate<0) rotate=set->digits+rotate;  | 
2512  | 0  |       if (rotate!=0 && rotate!=set->digits   /* zero or full rotation  */  | 
2513  | 0  |        && !decNumberIsInfinite(res)) {       /* lhs was infinite  */ | 
2514  |  |         /* left-rotate to do; 0 < rotate < set->digits  */  | 
2515  | 0  |         uInt units, shift;                   /* work  */  | 
2516  | 0  |         uInt msudigits;                      /* digits in result msu  */  | 
2517  | 0  |         Unit *msu=res->lsu+D2U(res->digits)-1;    /* current msu  */  | 
2518  | 0  |         Unit *msumax=res->lsu+D2U(set->digits)-1; /* rotation msu  */  | 
2519  | 0  |         for (msu++; msu<=msumax; msu++) *msu=0;   /* ensure high units=0  */  | 
2520  | 0  |         res->digits=set->digits;                  /* now full-length  */  | 
2521  | 0  |         msudigits=MSUDIGITS(res->digits);         /* actual digits in msu  */  | 
2522  |  |  | 
2523  |  |         /* rotation here is done in-place, in three steps  */  | 
2524  |  |         /* 1. shift all to least up to one unit to unit-align final  */  | 
2525  |  |         /*    lsd [any digits shifted out are rotated to the left,  */  | 
2526  |  |         /*    abutted to the original msd (which may require split)]  */  | 
2527  |  |         /*  */  | 
2528  |  |         /*    [if there are no whole units left to rotate, the  */  | 
2529  |  |         /*    rotation is now complete]  */  | 
2530  |  |         /*  */  | 
2531  |  |         /* 2. shift to least, from below the split point only, so that  */  | 
2532  |  |         /*    the final msd is in the right place in its Unit [any  */  | 
2533  |  |         /*    digits shifted out will fit exactly in the current msu,  */  | 
2534  |  |         /*    left aligned, no split required]  */  | 
2535  |  |         /*  */  | 
2536  |  |         /* 3. rotate all the units by reversing left part, right  */  | 
2537  |  |         /*    part, and then whole  */  | 
2538  |  |         /*  */  | 
2539  |  |         /* example: rotate right 8 digits (2 units + 2), DECDPUN=3.  */  | 
2540  |  |         /*  */  | 
2541  |  |         /*   start: 00a bcd efg hij klm npq  */  | 
2542  |  |         /*  */  | 
2543  |  |         /*      1a  000 0ab cde fgh|ijk lmn [pq saved]  */  | 
2544  |  |         /*      1b  00p qab cde fgh|ijk lmn  */  | 
2545  |  |         /*  */  | 
2546  |  |         /*      2a  00p qab cde fgh|00i jkl [mn saved]  */  | 
2547  |  |         /*      2b  mnp qab cde fgh|00i jkl  */  | 
2548  |  |         /*  */  | 
2549  |  |         /*      3a  fgh cde qab mnp|00i jkl  */  | 
2550  |  |         /*      3b  fgh cde qab mnp|jkl 00i  */  | 
2551  |  |         /*      3c  00i jkl mnp qab cde fgh  */  | 
2552  |  |  | 
2553  |  |         /* Step 1: amount to shift is the partial right-rotate count  */  | 
2554  | 0  |         rotate=set->digits-rotate;      /* make it right-rotate  */  | 
2555  | 0  |         units=rotate/DECDPUN;           /* whole units to rotate  */  | 
2556  | 0  |         shift=rotate%DECDPUN;           /* left-over digits count  */  | 
2557  | 0  |         if (shift>0) {                  /* not an exact number of units  */ | 
2558  | 0  |           uInt save=res->lsu[0]%powers[shift];    /* save low digit(s)  */  | 
2559  | 0  |           decShiftToLeast(res->lsu, D2U(res->digits), shift);  | 
2560  | 0  |           if (shift>msudigits) {        /* msumax-1 needs >0 digits  */ | 
2561  | 0  |             uInt rem=save%powers[shift-msudigits];/* split save  */  | 
2562  | 0  |             *msumax=(Unit)(save/powers[shift-msudigits]); /* and insert  */  | 
2563  | 0  |             *(msumax-1)=*(msumax-1)  | 
2564  | 0  |                        +(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); /* ..  */  | 
2565  | 0  |             }  | 
2566  | 0  |            else { /* all fits in msumax  */ | 
2567  | 0  |             *msumax=*msumax+(Unit)(save*powers[msudigits-shift]); /* [maybe *1]  */  | 
2568  | 0  |             }  | 
2569  | 0  |           } /* digits shift needed  */  | 
2570  |  |  | 
2571  |  |         /* If whole units to rotate...  */  | 
2572  | 0  |         if (units>0) {                  /* some to do  */ | 
2573  |  |           /* Step 2: the units to touch are the whole ones in rotate,  */  | 
2574  |  |           /*   if any, and the shift is DECDPUN-msudigits (which may be  */  | 
2575  |  |           /*   0, again)  */  | 
2576  | 0  |           shift=DECDPUN-msudigits;  | 
2577  | 0  |           if (shift>0) {                /* not an exact number of units  */ | 
2578  | 0  |             uInt save=res->lsu[0]%powers[shift];  /* save low digit(s)  */  | 
2579  | 0  |             decShiftToLeast(res->lsu, units, shift);  | 
2580  | 0  |             *msumax=*msumax+(Unit)(save*powers[msudigits]);  | 
2581  | 0  |             } /* partial shift needed  */  | 
2582  |  |  | 
2583  |  |           /* Step 3: rotate the units array using triple reverse  */  | 
2584  |  |           /* (reversing is easy and fast)  */  | 
2585  | 0  |           decReverse(res->lsu+units, msumax);     /* left part  */  | 
2586  | 0  |           decReverse(res->lsu, res->lsu+units-1); /* right part  */  | 
2587  | 0  |           decReverse(res->lsu, msumax);           /* whole  */  | 
2588  | 0  |           } /* whole units to rotate  */  | 
2589  |  |         /* the rotation may have left an undetermined number of zeros  */  | 
2590  |  |         /* on the left, so true length needs to be calculated  */  | 
2591  | 0  |         res->digits=decGetDigits(res->lsu, static_cast<int32_t>(msumax-res->lsu+1));  | 
2592  | 0  |         } /* rotate needed  */  | 
2593  | 0  |       } /* rhs OK  */  | 
2594  | 0  |     } /* numerics  */  | 
2595  | 0  |   if (status!=0) decStatus(res, status, set);  | 
2596  | 0  |   return res;  | 
2597  | 0  |   } /* decNumberRotate  */  | 
2598  |  |  | 
2599  |  | /* ------------------------------------------------------------------ */  | 
2600  |  | /* decNumberSameQuantum -- test for equal exponents                   */  | 
2601  |  | /*                                                                    */  | 
2602  |  | /*   res is the result number, which will contain either 0 or 1       */  | 
2603  |  | /*   lhs is a number to test                                          */  | 
2604  |  | /*   rhs is the second (usually a pattern)                            */  | 
2605  |  | /*                                                                    */  | 
2606  |  | /* No errors are possible and no context is needed.                   */  | 
2607  |  | /* ------------------------------------------------------------------ */  | 
2608  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberSameQuantum(decNumber *res, const decNumber *lhs,  | 
2609  | 0  |                                  const decNumber *rhs) { | 
2610  | 0  |   Unit ret=0;                      /* return value  */  | 
2611  |  | 
  | 
2612  |  |   #if DECCHECK  | 
2613  |  |   if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res;  | 
2614  |  |   #endif  | 
2615  |  | 
  | 
2616  | 0  |   if (SPECIALARGS) { | 
2617  | 0  |     if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1;  | 
2618  | 0  |      else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1;  | 
2619  |  |      /* [anything else with a special gives 0]  */  | 
2620  | 0  |     }  | 
2621  | 0  |    else if (lhs->exponent==rhs->exponent) ret=1;  | 
2622  |  | 
  | 
2623  | 0  |   uprv_decNumberZero(res);              /* OK to overwrite an operand now  */  | 
2624  | 0  |   *res->lsu=ret;  | 
2625  | 0  |   return res;  | 
2626  | 0  |   } /* decNumberSameQuantum  */  | 
2627  |  |  | 
2628  |  | /* ------------------------------------------------------------------ */  | 
2629  |  | /* decNumberScaleB -- multiply by a power of 10                       */  | 
2630  |  | /*                                                                    */  | 
2631  |  | /* This computes C = A x 10**B where B is an integer (q=0) with       */  | 
2632  |  | /* maximum magnitude 2*(emax+digits)                                  */  | 
2633  |  | /*                                                                    */  | 
2634  |  | /*   res is C, the result.  C may be A or B                           */  | 
2635  |  | /*   lhs is A, the number to adjust                                   */  | 
2636  |  | /*   rhs is B, the requested power of ten to use                      */  | 
2637  |  | /*   set is the context                                               */  | 
2638  |  | /*                                                                    */  | 
2639  |  | /* C must have space for set->digits digits.                          */  | 
2640  |  | /*                                                                    */  | 
2641  |  | /* The result may underflow or overflow.                              */  | 
2642  |  | /* ------------------------------------------------------------------ */  | 
2643  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberScaleB(decNumber *res, const decNumber *lhs,  | 
2644  | 0  |                             const decNumber *rhs, decContext *set) { | 
2645  | 0  |   Int  reqexp;                /* requested exponent change [B]  */  | 
2646  | 0  |   uInt status=0;              /* accumulator  */  | 
2647  | 0  |   Int  residue;               /* work  */  | 
2648  |  | 
  | 
2649  |  |   #if DECCHECK  | 
2650  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
2651  |  |   #endif  | 
2652  |  |  | 
2653  |  |   /* Handle special values except lhs infinite  */  | 
2654  | 0  |   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))  | 
2655  | 0  |     decNaNs(res, lhs, rhs, set, &status);  | 
2656  |  |     /* rhs must be an integer  */  | 
2657  | 0  |    else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)  | 
2658  | 0  |     status=DEC_Invalid_operation;  | 
2659  | 0  |    else { | 
2660  |  |     /* lhs is a number; rhs is a finite with q==0  */  | 
2661  | 0  |     reqexp=decGetInt(rhs);                   /* [cannot fail]  */  | 
2662  | 0  |     if (reqexp==BADINT                       /* something bad ..  */  | 
2663  | 0  |      || reqexp==BIGODD || reqexp==BIGEVEN    /* .. very big ..  */  | 
2664  | 0  |      || abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range  */  | 
2665  | 0  |       status=DEC_Invalid_operation;  | 
2666  | 0  |      else {                                  /* rhs is OK  */ | 
2667  | 0  |       uprv_decNumberCopy(res, lhs);               /* all done if infinite lhs  */  | 
2668  | 0  |       if (!decNumberIsInfinite(res)) {       /* prepare to scale  */ | 
2669  | 0  |         res->exponent+=reqexp;               /* adjust the exponent  */  | 
2670  | 0  |         residue=0;  | 
2671  | 0  |         decFinalize(res, set, &residue, &status); /* .. and check  */  | 
2672  | 0  |         } /* finite LHS  */  | 
2673  | 0  |       } /* rhs OK  */  | 
2674  | 0  |     } /* rhs finite  */  | 
2675  | 0  |   if (status!=0) decStatus(res, status, set);  | 
2676  | 0  |   return res;  | 
2677  | 0  |   } /* decNumberScaleB  */  | 
2678  |  |  | 
2679  |  | /* ------------------------------------------------------------------ */  | 
2680  |  | /* decNumberShift -- shift the coefficient of a Number left or right  */  | 
2681  |  | /*                                                                    */  | 
2682  |  | /*   This computes C = A << B or C = A >> -B  (in base ten).          */  | 
2683  |  | /*                                                                    */  | 
2684  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X<<X)        */  | 
2685  |  | /*   lhs is A                                                         */  | 
2686  |  | /*   rhs is B, the number of digits to shift (-ve to right)           */  | 
2687  |  | /*   set is the context                                               */  | 
2688  |  | /*                                                                    */  | 
2689  |  | /* The digits of the coefficient of A are shifted to the left (if B   */  | 
2690  |  | /* is positive) or to the right (if B is negative) without adjusting  */  | 
2691  |  | /* the exponent or the sign of A.                                     */  | 
2692  |  | /*                                                                    */  | 
2693  |  | /* B must be an integer (q=0) and in the range -set->digits through   */  | 
2694  |  | /* +set->digits.                                                      */  | 
2695  |  | /* C must have space for set->digits digits.                          */  | 
2696  |  | /* NaNs are propagated as usual.  Infinities are unaffected (but      */  | 
2697  |  | /* B must be valid).  No status is set unless B is invalid or an      */  | 
2698  |  | /* operand is an sNaN.                                                */  | 
2699  |  | /* ------------------------------------------------------------------ */  | 
2700  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberShift(decNumber *res, const decNumber *lhs,  | 
2701  | 0  |                            const decNumber *rhs, decContext *set) { | 
2702  | 0  |   uInt status=0;              /* accumulator  */  | 
2703  | 0  |   Int  shift;                 /* rhs as an Int  */  | 
2704  |  | 
  | 
2705  |  |   #if DECCHECK  | 
2706  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
2707  |  |   #endif  | 
2708  |  |  | 
2709  |  |   /* NaNs propagate as normal  */  | 
2710  | 0  |   if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))  | 
2711  | 0  |     decNaNs(res, lhs, rhs, set, &status);  | 
2712  |  |    /* rhs must be an integer  */  | 
2713  | 0  |    else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)  | 
2714  | 0  |     status=DEC_Invalid_operation;  | 
2715  | 0  |    else { /* both numeric, rhs is an integer  */ | 
2716  | 0  |     shift=decGetInt(rhs);                    /* [cannot fail]  */  | 
2717  | 0  |     if (shift==BADINT                        /* something bad ..  */  | 
2718  | 0  |      || shift==BIGODD || shift==BIGEVEN      /* .. very big ..  */  | 
2719  | 0  |      || abs(shift)>set->digits)              /* .. or out of range  */  | 
2720  | 0  |       status=DEC_Invalid_operation;  | 
2721  | 0  |      else {                                  /* rhs is OK  */ | 
2722  | 0  |       uprv_decNumberCopy(res, lhs);  | 
2723  | 0  |       if (shift!=0 && !decNumberIsInfinite(res)) { /* something to do  */ | 
2724  | 0  |         if (shift>0) {                       /* to left  */ | 
2725  | 0  |           if (shift==set->digits) {          /* removing all  */ | 
2726  | 0  |             *res->lsu=0;                     /* so place 0  */  | 
2727  | 0  |             res->digits=1;                   /* ..  */  | 
2728  | 0  |             }  | 
2729  | 0  |            else {                            /*  */ | 
2730  |  |             /* first remove leading digits if necessary  */  | 
2731  | 0  |             if (res->digits+shift>set->digits) { | 
2732  | 0  |               decDecap(res, res->digits+shift-set->digits);  | 
2733  |  |               /* that updated res->digits; may have gone to 1 (for a  */  | 
2734  |  |               /* single digit or for zero  */  | 
2735  | 0  |               }  | 
2736  | 0  |             if (res->digits>1 || *res->lsu)  /* if non-zero..  */  | 
2737  | 0  |               res->digits=decShiftToMost(res->lsu, res->digits, shift);  | 
2738  | 0  |             } /* partial left  */  | 
2739  | 0  |           } /* left  */  | 
2740  | 0  |          else { /* to right  */ | 
2741  | 0  |           if (-shift>=res->digits) {         /* discarding all  */ | 
2742  | 0  |             *res->lsu=0;                     /* so place 0  */  | 
2743  | 0  |             res->digits=1;                   /* ..  */  | 
2744  | 0  |             }  | 
2745  | 0  |            else { | 
2746  | 0  |             decShiftToLeast(res->lsu, D2U(res->digits), -shift);  | 
2747  | 0  |             res->digits-=(-shift);  | 
2748  | 0  |             }  | 
2749  | 0  |           } /* to right  */  | 
2750  | 0  |         } /* non-0 non-Inf shift  */  | 
2751  | 0  |       } /* rhs OK  */  | 
2752  | 0  |     } /* numerics  */  | 
2753  | 0  |   if (status!=0) decStatus(res, status, set);  | 
2754  | 0  |   return res;  | 
2755  | 0  |   } /* decNumberShift  */  | 
2756  |  |  | 
2757  |  | /* ------------------------------------------------------------------ */  | 
2758  |  | /* decNumberSquareRoot -- square root operator                        */  | 
2759  |  | /*                                                                    */  | 
2760  |  | /*   This computes C = squareroot(A)                                  */  | 
2761  |  | /*                                                                    */  | 
2762  |  | /*   res is C, the result.  C may be A                                */  | 
2763  |  | /*   rhs is A                                                         */  | 
2764  |  | /*   set is the context; note that rounding mode has no effect        */  | 
2765  |  | /*                                                                    */  | 
2766  |  | /* C must have space for set->digits digits.                          */  | 
2767  |  | /* ------------------------------------------------------------------ */  | 
2768  |  | /* This uses the following varying-precision algorithm in:            */  | 
2769  |  | /*                                                                    */  | 
2770  |  | /*   Properly Rounded Variable Precision Square Root, T. E. Hull and  */  | 
2771  |  | /*   A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */  | 
2772  |  | /*   pp229-237, ACM, September 1985.                                  */  | 
2773  |  | /*                                                                    */  | 
2774  |  | /* The square-root is calculated using Newton's method, after which   */  | 
2775  |  | /* a check is made to ensure the result is correctly rounded.         */  | 
2776  |  | /*                                                                    */  | 
2777  |  | /* % [Reformatted original Numerical Turing source code follows.]     */  | 
2778  |  | /* function sqrt(x : real) : real                                     */  | 
2779  |  | /* % sqrt(x) returns the properly rounded approximation to the square */  | 
2780  |  | /* % root of x, in the precision of the calling environment, or it    */  | 
2781  |  | /* % fails if x < 0.                                                  */  | 
2782  |  | /* % t e hull and a abrham, august, 1984                              */  | 
2783  |  | /* if x <= 0 then                                                     */  | 
2784  |  | /*   if x < 0 then                                                    */  | 
2785  |  | /*     assert false                                                   */  | 
2786  |  | /*   else                                                             */  | 
2787  |  | /*     result 0                                                       */  | 
2788  |  | /*   end if                                                           */  | 
2789  |  | /* end if                                                             */  | 
2790  |  | /* var f := setexp(x, 0)  % fraction part of x   [0.1 <= x < 1]       */  | 
2791  |  | /* var e := getexp(x)     % exponent part of x                        */  | 
2792  |  | /* var approx : real                                                  */  | 
2793  |  | /* if e mod 2 = 0  then                                               */  | 
2794  |  | /*   approx := .259 + .819 * f   % approx to root of f                */  | 
2795  |  | /* else                                                               */  | 
2796  |  | /*   f := f/l0                   % adjustments                        */  | 
2797  |  | /*   e := e + 1                  %   for odd                          */  | 
2798  |  | /*   approx := .0819 + 2.59 * f  %   exponent                         */  | 
2799  |  | /* end if                                                             */  | 
2800  |  | /*                                                                    */  | 
2801  |  | /* var p:= 3                                                          */  | 
2802  |  | /* const maxp := currentprecision + 2                                 */  | 
2803  |  | /* loop                                                               */  | 
2804  |  | /*   p := min(2*p - 2, maxp)     % p = 4,6,10, . . . , maxp           */  | 
2805  |  | /*   precision p                                                      */  | 
2806  |  | /*   approx := .5 * (approx + f/approx)                               */  | 
2807  |  | /*   exit when p = maxp                                               */  | 
2808  |  | /* end loop                                                           */  | 
2809  |  | /*                                                                    */  | 
2810  |  | /* % approx is now within 1 ulp of the properly rounded square root   */  | 
2811  |  | /* % of f; to ensure proper rounding, compare squares of (approx -    */  | 
2812  |  | /* % l/2 ulp) and (approx + l/2 ulp) with f.                          */  | 
2813  |  | /* p := currentprecision                                              */  | 
2814  |  | /* begin                                                              */  | 
2815  |  | /*   precision p + 2                                                  */  | 
2816  |  | /*   const approxsubhalf := approx - setexp(.5, -p)                   */  | 
2817  |  | /*   if mulru(approxsubhalf, approxsubhalf) > f then                  */  | 
2818  |  | /*     approx := approx - setexp(.l, -p + 1)                          */  | 
2819  |  | /*   else                                                             */  | 
2820  |  | /*     const approxaddhalf := approx + setexp(.5, -p)                 */  | 
2821  |  | /*     if mulrd(approxaddhalf, approxaddhalf) < f then                */  | 
2822  |  | /*       approx := approx + setexp(.l, -p + 1)                        */  | 
2823  |  | /*     end if                                                         */  | 
2824  |  | /*   end if                                                           */  | 
2825  |  | /* end                                                                */  | 
2826  |  | /* result setexp(approx, e div 2)  % fix exponent                     */  | 
2827  |  | /* end sqrt                                                           */  | 
2828  |  | /* ------------------------------------------------------------------ */  | 
2829  |  | #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406  | 
2830  |  | #pragma GCC diagnostic push  | 
2831  |  | #pragma GCC diagnostic ignored "-Warray-bounds"  | 
2832  |  | #endif  | 
2833  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberSquareRoot(decNumber *res, const decNumber *rhs,  | 
2834  | 0  |                                 decContext *set) { | 
2835  | 0  |   decContext workset, approxset;   /* work contexts  */  | 
2836  | 0  |   decNumber dzero;                 /* used for constant zero  */  | 
2837  | 0  |   Int  maxp;                       /* largest working precision  */  | 
2838  | 0  |   Int  workp;                      /* working precision  */  | 
2839  | 0  |   Int  residue=0;                  /* rounding residue  */  | 
2840  | 0  |   uInt status=0, ignore=0;         /* status accumulators  */  | 
2841  | 0  |   uInt rstatus;                    /* ..  */  | 
2842  | 0  |   Int  exp;                        /* working exponent  */  | 
2843  | 0  |   Int  ideal;                      /* ideal (preferred) exponent  */  | 
2844  | 0  |   Int  needbytes;                  /* work  */  | 
2845  | 0  |   Int  dropped;                    /* ..  */  | 
2846  |  | 
  | 
2847  |  |   #if DECSUBSET  | 
2848  |  |   decNumber *allocrhs=NULL;        /* non-NULL if rounded rhs allocated  */  | 
2849  |  |   #endif  | 
2850  |  |   /* buffer for f [needs +1 in case DECBUFFER 0]  */  | 
2851  | 0  |   decNumber buff[D2N(DECBUFFER+1)];  | 
2852  |  |   /* buffer for a [needs +2 to match likely maxp]  */  | 
2853  | 0  |   decNumber bufa[D2N(DECBUFFER+2)];  | 
2854  |  |   /* buffer for temporary, b [must be same size as a]  */  | 
2855  | 0  |   decNumber bufb[D2N(DECBUFFER+2)];  | 
2856  | 0  |   decNumber *allocbuff=NULL;       /* -> allocated buff, iff allocated  */  | 
2857  | 0  |   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */  | 
2858  | 0  |   decNumber *allocbufb=NULL;       /* -> allocated bufb, iff allocated  */  | 
2859  | 0  |   decNumber *f=buff;               /* reduced fraction  */  | 
2860  | 0  |   decNumber *a=bufa;               /* approximation to result  */  | 
2861  | 0  |   decNumber *b=bufb;               /* intermediate result  */  | 
2862  |  |   /* buffer for temporary variable, up to 3 digits  */  | 
2863  | 0  |   decNumber buft[D2N(3)];  | 
2864  | 0  |   decNumber *t=buft;               /* up-to-3-digit constant or work  */  | 
2865  |  | 
  | 
2866  |  |   #if DECCHECK  | 
2867  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
2868  |  |   #endif  | 
2869  |  | 
  | 
2870  | 0  |   do {                             /* protect allocated storage  */ | 
2871  |  |     #if DECSUBSET  | 
2872  |  |     if (!set->extended) { | 
2873  |  |       /* reduce operand and set lostDigits status, as needed  */  | 
2874  |  |       if (rhs->digits>set->digits) { | 
2875  |  |         allocrhs=decRoundOperand(rhs, set, &status);  | 
2876  |  |         if (allocrhs==NULL) break;  | 
2877  |  |         /* [Note: 'f' allocation below could reuse this buffer if  */  | 
2878  |  |         /* used, but as this is rare they are kept separate for clarity.]  */  | 
2879  |  |         rhs=allocrhs;  | 
2880  |  |         }  | 
2881  |  |       }  | 
2882  |  |     #endif  | 
2883  |  |     /* [following code does not require input rounding]  */  | 
2884  |  |  | 
2885  |  |     /* handle infinities and NaNs  */  | 
2886  | 0  |     if (SPECIALARG) { | 
2887  | 0  |       if (decNumberIsInfinite(rhs)) {         /* an infinity  */ | 
2888  | 0  |         if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation;  | 
2889  | 0  |          else uprv_decNumberCopy(res, rhs);        /* +Infinity  */  | 
2890  | 0  |         }  | 
2891  | 0  |        else decNaNs(res, rhs, NULL, set, &status); /* a NaN  */  | 
2892  | 0  |       break;  | 
2893  | 0  |       }  | 
2894  |  |  | 
2895  |  |     /* calculate the ideal (preferred) exponent [floor(exp/2)]  */  | 
2896  |  |     /* [It would be nicer to write: ideal=rhs->exponent>>1, but this  */  | 
2897  |  |     /* generates a compiler warning.  Generated code is the same.]  */  | 
2898  | 0  |     ideal=(rhs->exponent&~1)/2;         /* target  */  | 
2899  |  |  | 
2900  |  |     /* handle zeros  */  | 
2901  | 0  |     if (ISZERO(rhs)) { | 
2902  | 0  |       uprv_decNumberCopy(res, rhs);          /* could be 0 or -0  */  | 
2903  | 0  |       res->exponent=ideal;              /* use the ideal [safe]  */  | 
2904  |  |       /* use decFinish to clamp any out-of-range exponent, etc.  */  | 
2905  | 0  |       decFinish(res, set, &residue, &status);  | 
2906  | 0  |       break;  | 
2907  | 0  |       }  | 
2908  |  |  | 
2909  |  |     /* any other -x is an oops  */  | 
2910  | 0  |     if (decNumberIsNegative(rhs)) { | 
2911  | 0  |       status|=DEC_Invalid_operation;  | 
2912  | 0  |       break;  | 
2913  | 0  |       }  | 
2914  |  |  | 
2915  |  |     /* space is needed for three working variables  */  | 
2916  |  |     /*   f -- the same precision as the RHS, reduced to 0.01->0.99...  */  | 
2917  |  |     /*   a -- Hull's approximation -- precision, when assigned, is  */  | 
2918  |  |     /*        currentprecision+1 or the input argument precision,  */  | 
2919  |  |     /*        whichever is larger (+2 for use as temporary)  */  | 
2920  |  |     /*   b -- intermediate temporary result (same size as a)  */  | 
2921  |  |     /* if any is too long for local storage, then allocate  */  | 
2922  | 0  |     workp=MAXI(set->digits+1, rhs->digits);  /* actual rounding precision  */  | 
2923  | 0  |     workp=MAXI(workp, 7);                    /* at least 7 for low cases  */  | 
2924  | 0  |     maxp=workp+2;                            /* largest working precision  */  | 
2925  |  | 
  | 
2926  | 0  |     needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);  | 
2927  | 0  |     if (needbytes>(Int)sizeof(buff)) { | 
2928  | 0  |       allocbuff=(decNumber *)malloc(needbytes);  | 
2929  | 0  |       if (allocbuff==NULL) {  /* hopeless -- abandon  */ | 
2930  | 0  |         status|=DEC_Insufficient_storage;  | 
2931  | 0  |         break;}  | 
2932  | 0  |       f=allocbuff;            /* use the allocated space  */  | 
2933  | 0  |       }  | 
2934  |  |     /* a and b both need to be able to hold a maxp-length number  */  | 
2935  | 0  |     needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit);  | 
2936  | 0  |     if (needbytes>(Int)sizeof(bufa)) {            /* [same applies to b]  */ | 
2937  | 0  |       allocbufa=(decNumber *)malloc(needbytes);  | 
2938  | 0  |       allocbufb=(decNumber *)malloc(needbytes);  | 
2939  | 0  |       if (allocbufa==NULL || allocbufb==NULL) {   /* hopeless  */ | 
2940  | 0  |         status|=DEC_Insufficient_storage;  | 
2941  | 0  |         break;}  | 
2942  | 0  |       a=allocbufa;            /* use the allocated spaces  */  | 
2943  | 0  |       b=allocbufb;            /* ..  */  | 
2944  | 0  |       }  | 
2945  |  |  | 
2946  |  |     /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1  */  | 
2947  | 0  |     uprv_decNumberCopy(f, rhs);  | 
2948  | 0  |     exp=f->exponent+f->digits;               /* adjusted to Hull rules  */  | 
2949  | 0  |     f->exponent=-(f->digits);                /* to range  */  | 
2950  |  |  | 
2951  |  |     /* set up working context  */  | 
2952  | 0  |     uprv_decContextDefault(&workset, DEC_INIT_DECIMAL64);  | 
2953  | 0  |     workset.emax=DEC_MAX_EMAX;  | 
2954  | 0  |     workset.emin=DEC_MIN_EMIN;  | 
2955  |  |  | 
2956  |  |     /* [Until further notice, no error is possible and status bits  */  | 
2957  |  |     /* (Rounded, etc.) should be ignored, not accumulated.]  */  | 
2958  |  |  | 
2959  |  |     /* Calculate initial approximation, and allow for odd exponent  */  | 
2960  | 0  |     workset.digits=workp;                    /* p for initial calculation  */  | 
2961  | 0  |     t->bits=0; t->digits=3;  | 
2962  | 0  |     a->bits=0; a->digits=3;  | 
2963  | 0  |     if ((exp & 1)==0) {                      /* even exponent  */ | 
2964  |  |       /* Set t=0.259, a=0.819  */  | 
2965  | 0  |       t->exponent=-3;  | 
2966  | 0  |       a->exponent=-3;  | 
2967  |  |       #if DECDPUN>=3  | 
2968  |  |         t->lsu[0]=259;  | 
2969  |  |         a->lsu[0]=819;  | 
2970  |  |       #elif DECDPUN==2  | 
2971  |  |         t->lsu[0]=59; t->lsu[1]=2;  | 
2972  |  |         a->lsu[0]=19; a->lsu[1]=8;  | 
2973  |  |       #else  | 
2974  | 0  |         t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2;  | 
2975  | 0  |         a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8;  | 
2976  | 0  |       #endif  | 
2977  | 0  |       }  | 
2978  | 0  |      else {                                  /* odd exponent  */ | 
2979  |  |       /* Set t=0.0819, a=2.59  */  | 
2980  | 0  |       f->exponent--;                         /* f=f/10  */  | 
2981  | 0  |       exp++;                                 /* e=e+1  */  | 
2982  | 0  |       t->exponent=-4;  | 
2983  | 0  |       a->exponent=-2;  | 
2984  |  |       #if DECDPUN>=3  | 
2985  |  |         t->lsu[0]=819;  | 
2986  |  |         a->lsu[0]=259;  | 
2987  |  |       #elif DECDPUN==2  | 
2988  |  |         t->lsu[0]=19; t->lsu[1]=8;  | 
2989  |  |         a->lsu[0]=59; a->lsu[1]=2;  | 
2990  |  |       #else  | 
2991  | 0  |         t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8;  | 
2992  | 0  |         a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2;  | 
2993  | 0  |       #endif  | 
2994  | 0  |       }  | 
2995  |  | 
  | 
2996  | 0  |     decMultiplyOp(a, a, f, &workset, &ignore);    /* a=a*f  */  | 
2997  | 0  |     decAddOp(a, a, t, &workset, 0, &ignore);      /* ..+t  */  | 
2998  |  |     /* [a is now the initial approximation for sqrt(f), calculated with  */  | 
2999  |  |     /* currentprecision, which is also a's precision.]  */  | 
3000  |  |  | 
3001  |  |     /* the main calculation loop  */  | 
3002  | 0  |     uprv_decNumberZero(&dzero);                   /* make 0  */  | 
3003  | 0  |     uprv_decNumberZero(t);                        /* set t = 0.5  */  | 
3004  | 0  |     t->lsu[0]=5;                             /* ..  */  | 
3005  | 0  |     t->exponent=-1;                          /* ..  */  | 
3006  | 0  |     workset.digits=3;                        /* initial p  */  | 
3007  | 0  |     for (; workset.digits<maxp;) { | 
3008  |  |       /* set p to min(2*p - 2, maxp)  [hence 3; or: 4, 6, 10, ... , maxp]  */  | 
3009  | 0  |       workset.digits=MINI(workset.digits*2-2, maxp);  | 
3010  |  |       /* a = 0.5 * (a + f/a)  */  | 
3011  |  |       /* [calculated at p then rounded to currentprecision]  */  | 
3012  | 0  |       decDivideOp(b, f, a, &workset, DIVIDE, &ignore); /* b=f/a  */  | 
3013  | 0  |       decAddOp(b, b, a, &workset, 0, &ignore);         /* b=b+a  */  | 
3014  | 0  |       decMultiplyOp(a, b, t, &workset, &ignore);       /* a=b*0.5  */  | 
3015  | 0  |       } /* loop  */  | 
3016  |  |  | 
3017  |  |     /* Here, 0.1 <= a < 1 [Hull], and a has maxp digits  */  | 
3018  |  |     /* now reduce to length, etc.; this needs to be done with a  */  | 
3019  |  |     /* having the correct exponent so as to handle subnormals  */  | 
3020  |  |     /* correctly  */  | 
3021  | 0  |     approxset=*set;                          /* get emin, emax, etc.  */  | 
3022  | 0  |     approxset.round=DEC_ROUND_HALF_EVEN;  | 
3023  | 0  |     a->exponent+=exp/2;                      /* set correct exponent  */  | 
3024  | 0  |     rstatus=0;                               /* clear status  */  | 
3025  | 0  |     residue=0;                               /* .. and accumulator  */  | 
3026  | 0  |     decCopyFit(a, a, &approxset, &residue, &rstatus);  /* reduce (if needed)  */  | 
3027  | 0  |     decFinish(a, &approxset, &residue, &rstatus);      /* clean and finalize  */  | 
3028  |  |  | 
3029  |  |     /* Overflow was possible if the input exponent was out-of-range,  */  | 
3030  |  |     /* in which case quit  */  | 
3031  | 0  |     if (rstatus&DEC_Overflow) { | 
3032  | 0  |       status=rstatus;                        /* use the status as-is  */  | 
3033  | 0  |       uprv_decNumberCopy(res, a);                 /* copy to result  */  | 
3034  | 0  |       break;  | 
3035  | 0  |       }  | 
3036  |  |  | 
3037  |  |     /* Preserve status except Inexact/Rounded  */  | 
3038  | 0  |     status|=(rstatus & ~(DEC_Rounded|DEC_Inexact));  | 
3039  |  |  | 
3040  |  |     /* Carry out the Hull correction  */  | 
3041  | 0  |     a->exponent-=exp/2;                      /* back to 0.1->1  */  | 
3042  |  |  | 
3043  |  |     /* a is now at final precision and within 1 ulp of the properly  */  | 
3044  |  |     /* rounded square root of f; to ensure proper rounding, compare  */  | 
3045  |  |     /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f.  */  | 
3046  |  |     /* Here workset.digits=maxp and t=0.5, and a->digits determines  */  | 
3047  |  |     /* the ulp  */  | 
3048  | 0  |     workset.digits--;                             /* maxp-1 is OK now  */  | 
3049  | 0  |     t->exponent=-a->digits-1;                     /* make 0.5 ulp  */  | 
3050  | 0  |     decAddOp(b, a, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp  */  | 
3051  | 0  |     workset.round=DEC_ROUND_UP;  | 
3052  | 0  |     decMultiplyOp(b, b, b, &workset, &ignore);    /* b = mulru(b, b)  */  | 
3053  | 0  |     decCompareOp(b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed  */  | 
3054  | 0  |     if (decNumberIsNegative(b)) {                 /* f < b [i.e., b > f]  */ | 
3055  |  |       /* this is the more common adjustment, though both are rare  */  | 
3056  | 0  |       t->exponent++;                              /* make 1.0 ulp  */  | 
3057  | 0  |       t->lsu[0]=1;                                /* ..  */  | 
3058  | 0  |       decAddOp(a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp  */  | 
3059  |  |       /* assign to approx [round to length]  */  | 
3060  | 0  |       approxset.emin-=exp/2;                      /* adjust to match a  */  | 
3061  | 0  |       approxset.emax-=exp/2;  | 
3062  | 0  |       decAddOp(a, &dzero, a, &approxset, 0, &ignore);  | 
3063  | 0  |       }  | 
3064  | 0  |      else { | 
3065  | 0  |       decAddOp(b, a, t, &workset, 0, &ignore);    /* b = a + 0.5 ulp  */  | 
3066  | 0  |       workset.round=DEC_ROUND_DOWN;  | 
3067  | 0  |       decMultiplyOp(b, b, b, &workset, &ignore);  /* b = mulrd(b, b)  */  | 
3068  | 0  |       decCompareOp(b, b, f, &workset, COMPARE, &ignore);   /* b ? f  */  | 
3069  | 0  |       if (decNumberIsNegative(b)) {               /* b < f  */ | 
3070  | 0  |         t->exponent++;                            /* make 1.0 ulp  */  | 
3071  | 0  |         t->lsu[0]=1;                              /* ..  */  | 
3072  | 0  |         decAddOp(a, a, t, &workset, 0, &ignore);  /* a = a + 1 ulp  */  | 
3073  |  |         /* assign to approx [round to length]  */  | 
3074  | 0  |         approxset.emin-=exp/2;                    /* adjust to match a  */  | 
3075  | 0  |         approxset.emax-=exp/2;  | 
3076  | 0  |         decAddOp(a, &dzero, a, &approxset, 0, &ignore);  | 
3077  | 0  |         }  | 
3078  | 0  |       }  | 
3079  |  |     /* [no errors are possible in the above, and rounding/inexact during  */  | 
3080  |  |     /* estimation are irrelevant, so status was not accumulated]  */  | 
3081  |  |  | 
3082  |  |     /* Here, 0.1 <= a < 1  (still), so adjust back  */  | 
3083  | 0  |     a->exponent+=exp/2;                      /* set correct exponent  */  | 
3084  |  |  | 
3085  |  |     /* count droppable zeros [after any subnormal rounding] by  */  | 
3086  |  |     /* trimming a copy  */  | 
3087  | 0  |     uprv_decNumberCopy(b, a);  | 
3088  | 0  |     decTrim(b, set, 1, 1, &dropped);         /* [drops trailing zeros]  */  | 
3089  |  |  | 
3090  |  |     /* Set Inexact and Rounded.  The answer can only be exact if  */  | 
3091  |  |     /* it is short enough so that squaring it could fit in workp  */  | 
3092  |  |     /* digits, so this is the only (relatively rare) condition that  */  | 
3093  |  |     /* a careful check is needed  */  | 
3094  | 0  |     if (b->digits*2-1 > workp) {             /* cannot fit  */ | 
3095  | 0  |       status|=DEC_Inexact|DEC_Rounded;  | 
3096  | 0  |       }  | 
3097  | 0  |      else {                                  /* could be exact/unrounded  */ | 
3098  | 0  |       uInt mstatus=0;                        /* local status  */  | 
3099  | 0  |       decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply  */  | 
3100  | 0  |       if (mstatus&DEC_Overflow) {            /* result just won't fit  */ | 
3101  | 0  |         status|=DEC_Inexact|DEC_Rounded;  | 
3102  | 0  |         }  | 
3103  | 0  |        else {                                /* plausible  */ | 
3104  | 0  |         decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs  */  | 
3105  | 0  |         if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; /* not equal  */  | 
3106  | 0  |          else {                              /* is Exact  */ | 
3107  |  |           /* here, dropped is the count of trailing zeros in 'a'  */  | 
3108  |  |           /* use closest exponent to ideal...  */  | 
3109  | 0  |           Int todrop=ideal-a->exponent;      /* most that can be dropped  */  | 
3110  | 0  |           if (todrop<0) status|=DEC_Rounded; /* ideally would add 0s  */  | 
3111  | 0  |            else {                            /* unrounded  */ | 
3112  |  |             /* there are some to drop, but emax may not allow all  */  | 
3113  | 0  |             Int maxexp=set->emax-set->digits+1;  | 
3114  | 0  |             Int maxdrop=maxexp-a->exponent;  | 
3115  | 0  |             if (todrop>maxdrop && set->clamp) { /* apply clamping  */ | 
3116  | 0  |               todrop=maxdrop;  | 
3117  | 0  |               status|=DEC_Clamped;  | 
3118  | 0  |               }  | 
3119  | 0  |             if (dropped<todrop) {            /* clamp to those available  */ | 
3120  | 0  |               todrop=dropped;  | 
3121  | 0  |               status|=DEC_Clamped;  | 
3122  | 0  |               }  | 
3123  | 0  |             if (todrop>0) {                  /* have some to drop  */ | 
3124  | 0  |               decShiftToLeast(a->lsu, D2U(a->digits), todrop);  | 
3125  | 0  |               a->exponent+=todrop;           /* maintain numerical value  */  | 
3126  | 0  |               a->digits-=todrop;             /* new length  */  | 
3127  | 0  |               }  | 
3128  | 0  |             }  | 
3129  | 0  |           }  | 
3130  | 0  |         }  | 
3131  | 0  |       }  | 
3132  |  |  | 
3133  |  |     /* double-check Underflow, as perhaps the result could not have  */  | 
3134  |  |     /* been subnormal (initial argument too big), or it is now Exact  */  | 
3135  | 0  |     if (status&DEC_Underflow) { | 
3136  | 0  |       Int ae=rhs->exponent+rhs->digits-1;    /* adjusted exponent  */  | 
3137  |  |       /* check if truly subnormal  */  | 
3138  |  |       #if DECEXTFLAG                         /* DEC_Subnormal too  */  | 
3139  | 0  |         if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow);  | 
3140  |  |       #else  | 
3141  |  |         if (ae>=set->emin*2) status&=~DEC_Underflow;  | 
3142  |  |       #endif  | 
3143  |  |       /* check if truly inexact  */  | 
3144  | 0  |       if (!(status&DEC_Inexact)) status&=~DEC_Underflow;  | 
3145  | 0  |       }  | 
3146  |  | 
  | 
3147  | 0  |     uprv_decNumberCopy(res, a);                   /* a is now the result  */  | 
3148  | 0  |     } while(0);                              /* end protected  */  | 
3149  |  |  | 
3150  | 0  |   if (allocbuff!=NULL) free(allocbuff);      /* drop any storage used  */  | 
3151  | 0  |   if (allocbufa!=NULL) free(allocbufa);      /* ..  */  | 
3152  | 0  |   if (allocbufb!=NULL) free(allocbufb);      /* ..  */  | 
3153  |  |   #if DECSUBSET  | 
3154  |  |   if (allocrhs !=NULL) free(allocrhs);       /* ..  */  | 
3155  |  |   #endif  | 
3156  | 0  |   if (status!=0) decStatus(res, status, set);/* then report status  */  | 
3157  |  |   #if DECCHECK  | 
3158  |  |   decCheckInexact(res, set);  | 
3159  |  |   #endif  | 
3160  | 0  |   return res;  | 
3161  | 0  |   } /* decNumberSquareRoot  */  | 
3162  |  | #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406  | 
3163  |  | #pragma GCC diagnostic pop  | 
3164  |  | #endif  | 
3165  |  |  | 
3166  |  | /* ------------------------------------------------------------------ */  | 
3167  |  | /* decNumberSubtract -- subtract two Numbers                          */  | 
3168  |  | /*                                                                    */  | 
3169  |  | /*   This computes C = A - B                                          */  | 
3170  |  | /*                                                                    */  | 
3171  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X-X)         */  | 
3172  |  | /*   lhs is A                                                         */  | 
3173  |  | /*   rhs is B                                                         */  | 
3174  |  | /*   set is the context                                               */  | 
3175  |  | /*                                                                    */  | 
3176  |  | /* C must have space for set->digits digits.                          */  | 
3177  |  | /* ------------------------------------------------------------------ */  | 
3178  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberSubtract(decNumber *res, const decNumber *lhs,  | 
3179  | 0  |                               const decNumber *rhs, decContext *set) { | 
3180  | 0  |   uInt status=0;                        /* accumulator  */  | 
3181  |  | 
  | 
3182  | 0  |   decAddOp(res, lhs, rhs, set, DECNEG, &status);  | 
3183  | 0  |   if (status!=0) decStatus(res, status, set);  | 
3184  |  |   #if DECCHECK  | 
3185  |  |   decCheckInexact(res, set);  | 
3186  |  |   #endif  | 
3187  | 0  |   return res;  | 
3188  | 0  |   } /* decNumberSubtract  */  | 
3189  |  |  | 
3190  |  | /* ------------------------------------------------------------------ */  | 
3191  |  | /* decNumberToIntegralExact -- round-to-integral-value with InExact   */  | 
3192  |  | /* decNumberToIntegralValue -- round-to-integral-value                */  | 
3193  |  | /*                                                                    */  | 
3194  |  | /*   res is the result                                                */  | 
3195  |  | /*   rhs is input number                                              */  | 
3196  |  | /*   set is the context                                               */  | 
3197  |  | /*                                                                    */  | 
3198  |  | /* res must have space for any value of rhs.                          */  | 
3199  |  | /*                                                                    */  | 
3200  |  | /* This implements the IEEE special operators and therefore treats    */  | 
3201  |  | /* special values as valid.  For finite numbers it returns            */  | 
3202  |  | /* rescale(rhs, 0) if rhs->exponent is <0.                            */  | 
3203  |  | /* Otherwise the result is rhs (so no error is possible, except for   */  | 
3204  |  | /* sNaN).                                                             */  | 
3205  |  | /*                                                                    */  | 
3206  |  | /* The context is used for rounding mode and status after sNaN, but   */  | 
3207  |  | /* the digits setting is ignored.  The Exact version will signal      */  | 
3208  |  | /* Inexact if the result differs numerically from rhs; the other      */  | 
3209  |  | /* never signals Inexact.                                             */  | 
3210  |  | /* ------------------------------------------------------------------ */  | 
3211  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberToIntegralExact(decNumber *res, const decNumber *rhs,  | 
3212  | 0  |                                      decContext *set) { | 
3213  | 0  |   decNumber dn;  | 
3214  | 0  |   decContext workset;              /* working context  */  | 
3215  | 0  |   uInt status=0;                   /* accumulator  */  | 
3216  |  | 
  | 
3217  |  |   #if DECCHECK  | 
3218  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
3219  |  |   #endif  | 
3220  |  |  | 
3221  |  |   /* handle infinities and NaNs  */  | 
3222  | 0  |   if (SPECIALARG) { | 
3223  | 0  |     if (decNumberIsInfinite(rhs)) uprv_decNumberCopy(res, rhs); /* an Infinity  */  | 
3224  | 0  |      else decNaNs(res, rhs, NULL, set, &status); /* a NaN  */  | 
3225  | 0  |     }  | 
3226  | 0  |    else { /* finite  */ | 
3227  |  |     /* have a finite number; no error possible (res must be big enough)  */  | 
3228  | 0  |     if (rhs->exponent>=0) return uprv_decNumberCopy(res, rhs);  | 
3229  |  |     /* that was easy, but if negative exponent there is work to do...  */  | 
3230  | 0  |     workset=*set;                  /* clone rounding, etc.  */  | 
3231  | 0  |     workset.digits=rhs->digits;    /* no length rounding  */  | 
3232  | 0  |     workset.traps=0;               /* no traps  */  | 
3233  | 0  |     uprv_decNumberZero(&dn);            /* make a number with exponent 0  */  | 
3234  | 0  |     uprv_decNumberQuantize(res, rhs, &dn, &workset);  | 
3235  | 0  |     status|=workset.status;  | 
3236  | 0  |     }  | 
3237  | 0  |   if (status!=0) decStatus(res, status, set);  | 
3238  | 0  |   return res;  | 
3239  | 0  |   } /* decNumberToIntegralExact  */  | 
3240  |  |  | 
3241  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberToIntegralValue(decNumber *res, const decNumber *rhs,  | 
3242  | 0  |                                      decContext *set) { | 
3243  | 0  |   decContext workset=*set;         /* working context  */  | 
3244  | 0  |   workset.traps=0;                 /* no traps  */  | 
3245  | 0  |   uprv_decNumberToIntegralExact(res, rhs, &workset);  | 
3246  |  |   /* this never affects set, except for sNaNs; NaN will have been set  */  | 
3247  |  |   /* or propagated already, so no need to call decStatus  */  | 
3248  | 0  |   set->status|=workset.status&DEC_Invalid_operation;  | 
3249  | 0  |   return res;  | 
3250  | 0  |   } /* decNumberToIntegralValue  */  | 
3251  |  |  | 
3252  |  | /* ------------------------------------------------------------------ */  | 
3253  |  | /* decNumberXor -- XOR two Numbers, digitwise                         */  | 
3254  |  | /*                                                                    */  | 
3255  |  | /*   This computes C = A ^ B                                          */  | 
3256  |  | /*                                                                    */  | 
3257  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X^X)         */  | 
3258  |  | /*   lhs is A                                                         */  | 
3259  |  | /*   rhs is B                                                         */  | 
3260  |  | /*   set is the context (used for result length and error report)     */  | 
3261  |  | /*                                                                    */  | 
3262  |  | /* C must have space for set->digits digits.                          */  | 
3263  |  | /*                                                                    */  | 
3264  |  | /* Logical function restrictions apply (see above); a NaN is          */  | 
3265  |  | /* returned with Invalid_operation if a restriction is violated.      */  | 
3266  |  | /* ------------------------------------------------------------------ */  | 
3267  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberXor(decNumber *res, const decNumber *lhs,  | 
3268  | 0  |                          const decNumber *rhs, decContext *set) { | 
3269  | 0  |   const Unit *ua, *ub;                  /* -> operands  */  | 
3270  | 0  |   const Unit *msua, *msub;              /* -> operand msus  */  | 
3271  | 0  |   Unit  *uc, *msuc;                     /* -> result and its msu  */  | 
3272  | 0  |   Int   msudigs;                        /* digits in res msu  */  | 
3273  |  |   #if DECCHECK  | 
3274  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
3275  |  |   #endif  | 
3276  |  | 
  | 
3277  | 0  |   if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)  | 
3278  | 0  |    || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) { | 
3279  | 0  |     decStatus(res, DEC_Invalid_operation, set);  | 
3280  | 0  |     return res;  | 
3281  | 0  |     }  | 
3282  |  |   /* operands are valid  */  | 
3283  | 0  |   ua=lhs->lsu;                          /* bottom-up  */  | 
3284  | 0  |   ub=rhs->lsu;                          /* ..  */  | 
3285  | 0  |   uc=res->lsu;                          /* ..  */  | 
3286  | 0  |   msua=ua+D2U(lhs->digits)-1;           /* -> msu of lhs  */  | 
3287  | 0  |   msub=ub+D2U(rhs->digits)-1;           /* -> msu of rhs  */  | 
3288  | 0  |   msuc=uc+D2U(set->digits)-1;           /* -> msu of result  */  | 
3289  | 0  |   msudigs=MSUDIGITS(set->digits);       /* [faster than remainder]  */  | 
3290  | 0  |   for (; uc<=msuc; ua++, ub++, uc++) {  /* Unit loop  */ | 
3291  | 0  |     Unit a, b;                          /* extract units  */  | 
3292  | 0  |     if (ua>msua) a=0;  | 
3293  | 0  |      else a=*ua;  | 
3294  | 0  |     if (ub>msub) b=0;  | 
3295  | 0  |      else b=*ub;  | 
3296  | 0  |     *uc=0;                              /* can now write back  */  | 
3297  | 0  |     if (a|b) {                          /* maybe 1 bits to examine  */ | 
3298  | 0  |       Int i, j;  | 
3299  |  |       /* This loop could be unrolled and/or use BIN2BCD tables  */  | 
3300  | 0  |       for (i=0; i<DECDPUN; i++) { | 
3301  | 0  |         if ((a^b)&1) *uc=*uc+(Unit)powers[i];     /* effect XOR  */  | 
3302  | 0  |         j=a%10;  | 
3303  | 0  |         a=a/10;  | 
3304  | 0  |         j|=b%10;  | 
3305  | 0  |         b=b/10;  | 
3306  | 0  |         if (j>1) { | 
3307  | 0  |           decStatus(res, DEC_Invalid_operation, set);  | 
3308  | 0  |           return res;  | 
3309  | 0  |           }  | 
3310  | 0  |         if (uc==msuc && i==msudigs-1) break;      /* just did final digit  */  | 
3311  | 0  |         } /* each digit  */  | 
3312  | 0  |       } /* non-zero  */  | 
3313  | 0  |     } /* each unit  */  | 
3314  |  |   /* [here uc-1 is the msu of the result]  */  | 
3315  | 0  |   res->digits=decGetDigits(res->lsu, static_cast<int32_t>(uc-res->lsu));  | 
3316  | 0  |   res->exponent=0;                      /* integer  */  | 
3317  | 0  |   res->bits=0;                          /* sign=0  */  | 
3318  | 0  |   return res;  /* [no status to set]  */  | 
3319  | 0  |   } /* decNumberXor  */  | 
3320  |  |  | 
3321  |  |  | 
3322  |  | /* ================================================================== */  | 
3323  |  | /* Utility routines                                                   */  | 
3324  |  | /* ================================================================== */  | 
3325  |  |  | 
3326  |  | /* ------------------------------------------------------------------ */  | 
3327  |  | /* decNumberClass -- return the decClass of a decNumber               */  | 
3328  |  | /*   dn -- the decNumber to test                                      */  | 
3329  |  | /*   set -- the context to use for Emin                               */  | 
3330  |  | /*   returns the decClass enum                                        */  | 
3331  |  | /* ------------------------------------------------------------------ */  | 
3332  | 0  | enum decClass uprv_decNumberClass(const decNumber *dn, decContext *set) { | 
3333  | 0  |   if (decNumberIsSpecial(dn)) { | 
3334  | 0  |     if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN;  | 
3335  | 0  |     if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN;  | 
3336  |  |     /* must be an infinity  */  | 
3337  | 0  |     if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF;  | 
3338  | 0  |     return DEC_CLASS_POS_INF;  | 
3339  | 0  |     }  | 
3340  |  |   /* is finite  */  | 
3341  | 0  |   if (uprv_decNumberIsNormal(dn, set)) { /* most common  */ | 
3342  | 0  |     if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL;  | 
3343  | 0  |     return DEC_CLASS_POS_NORMAL;  | 
3344  | 0  |     }  | 
3345  |  |   /* is subnormal or zero  */  | 
3346  | 0  |   if (decNumberIsZero(dn)) {    /* most common  */ | 
3347  | 0  |     if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO;  | 
3348  | 0  |     return DEC_CLASS_POS_ZERO;  | 
3349  | 0  |     }  | 
3350  | 0  |   if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL;  | 
3351  | 0  |   return DEC_CLASS_POS_SUBNORMAL;  | 
3352  | 0  |   } /* decNumberClass  */  | 
3353  |  |  | 
3354  |  | /* ------------------------------------------------------------------ */  | 
3355  |  | /* decNumberClassToString -- convert decClass to a string             */  | 
3356  |  | /*                                                                    */  | 
3357  |  | /*  eclass is a valid decClass                                        */  | 
3358  |  | /*  returns a constant string describing the class (max 13+1 chars)   */  | 
3359  |  | /* ------------------------------------------------------------------ */  | 
3360  | 0  | const char *uprv_decNumberClassToString(enum decClass eclass) { | 
3361  | 0  |   if (eclass==DEC_CLASS_POS_NORMAL)    return DEC_ClassString_PN;  | 
3362  | 0  |   if (eclass==DEC_CLASS_NEG_NORMAL)    return DEC_ClassString_NN;  | 
3363  | 0  |   if (eclass==DEC_CLASS_POS_ZERO)      return DEC_ClassString_PZ;  | 
3364  | 0  |   if (eclass==DEC_CLASS_NEG_ZERO)      return DEC_ClassString_NZ;  | 
3365  | 0  |   if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS;  | 
3366  | 0  |   if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS;  | 
3367  | 0  |   if (eclass==DEC_CLASS_POS_INF)       return DEC_ClassString_PI;  | 
3368  | 0  |   if (eclass==DEC_CLASS_NEG_INF)       return DEC_ClassString_NI;  | 
3369  | 0  |   if (eclass==DEC_CLASS_QNAN)          return DEC_ClassString_QN;  | 
3370  | 0  |   if (eclass==DEC_CLASS_SNAN)          return DEC_ClassString_SN;  | 
3371  | 0  |   return DEC_ClassString_UN;           /* Unknown  */  | 
3372  | 0  |   } /* decNumberClassToString  */  | 
3373  |  |  | 
3374  |  | /* ------------------------------------------------------------------ */  | 
3375  |  | /* decNumberCopy -- copy a number                                     */  | 
3376  |  | /*                                                                    */  | 
3377  |  | /*   dest is the target decNumber                                     */  | 
3378  |  | /*   src  is the source decNumber                                     */  | 
3379  |  | /*   returns dest                                                     */  | 
3380  |  | /*                                                                    */  | 
3381  |  | /* (dest==src is allowed and is a no-op)                              */  | 
3382  |  | /* All fields are updated as required.  This is a utility operation,  */  | 
3383  |  | /* so special values are unchanged and no error is possible.          */  | 
3384  |  | /* ------------------------------------------------------------------ */  | 
3385  | 0  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopy(decNumber *dest, const decNumber *src) { | 
3386  |  | 
  | 
3387  |  |   #if DECCHECK  | 
3388  |  |   if (src==NULL) return uprv_decNumberZero(dest);  | 
3389  |  |   #endif  | 
3390  |  | 
  | 
3391  | 0  |   if (dest==src) return dest;                /* no copy required  */  | 
3392  |  |  | 
3393  |  |   /* Use explicit assignments here as structure assignment could copy  */  | 
3394  |  |   /* more than just the lsu (for small DECDPUN).  This would not affect  */  | 
3395  |  |   /* the value of the results, but could disturb test harness spill  */  | 
3396  |  |   /* checking.  */  | 
3397  | 0  |   dest->bits=src->bits;  | 
3398  | 0  |   dest->exponent=src->exponent;  | 
3399  | 0  |   dest->digits=src->digits;  | 
3400  | 0  |   dest->lsu[0]=src->lsu[0];  | 
3401  | 0  |   if (src->digits>DECDPUN) {                 /* more Units to come  */ | 
3402  | 0  |     const Unit *smsup, *s;                   /* work  */  | 
3403  | 0  |     Unit  *d;                                /* ..  */  | 
3404  |  |     /* memcpy for the remaining Units would be safe as they cannot  */  | 
3405  |  |     /* overlap.  However, this explicit loop is faster in short cases.  */  | 
3406  | 0  |     d=dest->lsu+1;                           /* -> first destination  */  | 
3407  | 0  |     smsup=src->lsu+D2U(src->digits);         /* -> source msu+1  */  | 
3408  | 0  |     for (s=src->lsu+1; s<smsup; s++, d++) *d=*s;  | 
3409  | 0  |     }  | 
3410  | 0  |   return dest;  | 
3411  | 0  |   } /* decNumberCopy  */  | 
3412  |  |  | 
3413  |  | /* ------------------------------------------------------------------ */  | 
3414  |  | /* decNumberCopyAbs -- quiet absolute value operator                  */  | 
3415  |  | /*                                                                    */  | 
3416  |  | /*   This sets C = abs(A)                                             */  | 
3417  |  | /*                                                                    */  | 
3418  |  | /*   res is C, the result.  C may be A                                */  | 
3419  |  | /*   rhs is A                                                         */  | 
3420  |  | /*                                                                    */  | 
3421  |  | /* C must have space for set->digits digits.                          */  | 
3422  |  | /* No exception or error can occur; this is a quiet bitwise operation.*/  | 
3423  |  | /* See also decNumberAbs for a checking version of this.              */  | 
3424  |  | /* ------------------------------------------------------------------ */  | 
3425  | 0  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopyAbs(decNumber *res, const decNumber *rhs) { | 
3426  |  |   #if DECCHECK  | 
3427  |  |   if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;  | 
3428  |  |   #endif  | 
3429  | 0  |   uprv_decNumberCopy(res, rhs);  | 
3430  | 0  |   res->bits&=~DECNEG;                   /* turn off sign  */  | 
3431  | 0  |   return res;  | 
3432  | 0  |   } /* decNumberCopyAbs  */  | 
3433  |  |  | 
3434  |  | /* ------------------------------------------------------------------ */  | 
3435  |  | /* decNumberCopyNegate -- quiet negate value operator                 */  | 
3436  |  | /*                                                                    */  | 
3437  |  | /*   This sets C = negate(A)                                          */  | 
3438  |  | /*                                                                    */  | 
3439  |  | /*   res is C, the result.  C may be A                                */  | 
3440  |  | /*   rhs is A                                                         */  | 
3441  |  | /*                                                                    */  | 
3442  |  | /* C must have space for set->digits digits.                          */  | 
3443  |  | /* No exception or error can occur; this is a quiet bitwise operation.*/  | 
3444  |  | /* See also decNumberMinus for a checking version of this.            */  | 
3445  |  | /* ------------------------------------------------------------------ */  | 
3446  | 0  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopyNegate(decNumber *res, const decNumber *rhs) { | 
3447  |  |   #if DECCHECK  | 
3448  |  |   if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;  | 
3449  |  |   #endif  | 
3450  | 0  |   uprv_decNumberCopy(res, rhs);  | 
3451  | 0  |   res->bits^=DECNEG;                    /* invert the sign  */  | 
3452  | 0  |   return res;  | 
3453  | 0  |   } /* decNumberCopyNegate  */  | 
3454  |  |  | 
3455  |  | /* ------------------------------------------------------------------ */  | 
3456  |  | /* decNumberCopySign -- quiet copy and set sign operator              */  | 
3457  |  | /*                                                                    */  | 
3458  |  | /*   This sets C = A with the sign of B                               */  | 
3459  |  | /*                                                                    */  | 
3460  |  | /*   res is C, the result.  C may be A                                */  | 
3461  |  | /*   lhs is A                                                         */  | 
3462  |  | /*   rhs is B                                                         */  | 
3463  |  | /*                                                                    */  | 
3464  |  | /* C must have space for set->digits digits.                          */  | 
3465  |  | /* No exception or error can occur; this is a quiet bitwise operation.*/  | 
3466  |  | /* ------------------------------------------------------------------ */  | 
3467  |  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberCopySign(decNumber *res, const decNumber *lhs,  | 
3468  | 0  |                               const decNumber *rhs) { | 
3469  | 0  |   uByte sign;                           /* rhs sign  */  | 
3470  |  |   #if DECCHECK  | 
3471  |  |   if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;  | 
3472  |  |   #endif  | 
3473  | 0  |   sign=rhs->bits & DECNEG;              /* save sign bit  */  | 
3474  | 0  |   uprv_decNumberCopy(res, lhs);  | 
3475  | 0  |   res->bits&=~DECNEG;                   /* clear the sign  */  | 
3476  | 0  |   res->bits|=sign;                      /* set from rhs  */  | 
3477  | 0  |   return res;  | 
3478  | 0  |   } /* decNumberCopySign  */  | 
3479  |  |  | 
3480  |  | /* ------------------------------------------------------------------ */  | 
3481  |  | /* decNumberGetBCD -- get the coefficient in BCD8                     */  | 
3482  |  | /*   dn is the source decNumber                                       */  | 
3483  |  | /*   bcd is the uInt array that will receive dn->digits BCD bytes,    */  | 
3484  |  | /*     most-significant at offset 0                                   */  | 
3485  |  | /*   returns bcd                                                      */  | 
3486  |  | /*                                                                    */  | 
3487  |  | /* bcd must have at least dn->digits bytes.  No error is possible; if */  | 
3488  |  | /* dn is a NaN or Infinite, digits must be 1 and the coefficient 0.   */  | 
3489  |  | /* ------------------------------------------------------------------ */  | 
3490  | 0  | U_CAPI uByte * U_EXPORT2 uprv_decNumberGetBCD(const decNumber *dn, uByte *bcd) { | 
3491  | 0  |   uByte *ub=bcd+dn->digits-1;      /* -> lsd  */  | 
3492  | 0  |   const Unit *up=dn->lsu;          /* Unit pointer, -> lsu  */  | 
3493  |  | 
  | 
3494  | 0  |   #if DECDPUN==1                   /* trivial simple copy  */  | 
3495  | 0  |     for (; ub>=bcd; ub--, up++) *ub=*up;  | 
3496  |  |   #else                            /* chopping needed  */  | 
3497  |  |     uInt u=*up;                    /* work  */  | 
3498  |  |     uInt cut=DECDPUN;              /* downcounter through unit  */  | 
3499  |  |     for (; ub>=bcd; ub--) { | 
3500  |  |       *ub=(uByte)(u%10);           /* [*6554 trick inhibits, here]  */  | 
3501  |  |       u=u/10;  | 
3502  |  |       cut--;  | 
3503  |  |       if (cut>0) continue;         /* more in this unit  */  | 
3504  |  |       up++;  | 
3505  |  |       u=*up;  | 
3506  |  |       cut=DECDPUN;  | 
3507  |  |       }  | 
3508  |  |   #endif  | 
3509  | 0  |   return bcd;  | 
3510  | 0  |   } /* decNumberGetBCD  */  | 
3511  |  |  | 
3512  |  | /* ------------------------------------------------------------------ */  | 
3513  |  | /* decNumberSetBCD -- set (replace) the coefficient from BCD8         */  | 
3514  |  | /*   dn is the target decNumber                                       */  | 
3515  |  | /*   bcd is the uInt array that will source n BCD bytes, most-        */  | 
3516  |  | /*     significant at offset 0                                        */  | 
3517  |  | /*   n is the number of digits in the source BCD array (bcd)          */  | 
3518  |  | /*   returns dn                                                       */  | 
3519  |  | /*                                                                    */  | 
3520  |  | /* dn must have space for at least n digits.  No error is possible;   */  | 
3521  |  | /* if dn is a NaN, or Infinite, or is to become a zero, n must be 1   */  | 
3522  |  | /* and bcd[0] zero.                                                   */  | 
3523  |  | /* ------------------------------------------------------------------ */  | 
3524  | 0  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) { | 
3525  | 0  |   Unit *up=dn->lsu+D2U(dn->digits)-1;   /* -> msu [target pointer]  */  | 
3526  | 0  |   const uByte *ub=bcd;                  /* -> source msd  */  | 
3527  |  | 
  | 
3528  | 0  |   #if DECDPUN==1                        /* trivial simple copy  */  | 
3529  | 0  |     for (; ub<bcd+n; ub++, up--) *up=*ub;  | 
3530  |  |   #else                                 /* some assembly needed  */  | 
3531  |  |     /* calculate how many digits in msu, and hence first cut  */  | 
3532  |  |     Int cut=MSUDIGITS(n);               /* [faster than remainder]  */  | 
3533  |  |     for (;up>=dn->lsu; up--) {          /* each Unit from msu  */ | 
3534  |  |       *up=0;                            /* will take <=DECDPUN digits  */  | 
3535  |  |       for (; cut>0; ub++, cut--) *up=X10(*up)+*ub;  | 
3536  |  |       cut=DECDPUN;                      /* next Unit has all digits  */  | 
3537  |  |       }  | 
3538  |  |   #endif  | 
3539  | 0  |   dn->digits=n;                         /* set digit count  */  | 
3540  | 0  |   return dn;  | 
3541  | 0  |   } /* decNumberSetBCD  */  | 
3542  |  |  | 
3543  |  | /* ------------------------------------------------------------------ */  | 
3544  |  | /* decNumberIsNormal -- test normality of a decNumber                 */  | 
3545  |  | /*   dn is the decNumber to test                                      */  | 
3546  |  | /*   set is the context to use for Emin                               */  | 
3547  |  | /*   returns 1 if |dn| is finite and >=Nmin, 0 otherwise              */  | 
3548  |  | /* ------------------------------------------------------------------ */  | 
3549  | 0  | Int uprv_decNumberIsNormal(const decNumber *dn, decContext *set) { | 
3550  | 0  |   Int ae;                               /* adjusted exponent  */  | 
3551  |  |   #if DECCHECK  | 
3552  |  |   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;  | 
3553  |  |   #endif  | 
3554  |  | 
  | 
3555  | 0  |   if (decNumberIsSpecial(dn)) return 0; /* not finite  */  | 
3556  | 0  |   if (decNumberIsZero(dn)) return 0;    /* not non-zero  */  | 
3557  |  |  | 
3558  | 0  |   ae=dn->exponent+dn->digits-1;         /* adjusted exponent  */  | 
3559  | 0  |   if (ae<set->emin) return 0;           /* is subnormal  */  | 
3560  | 0  |   return 1;  | 
3561  | 0  |   } /* decNumberIsNormal  */  | 
3562  |  |  | 
3563  |  | /* ------------------------------------------------------------------ */  | 
3564  |  | /* decNumberIsSubnormal -- test subnormality of a decNumber           */  | 
3565  |  | /*   dn is the decNumber to test                                      */  | 
3566  |  | /*   set is the context to use for Emin                               */  | 
3567  |  | /*   returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise    */  | 
3568  |  | /* ------------------------------------------------------------------ */  | 
3569  | 0  | Int uprv_decNumberIsSubnormal(const decNumber *dn, decContext *set) { | 
3570  | 0  |   Int ae;                               /* adjusted exponent  */  | 
3571  |  |   #if DECCHECK  | 
3572  |  |   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;  | 
3573  |  |   #endif  | 
3574  |  | 
  | 
3575  | 0  |   if (decNumberIsSpecial(dn)) return 0; /* not finite  */  | 
3576  | 0  |   if (decNumberIsZero(dn)) return 0;    /* not non-zero  */  | 
3577  |  |  | 
3578  | 0  |   ae=dn->exponent+dn->digits-1;         /* adjusted exponent  */  | 
3579  | 0  |   if (ae<set->emin) return 1;           /* is subnormal  */  | 
3580  | 0  |   return 0;  | 
3581  | 0  |   } /* decNumberIsSubnormal  */  | 
3582  |  |  | 
3583  |  | /* ------------------------------------------------------------------ */  | 
3584  |  | /* decNumberTrim -- remove insignificant zeros                        */  | 
3585  |  | /*                                                                    */  | 
3586  |  | /*   dn is the number to trim                                         */  | 
3587  |  | /*   returns dn                                                       */  | 
3588  |  | /*                                                                    */  | 
3589  |  | /* All fields are updated as required.  This is a utility operation,  */  | 
3590  |  | /* so special values are unchanged and no error is possible.  The     */  | 
3591  |  | /* zeros are removed unconditionally.                                 */  | 
3592  |  | /* ------------------------------------------------------------------ */  | 
3593  | 0  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberTrim(decNumber *dn) { | 
3594  | 0  |   Int  dropped;                    /* work  */  | 
3595  | 0  |   decContext set;                  /* ..  */  | 
3596  |  |   #if DECCHECK  | 
3597  |  |   if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn;  | 
3598  |  |   #endif  | 
3599  | 0  |   uprv_decContextDefault(&set, DEC_INIT_BASE);    /* clamp=0  */  | 
3600  | 0  |   return decTrim(dn, &set, 0, 1, &dropped);  | 
3601  | 0  |   } /* decNumberTrim  */  | 
3602  |  |  | 
3603  |  | /* ------------------------------------------------------------------ */  | 
3604  |  | /* decNumberVersion -- return the name and version of this module     */  | 
3605  |  | /*                                                                    */  | 
3606  |  | /* No error is possible.                                              */  | 
3607  |  | /* ------------------------------------------------------------------ */  | 
3608  | 0  | const char * uprv_decNumberVersion(void) { | 
3609  | 0  |   return DECVERSION;  | 
3610  | 0  |   } /* decNumberVersion  */  | 
3611  |  |  | 
3612  |  | /* ------------------------------------------------------------------ */  | 
3613  |  | /* decNumberZero -- set a number to 0                                 */  | 
3614  |  | /*                                                                    */  | 
3615  |  | /*   dn is the number to set, with space for one digit                */  | 
3616  |  | /*   returns dn                                                       */  | 
3617  |  | /*                                                                    */  | 
3618  |  | /* No error is possible.                                              */  | 
3619  |  | /* ------------------------------------------------------------------ */  | 
3620  |  | /* Memset is not used as it is much slower in some environments.  */  | 
3621  | 0  | U_CAPI decNumber * U_EXPORT2 uprv_decNumberZero(decNumber *dn) { | 
3622  |  | 
  | 
3623  |  |   #if DECCHECK  | 
3624  |  |   if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;  | 
3625  |  |   #endif  | 
3626  |  | 
  | 
3627  | 0  |   dn->bits=0;  | 
3628  | 0  |   dn->exponent=0;  | 
3629  | 0  |   dn->digits=1;  | 
3630  | 0  |   dn->lsu[0]=0;  | 
3631  | 0  |   return dn;  | 
3632  | 0  |   } /* decNumberZero  */  | 
3633  |  |  | 
3634  |  | /* ================================================================== */  | 
3635  |  | /* Local routines                                                     */  | 
3636  |  | /* ================================================================== */  | 
3637  |  |  | 
3638  |  | /* ------------------------------------------------------------------ */  | 
3639  |  | /* decToString -- lay out a number into a string                      */  | 
3640  |  | /*                                                                    */  | 
3641  |  | /*   dn     is the number to lay out                                  */  | 
3642  |  | /*   string is where to lay out the number                            */  | 
3643  |  | /*   eng    is 1 if Engineering, 0 if Scientific                      */  | 
3644  |  | /*                                                                    */  | 
3645  |  | /* string must be at least dn->digits+14 characters long              */  | 
3646  |  | /* No error is possible.                                              */  | 
3647  |  | /*                                                                    */  | 
3648  |  | /* Note that this routine can generate a -0 or 0.000.  These are      */  | 
3649  |  | /* never generated in subset to-number or arithmetic, but can occur   */  | 
3650  |  | /* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234).              */  | 
3651  |  | /* ------------------------------------------------------------------ */  | 
3652  |  | /* If DECCHECK is enabled the string "?" is returned if a number is  */  | 
3653  |  | /* invalid.  */  | 
3654  | 0  | static void decToString(const decNumber *dn, char *string, Flag eng) { | 
3655  | 0  |   Int exp=dn->exponent;       /* local copy  */  | 
3656  | 0  |   Int e;                      /* E-part value  */  | 
3657  | 0  |   Int pre;                    /* digits before the '.'  */  | 
3658  | 0  |   Int cut;                    /* for counting digits in a Unit  */  | 
3659  | 0  |   char *c=string;             /* work [output pointer]  */  | 
3660  | 0  |   const Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [input pointer]  */  | 
3661  | 0  |   uInt u, pow;                /* work  */  | 
3662  |  | 
  | 
3663  |  |   #if DECCHECK  | 
3664  |  |   if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) { | 
3665  |  |     strcpy(string, "?");  | 
3666  |  |     return;}  | 
3667  |  |   #endif  | 
3668  |  | 
  | 
3669  | 0  |   if (decNumberIsNegative(dn)) {   /* Negatives get a minus  */ | 
3670  | 0  |     *c='-';  | 
3671  | 0  |     c++;  | 
3672  | 0  |     }  | 
3673  | 0  |   if (dn->bits&DECSPECIAL) {       /* Is a special value  */ | 
3674  | 0  |     if (decNumberIsInfinite(dn)) { | 
3675  | 0  |       strcpy(c,   "Inf");  | 
3676  | 0  |       strcpy(c+3, "inity");  | 
3677  | 0  |       return;}  | 
3678  |  |     /* a NaN  */  | 
3679  | 0  |     if (dn->bits&DECSNAN) {        /* signalling NaN  */ | 
3680  | 0  |       *c='s';  | 
3681  | 0  |       c++;  | 
3682  | 0  |       }  | 
3683  | 0  |     strcpy(c, "NaN");  | 
3684  | 0  |     c+=3;                          /* step past  */  | 
3685  |  |     /* if not a clean non-zero coefficient, that's all there is in a  */  | 
3686  |  |     /* NaN string  */  | 
3687  | 0  |     if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return;  | 
3688  |  |     /* [drop through to add integer]  */  | 
3689  | 0  |     }  | 
3690  |  |  | 
3691  |  |   /* calculate how many digits in msu, and hence first cut  */  | 
3692  | 0  |   cut=MSUDIGITS(dn->digits);       /* [faster than remainder]  */  | 
3693  | 0  |   cut--;                           /* power of ten for digit  */  | 
3694  |  | 
  | 
3695  | 0  |   if (exp==0) {                    /* simple integer [common fastpath]  */ | 
3696  | 0  |     for (;up>=dn->lsu; up--) {     /* each Unit from msu  */ | 
3697  | 0  |       u=*up;                       /* contains DECDPUN digits to lay out  */  | 
3698  | 0  |       for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow);  | 
3699  | 0  |       cut=DECDPUN-1;               /* next Unit has all digits  */  | 
3700  | 0  |       }  | 
3701  | 0  |     *c='\0';                       /* terminate the string  */  | 
3702  | 0  |     return;}  | 
3703  |  |  | 
3704  |  |   /* non-0 exponent -- assume plain form */  | 
3705  | 0  |   pre=dn->digits+exp;              /* digits before '.'  */  | 
3706  | 0  |   e=0;                             /* no E  */  | 
3707  | 0  |   if ((exp>0) || (pre<-5)) {       /* need exponential form  */ | 
3708  | 0  |     e=exp+dn->digits-1;            /* calculate E value  */  | 
3709  | 0  |     pre=1;                         /* assume one digit before '.'  */  | 
3710  | 0  |     if (eng && (e!=0)) {           /* engineering: may need to adjust  */ | 
3711  | 0  |       Int adj;                     /* adjustment  */  | 
3712  |  |       /* The C remainder operator is undefined for negative numbers, so  */  | 
3713  |  |       /* a positive remainder calculation must be used here  */  | 
3714  | 0  |       if (e<0) { | 
3715  | 0  |         adj=(-e)%3;  | 
3716  | 0  |         if (adj!=0) adj=3-adj;  | 
3717  | 0  |         }  | 
3718  | 0  |        else { /* e>0  */ | 
3719  | 0  |         adj=e%3;  | 
3720  | 0  |         }  | 
3721  | 0  |       e=e-adj;  | 
3722  |  |       /* if dealing with zero still produce an exponent which is a  */  | 
3723  |  |       /* multiple of three, as expected, but there will only be the  */  | 
3724  |  |       /* one zero before the E, still.  Otherwise note the padding.  */  | 
3725  | 0  |       if (!ISZERO(dn)) pre+=adj;  | 
3726  | 0  |        else {  /* is zero  */ | 
3727  | 0  |         if (adj!=0) {              /* 0.00Esnn needed  */ | 
3728  | 0  |           e=e+3;  | 
3729  | 0  |           pre=-(2-adj);  | 
3730  | 0  |           }  | 
3731  | 0  |         } /* zero  */  | 
3732  | 0  |       } /* eng  */  | 
3733  | 0  |     } /* need exponent  */  | 
3734  |  |  | 
3735  |  |   /* lay out the digits of the coefficient, adding 0s and . as needed */  | 
3736  | 0  |   u=*up;  | 
3737  | 0  |   if (pre>0) {                     /* xxx.xxx or xx00 (engineering) form  */ | 
3738  | 0  |     Int n=pre;  | 
3739  | 0  |     for (; pre>0; pre--, c++, cut--) { | 
3740  | 0  |       if (cut<0) {                 /* need new Unit  */ | 
3741  | 0  |         if (up==dn->lsu) break;    /* out of input digits (pre>digits)  */  | 
3742  | 0  |         up--;  | 
3743  | 0  |         cut=DECDPUN-1;  | 
3744  | 0  |         u=*up;  | 
3745  | 0  |         }  | 
3746  | 0  |       TODIGIT(u, cut, c, pow);  | 
3747  | 0  |       }  | 
3748  | 0  |     if (n<dn->digits) {            /* more to come, after '.'  */ | 
3749  | 0  |       *c='.'; c++;  | 
3750  | 0  |       for (;; c++, cut--) { | 
3751  | 0  |         if (cut<0) {               /* need new Unit  */ | 
3752  | 0  |           if (up==dn->lsu) break;  /* out of input digits  */  | 
3753  | 0  |           up--;  | 
3754  | 0  |           cut=DECDPUN-1;  | 
3755  | 0  |           u=*up;  | 
3756  | 0  |           }  | 
3757  | 0  |         TODIGIT(u, cut, c, pow);  | 
3758  | 0  |         }  | 
3759  | 0  |       }  | 
3760  | 0  |      else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed  */  | 
3761  | 0  |     }  | 
3762  | 0  |    else {                          /* 0.xxx or 0.000xxx form  */ | 
3763  | 0  |     *c='0'; c++;  | 
3764  | 0  |     *c='.'; c++;  | 
3765  | 0  |     for (; pre<0; pre++, c++) *c='0';   /* add any 0's after '.'  */  | 
3766  | 0  |     for (; ; c++, cut--) { | 
3767  | 0  |       if (cut<0) {                 /* need new Unit  */ | 
3768  | 0  |         if (up==dn->lsu) break;    /* out of input digits  */  | 
3769  | 0  |         up--;  | 
3770  | 0  |         cut=DECDPUN-1;  | 
3771  | 0  |         u=*up;  | 
3772  | 0  |         }  | 
3773  | 0  |       TODIGIT(u, cut, c, pow);  | 
3774  | 0  |       }  | 
3775  | 0  |     }  | 
3776  |  |  | 
3777  |  |   /* Finally add the E-part, if needed.  It will never be 0, has a  | 
3778  |  |      base maximum and minimum of +999999999 through -999999999, but  | 
3779  |  |      could range down to -1999999998 for abnormal numbers */  | 
3780  | 0  |   if (e!=0) { | 
3781  | 0  |     Flag had=0;               /* 1=had non-zero  */  | 
3782  | 0  |     *c='E'; c++;  | 
3783  | 0  |     *c='+'; c++;              /* assume positive  */  | 
3784  | 0  |     u=e;                      /* ..  */  | 
3785  | 0  |     if (e<0) { | 
3786  | 0  |       *(c-1)='-';             /* oops, need -  */  | 
3787  | 0  |       u=-e;                   /* uInt, please  */  | 
3788  | 0  |       }  | 
3789  |  |     /* lay out the exponent [_itoa or equivalent is not ANSI C]  */  | 
3790  | 0  |     for (cut=9; cut>=0; cut--) { | 
3791  | 0  |       TODIGIT(u, cut, c, pow);  | 
3792  | 0  |       if (*c=='0' && !had) continue;    /* skip leading zeros  */  | 
3793  | 0  |       had=1;                            /* had non-0  */  | 
3794  | 0  |       c++;                              /* step for next  */  | 
3795  | 0  |       } /* cut  */  | 
3796  | 0  |     }  | 
3797  | 0  |   *c='\0';          /* terminate the string (all paths)  */  | 
3798  | 0  |   return;  | 
3799  | 0  |   } /* decToString  */  | 
3800  |  |  | 
3801  |  | /* ------------------------------------------------------------------ */  | 
3802  |  | /* decAddOp -- add/subtract operation                                 */  | 
3803  |  | /*                                                                    */  | 
3804  |  | /*   This computes C = A + B                                          */  | 
3805  |  | /*                                                                    */  | 
3806  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X+X)         */  | 
3807  |  | /*   lhs is A                                                         */  | 
3808  |  | /*   rhs is B                                                         */  | 
3809  |  | /*   set is the context                                               */  | 
3810  |  | /*   negate is DECNEG if rhs should be negated, or 0 otherwise        */  | 
3811  |  | /*   status accumulates status for the caller                         */  | 
3812  |  | /*                                                                    */  | 
3813  |  | /* C must have space for set->digits digits.                          */  | 
3814  |  | /* Inexact in status must be 0 for correct Exact zero sign in result  */  | 
3815  |  | /* ------------------------------------------------------------------ */  | 
3816  |  | /* If possible, the coefficient is calculated directly into C.        */  | 
3817  |  | /* However, if:                                                       */  | 
3818  |  | /*   -- a digits+1 calculation is needed because the numbers are      */  | 
3819  |  | /*      unaligned and span more than set->digits digits               */  | 
3820  |  | /*   -- a carry to digits+1 digits looks possible                     */  | 
3821  |  | /*   -- C is the same as A or B, and the result would destructively   */  | 
3822  |  | /*      overlap the A or B coefficient                                */  | 
3823  |  | /* then the result must be calculated into a temporary buffer.  In    */  | 
3824  |  | /* this case a local (stack) buffer is used if possible, and only if  */  | 
3825  |  | /* too long for that does malloc become the final resort.             */  | 
3826  |  | /*                                                                    */  | 
3827  |  | /* Misalignment is handled as follows:                                */  | 
3828  |  | /*   Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp.    */  | 
3829  |  | /*   BPad: Apply the padding by a combination of shifting (whole      */  | 
3830  |  | /*         units) and multiplication (part units).                    */  | 
3831  |  | /*                                                                    */  | 
3832  |  | /* Addition, especially x=x+1, is speed-critical.                     */  | 
3833  |  | /* The static buffer is larger than might be expected to allow for    */  | 
3834  |  | /* calls from higher-level functions (notable exp).                    */  | 
3835  |  | /* ------------------------------------------------------------------ */  | 
3836  |  | static decNumber * decAddOp(decNumber *res, const decNumber *lhs,  | 
3837  |  |                             const decNumber *rhs, decContext *set,  | 
3838  | 0  |                             uByte negate, uInt *status) { | 
3839  |  |   #if DECSUBSET  | 
3840  |  |   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */  | 
3841  |  |   decNumber *allocrhs=NULL;        /* .., rhs  */  | 
3842  |  |   #endif  | 
3843  | 0  |   Int   rhsshift;                  /* working shift (in Units)  */  | 
3844  | 0  |   Int   maxdigits;                 /* longest logical length  */  | 
3845  | 0  |   Int   mult;                      /* multiplier  */  | 
3846  | 0  |   Int   residue;                   /* rounding accumulator  */  | 
3847  | 0  |   uByte bits;                      /* result bits  */  | 
3848  | 0  |   Flag  diffsign;                  /* non-0 if arguments have different sign  */  | 
3849  | 0  |   Unit  *acc;                      /* accumulator for result  */  | 
3850  | 0  |   Unit  accbuff[SD2U(DECBUFFER*2+20)]; /* local buffer [*2+20 reduces many  */  | 
3851  |  |                                    /* allocations when called from  */  | 
3852  |  |                                    /* other operations, notable exp]  */  | 
3853  | 0  |   Unit  *allocacc=NULL;            /* -> allocated acc buffer, iff allocated  */  | 
3854  | 0  |   Int   reqdigits=set->digits;     /* local copy; requested DIGITS  */  | 
3855  | 0  |   Int   padding;                   /* work  */  | 
3856  |  | 
  | 
3857  |  |   #if DECCHECK  | 
3858  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
3859  |  |   #endif  | 
3860  |  | 
  | 
3861  | 0  |   do {                             /* protect allocated storage  */ | 
3862  |  |     #if DECSUBSET  | 
3863  |  |     if (!set->extended) { | 
3864  |  |       /* reduce operands and set lostDigits status, as needed  */  | 
3865  |  |       if (lhs->digits>reqdigits) { | 
3866  |  |         alloclhs=decRoundOperand(lhs, set, status);  | 
3867  |  |         if (alloclhs==NULL) break;  | 
3868  |  |         lhs=alloclhs;  | 
3869  |  |         }  | 
3870  |  |       if (rhs->digits>reqdigits) { | 
3871  |  |         allocrhs=decRoundOperand(rhs, set, status);  | 
3872  |  |         if (allocrhs==NULL) break;  | 
3873  |  |         rhs=allocrhs;  | 
3874  |  |         }  | 
3875  |  |       }  | 
3876  |  |     #endif  | 
3877  |  |     /* [following code does not require input rounding]  */  | 
3878  |  |  | 
3879  |  |     /* note whether signs differ [used all paths]  */  | 
3880  | 0  |     diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG);  | 
3881  |  |  | 
3882  |  |     /* handle infinities and NaNs  */  | 
3883  | 0  |     if (SPECIALARGS) {                  /* a special bit set  */ | 
3884  | 0  |       if (SPECIALARGS & (DECSNAN | DECNAN))  /* a NaN  */  | 
3885  | 0  |         decNaNs(res, lhs, rhs, set, status);  | 
3886  | 0  |        else { /* one or two infinities  */ | 
3887  | 0  |         if (decNumberIsInfinite(lhs)) { /* LHS is infinity  */ | 
3888  |  |           /* two infinities with different signs is invalid  */  | 
3889  | 0  |           if (decNumberIsInfinite(rhs) && diffsign) { | 
3890  | 0  |             *status|=DEC_Invalid_operation;  | 
3891  | 0  |             break;  | 
3892  | 0  |             }  | 
3893  | 0  |           bits=lhs->bits & DECNEG;      /* get sign from LHS  */  | 
3894  | 0  |           }  | 
3895  | 0  |          else bits=(rhs->bits^negate) & DECNEG;/* RHS must be Infinity  */  | 
3896  | 0  |         bits|=DECINF;  | 
3897  | 0  |         uprv_decNumberZero(res);  | 
3898  | 0  |         res->bits=bits;                 /* set +/- infinity  */  | 
3899  | 0  |         } /* an infinity  */  | 
3900  | 0  |       break;  | 
3901  | 0  |       }  | 
3902  |  |  | 
3903  |  |     /* Quick exit for add 0s; return the non-0, modified as need be  */  | 
3904  | 0  |     if (ISZERO(lhs)) { | 
3905  | 0  |       Int adjust;                       /* work  */  | 
3906  | 0  |       Int lexp=lhs->exponent;           /* save in case LHS==RES  */  | 
3907  | 0  |       bits=lhs->bits;                   /* ..  */  | 
3908  | 0  |       residue=0;                        /* clear accumulator  */  | 
3909  | 0  |       decCopyFit(res, rhs, set, &residue, status); /* copy (as needed)  */  | 
3910  | 0  |       res->bits^=negate;                /* flip if rhs was negated  */  | 
3911  |  |       #if DECSUBSET  | 
3912  |  |       if (set->extended) {              /* exponents on zeros count  */ | 
3913  |  |       #endif  | 
3914  |  |         /* exponent will be the lower of the two  */  | 
3915  | 0  |         adjust=lexp-res->exponent;      /* adjustment needed [if -ve]  */  | 
3916  | 0  |         if (ISZERO(res)) {              /* both 0: special IEEE 754 rules  */ | 
3917  | 0  |           if (adjust<0) res->exponent=lexp;  /* set exponent  */  | 
3918  |  |           /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0  */  | 
3919  | 0  |           if (diffsign) { | 
3920  | 0  |             if (set->round!=DEC_ROUND_FLOOR) res->bits=0;  | 
3921  | 0  |              else res->bits=DECNEG;     /* preserve 0 sign  */  | 
3922  | 0  |             }  | 
3923  | 0  |           }  | 
3924  | 0  |          else { /* non-0 res  */ | 
3925  | 0  |           if (adjust<0) {     /* 0-padding needed  */ | 
3926  | 0  |             if ((res->digits-adjust)>set->digits) { | 
3927  | 0  |               adjust=res->digits-set->digits;     /* to fit exactly  */  | 
3928  | 0  |               *status|=DEC_Rounded;               /* [but exact]  */  | 
3929  | 0  |               }  | 
3930  | 0  |             res->digits=decShiftToMost(res->lsu, res->digits, -adjust);  | 
3931  | 0  |             res->exponent+=adjust;                /* set the exponent.  */  | 
3932  | 0  |             }  | 
3933  | 0  |           } /* non-0 res  */  | 
3934  |  |       #if DECSUBSET  | 
3935  |  |         } /* extended  */  | 
3936  |  |       #endif  | 
3937  | 0  |       decFinish(res, set, &residue, status);      /* clean and finalize  */  | 
3938  | 0  |       break;}  | 
3939  |  |  | 
3940  | 0  |     if (ISZERO(rhs)) {                  /* [lhs is non-zero]  */ | 
3941  | 0  |       Int adjust;                       /* work  */  | 
3942  | 0  |       Int rexp=rhs->exponent;           /* save in case RHS==RES  */  | 
3943  | 0  |       bits=rhs->bits;                   /* be clean  */  | 
3944  | 0  |       residue=0;                        /* clear accumulator  */  | 
3945  | 0  |       decCopyFit(res, lhs, set, &residue, status); /* copy (as needed)  */  | 
3946  |  |       #if DECSUBSET  | 
3947  |  |       if (set->extended) {              /* exponents on zeros count  */ | 
3948  |  |       #endif  | 
3949  |  |         /* exponent will be the lower of the two  */  | 
3950  |  |         /* [0-0 case handled above]  */  | 
3951  | 0  |         adjust=rexp-res->exponent;      /* adjustment needed [if -ve]  */  | 
3952  | 0  |         if (adjust<0) {     /* 0-padding needed  */ | 
3953  | 0  |           if ((res->digits-adjust)>set->digits) { | 
3954  | 0  |             adjust=res->digits-set->digits;     /* to fit exactly  */  | 
3955  | 0  |             *status|=DEC_Rounded;               /* [but exact]  */  | 
3956  | 0  |             }  | 
3957  | 0  |           res->digits=decShiftToMost(res->lsu, res->digits, -adjust);  | 
3958  | 0  |           res->exponent+=adjust;                /* set the exponent.  */  | 
3959  | 0  |           }  | 
3960  |  |       #if DECSUBSET  | 
3961  |  |         } /* extended  */  | 
3962  |  |       #endif  | 
3963  | 0  |       decFinish(res, set, &residue, status);      /* clean and finalize  */  | 
3964  | 0  |       break;}  | 
3965  |  |  | 
3966  |  |     /* [NB: both fastpath and mainpath code below assume these cases  */  | 
3967  |  |     /* (notably 0-0) have already been handled]  */  | 
3968  |  |  | 
3969  |  |     /* calculate the padding needed to align the operands  */  | 
3970  | 0  |     padding=rhs->exponent-lhs->exponent;  | 
3971  |  |  | 
3972  |  |     /* Fastpath cases where the numbers are aligned and normal, the RHS  */  | 
3973  |  |     /* is all in one unit, no operand rounding is needed, and no carry,  */  | 
3974  |  |     /* lengthening, or borrow is needed  */  | 
3975  | 0  |     if (padding==0  | 
3976  | 0  |         && rhs->digits<=DECDPUN  | 
3977  | 0  |         && rhs->exponent>=set->emin     /* [some normals drop through]  */  | 
3978  | 0  |         && rhs->exponent<=set->emax-set->digits+1 /* [could clamp]  */  | 
3979  | 0  |         && rhs->digits<=reqdigits  | 
3980  | 0  |         && lhs->digits<=reqdigits) { | 
3981  | 0  |       Int partial=*lhs->lsu;  | 
3982  | 0  |       if (!diffsign) {                  /* adding  */ | 
3983  | 0  |         partial+=*rhs->lsu;  | 
3984  | 0  |         if ((partial<=DECDPUNMAX)       /* result fits in unit  */  | 
3985  | 0  |          && (lhs->digits>=DECDPUN ||    /* .. and no digits-count change  */  | 
3986  | 0  |              partial<(Int)powers[lhs->digits])) { /* ..  */ | 
3987  | 0  |           if (res!=lhs) uprv_decNumberCopy(res, lhs);  /* not in place  */  | 
3988  | 0  |           *res->lsu=(Unit)partial;      /* [copy could have overwritten RHS]  */  | 
3989  | 0  |           break;  | 
3990  | 0  |           }  | 
3991  |  |         /* else drop out for careful add  */  | 
3992  | 0  |         }  | 
3993  | 0  |        else {                           /* signs differ  */ | 
3994  | 0  |         partial-=*rhs->lsu;  | 
3995  | 0  |         if (partial>0) { /* no borrow needed, and non-0 result  */ | 
3996  | 0  |           if (res!=lhs) uprv_decNumberCopy(res, lhs);  /* not in place  */  | 
3997  | 0  |           *res->lsu=(Unit)partial;  | 
3998  |  |           /* this could have reduced digits [but result>0]  */  | 
3999  | 0  |           res->digits=decGetDigits(res->lsu, D2U(res->digits));  | 
4000  | 0  |           break;  | 
4001  | 0  |           }  | 
4002  |  |         /* else drop out for careful subtract  */  | 
4003  | 0  |         }  | 
4004  | 0  |       }  | 
4005  |  |  | 
4006  |  |     /* Now align (pad) the lhs or rhs so they can be added or  */  | 
4007  |  |     /* subtracted, as necessary.  If one number is much larger than  */  | 
4008  |  |     /* the other (that is, if in plain form there is a least one  */  | 
4009  |  |     /* digit between the lowest digit of one and the highest of the  */  | 
4010  |  |     /* other) padding with up to DIGITS-1 trailing zeros may be  */  | 
4011  |  |     /* needed; then apply rounding (as exotic rounding modes may be  */  | 
4012  |  |     /* affected by the residue).  */  | 
4013  | 0  |     rhsshift=0;               /* rhs shift to left (padding) in Units  */  | 
4014  | 0  |     bits=lhs->bits;           /* assume sign is that of LHS  */  | 
4015  | 0  |     mult=1;                   /* likely multiplier  */  | 
4016  |  |  | 
4017  |  |     /* [if padding==0 the operands are aligned; no padding is needed]  */  | 
4018  | 0  |     if (padding!=0) { | 
4019  |  |       /* some padding needed; always pad the RHS, as any required  */  | 
4020  |  |       /* padding can then be effected by a simple combination of  */  | 
4021  |  |       /* shifts and a multiply  */  | 
4022  | 0  |       Flag swapped=0;  | 
4023  | 0  |       if (padding<0) {                  /* LHS needs the padding  */ | 
4024  | 0  |         const decNumber *t;  | 
4025  | 0  |         padding=-padding;               /* will be +ve  */  | 
4026  | 0  |         bits=(uByte)(rhs->bits^negate); /* assumed sign is now that of RHS  */  | 
4027  | 0  |         t=lhs; lhs=rhs; rhs=t;  | 
4028  | 0  |         swapped=1;  | 
4029  | 0  |         }  | 
4030  |  |  | 
4031  |  |       /* If, after pad, rhs would be longer than lhs by digits+1 or  */  | 
4032  |  |       /* more then lhs cannot affect the answer, except as a residue,  */  | 
4033  |  |       /* so only need to pad up to a length of DIGITS+1.  */  | 
4034  | 0  |       if (rhs->digits+padding > lhs->digits+reqdigits+1) { | 
4035  |  |         /* The RHS is sufficient  */  | 
4036  |  |         /* for residue use the relative sign indication...  */  | 
4037  | 0  |         Int shift=reqdigits-rhs->digits;     /* left shift needed  */  | 
4038  | 0  |         residue=1;                           /* residue for rounding  */  | 
4039  | 0  |         if (diffsign) residue=-residue;      /* signs differ  */  | 
4040  |  |         /* copy, shortening if necessary  */  | 
4041  | 0  |         decCopyFit(res, rhs, set, &residue, status);  | 
4042  |  |         /* if it was already shorter, then need to pad with zeros  */  | 
4043  | 0  |         if (shift>0) { | 
4044  | 0  |           res->digits=decShiftToMost(res->lsu, res->digits, shift);  | 
4045  | 0  |           res->exponent-=shift;              /* adjust the exponent.  */  | 
4046  | 0  |           }  | 
4047  |  |         /* flip the result sign if unswapped and rhs was negated  */  | 
4048  | 0  |         if (!swapped) res->bits^=negate;  | 
4049  | 0  |         decFinish(res, set, &residue, status);    /* done  */  | 
4050  | 0  |         break;}  | 
4051  |  |  | 
4052  |  |       /* LHS digits may affect result  */  | 
4053  | 0  |       rhsshift=D2U(padding+1)-1;        /* this much by Unit shift ..  */  | 
4054  | 0  |       mult=powers[padding-(rhsshift*DECDPUN)]; /* .. this by multiplication  */  | 
4055  | 0  |       } /* padding needed  */  | 
4056  |  |  | 
4057  | 0  |     if (diffsign) mult=-mult;           /* signs differ  */  | 
4058  |  |  | 
4059  |  |     /* determine the longer operand  */  | 
4060  | 0  |     maxdigits=rhs->digits+padding;      /* virtual length of RHS  */  | 
4061  | 0  |     if (lhs->digits>maxdigits) maxdigits=lhs->digits;  | 
4062  |  |  | 
4063  |  |     /* Decide on the result buffer to use; if possible place directly  */  | 
4064  |  |     /* into result.  */  | 
4065  | 0  |     acc=res->lsu;                       /* assume add direct to result  */  | 
4066  |  |     /* If destructive overlap, or the number is too long, or a carry or  */  | 
4067  |  |     /* borrow to DIGITS+1 might be possible, a buffer must be used.  */  | 
4068  |  |     /* [Might be worth more sophisticated tests when maxdigits==reqdigits]  */  | 
4069  | 0  |     if ((maxdigits>=reqdigits)          /* is, or could be, too large  */  | 
4070  | 0  |      || (res==rhs && rhsshift>0)) {     /* destructive overlap  */ | 
4071  |  |       /* buffer needed, choose it; units for maxdigits digits will be  */  | 
4072  |  |       /* needed, +1 Unit for carry or borrow  */  | 
4073  | 0  |       Int need=D2U(maxdigits)+1;  | 
4074  | 0  |       acc=accbuff;                      /* assume use local buffer  */  | 
4075  | 0  |       if (need*sizeof(Unit)>sizeof(accbuff)) { | 
4076  |  |         /* printf("malloc add %ld %ld\n", need, sizeof(accbuff));  */ | 
4077  | 0  |         allocacc=(Unit *)malloc(need*sizeof(Unit));  | 
4078  | 0  |         if (allocacc==NULL) {           /* hopeless -- abandon  */ | 
4079  | 0  |           *status|=DEC_Insufficient_storage;  | 
4080  | 0  |           break;}  | 
4081  | 0  |         acc=allocacc;  | 
4082  | 0  |         }  | 
4083  | 0  |       }  | 
4084  |  |  | 
4085  | 0  |     res->bits=(uByte)(bits&DECNEG);     /* it's now safe to overwrite..  */  | 
4086  | 0  |     res->exponent=lhs->exponent;        /* .. operands (even if aliased)  */  | 
4087  |  | 
  | 
4088  |  |     #if DECTRACE  | 
4089  |  |       decDumpAr('A', lhs->lsu, D2U(lhs->digits)); | 
4090  |  |       decDumpAr('B', rhs->lsu, D2U(rhs->digits)); | 
4091  |  |       printf("  :h: %ld %ld\n", rhsshift, mult); | 
4092  |  |     #endif  | 
4093  |  |  | 
4094  |  |     /* add [A+B*m] or subtract [A+B*(-m)]  */  | 
4095  | 0  |     U_ASSERT(rhs->digits > 0);  | 
4096  | 0  |     U_ASSERT(lhs->digits > 0);  | 
4097  | 0  |     res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits),  | 
4098  | 0  |                               rhs->lsu, D2U(rhs->digits),  | 
4099  | 0  |                               rhsshift, acc, mult)  | 
4100  | 0  |                *DECDPUN;           /* [units -> digits]  */  | 
4101  | 0  |     if (res->digits<0) {           /* borrowed...  */ | 
4102  | 0  |       res->digits=-res->digits;  | 
4103  | 0  |       res->bits^=DECNEG;           /* flip the sign  */  | 
4104  | 0  |       }  | 
4105  |  |     #if DECTRACE  | 
4106  |  |       decDumpAr('+', acc, D2U(res->digits)); | 
4107  |  |     #endif  | 
4108  |  |  | 
4109  |  |     /* If a buffer was used the result must be copied back, possibly  */  | 
4110  |  |     /* shortening.  (If no buffer was used then the result must have  */  | 
4111  |  |     /* fit, so can't need rounding and residue must be 0.)  */  | 
4112  | 0  |     residue=0;                     /* clear accumulator  */  | 
4113  | 0  |     if (acc!=res->lsu) { | 
4114  |  |       #if DECSUBSET  | 
4115  |  |       if (set->extended) {         /* round from first significant digit  */ | 
4116  |  |       #endif  | 
4117  |  |         /* remove leading zeros that were added due to rounding up to  */  | 
4118  |  |         /* integral Units -- before the test for rounding.  */  | 
4119  | 0  |         if (res->digits>reqdigits)  | 
4120  | 0  |           res->digits=decGetDigits(acc, D2U(res->digits));  | 
4121  | 0  |         decSetCoeff(res, set, acc, res->digits, &residue, status);  | 
4122  |  |       #if DECSUBSET  | 
4123  |  |         }  | 
4124  |  |        else { /* subset arithmetic rounds from original significant digit  */ | 
4125  |  |         /* May have an underestimate.  This only occurs when both  */  | 
4126  |  |         /* numbers fit in DECDPUN digits and are padding with a  */  | 
4127  |  |         /* negative multiple (-10, -100...) and the top digit(s) become  */  | 
4128  |  |         /* 0.  (This only matters when using X3.274 rules where the  */  | 
4129  |  |         /* leading zero could be included in the rounding.)  */  | 
4130  |  |         if (res->digits<maxdigits) { | 
4131  |  |           *(acc+D2U(res->digits))=0; /* ensure leading 0 is there  */  | 
4132  |  |           res->digits=maxdigits;  | 
4133  |  |           }  | 
4134  |  |          else { | 
4135  |  |           /* remove leading zeros that added due to rounding up to  */  | 
4136  |  |           /* integral Units (but only those in excess of the original  */  | 
4137  |  |           /* maxdigits length, unless extended) before test for rounding.  */  | 
4138  |  |           if (res->digits>reqdigits) { | 
4139  |  |             res->digits=decGetDigits(acc, D2U(res->digits));  | 
4140  |  |             if (res->digits<maxdigits) res->digits=maxdigits;  | 
4141  |  |             }  | 
4142  |  |           }  | 
4143  |  |         decSetCoeff(res, set, acc, res->digits, &residue, status);  | 
4144  |  |         /* Now apply rounding if needed before removing leading zeros.  */  | 
4145  |  |         /* This is safe because subnormals are not a possibility  */  | 
4146  |  |         if (residue!=0) { | 
4147  |  |           decApplyRound(res, set, residue, status);  | 
4148  |  |           residue=0;                 /* did what needed to be done  */  | 
4149  |  |           }  | 
4150  |  |         } /* subset  */  | 
4151  |  |       #endif  | 
4152  | 0  |       } /* used buffer  */  | 
4153  |  |  | 
4154  |  |     /* strip leading zeros [these were left on in case of subset subtract]  */  | 
4155  | 0  |     res->digits=decGetDigits(res->lsu, D2U(res->digits));  | 
4156  |  |  | 
4157  |  |     /* apply checks and rounding  */  | 
4158  | 0  |     decFinish(res, set, &residue, status);  | 
4159  |  |  | 
4160  |  |     /* "When the sum of two operands with opposite signs is exactly  */  | 
4161  |  |     /* zero, the sign of that sum shall be '+' in all rounding modes  */  | 
4162  |  |     /* except round toward -Infinity, in which mode that sign shall be  */  | 
4163  |  |     /* '-'."  [Subset zeros also never have '-', set by decFinish.]  */  | 
4164  | 0  |     if (ISZERO(res) && diffsign  | 
4165  |  |      #if DECSUBSET  | 
4166  |  |      && set->extended  | 
4167  |  |      #endif  | 
4168  | 0  |      && (*status&DEC_Inexact)==0) { | 
4169  | 0  |       if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG;   /* sign -  */  | 
4170  | 0  |                                   else res->bits&=~DECNEG;  /* sign +  */  | 
4171  | 0  |       }  | 
4172  | 0  |     } while(0);                              /* end protected  */  | 
4173  |  |  | 
4174  | 0  |   if (allocacc!=NULL) free(allocacc);        /* drop any storage used  */  | 
4175  |  |   #if DECSUBSET  | 
4176  |  |   if (allocrhs!=NULL) free(allocrhs);        /* ..  */  | 
4177  |  |   if (alloclhs!=NULL) free(alloclhs);        /* ..  */  | 
4178  |  |   #endif  | 
4179  | 0  |   return res;  | 
4180  | 0  |   } /* decAddOp  */  | 
4181  |  |  | 
4182  |  | /* ------------------------------------------------------------------ */  | 
4183  |  | /* decDivideOp -- division operation                                  */  | 
4184  |  | /*                                                                    */  | 
4185  |  | /*  This routine performs the calculations for all four division      */  | 
4186  |  | /*  operators (divide, divideInteger, remainder, remainderNear).      */  | 
4187  |  | /*                                                                    */  | 
4188  |  | /*  C=A op B                                                          */  | 
4189  |  | /*                                                                    */  | 
4190  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X/X)         */  | 
4191  |  | /*   lhs is A                                                         */  | 
4192  |  | /*   rhs is B                                                         */  | 
4193  |  | /*   set is the context                                               */  | 
4194  |  | /*   op  is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively.    */  | 
4195  |  | /*   status is the usual accumulator                                  */  | 
4196  |  | /*                                                                    */  | 
4197  |  | /* C must have space for set->digits digits.                          */  | 
4198  |  | /*                                                                    */  | 
4199  |  | /* ------------------------------------------------------------------ */  | 
4200  |  | /*   The underlying algorithm of this routine is the same as in the   */  | 
4201  |  | /*   1981 S/370 implementation, that is, non-restoring long division  */  | 
4202  |  | /*   with bi-unit (rather than bi-digit) estimation for each unit     */  | 
4203  |  | /*   multiplier.  In this pseudocode overview, complications for the  */  | 
4204  |  | /*   Remainder operators and division residues for exact rounding are */  | 
4205  |  | /*   omitted for clarity.                                             */  | 
4206  |  | /*                                                                    */  | 
4207  |  | /*     Prepare operands and handle special values                     */  | 
4208  |  | /*     Test for x/0 and then 0/x                                      */  | 
4209  |  | /*     Exp =Exp1 - Exp2                                               */  | 
4210  |  | /*     Exp =Exp +len(var1) -len(var2)                                 */  | 
4211  |  | /*     Sign=Sign1 * Sign2                                             */  | 
4212  |  | /*     Pad accumulator (Var1) to double-length with 0's (pad1)        */  | 
4213  |  | /*     Pad Var2 to same length as Var1                                */  | 
4214  |  | /*     msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round  */  | 
4215  |  | /*     have=0                                                         */  | 
4216  |  | /*     Do until (have=digits+1 OR residue=0)                          */  | 
4217  |  | /*       if exp<0 then if integer divide/residue then leave           */  | 
4218  |  | /*       this_unit=0                                                  */  | 
4219  |  | /*       Do forever                                                   */  | 
4220  |  | /*          compare numbers                                           */  | 
4221  |  | /*          if <0 then leave inner_loop                               */  | 
4222  |  | /*          if =0 then (* quick exit without subtract *) do           */  | 
4223  |  | /*             this_unit=this_unit+1; output this_unit                */  | 
4224  |  | /*             leave outer_loop; end                                  */  | 
4225  |  | /*          Compare lengths of numbers (mantissae):                   */  | 
4226  |  | /*          If same then tops2=msu2pair -- {units 1&2 of var2}        */ | 
4227  |  | /*                  else tops2=msu2plus -- {0, unit 1 of var2}        */ | 
4228  |  | /*          tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */  | 
4229  |  | /*          mult=tops1/tops2  -- Good and safe guess at divisor       */  | 
4230  |  | /*          if mult=0 then mult=1                                     */  | 
4231  |  | /*          this_unit=this_unit+mult                                  */  | 
4232  |  | /*          subtract                                                  */  | 
4233  |  | /*          end inner_loop                                            */  | 
4234  |  | /*        if have\=0 | this_unit\=0 then do                           */  | 
4235  |  | /*          output this_unit                                          */  | 
4236  |  | /*          have=have+1; end                                          */  | 
4237  |  | /*        var2=var2/10                                                */  | 
4238  |  | /*        exp=exp-1                                                   */  | 
4239  |  | /*        end outer_loop                                              */  | 
4240  |  | /*     exp=exp+1   -- set the proper exponent                         */  | 
4241  |  | /*     if have=0 then generate answer=0                               */  | 
4242  |  | /*     Return (Result is defined by Var1)                             */  | 
4243  |  | /*                                                                    */  | 
4244  |  | /* ------------------------------------------------------------------ */  | 
4245  |  | /* Two working buffers are needed during the division; one (digits+   */  | 
4246  |  | /* 1) to accumulate the result, and the other (up to 2*digits+1) for  */  | 
4247  |  | /* long subtractions.  These are acc and var1 respectively.           */  | 
4248  |  | /* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/  | 
4249  |  | /* The static buffers may be larger than might be expected to allow   */  | 
4250  |  | /* for calls from higher-level functions (notable exp).                */  | 
4251  |  | /* ------------------------------------------------------------------ */  | 
4252  |  | static decNumber * decDivideOp(decNumber *res,  | 
4253  |  |                                const decNumber *lhs, const decNumber *rhs,  | 
4254  | 0  |                                decContext *set, Flag op, uInt *status) { | 
4255  |  |   #if DECSUBSET  | 
4256  |  |   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */  | 
4257  |  |   decNumber *allocrhs=NULL;        /* .., rhs  */  | 
4258  |  |   #endif  | 
4259  | 0  |   Unit  accbuff[SD2U(DECBUFFER+DECDPUN+10)]; /* local buffer  */  | 
4260  | 0  |   Unit  *acc=accbuff;              /* -> accumulator array for result  */  | 
4261  | 0  |   Unit  *allocacc=NULL;            /* -> allocated buffer, iff allocated  */  | 
4262  | 0  |   Unit  *accnext;                  /* -> where next digit will go  */  | 
4263  | 0  |   Int   acclength;                 /* length of acc needed [Units]  */  | 
4264  | 0  |   Int   accunits;                  /* count of units accumulated  */  | 
4265  | 0  |   Int   accdigits;                 /* count of digits accumulated  */  | 
4266  |  | 
  | 
4267  | 0  |   Unit  varbuff[SD2U(DECBUFFER*2+DECDPUN)];  /* buffer for var1  */  | 
4268  | 0  |   Unit  *var1=varbuff;             /* -> var1 array for long subtraction  */  | 
4269  | 0  |   Unit  *varalloc=NULL;            /* -> allocated buffer, iff used  */  | 
4270  | 0  |   Unit  *msu1;                     /* -> msu of var1  */  | 
4271  |  | 
  | 
4272  | 0  |   const Unit *var2;                /* -> var2 array  */  | 
4273  | 0  |   const Unit *msu2;                /* -> msu of var2  */  | 
4274  | 0  |   Int   msu2plus;                  /* msu2 plus one [does not vary]  */  | 
4275  | 0  |   eInt  msu2pair;                  /* msu2 pair plus one [does not vary]  */  | 
4276  |  | 
  | 
4277  | 0  |   Int   var1units, var2units;      /* actual lengths  */  | 
4278  | 0  |   Int   var2ulen;                  /* logical length (units)  */  | 
4279  | 0  |   Int   var1initpad=0;             /* var1 initial padding (digits)  */  | 
4280  | 0  |   Int   maxdigits;                 /* longest LHS or required acc length  */  | 
4281  | 0  |   Int   mult;                      /* multiplier for subtraction  */  | 
4282  | 0  |   Unit  thisunit;                  /* current unit being accumulated  */  | 
4283  | 0  |   Int   residue;                   /* for rounding  */  | 
4284  | 0  |   Int   reqdigits=set->digits;     /* requested DIGITS  */  | 
4285  | 0  |   Int   exponent;                  /* working exponent  */  | 
4286  | 0  |   Int   maxexponent=0;             /* DIVIDE maximum exponent if unrounded  */  | 
4287  | 0  |   uByte bits;                      /* working sign  */  | 
4288  | 0  |   Unit  *target;                   /* work  */  | 
4289  | 0  |   const Unit *source;              /* ..  */  | 
4290  | 0  |   uInt  const *pow;                /* ..  */  | 
4291  | 0  |   Int   shift, cut;                /* ..  */  | 
4292  |  |   #if DECSUBSET  | 
4293  |  |   Int   dropped;                   /* work  */  | 
4294  |  |   #endif  | 
4295  |  | 
  | 
4296  |  |   #if DECCHECK  | 
4297  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
4298  |  |   #endif  | 
4299  |  | 
  | 
4300  | 0  |   do {                             /* protect allocated storage  */ | 
4301  |  |     #if DECSUBSET  | 
4302  |  |     if (!set->extended) { | 
4303  |  |       /* reduce operands and set lostDigits status, as needed  */  | 
4304  |  |       if (lhs->digits>reqdigits) { | 
4305  |  |         alloclhs=decRoundOperand(lhs, set, status);  | 
4306  |  |         if (alloclhs==NULL) break;  | 
4307  |  |         lhs=alloclhs;  | 
4308  |  |         }  | 
4309  |  |       if (rhs->digits>reqdigits) { | 
4310  |  |         allocrhs=decRoundOperand(rhs, set, status);  | 
4311  |  |         if (allocrhs==NULL) break;  | 
4312  |  |         rhs=allocrhs;  | 
4313  |  |         }  | 
4314  |  |       }  | 
4315  |  |     #endif  | 
4316  |  |     /* [following code does not require input rounding]  */  | 
4317  |  | 
  | 
4318  | 0  |     bits=(lhs->bits^rhs->bits)&DECNEG;  /* assumed sign for divisions  */  | 
4319  |  |  | 
4320  |  |     /* handle infinities and NaNs  */  | 
4321  | 0  |     if (SPECIALARGS) {                  /* a special bit set  */ | 
4322  | 0  |       if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs  */ | 
4323  | 0  |         decNaNs(res, lhs, rhs, set, status);  | 
4324  | 0  |         break;  | 
4325  | 0  |         }  | 
4326  |  |       /* one or two infinities  */  | 
4327  | 0  |       if (decNumberIsInfinite(lhs)) {   /* LHS (dividend) is infinite  */ | 
4328  | 0  |         if (decNumberIsInfinite(rhs) || /* two infinities are invalid ..  */  | 
4329  | 0  |             op & (REMAINDER | REMNEAR)) { /* as is remainder of infinity  */ | 
4330  | 0  |           *status|=DEC_Invalid_operation;  | 
4331  | 0  |           break;  | 
4332  | 0  |           }  | 
4333  |  |         /* [Note that infinity/0 raises no exceptions]  */  | 
4334  | 0  |         uprv_decNumberZero(res);  | 
4335  | 0  |         res->bits=bits|DECINF;          /* set +/- infinity  */  | 
4336  | 0  |         break;  | 
4337  | 0  |         }  | 
4338  | 0  |        else {                           /* RHS (divisor) is infinite  */ | 
4339  | 0  |         residue=0;  | 
4340  | 0  |         if (op&(REMAINDER|REMNEAR)) { | 
4341  |  |           /* result is [finished clone of] lhs  */  | 
4342  | 0  |           decCopyFit(res, lhs, set, &residue, status);  | 
4343  | 0  |           }  | 
4344  | 0  |          else {  /* a division  */ | 
4345  | 0  |           uprv_decNumberZero(res);  | 
4346  | 0  |           res->bits=bits;               /* set +/- zero  */  | 
4347  |  |           /* for DIVIDEINT the exponent is always 0.  For DIVIDE, result  */  | 
4348  |  |           /* is a 0 with infinitely negative exponent, clamped to minimum  */  | 
4349  | 0  |           if (op&DIVIDE) { | 
4350  | 0  |             res->exponent=set->emin-set->digits+1;  | 
4351  | 0  |             *status|=DEC_Clamped;  | 
4352  | 0  |             }  | 
4353  | 0  |           }  | 
4354  | 0  |         decFinish(res, set, &residue, status);  | 
4355  | 0  |         break;  | 
4356  | 0  |         }  | 
4357  | 0  |       }  | 
4358  |  |  | 
4359  |  |     /* handle 0 rhs (x/0)  */  | 
4360  | 0  |     if (ISZERO(rhs)) {                  /* x/0 is always exceptional  */ | 
4361  | 0  |       if (ISZERO(lhs)) { | 
4362  | 0  |         uprv_decNumberZero(res);             /* [after lhs test]  */  | 
4363  | 0  |         *status|=DEC_Division_undefined;/* 0/0 will become NaN  */  | 
4364  | 0  |         }  | 
4365  | 0  |        else { | 
4366  | 0  |         uprv_decNumberZero(res);  | 
4367  | 0  |         if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation;  | 
4368  | 0  |          else { | 
4369  | 0  |           *status|=DEC_Division_by_zero; /* x/0  */  | 
4370  | 0  |           res->bits=bits|DECINF;         /* .. is +/- Infinity  */  | 
4371  | 0  |           }  | 
4372  | 0  |         }  | 
4373  | 0  |       break;}  | 
4374  |  |  | 
4375  |  |     /* handle 0 lhs (0/x)  */  | 
4376  | 0  |     if (ISZERO(lhs)) {                  /* 0/x [x!=0]  */ | 
4377  |  |       #if DECSUBSET  | 
4378  |  |       if (!set->extended) uprv_decNumberZero(res);  | 
4379  |  |        else { | 
4380  |  |       #endif  | 
4381  | 0  |         if (op&DIVIDE) { | 
4382  | 0  |           residue=0;  | 
4383  | 0  |           exponent=lhs->exponent-rhs->exponent; /* ideal exponent  */  | 
4384  | 0  |           uprv_decNumberCopy(res, lhs);      /* [zeros always fit]  */  | 
4385  | 0  |           res->bits=bits;               /* sign as computed  */  | 
4386  | 0  |           res->exponent=exponent;       /* exponent, too  */  | 
4387  | 0  |           decFinalize(res, set, &residue, status);   /* check exponent  */  | 
4388  | 0  |           }  | 
4389  | 0  |          else if (op&DIVIDEINT) { | 
4390  | 0  |           uprv_decNumberZero(res);           /* integer 0  */  | 
4391  | 0  |           res->bits=bits;               /* sign as computed  */  | 
4392  | 0  |           }  | 
4393  | 0  |          else {                         /* a remainder  */ | 
4394  | 0  |           exponent=rhs->exponent;       /* [save in case overwrite]  */  | 
4395  | 0  |           uprv_decNumberCopy(res, lhs);      /* [zeros always fit]  */  | 
4396  | 0  |           if (exponent<res->exponent) res->exponent=exponent; /* use lower  */  | 
4397  | 0  |           }  | 
4398  |  |       #if DECSUBSET  | 
4399  |  |         }  | 
4400  |  |       #endif  | 
4401  | 0  |       break;}  | 
4402  |  |  | 
4403  |  |     /* Precalculate exponent.  This starts off adjusted (and hence fits  */  | 
4404  |  |     /* in 31 bits) and becomes the usual unadjusted exponent as the  */  | 
4405  |  |     /* division proceeds.  The order of evaluation is important, here,  */  | 
4406  |  |     /* to avoid wrap.  */  | 
4407  | 0  |     exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits);  | 
4408  |  |  | 
4409  |  |     /* If the working exponent is -ve, then some quick exits are  */  | 
4410  |  |     /* possible because the quotient is known to be <1  */  | 
4411  |  |     /* [for REMNEAR, it needs to be < -1, as -0.5 could need work]  */  | 
4412  | 0  |     if (exponent<0 && !(op==DIVIDE)) { | 
4413  | 0  |       if (op&DIVIDEINT) { | 
4414  | 0  |         uprv_decNumberZero(res);                  /* integer part is 0  */  | 
4415  |  |         #if DECSUBSET  | 
4416  |  |         if (set->extended)  | 
4417  |  |         #endif  | 
4418  | 0  |           res->bits=bits;                    /* set +/- zero  */  | 
4419  | 0  |         break;}  | 
4420  |  |       /* fastpath remainders so long as the lhs has the smaller  */  | 
4421  |  |       /* (or equal) exponent  */  | 
4422  | 0  |       if (lhs->exponent<=rhs->exponent) { | 
4423  | 0  |         if (op&REMAINDER || exponent<-1) { | 
4424  |  |           /* It is REMAINDER or safe REMNEAR; result is [finished  */  | 
4425  |  |           /* clone of] lhs  (r = x - 0*y)  */  | 
4426  | 0  |           residue=0;  | 
4427  | 0  |           decCopyFit(res, lhs, set, &residue, status);  | 
4428  | 0  |           decFinish(res, set, &residue, status);  | 
4429  | 0  |           break;  | 
4430  | 0  |           }  | 
4431  |  |         /* [unsafe REMNEAR drops through]  */  | 
4432  | 0  |         }  | 
4433  | 0  |       } /* fastpaths  */  | 
4434  |  |  | 
4435  |  |     /* Long (slow) division is needed; roll up the sleeves... */  | 
4436  |  |  | 
4437  |  |     /* The accumulator will hold the quotient of the division.  */  | 
4438  |  |     /* If it needs to be too long for stack storage, then allocate.  */  | 
4439  | 0  |     acclength=D2U(reqdigits+DECDPUN);   /* in Units  */  | 
4440  | 0  |     if (acclength*sizeof(Unit)>sizeof(accbuff)) { | 
4441  |  |       /* printf("malloc dvacc %ld units\n", acclength);  */ | 
4442  | 0  |       allocacc=(Unit *)malloc(acclength*sizeof(Unit));  | 
4443  | 0  |       if (allocacc==NULL) {             /* hopeless -- abandon  */ | 
4444  | 0  |         *status|=DEC_Insufficient_storage;  | 
4445  | 0  |         break;}  | 
4446  | 0  |       acc=allocacc;                     /* use the allocated space  */  | 
4447  | 0  |       }  | 
4448  |  |  | 
4449  |  |     /* var1 is the padded LHS ready for subtractions.  */  | 
4450  |  |     /* If it needs to be too long for stack storage, then allocate.  */  | 
4451  |  |     /* The maximum units needed for var1 (long subtraction) is:  */  | 
4452  |  |     /* Enough for  */  | 
4453  |  |     /*     (rhs->digits+reqdigits-1) -- to allow full slide to right  */  | 
4454  |  |     /* or  (lhs->digits)             -- to allow for long lhs  */  | 
4455  |  |     /* whichever is larger  */  | 
4456  |  |     /*   +1                -- for rounding of slide to right  */  | 
4457  |  |     /*   +1                -- for leading 0s  */  | 
4458  |  |     /*   +1                -- for pre-adjust if a remainder or DIVIDEINT  */  | 
4459  |  |     /* [Note: unused units do not participate in decUnitAddSub data]  */  | 
4460  | 0  |     maxdigits=rhs->digits+reqdigits-1;  | 
4461  | 0  |     if (lhs->digits>maxdigits) maxdigits=lhs->digits;  | 
4462  | 0  |     var1units=D2U(maxdigits)+2;  | 
4463  |  |     /* allocate a guard unit above msu1 for REMAINDERNEAR  */  | 
4464  | 0  |     if (!(op&DIVIDE)) var1units++;  | 
4465  | 0  |     if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) { | 
4466  |  |       /* printf("malloc dvvar %ld units\n", var1units+1);  */ | 
4467  | 0  |       varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit));  | 
4468  | 0  |       if (varalloc==NULL) {             /* hopeless -- abandon  */ | 
4469  | 0  |         *status|=DEC_Insufficient_storage;  | 
4470  | 0  |         break;}  | 
4471  | 0  |       var1=varalloc;                    /* use the allocated space  */  | 
4472  | 0  |       }  | 
4473  |  |  | 
4474  |  |     /* Extend the lhs and rhs to full long subtraction length.  The lhs  */  | 
4475  |  |     /* is truly extended into the var1 buffer, with 0 padding, so a  */  | 
4476  |  |     /* subtract in place is always possible.  The rhs (var2) has  */  | 
4477  |  |     /* virtual padding (implemented by decUnitAddSub).  */  | 
4478  |  |     /* One guard unit was allocated above msu1 for rem=rem+rem in  */  | 
4479  |  |     /* REMAINDERNEAR.  */  | 
4480  | 0  |     msu1=var1+var1units-1;              /* msu of var1  */  | 
4481  | 0  |     source=lhs->lsu+D2U(lhs->digits)-1; /* msu of input array  */  | 
4482  | 0  |     for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source;  | 
4483  | 0  |     for (; target>=var1; target--) *target=0;  | 
4484  |  |  | 
4485  |  |     /* rhs (var2) is left-aligned with var1 at the start  */  | 
4486  | 0  |     var2ulen=var1units;                 /* rhs logical length (units)  */  | 
4487  | 0  |     var2units=D2U(rhs->digits);         /* rhs actual length (units)  */  | 
4488  | 0  |     var2=rhs->lsu;                      /* -> rhs array  */  | 
4489  | 0  |     msu2=var2+var2units-1;              /* -> msu of var2 [never changes]  */  | 
4490  |  |     /* now set up the variables which will be used for estimating the  */  | 
4491  |  |     /* multiplication factor.  If these variables are not exact, add  */  | 
4492  |  |     /* 1 to make sure that the multiplier is never overestimated.  */  | 
4493  | 0  |     msu2plus=*msu2;                     /* it's value ..  */  | 
4494  | 0  |     if (var2units>1) msu2plus++;        /* .. +1 if any more  */  | 
4495  | 0  |     msu2pair=(eInt)*msu2*(DECDPUNMAX+1);/* top two pair ..  */  | 
4496  | 0  |     if (var2units>1) {                  /* .. [else treat 2nd as 0]  */ | 
4497  | 0  |       msu2pair+=*(msu2-1);              /* ..  */  | 
4498  | 0  |       if (var2units>2) msu2pair++;      /* .. +1 if any more  */  | 
4499  | 0  |       }  | 
4500  |  |  | 
4501  |  |     /* The calculation is working in units, which may have leading zeros,  */  | 
4502  |  |     /* but the exponent was calculated on the assumption that they are  */  | 
4503  |  |     /* both left-aligned.  Adjust the exponent to compensate: add the  */  | 
4504  |  |     /* number of leading zeros in var1 msu and subtract those in var2 msu.  */  | 
4505  |  |     /* [This is actually done by counting the digits and negating, as  */  | 
4506  |  |     /* lead1=DECDPUN-digits1, and similarly for lead2.]  */  | 
4507  | 0  |     for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--;  | 
4508  | 0  |     for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++;  | 
4509  |  |  | 
4510  |  |     /* Now, if doing an integer divide or remainder, ensure that  */  | 
4511  |  |     /* the result will be Unit-aligned.  To do this, shift the var1  */  | 
4512  |  |     /* accumulator towards least if need be.  (It's much easier to  */  | 
4513  |  |     /* do this now than to reassemble the residue afterwards, if  */  | 
4514  |  |     /* doing a remainder.)  Also ensure the exponent is not negative.  */  | 
4515  | 0  |     if (!(op&DIVIDE)) { | 
4516  | 0  |       Unit *u;                          /* work  */  | 
4517  |  |       /* save the initial 'false' padding of var1, in digits  */  | 
4518  | 0  |       var1initpad=(var1units-D2U(lhs->digits))*DECDPUN;  | 
4519  |  |       /* Determine the shift to do.  */  | 
4520  | 0  |       if (exponent<0) cut=-exponent;  | 
4521  | 0  |        else cut=DECDPUN-exponent%DECDPUN;  | 
4522  | 0  |       decShiftToLeast(var1, var1units, cut);  | 
4523  | 0  |       exponent+=cut;                    /* maintain numerical value  */  | 
4524  | 0  |       var1initpad-=cut;                 /* .. and reduce padding  */  | 
4525  |  |       /* clean any most-significant units which were just emptied  */  | 
4526  | 0  |       for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0;  | 
4527  | 0  |       } /* align  */  | 
4528  | 0  |      else { /* is DIVIDE  */ | 
4529  | 0  |       maxexponent=lhs->exponent-rhs->exponent;    /* save  */  | 
4530  |  |       /* optimization: if the first iteration will just produce 0,  */  | 
4531  |  |       /* preadjust to skip it [valid for DIVIDE only]  */  | 
4532  | 0  |       if (*msu1<*msu2) { | 
4533  | 0  |         var2ulen--;                     /* shift down  */  | 
4534  | 0  |         exponent-=DECDPUN;              /* update the exponent  */  | 
4535  | 0  |         }  | 
4536  | 0  |       }  | 
4537  |  |  | 
4538  |  |     /* ---- start the long-division loops ------------------------------  */  | 
4539  | 0  |     accunits=0;                         /* no units accumulated yet  */  | 
4540  | 0  |     accdigits=0;                        /* .. or digits  */  | 
4541  | 0  |     accnext=acc+acclength-1;            /* -> msu of acc [NB: allows digits+1]  */  | 
4542  | 0  |     for (;;) {                          /* outer forever loop  */ | 
4543  | 0  |       thisunit=0;                       /* current unit assumed 0  */  | 
4544  |  |       /* find the next unit  */  | 
4545  | 0  |       for (;;) {                        /* inner forever loop  */ | 
4546  |  |         /* strip leading zero units [from either pre-adjust or from  */  | 
4547  |  |         /* subtract last time around].  Leave at least one unit.  */  | 
4548  | 0  |         for (; *msu1==0 && msu1>var1; msu1--) var1units--;  | 
4549  |  | 
  | 
4550  | 0  |         if (var1units<var2ulen) break;       /* var1 too low for subtract  */  | 
4551  | 0  |         if (var1units==var2ulen) {           /* unit-by-unit compare needed  */ | 
4552  |  |           /* compare the two numbers, from msu  */  | 
4553  | 0  |           const Unit *pv1, *pv2;  | 
4554  | 0  |           Unit v2;                           /* units to compare  */  | 
4555  | 0  |           pv2=msu2;                          /* -> msu  */  | 
4556  | 0  |           for (pv1=msu1; ; pv1--, pv2--) { | 
4557  |  |             /* v1=*pv1 -- always OK  */  | 
4558  | 0  |             v2=0;                            /* assume in padding  */  | 
4559  | 0  |             if (pv2>=var2) v2=*pv2;          /* in range  */  | 
4560  | 0  |             if (*pv1!=v2) break;             /* no longer the same  */  | 
4561  | 0  |             if (pv1==var1) break;            /* done; leave pv1 as is  */  | 
4562  | 0  |             }  | 
4563  |  |           /* here when all inspected or a difference seen  */  | 
4564  | 0  |           if (*pv1<v2) break;                /* var1 too low to subtract  */  | 
4565  | 0  |           if (*pv1==v2) {                    /* var1 == var2  */ | 
4566  |  |             /* reach here if var1 and var2 are identical; subtraction  */  | 
4567  |  |             /* would increase digit by one, and the residue will be 0 so  */  | 
4568  |  |             /* the calculation is done; leave the loop with residue=0.  */  | 
4569  | 0  |             thisunit++;                      /* as though subtracted  */  | 
4570  | 0  |             *var1=0;                         /* set var1 to 0  */  | 
4571  | 0  |             var1units=1;                     /* ..  */  | 
4572  | 0  |             break;  /* from inner  */  | 
4573  | 0  |             } /* var1 == var2  */  | 
4574  |  |           /* *pv1>v2.  Prepare for real subtraction; the lengths are equal  */  | 
4575  |  |           /* Estimate the multiplier (there's always a msu1-1)...  */  | 
4576  |  |           /* Bring in two units of var2 to provide a good estimate.  */  | 
4577  | 0  |           mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair);  | 
4578  | 0  |           } /* lengths the same  */  | 
4579  | 0  |          else { /* var1units > var2ulen, so subtraction is safe  */ | 
4580  |  |           /* The var2 msu is one unit towards the lsu of the var1 msu,  */  | 
4581  |  |           /* so only one unit for var2 can be used.  */  | 
4582  | 0  |           mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus);  | 
4583  | 0  |           }  | 
4584  | 0  |         if (mult==0) mult=1;                 /* must always be at least 1  */  | 
4585  |  |         /* subtraction needed; var1 is > var2  */  | 
4586  | 0  |         thisunit=(Unit)(thisunit+mult);      /* accumulate  */  | 
4587  |  |         /* subtract var1-var2, into var1; only the overlap needs  */  | 
4588  |  |         /* processing, as this is an in-place calculation  */  | 
4589  | 0  |         shift=var2ulen-var2units;  | 
4590  |  |         #if DECTRACE  | 
4591  |  |           decDumpAr('1', &var1[shift], var1units-shift); | 
4592  |  |           decDumpAr('2', var2, var2units); | 
4593  |  |           printf("m=%ld\n", -mult); | 
4594  |  |         #endif  | 
4595  | 0  |         decUnitAddSub(&var1[shift], var1units-shift,  | 
4596  | 0  |                       var2, var2units, 0,  | 
4597  | 0  |                       &var1[shift], -mult);  | 
4598  |  |         #if DECTRACE  | 
4599  |  |           decDumpAr('#', &var1[shift], var1units-shift); | 
4600  |  |         #endif  | 
4601  |  |         /* var1 now probably has leading zeros; these are removed at the  */  | 
4602  |  |         /* top of the inner loop.  */  | 
4603  | 0  |         } /* inner loop  */  | 
4604  |  |  | 
4605  |  |       /* The next unit has been calculated in full; unless it's a  */  | 
4606  |  |       /* leading zero, add to acc  */  | 
4607  | 0  |       if (accunits!=0 || thisunit!=0) {      /* is first or non-zero  */ | 
4608  | 0  |         *accnext=thisunit;                   /* store in accumulator  */  | 
4609  |  |         /* account exactly for the new digits  */  | 
4610  | 0  |         if (accunits==0) { | 
4611  | 0  |           accdigits++;                       /* at least one  */  | 
4612  | 0  |           for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++;  | 
4613  | 0  |           }  | 
4614  | 0  |          else accdigits+=DECDPUN;  | 
4615  | 0  |         accunits++;                          /* update count  */  | 
4616  | 0  |         accnext--;                           /* ready for next  */  | 
4617  | 0  |         if (accdigits>reqdigits) break;      /* have enough digits  */  | 
4618  | 0  |         }  | 
4619  |  |  | 
4620  |  |       /* if the residue is zero, the operation is done (unless divide  */  | 
4621  |  |       /* or divideInteger and still not enough digits yet)  */  | 
4622  | 0  |       if (*var1==0 && var1units==1) {        /* residue is 0  */ | 
4623  | 0  |         if (op&(REMAINDER|REMNEAR)) break;  | 
4624  | 0  |         if ((op&DIVIDE) && (exponent<=maxexponent)) break;  | 
4625  |  |         /* [drop through if divideInteger]  */  | 
4626  | 0  |         }  | 
4627  |  |       /* also done enough if calculating remainder or integer  */  | 
4628  |  |       /* divide and just did the last ('units') unit  */ | 
4629  | 0  |       if (exponent==0 && !(op&DIVIDE)) break;  | 
4630  |  |  | 
4631  |  |       /* to get here, var1 is less than var2, so divide var2 by the per-  */  | 
4632  |  |       /* Unit power of ten and go for the next digit  */  | 
4633  | 0  |       var2ulen--;                            /* shift down  */  | 
4634  | 0  |       exponent-=DECDPUN;                     /* update the exponent  */  | 
4635  | 0  |       } /* outer loop  */  | 
4636  |  |  | 
4637  |  |     /* ---- division is complete ---------------------------------------  */  | 
4638  |  |     /* here: acc      has at least reqdigits+1 of good results (or fewer  */  | 
4639  |  |     /*                if early stop), starting at accnext+1 (its lsu)  */  | 
4640  |  |     /*       var1     has any residue at the stopping point  */  | 
4641  |  |     /*       accunits is the number of digits collected in acc  */  | 
4642  | 0  |     if (accunits==0) {             /* acc is 0  */ | 
4643  | 0  |       accunits=1;                  /* show have a unit ..  */  | 
4644  | 0  |       accdigits=1;                 /* ..  */  | 
4645  | 0  |       *accnext=0;                  /* .. whose value is 0  */  | 
4646  | 0  |       }  | 
4647  | 0  |      else accnext++;               /* back to last placed  */  | 
4648  |  |     /* accnext now -> lowest unit of result  */  | 
4649  |  | 
  | 
4650  | 0  |     residue=0;                     /* assume no residue  */  | 
4651  | 0  |     if (op&DIVIDE) { | 
4652  |  |       /* record the presence of any residue, for rounding  */  | 
4653  | 0  |       if (*var1!=0 || var1units>1) residue=1;  | 
4654  | 0  |        else { /* no residue  */ | 
4655  |  |         /* Had an exact division; clean up spurious trailing 0s.  */  | 
4656  |  |         /* There will be at most DECDPUN-1, from the final multiply,  */  | 
4657  |  |         /* and then only if the result is non-0 (and even) and the  */  | 
4658  |  |         /* exponent is 'loose'.  */  | 
4659  |  |         #if DECDPUN>1  | 
4660  |  |         Unit lsu=*accnext;  | 
4661  |  |         if (!(lsu&0x01) && (lsu!=0)) { | 
4662  |  |           /* count the trailing zeros  */  | 
4663  |  |           Int drop=0;  | 
4664  |  |           for (;; drop++) {    /* [will terminate because lsu!=0]  */ | 
4665  |  |             if (exponent>=maxexponent) break;     /* don't chop real 0s  */  | 
4666  |  |             #if DECDPUN<=4  | 
4667  |  |               if ((lsu-QUOT10(lsu, drop+1)  | 
4668  |  |                   *powers[drop+1])!=0) break;     /* found non-0 digit  */  | 
4669  |  |             #else  | 
4670  |  |               if (lsu%powers[drop+1]!=0) break;   /* found non-0 digit  */  | 
4671  |  |             #endif  | 
4672  |  |             exponent++;  | 
4673  |  |             }  | 
4674  |  |           if (drop>0) { | 
4675  |  |             accunits=decShiftToLeast(accnext, accunits, drop);  | 
4676  |  |             accdigits=decGetDigits(accnext, accunits);  | 
4677  |  |             accunits=D2U(accdigits);  | 
4678  |  |             /* [exponent was adjusted in the loop]  */  | 
4679  |  |             }  | 
4680  |  |           } /* neither odd nor 0  */  | 
4681  |  |         #endif  | 
4682  | 0  |         } /* exact divide  */  | 
4683  | 0  |       } /* divide  */  | 
4684  | 0  |      else /* op!=DIVIDE */ { | 
4685  |  |       /* check for coefficient overflow  */  | 
4686  | 0  |       if (accdigits+exponent>reqdigits) { | 
4687  | 0  |         *status|=DEC_Division_impossible;  | 
4688  | 0  |         break;  | 
4689  | 0  |         }  | 
4690  | 0  |       if (op & (REMAINDER|REMNEAR)) { | 
4691  |  |         /* [Here, the exponent will be 0, because var1 was adjusted  */  | 
4692  |  |         /* appropriately.]  */  | 
4693  | 0  |         Int postshift;                       /* work  */  | 
4694  | 0  |         Flag wasodd=0;                       /* integer was odd  */  | 
4695  | 0  |         Unit *quotlsu;                       /* for save  */  | 
4696  | 0  |         Int  quotdigits;                     /* ..  */  | 
4697  |  | 
  | 
4698  | 0  |         bits=lhs->bits;                      /* remainder sign is always as lhs  */  | 
4699  |  |  | 
4700  |  |         /* Fastpath when residue is truly 0 is worthwhile [and  */  | 
4701  |  |         /* simplifies the code below]  */  | 
4702  | 0  |         if (*var1==0 && var1units==1) {      /* residue is 0  */ | 
4703  | 0  |           Int exp=lhs->exponent;             /* save min(exponents)  */  | 
4704  | 0  |           if (rhs->exponent<exp) exp=rhs->exponent;  | 
4705  | 0  |           uprv_decNumberZero(res);                /* 0 coefficient  */  | 
4706  |  |           #if DECSUBSET  | 
4707  |  |           if (set->extended)  | 
4708  |  |           #endif  | 
4709  | 0  |           res->exponent=exp;                 /* .. with proper exponent  */  | 
4710  | 0  |           res->bits=(uByte)(bits&DECNEG);          /* [cleaned]  */  | 
4711  | 0  |           decFinish(res, set, &residue, status);   /* might clamp  */  | 
4712  | 0  |           break;  | 
4713  | 0  |           }  | 
4714  |  |         /* note if the quotient was odd  */  | 
4715  | 0  |         if (*accnext & 0x01) wasodd=1;       /* acc is odd  */  | 
4716  | 0  |         quotlsu=accnext;                     /* save in case need to reinspect  */  | 
4717  | 0  |         quotdigits=accdigits;                /* ..  */  | 
4718  |  |  | 
4719  |  |         /* treat the residue, in var1, as the value to return, via acc  */  | 
4720  |  |         /* calculate the unused zero digits.  This is the smaller of:  */  | 
4721  |  |         /*   var1 initial padding (saved above)  */  | 
4722  |  |         /*   var2 residual padding, which happens to be given by:  */  | 
4723  | 0  |         postshift=var1initpad+exponent-lhs->exponent+rhs->exponent;  | 
4724  |  |         /* [the 'exponent' term accounts for the shifts during divide]  */  | 
4725  | 0  |         if (var1initpad<postshift) postshift=var1initpad;  | 
4726  |  |  | 
4727  |  |         /* shift var1 the requested amount, and adjust its digits  */  | 
4728  | 0  |         var1units=decShiftToLeast(var1, var1units, postshift);  | 
4729  | 0  |         accnext=var1;  | 
4730  | 0  |         accdigits=decGetDigits(var1, var1units);  | 
4731  | 0  |         accunits=D2U(accdigits);  | 
4732  |  | 
  | 
4733  | 0  |         exponent=lhs->exponent;         /* exponent is smaller of lhs & rhs  */  | 
4734  | 0  |         if (rhs->exponent<exponent) exponent=rhs->exponent;  | 
4735  |  |  | 
4736  |  |         /* Now correct the result if doing remainderNear; if it  */  | 
4737  |  |         /* (looking just at coefficients) is > rhs/2, or == rhs/2 and  */  | 
4738  |  |         /* the integer was odd then the result should be rem-rhs.  */  | 
4739  | 0  |         if (op&REMNEAR) { | 
4740  | 0  |           Int compare, tarunits;        /* work  */  | 
4741  | 0  |           Unit *up;                     /* ..  */  | 
4742  |  |           /* calculate remainder*2 into the var1 buffer (which has  */  | 
4743  |  |           /* 'headroom' of an extra unit and hence enough space)  */  | 
4744  |  |           /* [a dedicated 'double' loop would be faster, here]  */  | 
4745  | 0  |           tarunits=decUnitAddSub(accnext, accunits, accnext, accunits,  | 
4746  | 0  |                                  0, accnext, 1);  | 
4747  |  |           /* decDumpAr('r', accnext, tarunits);  */ | 
4748  |  |  | 
4749  |  |           /* Here, accnext (var1) holds tarunits Units with twice the  */  | 
4750  |  |           /* remainder's coefficient, which must now be compared to the  */  | 
4751  |  |           /* RHS.  The remainder's exponent may be smaller than the RHS's.  */  | 
4752  | 0  |           compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits),  | 
4753  | 0  |                                  rhs->exponent-exponent);  | 
4754  | 0  |           if (compare==BADINT) {             /* deep trouble  */ | 
4755  | 0  |             *status|=DEC_Insufficient_storage;  | 
4756  | 0  |             break;}  | 
4757  |  |  | 
4758  |  |           /* now restore the remainder by dividing by two; the lsu  */  | 
4759  |  |           /* is known to be even.  */  | 
4760  | 0  |           for (up=accnext; up<accnext+tarunits; up++) { | 
4761  | 0  |             Int half;              /* half to add to lower unit  */  | 
4762  | 0  |             half=*up & 0x01;  | 
4763  | 0  |             *up/=2;                /* [shift]  */  | 
4764  | 0  |             if (!half) continue;  | 
4765  | 0  |             *(up-1)+=(DECDPUNMAX+1)/2;  | 
4766  | 0  |             }  | 
4767  |  |           /* [accunits still describes the original remainder length]  */  | 
4768  |  | 
  | 
4769  | 0  |           if (compare>0 || (compare==0 && wasodd)) { /* adjustment needed  */ | 
4770  | 0  |             Int exp, expunits, exprem;       /* work  */  | 
4771  |  |             /* This is effectively causing round-up of the quotient,  */  | 
4772  |  |             /* so if it was the rare case where it was full and all  */  | 
4773  |  |             /* nines, it would overflow and hence division-impossible  */  | 
4774  |  |             /* should be raised  */  | 
4775  | 0  |             Flag allnines=0;                 /* 1 if quotient all nines  */  | 
4776  | 0  |             if (quotdigits==reqdigits) {     /* could be borderline  */ | 
4777  | 0  |               for (up=quotlsu; ; up++) { | 
4778  | 0  |                 if (quotdigits>DECDPUN) { | 
4779  | 0  |                   if (*up!=DECDPUNMAX) break;/* non-nines  */  | 
4780  | 0  |                   }  | 
4781  | 0  |                  else {                      /* this is the last Unit  */ | 
4782  | 0  |                   if (*up==powers[quotdigits]-1) allnines=1;  | 
4783  | 0  |                   break;  | 
4784  | 0  |                   }  | 
4785  | 0  |                 quotdigits-=DECDPUN;         /* checked those digits  */  | 
4786  | 0  |                 } /* up  */  | 
4787  | 0  |               } /* borderline check  */  | 
4788  | 0  |             if (allnines) { | 
4789  | 0  |               *status|=DEC_Division_impossible;  | 
4790  | 0  |               break;}  | 
4791  |  |  | 
4792  |  |             /* rem-rhs is needed; the sign will invert.  Again, var1  */  | 
4793  |  |             /* can safely be used for the working Units array.  */  | 
4794  | 0  |             exp=rhs->exponent-exponent;      /* RHS padding needed  */  | 
4795  |  |             /* Calculate units and remainder from exponent.  */  | 
4796  | 0  |             expunits=exp/DECDPUN;  | 
4797  | 0  |             exprem=exp%DECDPUN;  | 
4798  |  |             /* subtract [A+B*(-m)]; the result will always be negative  */  | 
4799  | 0  |             accunits=-decUnitAddSub(accnext, accunits,  | 
4800  | 0  |                                     rhs->lsu, D2U(rhs->digits),  | 
4801  | 0  |                                     expunits, accnext, -(Int)powers[exprem]);  | 
4802  | 0  |             accdigits=decGetDigits(accnext, accunits); /* count digits exactly  */  | 
4803  | 0  |             accunits=D2U(accdigits);    /* and recalculate the units for copy  */  | 
4804  |  |             /* [exponent is as for original remainder]  */  | 
4805  | 0  |             bits^=DECNEG;               /* flip the sign  */  | 
4806  | 0  |             }  | 
4807  | 0  |           } /* REMNEAR  */  | 
4808  | 0  |         } /* REMAINDER or REMNEAR  */  | 
4809  | 0  |       } /* not DIVIDE  */  | 
4810  |  |  | 
4811  |  |     /* Set exponent and bits  */  | 
4812  | 0  |     res->exponent=exponent;  | 
4813  | 0  |     res->bits=(uByte)(bits&DECNEG);          /* [cleaned]  */  | 
4814  |  |  | 
4815  |  |     /* Now the coefficient.  */  | 
4816  | 0  |     decSetCoeff(res, set, accnext, accdigits, &residue, status);  | 
4817  |  | 
  | 
4818  | 0  |     decFinish(res, set, &residue, status);   /* final cleanup  */  | 
4819  |  | 
  | 
4820  |  |     #if DECSUBSET  | 
4821  |  |     /* If a divide then strip trailing zeros if subset [after round]  */  | 
4822  |  |     if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, 1, &dropped);  | 
4823  |  |     #endif  | 
4824  | 0  |     } while(0);                              /* end protected  */  | 
4825  |  |  | 
4826  | 0  |   if (varalloc!=NULL) free(varalloc);   /* drop any storage used  */  | 
4827  | 0  |   if (allocacc!=NULL) free(allocacc);   /* ..  */  | 
4828  |  |   #if DECSUBSET  | 
4829  |  |   if (allocrhs!=NULL) free(allocrhs);   /* ..  */  | 
4830  |  |   if (alloclhs!=NULL) free(alloclhs);   /* ..  */  | 
4831  |  |   #endif  | 
4832  | 0  |   return res;  | 
4833  | 0  |   } /* decDivideOp  */  | 
4834  |  |  | 
4835  |  | /* ------------------------------------------------------------------ */  | 
4836  |  | /* decMultiplyOp -- multiplication operation                          */  | 
4837  |  | /*                                                                    */  | 
4838  |  | /*  This routine performs the multiplication C=A x B.                 */  | 
4839  |  | /*                                                                    */  | 
4840  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X*X)         */  | 
4841  |  | /*   lhs is A                                                         */  | 
4842  |  | /*   rhs is B                                                         */  | 
4843  |  | /*   set is the context                                               */  | 
4844  |  | /*   status is the usual accumulator                                  */  | 
4845  |  | /*                                                                    */  | 
4846  |  | /* C must have space for set->digits digits.                          */  | 
4847  |  | /*                                                                    */  | 
4848  |  | /* ------------------------------------------------------------------ */  | 
4849  |  | /* 'Classic' multiplication is used rather than Karatsuba, as the     */  | 
4850  |  | /* latter would give only a minor improvement for the short numbers   */  | 
4851  |  | /* expected to be handled most (and uses much more memory).           */  | 
4852  |  | /*                                                                    */  | 
4853  |  | /* There are two major paths here: the general-purpose ('old code')   */ | 
4854  |  | /* path which handles all DECDPUN values, and a fastpath version      */  | 
4855  |  | /* which is used if 64-bit ints are available, DECDPUN<=4, and more   */  | 
4856  |  | /* than two calls to decUnitAddSub would be made.                     */  | 
4857  |  | /*                                                                    */  | 
4858  |  | /* The fastpath version lumps units together into 8-digit or 9-digit  */  | 
4859  |  | /* chunks, and also uses a lazy carry strategy to minimise expensive  */  | 
4860  |  | /* 64-bit divisions.  The chunks are then broken apart again into     */  | 
4861  |  | /* units for continuing processing.  Despite this overhead, the       */  | 
4862  |  | /* fastpath can speed up some 16-digit operations by 10x (and much    */  | 
4863  |  | /* more for higher-precision calculations).                           */  | 
4864  |  | /*                                                                    */  | 
4865  |  | /* A buffer always has to be used for the accumulator; in the         */  | 
4866  |  | /* fastpath, buffers are also always needed for the chunked copies of */  | 
4867  |  | /* of the operand coefficients.                                       */  | 
4868  |  | /* Static buffers are larger than needed just for multiply, to allow  */  | 
4869  |  | /* for calls from other operations (notably exp).                     */  | 
4870  |  | /* ------------------------------------------------------------------ */  | 
4871  |  | #define FASTMUL (DECUSE64 && DECDPUN<5)  | 
4872  |  | static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs,  | 
4873  |  |                                  const decNumber *rhs, decContext *set,  | 
4874  | 0  |                                  uInt *status) { | 
4875  | 0  |   Int    accunits;                 /* Units of accumulator in use  */  | 
4876  | 0  |   Int    exponent;                 /* work  */  | 
4877  | 0  |   Int    residue=0;                /* rounding residue  */  | 
4878  | 0  |   uByte  bits;                     /* result sign  */  | 
4879  | 0  |   Unit  *acc;                      /* -> accumulator Unit array  */  | 
4880  | 0  |   Int    needbytes;                /* size calculator  */  | 
4881  | 0  |   void  *allocacc=NULL;            /* -> allocated accumulator, iff allocated  */  | 
4882  | 0  |   Unit  accbuff[SD2U(DECBUFFER*4+1)]; /* buffer (+1 for DECBUFFER==0,  */  | 
4883  |  |                                    /* *4 for calls from other operations)  */  | 
4884  | 0  |   const Unit *mer, *mermsup;       /* work  */  | 
4885  | 0  |   Int   madlength;                 /* Units in multiplicand  */  | 
4886  | 0  |   Int   shift;                     /* Units to shift multiplicand by  */  | 
4887  |  | 
  | 
4888  | 0  |   #if FASTMUL  | 
4889  |  |     /* if DECDPUN is 1 or 3 work in base 10**9, otherwise  */  | 
4890  |  |     /* (DECDPUN is 2 or 4) then work in base 10**8  */  | 
4891  | 0  |     #if DECDPUN & 1                /* odd  */  | 
4892  | 0  |       #define FASTBASE 1000000000  /* base  */  | 
4893  | 0  |       #define FASTDIGS          9  /* digits in base  */  | 
4894  | 0  |       #define FASTLAZY         18  /* carry resolution point [1->18]  */  | 
4895  |  |     #else  | 
4896  |  |       #define FASTBASE  100000000  | 
4897  |  |       #define FASTDIGS          8  | 
4898  |  |       #define FASTLAZY       1844  /* carry resolution point [1->1844]  */  | 
4899  |  |     #endif  | 
4900  |  |     /* three buffers are used, two for chunked copies of the operands  */  | 
4901  |  |     /* (base 10**8 or base 10**9) and one base 2**64 accumulator with  */  | 
4902  |  |     /* lazy carry evaluation  */  | 
4903  | 0  |     uInt   zlhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0)  */  | 
4904  | 0  |     uInt  *zlhi=zlhibuff;                 /* -> lhs array  */  | 
4905  | 0  |     uInt  *alloclhi=NULL;                 /* -> allocated buffer, iff allocated  */  | 
4906  | 0  |     uInt   zrhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0)  */  | 
4907  | 0  |     uInt  *zrhi=zrhibuff;                 /* -> rhs array  */  | 
4908  | 0  |     uInt  *allocrhi=NULL;                 /* -> allocated buffer, iff allocated  */  | 
4909  | 0  |     uLong  zaccbuff[(DECBUFFER*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0)  */  | 
4910  |  |     /* [allocacc is shared for both paths, as only one will run]  */  | 
4911  | 0  |     uLong *zacc=zaccbuff;          /* -> accumulator array for exact result  */  | 
4912  | 0  |     #if DECDPUN==1  | 
4913  | 0  |     Int    zoff;                   /* accumulator offset  */  | 
4914  | 0  |     #endif  | 
4915  | 0  |     uInt  *lip, *rip;              /* item pointers  */  | 
4916  | 0  |     uInt  *lmsi, *rmsi;            /* most significant items  */  | 
4917  | 0  |     Int    ilhs, irhs, iacc;       /* item counts in the arrays  */  | 
4918  | 0  |     Int    lazy;                   /* lazy carry counter  */  | 
4919  | 0  |     uLong  lcarry;                 /* uLong carry  */  | 
4920  | 0  |     uInt   carry;                  /* carry (NB not uLong)  */  | 
4921  | 0  |     Int    count;                  /* work  */  | 
4922  | 0  |     const  Unit *cup;              /* ..  */  | 
4923  | 0  |     Unit  *up;                     /* ..  */  | 
4924  | 0  |     uLong *lp;                     /* ..  */  | 
4925  | 0  |     Int    p;                      /* ..  */  | 
4926  | 0  |   #endif  | 
4927  |  | 
  | 
4928  |  |   #if DECSUBSET  | 
4929  |  |     decNumber *alloclhs=NULL;      /* -> allocated buffer, iff allocated  */  | 
4930  |  |     decNumber *allocrhs=NULL;      /* -> allocated buffer, iff allocated  */  | 
4931  |  |   #endif  | 
4932  |  | 
  | 
4933  |  |   #if DECCHECK  | 
4934  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
4935  |  |   #endif  | 
4936  |  |  | 
4937  |  |   /* precalculate result sign  */  | 
4938  | 0  |   bits=(uByte)((lhs->bits^rhs->bits)&DECNEG);  | 
4939  |  |  | 
4940  |  |   /* handle infinities and NaNs  */  | 
4941  | 0  |   if (SPECIALARGS) {               /* a special bit set  */ | 
4942  | 0  |     if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs  */ | 
4943  | 0  |       decNaNs(res, lhs, rhs, set, status);  | 
4944  | 0  |       return res;}  | 
4945  |  |     /* one or two infinities; Infinity * 0 is invalid  */  | 
4946  | 0  |     if (((lhs->bits & DECINF)==0 && ISZERO(lhs))  | 
4947  | 0  |       ||((rhs->bits & DECINF)==0 && ISZERO(rhs))) { | 
4948  | 0  |       *status|=DEC_Invalid_operation;  | 
4949  | 0  |       return res;}  | 
4950  | 0  |     uprv_decNumberZero(res);  | 
4951  | 0  |     res->bits=bits|DECINF;         /* infinity  */  | 
4952  | 0  |     return res;}  | 
4953  |  |  | 
4954  |  |   /* For best speed, as in DMSRCN [the original Rexx numerics  */  | 
4955  |  |   /* module], use the shorter number as the multiplier (rhs) and  */  | 
4956  |  |   /* the longer as the multiplicand (lhs) to minimise the number of  */  | 
4957  |  |   /* adds (partial products)  */  | 
4958  | 0  |   if (lhs->digits<rhs->digits) {   /* swap...  */ | 
4959  | 0  |     const decNumber *hold=lhs;  | 
4960  | 0  |     lhs=rhs;  | 
4961  | 0  |     rhs=hold;  | 
4962  | 0  |     }  | 
4963  |  | 
  | 
4964  | 0  |   do {                             /* protect allocated storage  */ | 
4965  |  |     #if DECSUBSET  | 
4966  |  |     if (!set->extended) { | 
4967  |  |       /* reduce operands and set lostDigits status, as needed  */  | 
4968  |  |       if (lhs->digits>set->digits) { | 
4969  |  |         alloclhs=decRoundOperand(lhs, set, status);  | 
4970  |  |         if (alloclhs==NULL) break;  | 
4971  |  |         lhs=alloclhs;  | 
4972  |  |         }  | 
4973  |  |       if (rhs->digits>set->digits) { | 
4974  |  |         allocrhs=decRoundOperand(rhs, set, status);  | 
4975  |  |         if (allocrhs==NULL) break;  | 
4976  |  |         rhs=allocrhs;  | 
4977  |  |         }  | 
4978  |  |       }  | 
4979  |  |     #endif  | 
4980  |  |     /* [following code does not require input rounding]  */  | 
4981  |  | 
  | 
4982  |  |     #if FASTMUL                    /* fastpath can be used  */  | 
4983  |  |     /* use the fast path if there are enough digits in the shorter  */  | 
4984  |  |     /* operand to make the setup and takedown worthwhile  */  | 
4985  | 0  |     #define NEEDTWO (DECDPUN*2)    /* within two decUnitAddSub calls  */  | 
4986  | 0  |     if (rhs->digits>NEEDTWO) {     /* use fastpath...  */ | 
4987  |  |       /* calculate the number of elements in each array  */  | 
4988  | 0  |       ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; /* [ceiling]  */  | 
4989  | 0  |       irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; /* ..  */  | 
4990  | 0  |       iacc=ilhs+irhs;  | 
4991  |  |  | 
4992  |  |       /* allocate buffers if required, as usual  */  | 
4993  | 0  |       needbytes=ilhs*sizeof(uInt);  | 
4994  | 0  |       if (needbytes>(Int)sizeof(zlhibuff)) { | 
4995  | 0  |         alloclhi=(uInt *)malloc(needbytes);  | 
4996  | 0  |         zlhi=alloclhi;}  | 
4997  | 0  |       needbytes=irhs*sizeof(uInt);  | 
4998  | 0  |       if (needbytes>(Int)sizeof(zrhibuff)) { | 
4999  | 0  |         allocrhi=(uInt *)malloc(needbytes);  | 
5000  | 0  |         zrhi=allocrhi;}  | 
5001  |  |  | 
5002  |  |       /* Allocating the accumulator space needs a special case when  */  | 
5003  |  |       /* DECDPUN=1 because when converting the accumulator to Units  */  | 
5004  |  |       /* after the multiplication each 8-byte item becomes 9 1-byte  */  | 
5005  |  |       /* units.  Therefore iacc extra bytes are needed at the front  */  | 
5006  |  |       /* (rounded up to a multiple of 8 bytes), and the uLong  */  | 
5007  |  |       /* accumulator starts offset the appropriate number of units  */  | 
5008  |  |       /* to the right to avoid overwrite during the unchunking.  */  | 
5009  |  |  | 
5010  |  |       /* Make sure no signed int overflow below. This is always true */  | 
5011  |  |       /* if the given numbers have less digits than DEC_MAX_DIGITS. */  | 
5012  | 0  |       U_ASSERT((uint32_t)iacc <= INT32_MAX/sizeof(uLong));  | 
5013  | 0  |       needbytes=iacc*sizeof(uLong);  | 
5014  | 0  |       #if DECDPUN==1  | 
5015  | 0  |       zoff=(iacc+7)/8;        /* items to offset by  */  | 
5016  | 0  |       needbytes+=zoff*8;  | 
5017  | 0  |       #endif  | 
5018  | 0  |       if (needbytes>(Int)sizeof(zaccbuff)) { | 
5019  | 0  |         allocacc=(uLong *)malloc(needbytes);  | 
5020  | 0  |         zacc=(uLong *)allocacc;}  | 
5021  | 0  |       if (zlhi==NULL||zrhi==NULL||zacc==NULL) { | 
5022  | 0  |         *status|=DEC_Insufficient_storage;  | 
5023  | 0  |         break;}  | 
5024  |  |  | 
5025  | 0  |       acc=(Unit *)zacc;       /* -> target Unit array  */  | 
5026  | 0  |       #if DECDPUN==1  | 
5027  | 0  |       zacc+=zoff;             /* start uLong accumulator to right  */  | 
5028  | 0  |       #endif  | 
5029  |  |  | 
5030  |  |       /* assemble the chunked copies of the left and right sides  */  | 
5031  | 0  |       for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++)  | 
5032  | 0  |         for (p=0, *lip=0; p<FASTDIGS && count>0;  | 
5033  | 0  |              p+=DECDPUN, cup++, count-=DECDPUN)  | 
5034  | 0  |           *lip+=*cup*powers[p];  | 
5035  | 0  |       lmsi=lip-1;     /* save -> msi  */  | 
5036  | 0  |       for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++)  | 
5037  | 0  |         for (p=0, *rip=0; p<FASTDIGS && count>0;  | 
5038  | 0  |              p+=DECDPUN, cup++, count-=DECDPUN)  | 
5039  | 0  |           *rip+=*cup*powers[p];  | 
5040  | 0  |       rmsi=rip-1;     /* save -> msi  */  | 
5041  |  |  | 
5042  |  |       /* zero the accumulator  */  | 
5043  | 0  |       for (lp=zacc; lp<zacc+iacc; lp++) *lp=0;  | 
5044  |  |  | 
5045  |  |       /* Start the multiplication */  | 
5046  |  |       /* Resolving carries can dominate the cost of accumulating the  */  | 
5047  |  |       /* partial products, so this is only done when necessary.  */  | 
5048  |  |       /* Each uLong item in the accumulator can hold values up to  */  | 
5049  |  |       /* 2**64-1, and each partial product can be as large as  */  | 
5050  |  |       /* (10**FASTDIGS-1)**2.  When FASTDIGS=9, this can be added to  */  | 
5051  |  |       /* itself 18.4 times in a uLong without overflowing, so during  */  | 
5052  |  |       /* the main calculation resolution is carried out every 18th  */  | 
5053  |  |       /* add -- every 162 digits.  Similarly, when FASTDIGS=8, the  */  | 
5054  |  |       /* partial products can be added to themselves 1844.6 times in  */  | 
5055  |  |       /* a uLong without overflowing, so intermediate carry  */  | 
5056  |  |       /* resolution occurs only every 14752 digits.  Hence for common  */  | 
5057  |  |       /* short numbers usually only the one final carry resolution  */  | 
5058  |  |       /* occurs.  */  | 
5059  |  |       /* (The count is set via FASTLAZY to simplify experiments to  */  | 
5060  |  |       /* measure the value of this approach: a 35% improvement on a  */  | 
5061  |  |       /* [34x34] multiply.)  */  | 
5062  | 0  |       lazy=FASTLAZY;                         /* carry delay count  */  | 
5063  | 0  |       for (rip=zrhi; rip<=rmsi; rip++) {     /* over each item in rhs  */ | 
5064  | 0  |         lp=zacc+(rip-zrhi);                  /* where to add the lhs  */  | 
5065  | 0  |         for (lip=zlhi; lip<=lmsi; lip++, lp++) { /* over each item in lhs  */ | 
5066  | 0  |           *lp+=(uLong)(*lip)*(*rip);         /* [this should in-line]  */  | 
5067  | 0  |           } /* lip loop  */  | 
5068  | 0  |         lazy--;  | 
5069  | 0  |         if (lazy>0 && rip!=rmsi) continue;  | 
5070  | 0  |         lazy=FASTLAZY;                       /* reset delay count  */  | 
5071  |  |         /* spin up the accumulator resolving overflows  */  | 
5072  | 0  |         for (lp=zacc; lp<zacc+iacc; lp++) { | 
5073  | 0  |           if (*lp<FASTBASE) continue;        /* it fits  */  | 
5074  | 0  |           lcarry=*lp/FASTBASE;               /* top part [slow divide]  */  | 
5075  |  |           /* lcarry can exceed 2**32-1, so check again; this check  */  | 
5076  |  |           /* and occasional extra divide (slow) is well worth it, as  */  | 
5077  |  |           /* it allows FASTLAZY to be increased to 18 rather than 4  */  | 
5078  |  |           /* in the FASTDIGS=9 case  */  | 
5079  | 0  |           if (lcarry<FASTBASE) carry=(uInt)lcarry;  /* [usual]  */  | 
5080  | 0  |            else { /* two-place carry [fairly rare]  */ | 
5081  | 0  |             uInt carry2=(uInt)(lcarry/FASTBASE);    /* top top part  */  | 
5082  | 0  |             *(lp+2)+=carry2;                        /* add to item+2  */  | 
5083  | 0  |             *lp-=((uLong)FASTBASE*FASTBASE*carry2); /* [slow]  */  | 
5084  | 0  |             carry=(uInt)(lcarry-((uLong)FASTBASE*carry2)); /* [inline]  */  | 
5085  | 0  |             }  | 
5086  | 0  |           *(lp+1)+=carry;                    /* add to item above [inline]  */  | 
5087  | 0  |           *lp-=((uLong)FASTBASE*carry);      /* [inline]  */  | 
5088  | 0  |           } /* carry resolution  */  | 
5089  | 0  |         } /* rip loop  */  | 
5090  |  |  | 
5091  |  |       /* The multiplication is complete; time to convert back into  */  | 
5092  |  |       /* units.  This can be done in-place in the accumulator and in  */  | 
5093  |  |       /* 32-bit operations, because carries were resolved after the  */  | 
5094  |  |       /* final add.  This needs N-1 divides and multiplies for  */  | 
5095  |  |       /* each item in the accumulator (which will become up to N  */  | 
5096  |  |       /* units, where 2<=N<=9).  */  | 
5097  | 0  |       for (lp=zacc, up=acc; lp<zacc+iacc; lp++) { | 
5098  | 0  |         uInt item=(uInt)*lp;                 /* decapitate to uInt  */  | 
5099  | 0  |         for (p=0; p<FASTDIGS-DECDPUN; p+=DECDPUN, up++) { | 
5100  | 0  |           uInt part=item/(DECDPUNMAX+1);  | 
5101  | 0  |           *up=(Unit)(item-(part*(DECDPUNMAX+1)));  | 
5102  | 0  |           item=part;  | 
5103  | 0  |           } /* p  */  | 
5104  | 0  |         *up=(Unit)item; up++;                /* [final needs no division]  */  | 
5105  | 0  |         } /* lp  */  | 
5106  | 0  |       accunits = static_cast<int32_t>(up-acc);                       /* count of units  */  | 
5107  | 0  |       }  | 
5108  | 0  |      else { /* here to use units directly, without chunking ['old code']  */ | 
5109  | 0  |     #endif  | 
5110  |  |  | 
5111  |  |       /* if accumulator will be too long for local storage, then allocate  */  | 
5112  | 0  |       acc=accbuff;                 /* -> assume buffer for accumulator  */  | 
5113  | 0  |       needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit);  | 
5114  | 0  |       if (needbytes>(Int)sizeof(accbuff)) { | 
5115  | 0  |         allocacc=(Unit *)malloc(needbytes);  | 
5116  | 0  |         if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;} | 
5117  | 0  |         acc=(Unit *)allocacc;                /* use the allocated space  */  | 
5118  | 0  |         }  | 
5119  |  |  | 
5120  |  |       /* Now the main long multiplication loop */  | 
5121  |  |       /* Unlike the equivalent in the IBM Java implementation, there  */  | 
5122  |  |       /* is no advantage in calculating from msu to lsu.  So, do it  */  | 
5123  |  |       /* by the book, as it were.  */  | 
5124  |  |       /* Each iteration calculates ACC=ACC+MULTAND*MULT  */  | 
5125  | 0  |       accunits=1;                  /* accumulator starts at '0'  */  | 
5126  | 0  |       *acc=0;                      /* .. (lsu=0)  */  | 
5127  | 0  |       shift=0;                     /* no multiplicand shift at first  */  | 
5128  | 0  |       madlength=D2U(lhs->digits);  /* this won't change  */  | 
5129  | 0  |       mermsup=rhs->lsu+D2U(rhs->digits); /* -> msu+1 of multiplier  */  | 
5130  |  | 
  | 
5131  | 0  |       for (mer=rhs->lsu; mer<mermsup; mer++) { | 
5132  |  |         /* Here, *mer is the next Unit in the multiplier to use  */  | 
5133  |  |         /* If non-zero [optimization] add it...  */  | 
5134  | 0  |         if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift,  | 
5135  | 0  |                                             lhs->lsu, madlength, 0,  | 
5136  | 0  |                                             &acc[shift], *mer)  | 
5137  | 0  |                                             + shift;  | 
5138  | 0  |          else { /* extend acc with a 0; it will be used shortly  */ | 
5139  | 0  |           *(acc+accunits)=0;       /* [this avoids length of <=0 later]  */  | 
5140  | 0  |           accunits++;  | 
5141  | 0  |           }  | 
5142  |  |         /* multiply multiplicand by 10**DECDPUN for next Unit to left  */  | 
5143  | 0  |         shift++;                   /* add this for 'logical length'  */  | 
5144  | 0  |         } /* n  */  | 
5145  | 0  |     #if FASTMUL  | 
5146  | 0  |       } /* unchunked units  */  | 
5147  | 0  |     #endif  | 
5148  |  |     /* common end-path  */  | 
5149  |  |     #if DECTRACE  | 
5150  |  |       decDumpAr('*', acc, accunits);         /* Show exact result  */ | 
5151  |  |     #endif  | 
5152  |  |  | 
5153  |  |     /* acc now contains the exact result of the multiplication,  */  | 
5154  |  |     /* possibly with a leading zero unit; build the decNumber from  */  | 
5155  |  |     /* it, noting if any residue  */  | 
5156  | 0  |     res->bits=bits;                          /* set sign  */  | 
5157  | 0  |     res->digits=decGetDigits(acc, accunits); /* count digits exactly  */  | 
5158  |  |  | 
5159  |  |     /* There can be a 31-bit wrap in calculating the exponent.  */  | 
5160  |  |     /* This can only happen if both input exponents are negative and  */  | 
5161  |  |     /* both their magnitudes are large.  If there was a wrap, set a  */  | 
5162  |  |     /* safe very negative exponent, from which decFinalize() will  */  | 
5163  |  |     /* raise a hard underflow shortly.  */  | 
5164  | 0  |     exponent=lhs->exponent+rhs->exponent;    /* calculate exponent  */  | 
5165  | 0  |     if (lhs->exponent<0 && rhs->exponent<0 && exponent>0)  | 
5166  | 0  |       exponent=-2*DECNUMMAXE;                /* force underflow  */  | 
5167  | 0  |     res->exponent=exponent;                  /* OK to overwrite now  */  | 
5168  |  |  | 
5169  |  |  | 
5170  |  |     /* Set the coefficient.  If any rounding, residue records  */  | 
5171  | 0  |     decSetCoeff(res, set, acc, res->digits, &residue, status);  | 
5172  | 0  |     decFinish(res, set, &residue, status);   /* final cleanup  */  | 
5173  | 0  |     } while(0);                         /* end protected  */  | 
5174  |  |  | 
5175  | 0  |   if (allocacc!=NULL) free(allocacc);   /* drop any storage used  */  | 
5176  |  |   #if DECSUBSET  | 
5177  |  |   if (allocrhs!=NULL) free(allocrhs);   /* ..  */  | 
5178  |  |   if (alloclhs!=NULL) free(alloclhs);   /* ..  */  | 
5179  |  |   #endif  | 
5180  | 0  |   #if FASTMUL  | 
5181  | 0  |   if (allocrhi!=NULL) free(allocrhi);   /* ..  */  | 
5182  | 0  |   if (alloclhi!=NULL) free(alloclhi);   /* ..  */  | 
5183  | 0  |   #endif  | 
5184  | 0  |   return res;  | 
5185  | 0  |   } /* decMultiplyOp  */  | 
5186  |  |  | 
5187  |  | /* ------------------------------------------------------------------ */  | 
5188  |  | /* decExpOp -- effect exponentiation                                  */  | 
5189  |  | /*                                                                    */  | 
5190  |  | /*   This computes C = exp(A)                                         */  | 
5191  |  | /*                                                                    */  | 
5192  |  | /*   res is C, the result.  C may be A                                */  | 
5193  |  | /*   rhs is A                                                         */  | 
5194  |  | /*   set is the context; note that rounding mode has no effect        */  | 
5195  |  | /*                                                                    */  | 
5196  |  | /* C must have space for set->digits digits. status is updated but    */  | 
5197  |  | /* not set.                                                           */  | 
5198  |  | /*                                                                    */  | 
5199  |  | /* Restrictions:                                                      */  | 
5200  |  | /*                                                                    */  | 
5201  |  | /*   digits, emax, and -emin in the context must be less than         */  | 
5202  |  | /*   2*DEC_MAX_MATH (1999998), and the rhs must be within these       */  | 
5203  |  | /*   bounds or a zero.  This is an internal routine, so these         */  | 
5204  |  | /*   restrictions are contractual and not enforced.                   */  | 
5205  |  | /*                                                                    */  | 
5206  |  | /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will      */  | 
5207  |  | /* almost always be correctly rounded, but may be up to 1 ulp in      */  | 
5208  |  | /* error in rare cases.                                               */  | 
5209  |  | /*                                                                    */  | 
5210  |  | /* Finite results will always be full precision and Inexact, except   */  | 
5211  |  | /* when A is a zero or -Infinity (giving 1 or 0 respectively).        */  | 
5212  |  | /* ------------------------------------------------------------------ */  | 
5213  |  | /* This approach used here is similar to the algorithm described in   */  | 
5214  |  | /*                                                                    */  | 
5215  |  | /*   Variable Precision Exponential Function, T. E. Hull and          */  | 
5216  |  | /*   A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */  | 
5217  |  | /*   pp79-91, ACM, June 1986.                                         */  | 
5218  |  | /*                                                                    */  | 
5219  |  | /* with the main difference being that the iterations in the series   */  | 
5220  |  | /* evaluation are terminated dynamically (which does not require the  */  | 
5221  |  | /* extra variable-precision variables which are expensive in this     */  | 
5222  |  | /* context).                                                          */  | 
5223  |  | /*                                                                    */  | 
5224  |  | /* The error analysis in Hull & Abrham's paper applies except for the */  | 
5225  |  | /* round-off error accumulation during the series evaluation.  This   */  | 
5226  |  | /* code does not precalculate the number of iterations and so cannot  */  | 
5227  |  | /* use Horner's scheme.  Instead, the accumulation is done at double- */  | 
5228  |  | /* precision, which ensures that the additions of the terms are exact */  | 
5229  |  | /* and do not accumulate round-off (and any round-off errors in the   */  | 
5230  |  | /* terms themselves move 'to the right' faster than they can          */  | 
5231  |  | /* accumulate).  This code also extends the calculation by allowing,  */  | 
5232  |  | /* in the spirit of other decNumber operators, the input to be more   */  | 
5233  |  | /* precise than the result (the precision used is based on the more   */  | 
5234  |  | /* precise of the input or requested result).                         */  | 
5235  |  | /*                                                                    */  | 
5236  |  | /* Implementation notes:                                              */  | 
5237  |  | /*                                                                    */  | 
5238  |  | /* 1. This is separated out as decExpOp so it can be called from      */  | 
5239  |  | /*    other Mathematical functions (notably Ln) with a wider range    */  | 
5240  |  | /*    than normal.  In particular, it can handle the slightly wider   */  | 
5241  |  | /*    (double) range needed by Ln (which has to be able to calculate  */  | 
5242  |  | /*    exp(-x) where x can be the tiniest number (Ntiny).              */  | 
5243  |  | /*                                                                    */  | 
5244  |  | /* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop         */  | 
5245  |  | /*    iterations by approximately a third with additional (although    */  | 
5246  |  | /*    diminishing) returns as the range is reduced to even smaller    */  | 
5247  |  | /*    fractions.  However, h (the power of 10 used to correct the     */  | 
5248  |  | /*    result at the end, see below) must be kept <=8 as otherwise     */  | 
5249  |  | /*    the final result cannot be computed.  Hence the leverage is a   */  | 
5250  |  | /*    sliding value (8-h), where potentially the range is reduced     */  | 
5251  |  | /*    more for smaller values.                                        */  | 
5252  |  | /*                                                                    */  | 
5253  |  | /*    The leverage that can be applied in this way is severely        */  | 
5254  |  | /*    limited by the cost of the raise-to-the power at the end,       */  | 
5255  |  | /*    which dominates when the number of iterations is small (less    */  | 
5256  |  | /*    than ten) or when rhs is short.  As an example, the adjustment  */  | 
5257  |  | /*    x**10,000,000 needs 31 multiplications, all but one full-width. */  | 
5258  |  | /*                                                                    */  | 
5259  |  | /* 3. The restrictions (especially precision) could be raised with    */  | 
5260  |  | /*    care, but the full decNumber range seems very hard within the   */  | 
5261  |  | /*    32-bit limits.                                                  */  | 
5262  |  | /*                                                                    */  | 
5263  |  | /* 4. The working precisions for the static buffers are twice the     */  | 
5264  |  | /*    obvious size to allow for calls from decNumberPower.            */  | 
5265  |  | /* ------------------------------------------------------------------ */  | 
5266  |  | decNumber * decExpOp(decNumber *res, const decNumber *rhs,  | 
5267  | 0  |                          decContext *set, uInt *status) { | 
5268  | 0  |   uInt ignore=0;                   /* working status  */  | 
5269  | 0  |   Int h;                           /* adjusted exponent for 0.xxxx  */  | 
5270  | 0  |   Int p;                           /* working precision  */  | 
5271  | 0  |   Int residue;                     /* rounding residue  */  | 
5272  | 0  |   uInt needbytes;                  /* for space calculations  */  | 
5273  | 0  |   const decNumber *x=rhs;          /* (may point to safe copy later)  */  | 
5274  | 0  |   decContext aset, tset, dset;     /* working contexts  */  | 
5275  | 0  |   Int comp;                        /* work  */  | 
5276  |  |  | 
5277  |  |   /* the argument is often copied to normalize it, so (unusually) it  */  | 
5278  |  |   /* is treated like other buffers, using DECBUFFER, +1 in case  */  | 
5279  |  |   /* DECBUFFER is 0  */  | 
5280  | 0  |   decNumber bufr[D2N(DECBUFFER*2+1)];  | 
5281  | 0  |   decNumber *allocrhs=NULL;        /* non-NULL if rhs buffer allocated  */  | 
5282  |  |  | 
5283  |  |   /* the working precision will be no more than set->digits+8+1  */  | 
5284  |  |   /* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER  */  | 
5285  |  |   /* is 0 (and twice that for the accumulator)  */  | 
5286  |  |  | 
5287  |  |   /* buffer for t, term (working precision plus)  */  | 
5288  | 0  |   decNumber buft[D2N(DECBUFFER*2+9+1)];  | 
5289  | 0  |   decNumber *allocbuft=NULL;       /* -> allocated buft, iff allocated  */  | 
5290  | 0  |   decNumber *t=buft;               /* term  */  | 
5291  |  |   /* buffer for a, accumulator (working precision * 2), at least 9  */  | 
5292  | 0  |   decNumber bufa[D2N(DECBUFFER*4+18+1)];  | 
5293  | 0  |   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */  | 
5294  | 0  |   decNumber *a=bufa;               /* accumulator  */  | 
5295  |  |   /* decNumber for the divisor term; this needs at most 9 digits  */  | 
5296  |  |   /* and so can be fixed size [16 so can use standard context]  */  | 
5297  | 0  |   decNumber bufd[D2N(16)];  | 
5298  | 0  |   decNumber *d=bufd;               /* divisor  */  | 
5299  | 0  |   decNumber numone;                /* constant 1  */  | 
5300  |  | 
  | 
5301  |  |   #if DECCHECK  | 
5302  |  |   Int iterations=0;                /* for later sanity check  */  | 
5303  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
5304  |  |   #endif  | 
5305  |  | 
  | 
5306  | 0  |   do {                                  /* protect allocated storage  */ | 
5307  | 0  |     if (SPECIALARG) {                   /* handle infinities and NaNs  */ | 
5308  | 0  |       if (decNumberIsInfinite(rhs)) {   /* an infinity  */ | 
5309  | 0  |         if (decNumberIsNegative(rhs))   /* -Infinity -> +0  */  | 
5310  | 0  |           uprv_decNumberZero(res);  | 
5311  | 0  |          else uprv_decNumberCopy(res, rhs);  /* +Infinity -> self  */  | 
5312  | 0  |         }  | 
5313  | 0  |        else decNaNs(res, rhs, NULL, set, status); /* a NaN  */  | 
5314  | 0  |       break;}  | 
5315  |  |  | 
5316  | 0  |     if (ISZERO(rhs)) {                  /* zeros -> exact 1  */ | 
5317  | 0  |       uprv_decNumberZero(res);               /* make clean 1  */  | 
5318  | 0  |       *res->lsu=1;                      /* ..  */  | 
5319  | 0  |       break;}                           /* [no status to set]  */  | 
5320  |  |  | 
5321  |  |     /* e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path  */  | 
5322  |  |     /* positive and negative tiny cases which will result in inexact  */  | 
5323  |  |     /* 1.  This also allows the later add-accumulate to always be  */  | 
5324  |  |     /* exact (because its length will never be more than twice the  */  | 
5325  |  |     /* working precision).  */  | 
5326  |  |     /* The comparator (tiny) needs just one digit, so use the  */  | 
5327  |  |     /* decNumber d for it (reused as the divisor, etc., below); its  */  | 
5328  |  |     /* exponent is such that if x is positive it will have  */  | 
5329  |  |     /* set->digits-1 zeros between the decimal point and the digit,  */  | 
5330  |  |     /* which is 4, and if x is negative one more zero there as the  */  | 
5331  |  |     /* more precise result will be of the form 0.9999999 rather than  */  | 
5332  |  |     /* 1.0000001.  Hence, tiny will be 0.0000004  if digits=7 and x>0  */  | 
5333  |  |     /* or 0.00000004 if digits=7 and x<0.  If RHS not larger than  */  | 
5334  |  |     /* this then the result will be 1.000000  */  | 
5335  | 0  |     uprv_decNumberZero(d);                   /* clean  */  | 
5336  | 0  |     *d->lsu=4;                          /* set 4 ..  */  | 
5337  | 0  |     d->exponent=-set->digits;           /* * 10**(-d)  */  | 
5338  | 0  |     if (decNumberIsNegative(rhs)) d->exponent--;  /* negative case  */  | 
5339  | 0  |     comp=decCompare(d, rhs, 1);         /* signless compare  */  | 
5340  | 0  |     if (comp==BADINT) { | 
5341  | 0  |       *status|=DEC_Insufficient_storage;  | 
5342  | 0  |       break;}  | 
5343  | 0  |     if (comp>=0) {                      /* rhs < d  */ | 
5344  | 0  |       Int shift=set->digits-1;  | 
5345  | 0  |       uprv_decNumberZero(res);               /* set 1  */  | 
5346  | 0  |       *res->lsu=1;                      /* ..  */  | 
5347  | 0  |       res->digits=decShiftToMost(res->lsu, 1, shift);  | 
5348  | 0  |       res->exponent=-shift;                  /* make 1.0000...  */  | 
5349  | 0  |       *status|=DEC_Inexact | DEC_Rounded;    /* .. inexactly  */  | 
5350  | 0  |       break;} /* tiny  */  | 
5351  |  |  | 
5352  |  |     /* set up the context to be used for calculating a, as this is  */  | 
5353  |  |     /* used on both paths below  */  | 
5354  | 0  |     uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64);  | 
5355  |  |     /* accumulator bounds are as requested (could underflow)  */  | 
5356  | 0  |     aset.emax=set->emax;                /* usual bounds  */  | 
5357  | 0  |     aset.emin=set->emin;                /* ..  */  | 
5358  | 0  |     aset.clamp=0;                       /* and no concrete format  */  | 
5359  |  |  | 
5360  |  |     /* calculate the adjusted (Hull & Abrham) exponent (where the  */  | 
5361  |  |     /* decimal point is just to the left of the coefficient msd)  */  | 
5362  | 0  |     h=rhs->exponent+rhs->digits;  | 
5363  |  |     /* if h>8 then 10**h cannot be calculated safely; however, when  */  | 
5364  |  |     /* h=8 then exp(|rhs|) will be at least exp(1E+7) which is at  */  | 
5365  |  |     /* least 6.59E+4342944, so (due to the restriction on Emax/Emin)  */  | 
5366  |  |     /* overflow (or underflow to 0) is guaranteed -- so this case can  */  | 
5367  |  |     /* be handled by simply forcing the appropriate excess  */  | 
5368  | 0  |     if (h>8) {                          /* overflow/underflow  */ | 
5369  |  |       /* set up here so Power call below will over or underflow to  */  | 
5370  |  |       /* zero; set accumulator to either 2 or 0.02  */  | 
5371  |  |       /* [stack buffer for a is always big enough for this]  */  | 
5372  | 0  |       uprv_decNumberZero(a);  | 
5373  | 0  |       *a->lsu=2;                        /* not 1 but < exp(1)  */  | 
5374  | 0  |       if (decNumberIsNegative(rhs)) a->exponent=-2; /* make 0.02  */  | 
5375  | 0  |       h=8;                              /* clamp so 10**h computable  */  | 
5376  | 0  |       p=9;                              /* set a working precision  */  | 
5377  | 0  |       }  | 
5378  | 0  |      else {                             /* h<=8  */ | 
5379  | 0  |       Int maxlever=(rhs->digits>8?1:0);  | 
5380  |  |       /* [could/should increase this for precisions >40 or so, too]  */  | 
5381  |  |  | 
5382  |  |       /* if h is 8, cannot normalize to a lower upper limit because  */  | 
5383  |  |       /* the final result will not be computable (see notes above),  */  | 
5384  |  |       /* but leverage can be applied whenever h is less than 8.  */  | 
5385  |  |       /* Apply as much as possible, up to a MAXLEVER digits, which  */  | 
5386  |  |       /* sets the tradeoff against the cost of the later a**(10**h).  */  | 
5387  |  |       /* As h is increased, the working precision below also  */  | 
5388  |  |       /* increases to compensate for the "constant digits at the  */  | 
5389  |  |       /* front" effect.  */  | 
5390  | 0  |       Int lever=MINI(8-h, maxlever);    /* leverage attainable  */  | 
5391  | 0  |       Int use=-rhs->digits-lever;       /* exponent to use for RHS  */  | 
5392  | 0  |       h+=lever;                         /* apply leverage selected  */  | 
5393  | 0  |       if (h<0) {                        /* clamp  */ | 
5394  | 0  |         use+=h;                         /* [may end up subnormal]  */  | 
5395  | 0  |         h=0;  | 
5396  | 0  |         }  | 
5397  |  |       /* Take a copy of RHS if it needs normalization (true whenever x>=1)  */  | 
5398  | 0  |       if (rhs->exponent!=use) { | 
5399  | 0  |         decNumber *newrhs=bufr;         /* assume will fit on stack  */  | 
5400  | 0  |         needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);  | 
5401  | 0  |         if (needbytes>sizeof(bufr)) {   /* need malloc space  */ | 
5402  | 0  |           allocrhs=(decNumber *)malloc(needbytes);  | 
5403  | 0  |           if (allocrhs==NULL) {         /* hopeless -- abandon  */ | 
5404  | 0  |             *status|=DEC_Insufficient_storage;  | 
5405  | 0  |             break;}  | 
5406  | 0  |           newrhs=allocrhs;              /* use the allocated space  */  | 
5407  | 0  |           }  | 
5408  | 0  |         uprv_decNumberCopy(newrhs, rhs);     /* copy to safe space  */  | 
5409  | 0  |         newrhs->exponent=use;           /* normalize; now <1  */  | 
5410  | 0  |         x=newrhs;                       /* ready for use  */  | 
5411  |  |         /* decNumberShow(x);  */  | 
5412  | 0  |         }  | 
5413  |  |  | 
5414  |  |       /* Now use the usual power series to evaluate exp(x).  The  */  | 
5415  |  |       /* series starts as 1 + x + x^2/2 ... so prime ready for the  */  | 
5416  |  |       /* third term by setting the term variable t=x, the accumulator  */  | 
5417  |  |       /* a=1, and the divisor d=2.  */  | 
5418  |  |  | 
5419  |  |       /* First determine the working precision.  From Hull & Abrham  */  | 
5420  |  |       /* this is set->digits+h+2.  However, if x is 'over-precise' we  */  | 
5421  |  |       /* need to allow for all its digits to potentially participate  */  | 
5422  |  |       /* (consider an x where all the excess digits are 9s) so in  */  | 
5423  |  |       /* this case use x->digits+h+2  */  | 
5424  | 0  |       p=MAXI(x->digits, set->digits)+h+2;    /* [h<=8]  */  | 
5425  |  |  | 
5426  |  |       /* a and t are variable precision, and depend on p, so space  */  | 
5427  |  |       /* must be allocated for them if necessary  */  | 
5428  |  |  | 
5429  |  |       /* the accumulator needs to be able to hold 2p digits so that  */  | 
5430  |  |       /* the additions on the second and subsequent iterations are  */  | 
5431  |  |       /* sufficiently exact.  */  | 
5432  | 0  |       needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit);  | 
5433  | 0  |       if (needbytes>sizeof(bufa)) {     /* need malloc space  */ | 
5434  | 0  |         allocbufa=(decNumber *)malloc(needbytes);  | 
5435  | 0  |         if (allocbufa==NULL) {          /* hopeless -- abandon  */ | 
5436  | 0  |           *status|=DEC_Insufficient_storage;  | 
5437  | 0  |           break;}  | 
5438  | 0  |         a=allocbufa;                    /* use the allocated space  */  | 
5439  | 0  |         }  | 
5440  |  |       /* the term needs to be able to hold p digits (which is  */  | 
5441  |  |       /* guaranteed to be larger than x->digits, so the initial copy  */  | 
5442  |  |       /* is safe); it may also be used for the raise-to-power  */  | 
5443  |  |       /* calculation below, which needs an extra two digits  */  | 
5444  | 0  |       needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit);  | 
5445  | 0  |       if (needbytes>sizeof(buft)) {     /* need malloc space  */ | 
5446  | 0  |         allocbuft=(decNumber *)malloc(needbytes);  | 
5447  | 0  |         if (allocbuft==NULL) {          /* hopeless -- abandon  */ | 
5448  | 0  |           *status|=DEC_Insufficient_storage;  | 
5449  | 0  |           break;}  | 
5450  | 0  |         t=allocbuft;                    /* use the allocated space  */  | 
5451  | 0  |         }  | 
5452  |  |  | 
5453  | 0  |       uprv_decNumberCopy(t, x);              /* term=x  */  | 
5454  | 0  |       uprv_decNumberZero(a); *a->lsu=1;      /* accumulator=1  */  | 
5455  | 0  |       uprv_decNumberZero(d); *d->lsu=2;      /* divisor=2  */  | 
5456  | 0  |       uprv_decNumberZero(&numone); *numone.lsu=1; /* constant 1 for increment  */  | 
5457  |  |  | 
5458  |  |       /* set up the contexts for calculating a, t, and d  */  | 
5459  | 0  |       uprv_decContextDefault(&tset, DEC_INIT_DECIMAL64);  | 
5460  | 0  |       dset=tset;  | 
5461  |  |       /* accumulator bounds are set above, set precision now  */  | 
5462  | 0  |       aset.digits=p*2;                  /* double  */  | 
5463  |  |       /* term bounds avoid any underflow or overflow  */  | 
5464  | 0  |       tset.digits=p;  | 
5465  | 0  |       tset.emin=DEC_MIN_EMIN;           /* [emax is plenty]  */  | 
5466  |  |       /* [dset.digits=16, etc., are sufficient]  */  | 
5467  |  |  | 
5468  |  |       /* finally ready to roll  */  | 
5469  | 0  |       for (;;) { | 
5470  |  |         #if DECCHECK  | 
5471  |  |         iterations++;  | 
5472  |  |         #endif  | 
5473  |  |         /* only the status from the accumulation is interesting  */  | 
5474  |  |         /* [but it should remain unchanged after first add]  */  | 
5475  | 0  |         decAddOp(a, a, t, &aset, 0, status);           /* a=a+t  */  | 
5476  | 0  |         decMultiplyOp(t, t, x, &tset, &ignore);        /* t=t*x  */  | 
5477  | 0  |         decDivideOp(t, t, d, &tset, DIVIDE, &ignore);  /* t=t/d  */  | 
5478  |  |         /* the iteration ends when the term cannot affect the result,  */  | 
5479  |  |         /* if rounded to p digits, which is when its value is smaller  */  | 
5480  |  |         /* than the accumulator by p+1 digits.  There must also be  */  | 
5481  |  |         /* full precision in a.  */  | 
5482  | 0  |         if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1))  | 
5483  | 0  |             && (a->digits>=p)) break;  | 
5484  | 0  |         decAddOp(d, d, &numone, &dset, 0, &ignore);    /* d=d+1  */  | 
5485  | 0  |         } /* iterate  */  | 
5486  |  | 
  | 
5487  |  |       #if DECCHECK  | 
5488  |  |       /* just a sanity check; comment out test to show always  */  | 
5489  |  |       if (iterations>p+3)  | 
5490  |  |         printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n", | 
5491  |  |                (LI)iterations, (LI)*status, (LI)p, (LI)x->digits);  | 
5492  |  |       #endif  | 
5493  | 0  |       } /* h<=8  */  | 
5494  |  |  | 
5495  |  |     /* apply postconditioning: a=a**(10**h) -- this is calculated  */  | 
5496  |  |     /* at a slightly higher precision than Hull & Abrham suggest  */  | 
5497  | 0  |     if (h>0) { | 
5498  | 0  |       Int seenbit=0;               /* set once a 1-bit is seen  */  | 
5499  | 0  |       Int i;                       /* counter  */  | 
5500  | 0  |       Int n=powers[h];             /* always positive  */  | 
5501  | 0  |       aset.digits=p+2;             /* sufficient precision  */  | 
5502  |  |       /* avoid the overhead and many extra digits of decNumberPower  */  | 
5503  |  |       /* as all that is needed is the short 'multipliers' loop; here  */  | 
5504  |  |       /* accumulate the answer into t  */  | 
5505  | 0  |       uprv_decNumberZero(t); *t->lsu=1; /* acc=1  */  | 
5506  | 0  |       for (i=1;;i++){              /* for each bit [top bit ignored]  */ | 
5507  |  |         /* abandon if have had overflow or terminal underflow  */  | 
5508  | 0  |         if (*status & (DEC_Overflow|DEC_Underflow)) { /* interesting?  */ | 
5509  | 0  |           if (*status&DEC_Overflow || ISZERO(t)) break;}  | 
5510  | 0  |         n=n<<1;                    /* move next bit to testable position  */  | 
5511  | 0  |         if (n<0) {                 /* top bit is set  */ | 
5512  | 0  |           seenbit=1;               /* OK, have a significant bit  */  | 
5513  | 0  |           decMultiplyOp(t, t, a, &aset, status); /* acc=acc*x  */  | 
5514  | 0  |           }  | 
5515  | 0  |         if (i==31) break;          /* that was the last bit  */  | 
5516  | 0  |         if (!seenbit) continue;    /* no need to square 1  */  | 
5517  | 0  |         decMultiplyOp(t, t, t, &aset, status); /* acc=acc*acc [square]  */  | 
5518  | 0  |         } /*i*/ /* 32 bits  */  | 
5519  |  |       /* decNumberShow(t);  */  | 
5520  | 0  |       a=t;                         /* and carry on using t instead of a  */  | 
5521  | 0  |       }  | 
5522  |  |  | 
5523  |  |     /* Copy and round the result to res  */  | 
5524  | 0  |     residue=1;                          /* indicate dirt to right ..  */  | 
5525  | 0  |     if (ISZERO(a)) residue=0;           /* .. unless underflowed to 0  */  | 
5526  | 0  |     aset.digits=set->digits;            /* [use default rounding]  */  | 
5527  | 0  |     decCopyFit(res, a, &aset, &residue, status); /* copy & shorten  */  | 
5528  | 0  |     decFinish(res, set, &residue, status);       /* cleanup/set flags  */  | 
5529  | 0  |     } while(0);                         /* end protected  */  | 
5530  |  |  | 
5531  | 0  |   if (allocrhs !=NULL) free(allocrhs);  /* drop any storage used  */  | 
5532  | 0  |   if (allocbufa!=NULL) free(allocbufa); /* ..  */  | 
5533  | 0  |   if (allocbuft!=NULL) free(allocbuft); /* ..  */  | 
5534  |  |   /* [status is handled by caller]  */  | 
5535  | 0  |   return res;  | 
5536  | 0  |   } /* decExpOp  */  | 
5537  |  |  | 
5538  |  | /* ------------------------------------------------------------------ */  | 
5539  |  | /* Initial-estimate natural logarithm table                           */  | 
5540  |  | /*                                                                    */  | 
5541  |  | /*   LNnn -- 90-entry 16-bit table for values from .10 through .99.   */  | 
5542  |  | /*           The result is a 4-digit encode of the coefficient (c=the */  | 
5543  |  | /*           top 14 bits encoding 0-9999) and a 2-digit encode of the */  | 
5544  |  | /*           exponent (e=the bottom 2 bits encoding 0-3)              */  | 
5545  |  | /*                                                                    */  | 
5546  |  | /*           The resulting value is given by:                         */  | 
5547  |  | /*                                                                    */  | 
5548  |  | /*             v = -c * 10**(-e-3)                                    */  | 
5549  |  | /*                                                                    */  | 
5550  |  | /*           where e and c are extracted from entry k = LNnn[x-10]    */  | 
5551  |  | /*           where x is truncated (NB) into the range 10 through 99,  */  | 
5552  |  | /*           and then c = k>>2 and e = k&3.                           */  | 
5553  |  | /* ------------------------------------------------------------------ */  | 
5554  |  | static const uShort LNnn[90]={9016,  8652,  8316,  8008,  7724,  7456,  7208, | 
5555  |  |   6972,  6748,  6540,  6340,  6148,  5968,  5792,  5628,  5464,  5312,  | 
5556  |  |   5164,  5020,  4884,  4748,  4620,  4496,  4376,  4256,  4144,  4032,  | 
5557  |  |  39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629,  | 
5558  |  |  29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837,  | 
5559  |  |  22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321,  | 
5560  |  |  15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717,  | 
5561  |  |  10197,  9685,  9177,  8677,  8185,  7697,  7213,  6737,  6269,  5801,  | 
5562  |  |   5341,  4889,  4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254,  | 
5563  |  |  10130,  6046, 20055};  | 
5564  |  |  | 
5565  |  | /* ------------------------------------------------------------------ */  | 
5566  |  | /* decLnOp -- effect natural logarithm                                */  | 
5567  |  | /*                                                                    */  | 
5568  |  | /*   This computes C = ln(A)                                          */  | 
5569  |  | /*                                                                    */  | 
5570  |  | /*   res is C, the result.  C may be A                                */  | 
5571  |  | /*   rhs is A                                                         */  | 
5572  |  | /*   set is the context; note that rounding mode has no effect        */  | 
5573  |  | /*                                                                    */  | 
5574  |  | /* C must have space for set->digits digits.                          */  | 
5575  |  | /*                                                                    */  | 
5576  |  | /* Notable cases:                                                     */  | 
5577  |  | /*   A<0 -> Invalid                                                   */  | 
5578  |  | /*   A=0 -> -Infinity (Exact)                                         */  | 
5579  |  | /*   A=+Infinity -> +Infinity (Exact)                                 */  | 
5580  |  | /*   A=1 exactly -> 0 (Exact)                                         */  | 
5581  |  | /*                                                                    */  | 
5582  |  | /* Restrictions (as for Exp):                                         */  | 
5583  |  | /*                                                                    */  | 
5584  |  | /*   digits, emax, and -emin in the context must be less than         */  | 
5585  |  | /*   DEC_MAX_MATH+11 (1000010), and the rhs must be within these      */  | 
5586  |  | /*   bounds or a zero.  This is an internal routine, so these         */  | 
5587  |  | /*   restrictions are contractual and not enforced.                   */  | 
5588  |  | /*                                                                    */  | 
5589  |  | /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will      */  | 
5590  |  | /* almost always be correctly rounded, but may be up to 1 ulp in      */  | 
5591  |  | /* error in rare cases.                                               */  | 
5592  |  | /* ------------------------------------------------------------------ */  | 
5593  |  | /* The result is calculated using Newton's method, with each          */  | 
5594  |  | /* iteration calculating a' = a + x * exp(-a) - 1.  See, for example, */  | 
5595  |  | /* Epperson 1989.                                                     */  | 
5596  |  | /*                                                                    */  | 
5597  |  | /* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */  | 
5598  |  | /* This has to be calculated at the sum of the precision of x and the */  | 
5599  |  | /* working precision.                                                 */  | 
5600  |  | /*                                                                    */  | 
5601  |  | /* Implementation notes:                                              */  | 
5602  |  | /*                                                                    */  | 
5603  |  | /* 1. This is separated out as decLnOp so it can be called from       */  | 
5604  |  | /*    other Mathematical functions (e.g., Log 10) with a wider range  */  | 
5605  |  | /*    than normal.  In particular, it can handle the slightly wider   */  | 
5606  |  | /*    (+9+2) range needed by a power function.                        */  | 
5607  |  | /*                                                                    */  | 
5608  |  | /* 2. The speed of this function is about 10x slower than exp, as     */  | 
5609  |  | /*    it typically needs 4-6 iterations for short numbers, and the    */  | 
5610  |  | /*    extra precision needed adds a squaring effect, twice.           */  | 
5611  |  | /*                                                                    */  | 
5612  |  | /* 3. Fastpaths are included for ln(10) and ln(2), up to length 40,   */  | 
5613  |  | /*    as these are common requests.  ln(10) is used by log10(x).      */  | 
5614  |  | /*                                                                    */  | 
5615  |  | /* 4. An iteration might be saved by widening the LNnn table, and     */  | 
5616  |  | /*    would certainly save at least one if it were made ten times     */  | 
5617  |  | /*    bigger, too (for truncated fractions 0.100 through 0.999).      */  | 
5618  |  | /*    However, for most practical evaluations, at least four or five  */  | 
5619  |  | /*    iterations will be needed -- so this would only speed up by      */  | 
5620  |  | /*    20-25% and that probably does not justify increasing the table  */  | 
5621  |  | /*    size.                                                           */  | 
5622  |  | /*                                                                    */  | 
5623  |  | /* 5. The static buffers are larger than might be expected to allow   */  | 
5624  |  | /*    for calls from decNumberPower.                                  */  | 
5625  |  | /* ------------------------------------------------------------------ */  | 
5626  |  | #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406  | 
5627  |  | #pragma GCC diagnostic push  | 
5628  |  | #pragma GCC diagnostic ignored "-Warray-bounds"  | 
5629  |  | #endif  | 
5630  |  | decNumber * decLnOp(decNumber *res, const decNumber *rhs,  | 
5631  | 0  |                     decContext *set, uInt *status) { | 
5632  | 0  |   uInt ignore=0;                   /* working status accumulator  */  | 
5633  | 0  |   uInt needbytes;                  /* for space calculations  */  | 
5634  | 0  |   Int residue;                     /* rounding residue  */  | 
5635  | 0  |   Int r;                           /* rhs=f*10**r [see below]  */  | 
5636  | 0  |   Int p;                           /* working precision  */  | 
5637  | 0  |   Int pp;                          /* precision for iteration  */  | 
5638  | 0  |   Int t;                           /* work  */  | 
5639  |  |  | 
5640  |  |   /* buffers for a (accumulator, typically precision+2) and b  */  | 
5641  |  |   /* (adjustment calculator, same size)  */  | 
5642  | 0  |   decNumber bufa[D2N(DECBUFFER+12)];  | 
5643  | 0  |   decNumber *allocbufa=NULL;       /* -> allocated bufa, iff allocated  */  | 
5644  | 0  |   decNumber *a=bufa;               /* accumulator/work  */  | 
5645  | 0  |   decNumber bufb[D2N(DECBUFFER*2+2)];  | 
5646  | 0  |   decNumber *allocbufb=NULL;       /* -> allocated bufa, iff allocated  */  | 
5647  | 0  |   decNumber *b=bufb;               /* adjustment/work  */  | 
5648  |  | 
  | 
5649  | 0  |   decNumber  numone;               /* constant 1  */  | 
5650  | 0  |   decNumber  cmp;                  /* work  */  | 
5651  | 0  |   decContext aset, bset;           /* working contexts  */  | 
5652  |  | 
  | 
5653  |  |   #if DECCHECK  | 
5654  |  |   Int iterations=0;                /* for later sanity check  */  | 
5655  |  |   if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;  | 
5656  |  |   #endif  | 
5657  |  | 
  | 
5658  | 0  |   do {                                  /* protect allocated storage  */ | 
5659  | 0  |     if (SPECIALARG) {                   /* handle infinities and NaNs  */ | 
5660  | 0  |       if (decNumberIsInfinite(rhs)) {   /* an infinity  */ | 
5661  | 0  |         if (decNumberIsNegative(rhs))   /* -Infinity -> error  */  | 
5662  | 0  |           *status|=DEC_Invalid_operation;  | 
5663  | 0  |          else uprv_decNumberCopy(res, rhs);  /* +Infinity -> self  */  | 
5664  | 0  |         }  | 
5665  | 0  |        else decNaNs(res, rhs, NULL, set, status); /* a NaN  */  | 
5666  | 0  |       break;}  | 
5667  |  |  | 
5668  | 0  |     if (ISZERO(rhs)) {                  /* +/- zeros -> -Infinity  */ | 
5669  | 0  |       uprv_decNumberZero(res);               /* make clean  */  | 
5670  | 0  |       res->bits=DECINF|DECNEG;          /* set - infinity  */  | 
5671  | 0  |       break;}                           /* [no status to set]  */  | 
5672  |  |  | 
5673  |  |     /* Non-zero negatives are bad...  */  | 
5674  | 0  |     if (decNumberIsNegative(rhs)) {     /* -x -> error  */ | 
5675  | 0  |       *status|=DEC_Invalid_operation;  | 
5676  | 0  |       break;}  | 
5677  |  |  | 
5678  |  |     /* Here, rhs is positive, finite, and in range  */  | 
5679  |  |  | 
5680  |  |     /* lookaside fastpath code for ln(2) and ln(10) at common lengths  */  | 
5681  | 0  |     if (rhs->exponent==0 && set->digits<=40) { | 
5682  | 0  |       #if DECDPUN==1  | 
5683  | 0  |       if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { /* ln(10)  */ | 
5684  |  |       #else  | 
5685  |  |       if (rhs->lsu[0]==10 && rhs->digits==2) {                  /* ln(10)  */ | 
5686  |  |       #endif  | 
5687  | 0  |         aset=*set; aset.round=DEC_ROUND_HALF_EVEN;  | 
5688  | 0  |         #define LN10 "2.302585092994045684017991454684364207601"  | 
5689  | 0  |         uprv_decNumberFromString(res, LN10, &aset);  | 
5690  | 0  |         *status|=(DEC_Inexact | DEC_Rounded); /* is inexact  */  | 
5691  | 0  |         break;}  | 
5692  | 0  |       if (rhs->lsu[0]==2 && rhs->digits==1) { /* ln(2)  */ | 
5693  | 0  |         aset=*set; aset.round=DEC_ROUND_HALF_EVEN;  | 
5694  | 0  |         #define LN2 "0.6931471805599453094172321214581765680755"  | 
5695  | 0  |         uprv_decNumberFromString(res, LN2, &aset);  | 
5696  | 0  |         *status|=(DEC_Inexact | DEC_Rounded);  | 
5697  | 0  |         break;}  | 
5698  | 0  |       } /* integer and short  */  | 
5699  |  |  | 
5700  |  |     /* Determine the working precision.  This is normally the  */  | 
5701  |  |     /* requested precision + 2, with a minimum of 9.  However, if  */  | 
5702  |  |     /* the rhs is 'over-precise' then allow for all its digits to  */  | 
5703  |  |     /* potentially participate (consider an rhs where all the excess  */  | 
5704  |  |     /* digits are 9s) so in this case use rhs->digits+2.  */  | 
5705  | 0  |     p=MAXI(rhs->digits, MAXI(set->digits, 7))+2;  | 
5706  |  |  | 
5707  |  |     /* Allocate space for the accumulator and the high-precision  */  | 
5708  |  |     /* adjustment calculator, if necessary.  The accumulator must  */  | 
5709  |  |     /* be able to hold p digits, and the adjustment up to  */  | 
5710  |  |     /* rhs->digits+p digits.  They are also made big enough for 16  */  | 
5711  |  |     /* digits so that they can be used for calculating the initial  */  | 
5712  |  |     /* estimate.  */  | 
5713  | 0  |     needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit);  | 
5714  | 0  |     if (needbytes>sizeof(bufa)) {     /* need malloc space  */ | 
5715  | 0  |       allocbufa=(decNumber *)malloc(needbytes);  | 
5716  | 0  |       if (allocbufa==NULL) {          /* hopeless -- abandon  */ | 
5717  | 0  |         *status|=DEC_Insufficient_storage;  | 
5718  | 0  |         break;}  | 
5719  | 0  |       a=allocbufa;                    /* use the allocated space  */  | 
5720  | 0  |       }  | 
5721  | 0  |     pp=p+rhs->digits;  | 
5722  | 0  |     needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit);  | 
5723  | 0  |     if (needbytes>sizeof(bufb)) {     /* need malloc space  */ | 
5724  | 0  |       allocbufb=(decNumber *)malloc(needbytes);  | 
5725  | 0  |       if (allocbufb==NULL) {          /* hopeless -- abandon  */ | 
5726  | 0  |         *status|=DEC_Insufficient_storage;  | 
5727  | 0  |         break;}  | 
5728  | 0  |       b=allocbufb;                    /* use the allocated space  */  | 
5729  | 0  |       }  | 
5730  |  |  | 
5731  |  |     /* Prepare an initial estimate in acc. Calculate this by  */  | 
5732  |  |     /* considering the coefficient of x to be a normalized fraction,  */  | 
5733  |  |     /* f, with the decimal point at far left and multiplied by  */  | 
5734  |  |     /* 10**r.  Then, rhs=f*10**r and 0.1<=f<1, and  */  | 
5735  |  |     /*   ln(x) = ln(f) + ln(10)*r  */  | 
5736  |  |     /* Get the initial estimate for ln(f) from a small lookup  */  | 
5737  |  |     /* table (see above) indexed by the first two digits of f,  */  | 
5738  |  |     /* truncated.  */  | 
5739  |  |  | 
5740  | 0  |     uprv_decContextDefault(&aset, DEC_INIT_DECIMAL64); /* 16-digit extended  */  | 
5741  | 0  |     r=rhs->exponent+rhs->digits;        /* 'normalised' exponent  */  | 
5742  | 0  |     uprv_decNumberFromInt32(a, r);           /* a=r  */  | 
5743  | 0  |     uprv_decNumberFromInt32(b, 2302585);     /* b=ln(10) (2.302585)  */  | 
5744  | 0  |     b->exponent=-6;                     /*  ..  */  | 
5745  | 0  |     decMultiplyOp(a, a, b, &aset, &ignore);  /* a=a*b  */  | 
5746  |  |     /* now get top two digits of rhs into b by simple truncate and  */  | 
5747  |  |     /* force to integer  */  | 
5748  | 0  |     residue=0;                          /* (no residue)  */  | 
5749  | 0  |     aset.digits=2; aset.round=DEC_ROUND_DOWN;  | 
5750  | 0  |     decCopyFit(b, rhs, &aset, &residue, &ignore); /* copy & shorten  */  | 
5751  | 0  |     b->exponent=0;                      /* make integer  */  | 
5752  | 0  |     t=decGetInt(b);                     /* [cannot fail]  */  | 
5753  | 0  |     if (t<10) t=X10(t);                 /* adjust single-digit b  */  | 
5754  | 0  |     t=LNnn[t-10];                       /* look up ln(b)  */  | 
5755  | 0  |     uprv_decNumberFromInt32(b, t>>2);        /* b=ln(b) coefficient  */  | 
5756  | 0  |     b->exponent=-(t&3)-3;               /* set exponent  */  | 
5757  | 0  |     b->bits=DECNEG;                     /* ln(0.10)->ln(0.99) always -ve  */  | 
5758  | 0  |     aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; /* restore  */  | 
5759  | 0  |     decAddOp(a, a, b, &aset, 0, &ignore); /* acc=a+b  */  | 
5760  |  |     /* the initial estimate is now in a, with up to 4 digits correct.  */  | 
5761  |  |     /* When rhs is at or near Nmax the estimate will be low, so we  */  | 
5762  |  |     /* will approach it from below, avoiding overflow when calling exp.  */  | 
5763  |  | 
  | 
5764  | 0  |     uprv_decNumberZero(&numone); *numone.lsu=1;   /* constant 1 for adjustment  */  | 
5765  |  |  | 
5766  |  |     /* accumulator bounds are as requested (could underflow, but  */  | 
5767  |  |     /* cannot overflow)  */  | 
5768  | 0  |     aset.emax=set->emax;  | 
5769  | 0  |     aset.emin=set->emin;  | 
5770  | 0  |     aset.clamp=0;                       /* no concrete format  */  | 
5771  |  |     /* set up a context to be used for the multiply and subtract  */  | 
5772  | 0  |     bset=aset;  | 
5773  | 0  |     bset.emax=DEC_MAX_MATH*2;           /* use double bounds for the  */  | 
5774  | 0  |     bset.emin=-DEC_MAX_MATH*2;          /* adjustment calculation  */  | 
5775  |  |                                         /* [see decExpOp call below]  */  | 
5776  |  |     /* for each iteration double the number of digits to calculate,  */  | 
5777  |  |     /* up to a maximum of p  */  | 
5778  | 0  |     pp=9;                               /* initial precision  */  | 
5779  |  |     /* [initially 9 as then the sequence starts 7+2, 16+2, and  */  | 
5780  |  |     /* 34+2, which is ideal for standard-sized numbers]  */  | 
5781  | 0  |     aset.digits=pp;                     /* working context  */  | 
5782  | 0  |     bset.digits=pp+rhs->digits;         /* wider context  */  | 
5783  | 0  |     for (;;) {                          /* iterate  */ | 
5784  |  |       #if DECCHECK  | 
5785  |  |       iterations++;  | 
5786  |  |       if (iterations>24) break;         /* consider 9 * 2**24  */  | 
5787  |  |       #endif  | 
5788  |  |       /* calculate the adjustment (exp(-a)*x-1) into b.  This is a  */  | 
5789  |  |       /* catastrophic subtraction but it really is the difference  */  | 
5790  |  |       /* from 1 that is of interest.  */  | 
5791  |  |       /* Use the internal entry point to Exp as it allows the double  */  | 
5792  |  |       /* range for calculating exp(-a) when a is the tiniest subnormal.  */  | 
5793  | 0  |       a->bits^=DECNEG;                  /* make -a  */  | 
5794  | 0  |       decExpOp(b, a, &bset, &ignore);   /* b=exp(-a)  */  | 
5795  | 0  |       a->bits^=DECNEG;                  /* restore sign of a  */  | 
5796  |  |       /* now multiply by rhs and subtract 1, at the wider precision  */  | 
5797  | 0  |       decMultiplyOp(b, b, rhs, &bset, &ignore);        /* b=b*rhs  */  | 
5798  | 0  |       decAddOp(b, b, &numone, &bset, DECNEG, &ignore); /* b=b-1  */  | 
5799  |  |  | 
5800  |  |       /* the iteration ends when the adjustment cannot affect the  */  | 
5801  |  |       /* result by >=0.5 ulp (at the requested digits), which  */  | 
5802  |  |       /* is when its value is smaller than the accumulator by  */  | 
5803  |  |       /* set->digits+1 digits (or it is zero) -- this is a looser  */  | 
5804  |  |       /* requirement than for Exp because all that happens to the  */  | 
5805  |  |       /* accumulator after this is the final rounding (but note that  */  | 
5806  |  |       /* there must also be full precision in a, or a=0).  */  | 
5807  |  | 
  | 
5808  | 0  |       if (decNumberIsZero(b) ||  | 
5809  | 0  |           (a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) { | 
5810  | 0  |         if (a->digits==p) break;  | 
5811  | 0  |         if (decNumberIsZero(a)) { | 
5812  | 0  |           decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); /* rhs=1 ?  */  | 
5813  | 0  |           if (cmp.lsu[0]==0) a->exponent=0;            /* yes, exact 0  */  | 
5814  | 0  |            else *status|=(DEC_Inexact | DEC_Rounded);  /* no, inexact  */  | 
5815  | 0  |           break;  | 
5816  | 0  |           }  | 
5817  |  |         /* force padding if adjustment has gone to 0 before full length  */  | 
5818  | 0  |         if (decNumberIsZero(b)) b->exponent=a->exponent-p;  | 
5819  | 0  |         }  | 
5820  |  |  | 
5821  |  |       /* not done yet ...  */  | 
5822  | 0  |       decAddOp(a, a, b, &aset, 0, &ignore);  /* a=a+b for next estimate  */  | 
5823  | 0  |       if (pp==p) continue;                   /* precision is at maximum  */  | 
5824  |  |       /* lengthen the next calculation  */  | 
5825  | 0  |       pp=pp*2;                               /* double precision  */  | 
5826  | 0  |       if (pp>p) pp=p;                        /* clamp to maximum  */  | 
5827  | 0  |       aset.digits=pp;                        /* working context  */  | 
5828  | 0  |       bset.digits=pp+rhs->digits;            /* wider context  */  | 
5829  | 0  |       } /* Newton's iteration  */  | 
5830  |  | 
  | 
5831  |  |     #if DECCHECK  | 
5832  |  |     /* just a sanity check; remove the test to show always  */  | 
5833  |  |     if (iterations>24)  | 
5834  |  |       printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n", | 
5835  |  |             (LI)iterations, (LI)*status, (LI)p, (LI)rhs->digits);  | 
5836  |  |     #endif  | 
5837  |  |  | 
5838  |  |     /* Copy and round the result to res  */  | 
5839  | 0  |     residue=1;                          /* indicate dirt to right  */  | 
5840  | 0  |     if (ISZERO(a)) residue=0;           /* .. unless underflowed to 0  */  | 
5841  | 0  |     aset.digits=set->digits;            /* [use default rounding]  */  | 
5842  | 0  |     decCopyFit(res, a, &aset, &residue, status); /* copy & shorten  */  | 
5843  | 0  |     decFinish(res, set, &residue, status);       /* cleanup/set flags  */  | 
5844  | 0  |     } while(0);                         /* end protected  */  | 
5845  |  |  | 
5846  | 0  |   if (allocbufa!=NULL) free(allocbufa); /* drop any storage used  */  | 
5847  | 0  |   if (allocbufb!=NULL) free(allocbufb); /* ..  */  | 
5848  |  |   /* [status is handled by caller]  */  | 
5849  | 0  |   return res;  | 
5850  | 0  |   } /* decLnOp  */  | 
5851  |  | #if defined(__clang__) || U_GCC_MAJOR_MINOR >= 406  | 
5852  |  | #pragma GCC diagnostic pop  | 
5853  |  | #endif  | 
5854  |  |  | 
5855  |  | /* ------------------------------------------------------------------ */  | 
5856  |  | /* decQuantizeOp  -- force exponent to requested value                */  | 
5857  |  | /*                                                                    */  | 
5858  |  | /*   This computes C = op(A, B), where op adjusts the coefficient     */  | 
5859  |  | /*   of C (by rounding or shifting) such that the exponent (-scale)   */  | 
5860  |  | /*   of C has the value B or matches the exponent of B.               */  | 
5861  |  | /*   The numerical value of C will equal A, except for the effects of */  | 
5862  |  | /*   any rounding that occurred.                                      */  | 
5863  |  | /*                                                                    */  | 
5864  |  | /*   res is C, the result.  C may be A or B                           */  | 
5865  |  | /*   lhs is A, the number to adjust                                   */  | 
5866  |  | /*   rhs is B, the requested exponent                                 */  | 
5867  |  | /*   set is the context                                               */  | 
5868  |  | /*   quant is 1 for quantize or 0 for rescale                         */  | 
5869  |  | /*   status is the status accumulator (this can be called without     */  | 
5870  |  | /*          risk of control loss)                                     */  | 
5871  |  | /*                                                                    */  | 
5872  |  | /* C must have space for set->digits digits.                          */  | 
5873  |  | /*                                                                    */  | 
5874  |  | /* Unless there is an error or the result is infinite, the exponent   */  | 
5875  |  | /* after the operation is guaranteed to be that requested.            */  | 
5876  |  | /* ------------------------------------------------------------------ */  | 
5877  |  | static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs,  | 
5878  |  |                                  const decNumber *rhs, decContext *set,  | 
5879  | 0  |                                  Flag quant, uInt *status) { | 
5880  |  |   #if DECSUBSET  | 
5881  |  |   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */  | 
5882  |  |   decNumber *allocrhs=NULL;        /* .., rhs  */  | 
5883  |  |   #endif  | 
5884  | 0  |   const decNumber *inrhs=rhs;      /* save original rhs  */  | 
5885  | 0  |   Int   reqdigits=set->digits;     /* requested DIGITS  */  | 
5886  | 0  |   Int   reqexp;                    /* requested exponent [-scale]  */  | 
5887  | 0  |   Int   residue=0;                 /* rounding residue  */  | 
5888  | 0  |   Int   etiny=set->emin-(reqdigits-1);  | 
5889  |  | 
  | 
5890  |  |   #if DECCHECK  | 
5891  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
5892  |  |   #endif  | 
5893  |  | 
  | 
5894  | 0  |   do {                             /* protect allocated storage  */ | 
5895  |  |     #if DECSUBSET  | 
5896  |  |     if (!set->extended) { | 
5897  |  |       /* reduce operands and set lostDigits status, as needed  */  | 
5898  |  |       if (lhs->digits>reqdigits) { | 
5899  |  |         alloclhs=decRoundOperand(lhs, set, status);  | 
5900  |  |         if (alloclhs==NULL) break;  | 
5901  |  |         lhs=alloclhs;  | 
5902  |  |         }  | 
5903  |  |       if (rhs->digits>reqdigits) { /* [this only checks lostDigits]  */ | 
5904  |  |         allocrhs=decRoundOperand(rhs, set, status);  | 
5905  |  |         if (allocrhs==NULL) break;  | 
5906  |  |         rhs=allocrhs;  | 
5907  |  |         }  | 
5908  |  |       }  | 
5909  |  |     #endif  | 
5910  |  |     /* [following code does not require input rounding]  */  | 
5911  |  |  | 
5912  |  |     /* Handle special values  */  | 
5913  | 0  |     if (SPECIALARGS) { | 
5914  |  |       /* NaNs get usual processing  */  | 
5915  | 0  |       if (SPECIALARGS & (DECSNAN | DECNAN))  | 
5916  | 0  |         decNaNs(res, lhs, rhs, set, status);  | 
5917  |  |       /* one infinity but not both is bad  */  | 
5918  | 0  |       else if ((lhs->bits ^ rhs->bits) & DECINF)  | 
5919  | 0  |         *status|=DEC_Invalid_operation;  | 
5920  |  |       /* both infinity: return lhs  */  | 
5921  | 0  |       else uprv_decNumberCopy(res, lhs);          /* [nop if in place]  */  | 
5922  | 0  |       break;  | 
5923  | 0  |       }  | 
5924  |  |  | 
5925  |  |     /* set requested exponent  */  | 
5926  | 0  |     if (quant) reqexp=inrhs->exponent;  /* quantize -- match exponents  */  | 
5927  | 0  |      else {                             /* rescale -- use value of rhs  */ | 
5928  |  |       /* Original rhs must be an integer that fits and is in range,  */  | 
5929  |  |       /* which could be from -1999999997 to +999999999, thanks to  */  | 
5930  |  |       /* subnormals  */  | 
5931  | 0  |       reqexp=decGetInt(inrhs);               /* [cannot fail]  */  | 
5932  | 0  |       }  | 
5933  |  | 
  | 
5934  |  |     #if DECSUBSET  | 
5935  |  |     if (!set->extended) etiny=set->emin;     /* no subnormals  */  | 
5936  |  |     #endif  | 
5937  |  | 
  | 
5938  | 0  |     if (reqexp==BADINT                       /* bad (rescale only) or ..  */  | 
5939  | 0  |      || reqexp==BIGODD || reqexp==BIGEVEN    /* very big (ditto) or ..  */  | 
5940  | 0  |      || (reqexp<etiny)                       /* < lowest  */  | 
5941  | 0  |      || (reqexp>set->emax)) {                /* > emax  */ | 
5942  | 0  |       *status|=DEC_Invalid_operation;  | 
5943  | 0  |       break;}  | 
5944  |  |  | 
5945  |  |     /* the RHS has been processed, so it can be overwritten now if necessary  */  | 
5946  | 0  |     if (ISZERO(lhs)) {                       /* zero coefficient unchanged  */ | 
5947  | 0  |       uprv_decNumberCopy(res, lhs);               /* [nop if in place]  */  | 
5948  | 0  |       res->exponent=reqexp;                  /* .. just set exponent  */  | 
5949  |  |       #if DECSUBSET  | 
5950  |  |       if (!set->extended) res->bits=0;       /* subset specification; no -0  */  | 
5951  |  |       #endif  | 
5952  | 0  |       }  | 
5953  | 0  |      else {                                  /* non-zero lhs  */ | 
5954  | 0  |       Int adjust=reqexp-lhs->exponent;       /* digit adjustment needed  */  | 
5955  |  |       /* if adjusted coefficient will definitely not fit, give up now  */  | 
5956  | 0  |       if ((lhs->digits-adjust)>reqdigits) { | 
5957  | 0  |         *status|=DEC_Invalid_operation;  | 
5958  | 0  |         break;  | 
5959  | 0  |         }  | 
5960  |  |  | 
5961  | 0  |       if (adjust>0) {                        /* increasing exponent  */ | 
5962  |  |         /* this will decrease the length of the coefficient by adjust  */  | 
5963  |  |         /* digits, and must round as it does so  */  | 
5964  | 0  |         decContext workset;                  /* work  */  | 
5965  | 0  |         workset=*set;                        /* clone rounding, etc.  */  | 
5966  | 0  |         workset.digits=lhs->digits-adjust;   /* set requested length  */  | 
5967  |  |         /* [note that the latter can be <1, here]  */  | 
5968  | 0  |         decCopyFit(res, lhs, &workset, &residue, status); /* fit to result  */  | 
5969  | 0  |         decApplyRound(res, &workset, residue, status);    /* .. and round  */  | 
5970  | 0  |         residue=0;                                        /* [used]  */  | 
5971  |  |         /* If just rounded a 999s case, exponent will be off by one;  */  | 
5972  |  |         /* adjust back (after checking space), if so.  */  | 
5973  | 0  |         if (res->exponent>reqexp) { | 
5974  |  |           /* re-check needed, e.g., for quantize(0.9999, 0.001) under  */  | 
5975  |  |           /* set->digits==3  */  | 
5976  | 0  |           if (res->digits==reqdigits) {      /* cannot shift by 1  */ | 
5977  | 0  |             *status&=~(DEC_Inexact | DEC_Rounded); /* [clean these]  */  | 
5978  | 0  |             *status|=DEC_Invalid_operation;  | 
5979  | 0  |             break;  | 
5980  | 0  |             }  | 
5981  | 0  |           res->digits=decShiftToMost(res->lsu, res->digits, 1); /* shift  */  | 
5982  | 0  |           res->exponent--;                   /* (re)adjust the exponent.  */  | 
5983  | 0  |           }  | 
5984  |  |         #if DECSUBSET  | 
5985  |  |         if (ISZERO(res) && !set->extended) res->bits=0; /* subset; no -0  */  | 
5986  |  |         #endif  | 
5987  | 0  |         } /* increase  */  | 
5988  | 0  |        else /* adjust<=0 */ {                /* decreasing or = exponent  */ | 
5989  |  |         /* this will increase the length of the coefficient by -adjust  */  | 
5990  |  |         /* digits, by adding zero or more trailing zeros; this is  */  | 
5991  |  |         /* already checked for fit, above  */  | 
5992  | 0  |         uprv_decNumberCopy(res, lhs);             /* [it will fit]  */  | 
5993  |  |         /* if padding needed (adjust<0), add it now...  */  | 
5994  | 0  |         if (adjust<0) { | 
5995  | 0  |           res->digits=decShiftToMost(res->lsu, res->digits, -adjust);  | 
5996  | 0  |           res->exponent+=adjust;             /* adjust the exponent  */  | 
5997  | 0  |           }  | 
5998  | 0  |         } /* decrease  */  | 
5999  | 0  |       } /* non-zero  */  | 
6000  |  |  | 
6001  |  |     /* Check for overflow [do not use Finalize in this case, as an  */  | 
6002  |  |     /* overflow here is a "don't fit" situation]  */  | 
6003  | 0  |     if (res->exponent>set->emax-res->digits+1) {  /* too big  */ | 
6004  | 0  |       *status|=DEC_Invalid_operation;  | 
6005  | 0  |       break;  | 
6006  | 0  |       }  | 
6007  | 0  |      else { | 
6008  | 0  |       decFinalize(res, set, &residue, status);    /* set subnormal flags  */  | 
6009  | 0  |       *status&=~DEC_Underflow;          /* suppress Underflow [as per 754]  */  | 
6010  | 0  |       }  | 
6011  | 0  |     } while(0);                         /* end protected  */  | 
6012  |  |  | 
6013  |  |   #if DECSUBSET  | 
6014  |  |   if (allocrhs!=NULL) free(allocrhs);   /* drop any storage used  */  | 
6015  |  |   if (alloclhs!=NULL) free(alloclhs);   /* ..  */  | 
6016  |  |   #endif  | 
6017  | 0  |   return res;  | 
6018  | 0  |   } /* decQuantizeOp  */  | 
6019  |  |  | 
6020  |  | /* ------------------------------------------------------------------ */  | 
6021  |  | /* decCompareOp -- compare, min, or max two Numbers                   */  | 
6022  |  | /*                                                                    */  | 
6023  |  | /*   This computes C = A ? B and carries out one of four operations:  */  | 
6024  |  | /*     COMPARE    -- returns the signum (as a number) giving the      */  | 
6025  |  | /*                   result of a comparison unless one or both        */  | 
6026  |  | /*                   operands is a NaN (in which case a NaN results)  */  | 
6027  |  | /*     COMPSIG    -- as COMPARE except that a quiet NaN raises        */  | 
6028  |  | /*                   Invalid operation.                               */  | 
6029  |  | /*     COMPMAX    -- returns the larger of the operands, using the    */  | 
6030  |  | /*                   754 maxnum operation                             */  | 
6031  |  | /*     COMPMAXMAG -- ditto, comparing absolute values                 */  | 
6032  |  | /*     COMPMIN    -- the 754 minnum operation                         */  | 
6033  |  | /*     COMPMINMAG -- ditto, comparing absolute values                 */  | 
6034  |  | /*     COMTOTAL   -- returns the signum (as a number) giving the      */  | 
6035  |  | /*                   result of a comparison using 754 total ordering  */  | 
6036  |  | /*                                                                    */  | 
6037  |  | /*   res is C, the result.  C may be A and/or B (e.g., X=X?X)         */  | 
6038  |  | /*   lhs is A                                                         */  | 
6039  |  | /*   rhs is B                                                         */  | 
6040  |  | /*   set is the context                                               */  | 
6041  |  | /*   op  is the operation flag                                        */  | 
6042  |  | /*   status is the usual accumulator                                  */  | 
6043  |  | /*                                                                    */  | 
6044  |  | /* C must have space for one digit for COMPARE or set->digits for     */  | 
6045  |  | /* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG.                       */  | 
6046  |  | /* ------------------------------------------------------------------ */  | 
6047  |  | /* The emphasis here is on speed for common cases, and avoiding       */  | 
6048  |  | /* coefficient comparison if possible.                                */  | 
6049  |  | /* ------------------------------------------------------------------ */  | 
6050  |  | static decNumber * decCompareOp(decNumber *res, const decNumber *lhs,  | 
6051  |  |                          const decNumber *rhs, decContext *set,  | 
6052  | 0  |                          Flag op, uInt *status) { | 
6053  |  |   #if DECSUBSET  | 
6054  |  |   decNumber *alloclhs=NULL;        /* non-NULL if rounded lhs allocated  */  | 
6055  |  |   decNumber *allocrhs=NULL;        /* .., rhs  */  | 
6056  |  |   #endif  | 
6057  | 0  |   Int   result=0;                  /* default result value  */  | 
6058  | 0  |   uByte merged;                    /* work  */  | 
6059  |  | 
  | 
6060  |  |   #if DECCHECK  | 
6061  |  |   if (decCheckOperands(res, lhs, rhs, set)) return res;  | 
6062  |  |   #endif  | 
6063  |  | 
  | 
6064  | 0  |   do {                             /* protect allocated storage  */ | 
6065  |  |     #if DECSUBSET  | 
6066  |  |     if (!set->extended) { | 
6067  |  |       /* reduce operands and set lostDigits status, as needed  */  | 
6068  |  |       if (lhs->digits>set->digits) { | 
6069  |  |         alloclhs=decRoundOperand(lhs, set, status);  | 
6070  |  |         if (alloclhs==NULL) {result=BADINT; break;} | 
6071  |  |         lhs=alloclhs;  | 
6072  |  |         }  | 
6073  |  |       if (rhs->digits>set->digits) { | 
6074  |  |         allocrhs=decRoundOperand(rhs, set, status);  | 
6075  |  |         if (allocrhs==NULL) {result=BADINT; break;} | 
6076  |  |         rhs=allocrhs;  | 
6077  |  |         }  | 
6078  |  |       }  | 
6079  |  |     #endif  | 
6080  |  |     /* [following code does not require input rounding]  */  | 
6081  |  |  | 
6082  |  |     /* If total ordering then handle differing signs 'up front'  */  | 
6083  | 0  |     if (op==COMPTOTAL) {                /* total ordering  */ | 
6084  | 0  |       if (decNumberIsNegative(lhs) && !decNumberIsNegative(rhs)) { | 
6085  | 0  |         result=-1;  | 
6086  | 0  |         break;  | 
6087  | 0  |         }  | 
6088  | 0  |       if (!decNumberIsNegative(lhs) && decNumberIsNegative(rhs)) { | 
6089  | 0  |         result=+1;  | 
6090  | 0  |         break;  | 
6091  | 0  |         }  | 
6092  | 0  |       }  | 
6093  |  |  | 
6094  |  |     /* handle NaNs specially; let infinities drop through  */  | 
6095  |  |     /* This assumes sNaN (even just one) leads to NaN.  */  | 
6096  | 0  |     merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN);  | 
6097  | 0  |     if (merged) {                       /* a NaN bit set  */ | 
6098  | 0  |       if (op==COMPARE);                 /* result will be NaN  */  | 
6099  | 0  |        else if (op==COMPSIG)            /* treat qNaN as sNaN  */  | 
6100  | 0  |         *status|=DEC_Invalid_operation | DEC_sNaN;  | 
6101  | 0  |        else if (op==COMPTOTAL) {        /* total ordering, always finite  */ | 
6102  |  |         /* signs are known to be the same; compute the ordering here  */  | 
6103  |  |         /* as if the signs are both positive, then invert for negatives  */  | 
6104  | 0  |         if (!decNumberIsNaN(lhs)) result=-1;  | 
6105  | 0  |          else if (!decNumberIsNaN(rhs)) result=+1;  | 
6106  |  |          /* here if both NaNs  */  | 
6107  | 0  |          else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1;  | 
6108  | 0  |          else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1;  | 
6109  | 0  |          else { /* both NaN or both sNaN  */ | 
6110  |  |           /* now it just depends on the payload  */  | 
6111  | 0  |           result=decUnitCompare(lhs->lsu, D2U(lhs->digits),  | 
6112  | 0  |                                 rhs->lsu, D2U(rhs->digits), 0);  | 
6113  |  |           /* [Error not possible, as these are 'aligned']  */  | 
6114  | 0  |           } /* both same NaNs  */  | 
6115  | 0  |         if (decNumberIsNegative(lhs)) result=-result;  | 
6116  | 0  |         break;  | 
6117  | 0  |         } /* total order  */  | 
6118  |  |  | 
6119  | 0  |        else if (merged & DECSNAN);           /* sNaN -> qNaN  */  | 
6120  | 0  |        else { /* here if MIN or MAX and one or two quiet NaNs  */ | 
6121  |  |         /* min or max -- 754 rules ignore single NaN  */  | 
6122  | 0  |         if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) { | 
6123  |  |           /* just one NaN; force choice to be the non-NaN operand  */  | 
6124  | 0  |           op=COMPMAX;  | 
6125  | 0  |           if (lhs->bits & DECNAN) result=-1; /* pick rhs  */  | 
6126  | 0  |                              else result=+1; /* pick lhs  */  | 
6127  | 0  |           break;  | 
6128  | 0  |           }  | 
6129  | 0  |         } /* max or min  */  | 
6130  | 0  |       op=COMPNAN;                            /* use special path  */  | 
6131  | 0  |       decNaNs(res, lhs, rhs, set, status);   /* propagate NaN  */  | 
6132  | 0  |       break;  | 
6133  | 0  |       }  | 
6134  |  |     /* have numbers  */  | 
6135  | 0  |     if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1);  | 
6136  | 0  |      else result=decCompare(lhs, rhs, 0);    /* sign matters  */  | 
6137  | 0  |     } while(0);                              /* end protected  */  | 
6138  |  |  | 
6139  | 0  |   if (result==BADINT) *status|=DEC_Insufficient_storage; /* rare  */  | 
6140  | 0  |    else { | 
6141  | 0  |     if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { /* returning signum  */ | 
6142  | 0  |       if (op==COMPTOTAL && result==0) { | 
6143  |  |         /* operands are numerically equal or same NaN (and same sign,  */  | 
6144  |  |         /* tested first); if identical, leave result 0  */  | 
6145  | 0  |         if (lhs->exponent!=rhs->exponent) { | 
6146  | 0  |           if (lhs->exponent<rhs->exponent) result=-1;  | 
6147  | 0  |            else result=+1;  | 
6148  | 0  |           if (decNumberIsNegative(lhs)) result=-result;  | 
6149  | 0  |           } /* lexp!=rexp  */  | 
6150  | 0  |         } /* total-order by exponent  */  | 
6151  | 0  |       uprv_decNumberZero(res);               /* [always a valid result]  */  | 
6152  | 0  |       if (result!=0) {                  /* must be -1 or +1  */ | 
6153  | 0  |         *res->lsu=1;  | 
6154  | 0  |         if (result<0) res->bits=DECNEG;  | 
6155  | 0  |         }  | 
6156  | 0  |       }  | 
6157  | 0  |      else if (op==COMPNAN);             /* special, drop through  */  | 
6158  | 0  |      else {                             /* MAX or MIN, non-NaN result  */ | 
6159  | 0  |       Int residue=0;                    /* rounding accumulator  */  | 
6160  |  |       /* choose the operand for the result  */  | 
6161  | 0  |       const decNumber *choice;  | 
6162  | 0  |       if (result==0) { /* operands are numerically equal  */ | 
6163  |  |         /* choose according to sign then exponent (see 754)  */  | 
6164  | 0  |         uByte slhs=(lhs->bits & DECNEG);  | 
6165  | 0  |         uByte srhs=(rhs->bits & DECNEG);  | 
6166  |  |         #if DECSUBSET  | 
6167  |  |         if (!set->extended) {           /* subset: force left-hand  */ | 
6168  |  |           op=COMPMAX;  | 
6169  |  |           result=+1;  | 
6170  |  |           }  | 
6171  |  |         else  | 
6172  |  |         #endif  | 
6173  | 0  |         if (slhs!=srhs) {          /* signs differ  */ | 
6174  | 0  |           if (slhs) result=-1;     /* rhs is max  */  | 
6175  | 0  |                else result=+1;     /* lhs is max  */  | 
6176  | 0  |           }  | 
6177  | 0  |          else if (slhs && srhs) {  /* both negative  */ | 
6178  | 0  |           if (lhs->exponent<rhs->exponent) result=+1;  | 
6179  | 0  |                                       else result=-1;  | 
6180  |  |           /* [if equal, use lhs, technically identical]  */  | 
6181  | 0  |           }  | 
6182  | 0  |          else {                    /* both positive  */ | 
6183  | 0  |           if (lhs->exponent>rhs->exponent) result=+1;  | 
6184  | 0  |                                       else result=-1;  | 
6185  |  |           /* [ditto]  */  | 
6186  | 0  |           }  | 
6187  | 0  |         } /* numerically equal  */  | 
6188  |  |       /* here result will be non-0; reverse if looking for MIN  */  | 
6189  | 0  |       if (op==COMPMIN || op==COMPMINMAG) result=-result;  | 
6190  | 0  |       choice=(result>0 ? lhs : rhs);    /* choose  */  | 
6191  |  |       /* copy chosen to result, rounding if need be  */  | 
6192  | 0  |       decCopyFit(res, choice, set, &residue, status);  | 
6193  | 0  |       decFinish(res, set, &residue, status);  | 
6194  | 0  |       }  | 
6195  | 0  |     }  | 
6196  |  |   #if DECSUBSET  | 
6197  |  |   if (allocrhs!=NULL) free(allocrhs);   /* free any storage used  */  | 
6198  |  |   if (alloclhs!=NULL) free(alloclhs);   /* ..  */  | 
6199  |  |   #endif  | 
6200  | 0  |   return res;  | 
6201  | 0  |   } /* decCompareOp  */  | 
6202  |  |  | 
6203  |  | /* ------------------------------------------------------------------ */  | 
6204  |  | /* decCompare -- compare two decNumbers by numerical value            */  | 
6205  |  | /*                                                                    */  | 
6206  |  | /*  This routine compares A ? B without altering them.                */  | 
6207  |  | /*                                                                    */  | 
6208  |  | /*  Arg1 is A, a decNumber which is not a NaN                         */  | 
6209  |  | /*  Arg2 is B, a decNumber which is not a NaN                         */  | 
6210  |  | /*  Arg3 is 1 for a sign-independent compare, 0 otherwise             */  | 
6211  |  | /*                                                                    */  | 
6212  |  | /*  returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure   */  | 
6213  |  | /*  (the only possible failure is an allocation error)                */  | 
6214  |  | /* ------------------------------------------------------------------ */  | 
6215  |  | static Int decCompare(const decNumber *lhs, const decNumber *rhs,  | 
6216  | 0  |                       Flag abs_c) { | 
6217  | 0  |   Int   result;                    /* result value  */  | 
6218  | 0  |   Int   sigr;                      /* rhs signum  */  | 
6219  | 0  |   Int   compare;                   /* work  */  | 
6220  |  | 
  | 
6221  | 0  |   result=1;                                  /* assume signum(lhs)  */  | 
6222  | 0  |   if (ISZERO(lhs)) result=0;  | 
6223  | 0  |   if (abs_c) { | 
6224  | 0  |     if (ISZERO(rhs)) return result;          /* LHS wins or both 0  */  | 
6225  |  |     /* RHS is non-zero  */  | 
6226  | 0  |     if (result==0) return -1;                /* LHS is 0; RHS wins  */  | 
6227  |  |     /* [here, both non-zero, result=1]  */  | 
6228  | 0  |     }  | 
6229  | 0  |    else {                                    /* signs matter  */ | 
6230  | 0  |     if (result && decNumberIsNegative(lhs)) result=-1;  | 
6231  | 0  |     sigr=1;                                  /* compute signum(rhs)  */  | 
6232  | 0  |     if (ISZERO(rhs)) sigr=0;  | 
6233  | 0  |      else if (decNumberIsNegative(rhs)) sigr=-1;  | 
6234  | 0  |     if (result > sigr) return +1;            /* L > R, return 1  */  | 
6235  | 0  |     if (result < sigr) return -1;            /* L < R, return -1  */  | 
6236  | 0  |     if (result==0) return 0;                   /* both 0  */  | 
6237  | 0  |     }  | 
6238  |  |  | 
6239  |  |   /* signums are the same; both are non-zero  */  | 
6240  | 0  |   if ((lhs->bits | rhs->bits) & DECINF) {    /* one or more infinities  */ | 
6241  | 0  |     if (decNumberIsInfinite(rhs)) { | 
6242  | 0  |       if (decNumberIsInfinite(lhs)) result=0;/* both infinite  */  | 
6243  | 0  |        else result=-result;                  /* only rhs infinite  */  | 
6244  | 0  |       }  | 
6245  | 0  |     return result;  | 
6246  | 0  |     }  | 
6247  |  |   /* must compare the coefficients, allowing for exponents  */  | 
6248  | 0  |   if (lhs->exponent>rhs->exponent) {         /* LHS exponent larger  */ | 
6249  |  |     /* swap sides, and sign  */  | 
6250  | 0  |     const decNumber *temp=lhs;  | 
6251  | 0  |     lhs=rhs;  | 
6252  | 0  |     rhs=temp;  | 
6253  | 0  |     result=-result;  | 
6254  | 0  |     }  | 
6255  | 0  |   compare=decUnitCompare(lhs->lsu, D2U(lhs->digits),  | 
6256  | 0  |                          rhs->lsu, D2U(rhs->digits),  | 
6257  | 0  |                          rhs->exponent-lhs->exponent);  | 
6258  | 0  |   if (compare!=BADINT) compare*=result;      /* comparison succeeded  */  | 
6259  | 0  |   return compare;  | 
6260  | 0  |   } /* decCompare  */  | 
6261  |  |  | 
6262  |  | /* ------------------------------------------------------------------ */  | 
6263  |  | /* decUnitCompare -- compare two >=0 integers in Unit arrays          */  | 
6264  |  | /*                                                                    */  | 
6265  |  | /*  This routine compares A ? B*10**E where A and B are unit arrays   */  | 
6266  |  | /*  A is a plain integer                                              */  | 
6267  |  | /*  B has an exponent of E (which must be non-negative)               */  | 
6268  |  | /*                                                                    */  | 
6269  |  | /*  Arg1 is A first Unit (lsu)                                        */  | 
6270  |  | /*  Arg2 is A length in Units                                         */  | 
6271  |  | /*  Arg3 is B first Unit (lsu)                                        */  | 
6272  |  | /*  Arg4 is B length in Units                                         */  | 
6273  |  | /*  Arg5 is E (0 if the units are aligned)                            */  | 
6274  |  | /*                                                                    */  | 
6275  |  | /*  returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure   */  | 
6276  |  | /*  (the only possible failure is an allocation error, which can      */  | 
6277  |  | /*  only occur if E!=0)                                               */  | 
6278  |  | /* ------------------------------------------------------------------ */  | 
6279  |  | static Int decUnitCompare(const Unit *a, Int alength,  | 
6280  | 0  |                           const Unit *b, Int blength, Int exp) { | 
6281  | 0  |   Unit  *acc;                      /* accumulator for result  */  | 
6282  | 0  |   Unit  accbuff[SD2U(DECBUFFER*2+1)]; /* local buffer  */  | 
6283  | 0  |   Unit  *allocacc=NULL;            /* -> allocated acc buffer, iff allocated  */  | 
6284  | 0  |   Int   accunits, need;            /* units in use or needed for acc  */  | 
6285  | 0  |   const Unit *l, *r, *u;           /* work  */  | 
6286  | 0  |   Int   expunits, exprem, result;  /* ..  */  | 
6287  |  | 
  | 
6288  | 0  |   if (exp==0) {                    /* aligned; fastpath  */ | 
6289  | 0  |     if (alength>blength) return 1;  | 
6290  | 0  |     if (alength<blength) return -1;  | 
6291  |  |     /* same number of units in both -- need unit-by-unit compare  */  | 
6292  | 0  |     l=a+alength-1;  | 
6293  | 0  |     r=b+alength-1;  | 
6294  | 0  |     for (;l>=a; l--, r--) { | 
6295  | 0  |       if (*l>*r) return 1;  | 
6296  | 0  |       if (*l<*r) return -1;  | 
6297  | 0  |       }  | 
6298  | 0  |     return 0;                      /* all units match  */  | 
6299  | 0  |     } /* aligned  */  | 
6300  |  |  | 
6301  |  |   /* Unaligned.  If one is >1 unit longer than the other, padded  */  | 
6302  |  |   /* approximately, then can return easily  */  | 
6303  | 0  |   if (alength>blength+(Int)D2U(exp)) return 1;  | 
6304  | 0  |   if (alength+1<blength+(Int)D2U(exp)) return -1;  | 
6305  |  |  | 
6306  |  |   /* Need to do a real subtract.  For this, a result buffer is needed  */  | 
6307  |  |   /* even though only the sign is of interest.  Its length needs  */  | 
6308  |  |   /* to be the larger of alength and padded blength, +2  */  | 
6309  | 0  |   need=blength+D2U(exp);                /* maximum real length of B  */  | 
6310  | 0  |   if (need<alength) need=alength;  | 
6311  | 0  |   need+=2;  | 
6312  | 0  |   acc=accbuff;                          /* assume use local buffer  */  | 
6313  | 0  |   if (need*sizeof(Unit)>sizeof(accbuff)) { | 
6314  | 0  |     allocacc=(Unit *)malloc(need*sizeof(Unit));  | 
6315  | 0  |     if (allocacc==NULL) return BADINT;  /* hopeless -- abandon  */  | 
6316  | 0  |     acc=allocacc;  | 
6317  | 0  |     }  | 
6318  |  |   /* Calculate units and remainder from exponent.  */  | 
6319  | 0  |   expunits=exp/DECDPUN;  | 
6320  | 0  |   exprem=exp%DECDPUN;  | 
6321  |  |   /* subtract [A+B*(-m)]  */  | 
6322  | 0  |   accunits=decUnitAddSub(a, alength, b, blength, expunits, acc,  | 
6323  | 0  |                          -(Int)powers[exprem]);  | 
6324  |  |   /* [UnitAddSub result may have leading zeros, even on zero]  */  | 
6325  | 0  |   if (accunits<0) result=-1;            /* negative result  */  | 
6326  | 0  |    else {                               /* non-negative result  */ | 
6327  |  |     /* check units of the result before freeing any storage  */  | 
6328  | 0  |     for (u=acc; u<acc+accunits-1 && *u==0;) u++;  | 
6329  | 0  |     result=(*u==0 ? 0 : +1);  | 
6330  | 0  |     }  | 
6331  |  |   /* clean up and return the result  */  | 
6332  | 0  |   if (allocacc!=NULL) free(allocacc);   /* drop any storage used  */  | 
6333  | 0  |   return result;  | 
6334  | 0  |   } /* decUnitCompare  */  | 
6335  |  |  | 
6336  |  | /* ------------------------------------------------------------------ */  | 
6337  |  | /* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays   */  | 
6338  |  | /*                                                                    */  | 
6339  |  | /*  This routine performs the calculation:                            */  | 
6340  |  | /*                                                                    */  | 
6341  |  | /*  C=A+(B*M)                                                         */  | 
6342  |  | /*                                                                    */  | 
6343  |  | /*  Where M is in the range -DECDPUNMAX through +DECDPUNMAX.          */  | 
6344  |  | /*                                                                    */  | 
6345  |  | /*  A may be shorter or longer than B.                                */  | 
6346  |  | /*                                                                    */  | 
6347  |  | /*  Leading zeros are not removed after a calculation.  The result is */  | 
6348  |  | /*  either the same length as the longer of A and B (adding any       */  | 
6349  |  | /*  shift), or one Unit longer than that (if a Unit carry occurred).  */  | 
6350  |  | /*                                                                    */  | 
6351  |  | /*  A and B content are not altered unless C is also A or B.          */  | 
6352  |  | /*  C may be the same array as A or B, but only if no zero padding is */  | 
6353  |  | /*  requested (that is, C may be B only if bshift==0).                */  | 
6354  |  | /*  C is filled from the lsu; only those units necessary to complete  */  | 
6355  |  | /*  the calculation are referenced.                                   */  | 
6356  |  | /*                                                                    */  | 
6357  |  | /*  Arg1 is A first Unit (lsu)                                        */  | 
6358  |  | /*  Arg2 is A length in Units                                         */  | 
6359  |  | /*  Arg3 is B first Unit (lsu)                                        */  | 
6360  |  | /*  Arg4 is B length in Units                                         */  | 
6361  |  | /*  Arg5 is B shift in Units  (>=0; pads with 0 units if positive)    */  | 
6362  |  | /*  Arg6 is C first Unit (lsu)                                        */  | 
6363  |  | /*  Arg7 is M, the multiplier                                         */  | 
6364  |  | /*                                                                    */  | 
6365  |  | /*  returns the count of Units written to C, which will be non-zero   */  | 
6366  |  | /*  and negated if the result is negative.  That is, the sign of the  */  | 
6367  |  | /*  returned Int is the sign of the result (positive for zero) and    */  | 
6368  |  | /*  the absolute value of the Int is the count of Units.              */  | 
6369  |  | /*                                                                    */  | 
6370  |  | /*  It is the caller's responsibility to make sure that C size is     */  | 
6371  |  | /*  safe, allowing space if necessary for a one-Unit carry.           */  | 
6372  |  | /*                                                                    */  | 
6373  |  | /*  This routine is severely performance-critical; *any* change here  */  | 
6374  |  | /*  must be measured (timed) to assure no performance degradation.    */  | 
6375  |  | /*  In particular, trickery here tends to be counter-productive, as   */  | 
6376  |  | /*  increased complexity of code hurts register optimizations on      */  | 
6377  |  | /*  register-poor architectures.  Avoiding divisions is nearly        */  | 
6378  |  | /*  always a Good Idea, however.                                      */  | 
6379  |  | /*                                                                    */  | 
6380  |  | /* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark  */  | 
6381  |  | /* (IBM Warwick, UK) for some of the ideas used in this routine.      */  | 
6382  |  | /* ------------------------------------------------------------------ */  | 
6383  |  | static Int decUnitAddSub(const Unit *a, Int alength,  | 
6384  |  |                          const Unit *b, Int blength, Int bshift,  | 
6385  | 0  |                          Unit *c, Int m) { | 
6386  | 0  |   const Unit *alsu=a;              /* A lsu [need to remember it]  */  | 
6387  | 0  |   Unit *clsu=c;                    /* C ditto  */  | 
6388  | 0  |   Unit *minC;                      /* low water mark for C  */  | 
6389  | 0  |   Unit *maxC;                      /* high water mark for C  */  | 
6390  | 0  |   eInt carry=0;                    /* carry integer (could be Long)  */  | 
6391  | 0  |   Int  add;                        /* work  */  | 
6392  | 0  |   #if DECDPUN<=4                   /* myriadal, millenary, etc.  */  | 
6393  | 0  |   Int  est;                        /* estimated quotient  */  | 
6394  | 0  |   #endif  | 
6395  |  | 
  | 
6396  |  |   #if DECTRACE  | 
6397  |  |   if (alength<1 || blength<1)  | 
6398  |  |     printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m); | 
6399  |  |   #endif  | 
6400  |  | 
  | 
6401  | 0  |   maxC=c+alength;                  /* A is usually the longer  */  | 
6402  | 0  |   minC=c+blength;                  /* .. and B the shorter  */  | 
6403  | 0  |   if (bshift!=0) {                 /* B is shifted; low As copy across  */ | 
6404  | 0  |     minC+=bshift;  | 
6405  |  |     /* if in place [common], skip copy unless there's a gap [rare]  */  | 
6406  | 0  |     if (a==c && bshift<=alength) { | 
6407  | 0  |       c+=bshift;  | 
6408  | 0  |       a+=bshift;  | 
6409  | 0  |       }  | 
6410  | 0  |      else for (; c<clsu+bshift; a++, c++) {  /* copy needed  */ | 
6411  | 0  |       if (a<alsu+alength) *c=*a;  | 
6412  | 0  |        else *c=0;  | 
6413  | 0  |       }  | 
6414  | 0  |     }  | 
6415  | 0  |   if (minC>maxC) { /* swap  */ | 
6416  | 0  |     Unit *hold=minC;  | 
6417  | 0  |     minC=maxC;  | 
6418  | 0  |     maxC=hold;  | 
6419  | 0  |     }  | 
6420  |  |  | 
6421  |  |   /* For speed, do the addition as two loops; the first where both A  */  | 
6422  |  |   /* and B contribute, and the second (if necessary) where only one or  */  | 
6423  |  |   /* other of the numbers contribute.  */  | 
6424  |  |   /* Carry handling is the same (i.e., duplicated) in each case.  */  | 
6425  | 0  |   for (; c<minC; c++) { | 
6426  | 0  |     carry+=*a;  | 
6427  | 0  |     a++;  | 
6428  | 0  |     carry+=((eInt)*b)*m;                /* [special-casing m=1/-1  */  | 
6429  | 0  |     b++;                                /* here is not a win]  */  | 
6430  |  |     /* here carry is new Unit of digits; it could be +ve or -ve  */  | 
6431  | 0  |     if ((ueInt)carry<=DECDPUNMAX) {     /* fastpath 0-DECDPUNMAX  */ | 
6432  | 0  |       *c=(Unit)carry;  | 
6433  | 0  |       carry=0;  | 
6434  | 0  |       continue;  | 
6435  | 0  |       }  | 
6436  |  |     #if DECDPUN==4                           /* use divide-by-multiply  */  | 
6437  |  |       if (carry>=0) { | 
6438  |  |         est=(((ueInt)carry>>11)*53687)>>18;  | 
6439  |  |         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */  | 
6440  |  |         carry=est;                           /* likely quotient [89%]  */  | 
6441  |  |         if (*c<DECDPUNMAX+1) continue;       /* estimate was correct  */  | 
6442  |  |         carry++;  | 
6443  |  |         *c-=DECDPUNMAX+1;  | 
6444  |  |         continue;  | 
6445  |  |         }  | 
6446  |  |       /* negative case  */  | 
6447  |  |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */  | 
6448  |  |       est=(((ueInt)carry>>11)*53687)>>18;  | 
6449  |  |       *c=(Unit)(carry-est*(DECDPUNMAX+1));  | 
6450  |  |       carry=est-(DECDPUNMAX+1);              /* correctly negative  */  | 
6451  |  |       if (*c<DECDPUNMAX+1) continue;         /* was OK  */  | 
6452  |  |       carry++;  | 
6453  |  |       *c-=DECDPUNMAX+1;  | 
6454  |  |     #elif DECDPUN==3  | 
6455  |  |       if (carry>=0) { | 
6456  |  |         est=(((ueInt)carry>>3)*16777)>>21;  | 
6457  |  |         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */  | 
6458  |  |         carry=est;                           /* likely quotient [99%]  */  | 
6459  |  |         if (*c<DECDPUNMAX+1) continue;       /* estimate was correct  */  | 
6460  |  |         carry++;  | 
6461  |  |         *c-=DECDPUNMAX+1;  | 
6462  |  |         continue;  | 
6463  |  |         }  | 
6464  |  |       /* negative case  */  | 
6465  |  |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */  | 
6466  |  |       est=(((ueInt)carry>>3)*16777)>>21;  | 
6467  |  |       *c=(Unit)(carry-est*(DECDPUNMAX+1));  | 
6468  |  |       carry=est-(DECDPUNMAX+1);              /* correctly negative  */  | 
6469  |  |       if (*c<DECDPUNMAX+1) continue;         /* was OK  */  | 
6470  |  |       carry++;  | 
6471  |  |       *c-=DECDPUNMAX+1;  | 
6472  |  |     #elif DECDPUN<=2  | 
6473  |  |       /* Can use QUOT10 as carry <= 4 digits  */  | 
6474  | 0  |       if (carry>=0) { | 
6475  | 0  |         est=QUOT10(carry, DECDPUN);  | 
6476  | 0  |         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */  | 
6477  | 0  |         carry=est;                           /* quotient  */  | 
6478  | 0  |         continue;  | 
6479  | 0  |         }  | 
6480  |  |       /* negative case  */  | 
6481  | 0  |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */  | 
6482  | 0  |       est=QUOT10(carry, DECDPUN);  | 
6483  | 0  |       *c=(Unit)(carry-est*(DECDPUNMAX+1));  | 
6484  | 0  |       carry=est-(DECDPUNMAX+1);              /* correctly negative  */  | 
6485  |  |     #else  | 
6486  |  |       /* remainder operator is undefined if negative, so must test  */  | 
6487  |  |       if ((ueInt)carry<(DECDPUNMAX+1)*2) {   /* fastpath carry +1  */ | 
6488  |  |         *c=(Unit)(carry-(DECDPUNMAX+1));     /* [helps additions]  */  | 
6489  |  |         carry=1;  | 
6490  |  |         continue;  | 
6491  |  |         }  | 
6492  |  |       if (carry>=0) { | 
6493  |  |         *c=(Unit)(carry%(DECDPUNMAX+1));  | 
6494  |  |         carry=carry/(DECDPUNMAX+1);  | 
6495  |  |         continue;  | 
6496  |  |         }  | 
6497  |  |       /* negative case  */  | 
6498  |  |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */  | 
6499  |  |       *c=(Unit)(carry%(DECDPUNMAX+1));  | 
6500  |  |       carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);  | 
6501  |  |     #endif  | 
6502  | 0  |     } /* c  */  | 
6503  |  |  | 
6504  |  |   /* now may have one or other to complete  */  | 
6505  |  |   /* [pretest to avoid loop setup/shutdown]  */  | 
6506  | 0  |   if (c<maxC) for (; c<maxC; c++) { | 
6507  | 0  |     if (a<alsu+alength) {               /* still in A  */ | 
6508  | 0  |       carry+=*a;  | 
6509  | 0  |       a++;  | 
6510  | 0  |       }  | 
6511  | 0  |      else {                             /* inside B  */ | 
6512  | 0  |       carry+=((eInt)*b)*m;  | 
6513  | 0  |       b++;  | 
6514  | 0  |       }  | 
6515  |  |     /* here carry is new Unit of digits; it could be +ve or -ve and  */  | 
6516  |  |     /* magnitude up to DECDPUNMAX squared  */  | 
6517  | 0  |     if ((ueInt)carry<=DECDPUNMAX) {     /* fastpath 0-DECDPUNMAX  */ | 
6518  | 0  |       *c=(Unit)carry;  | 
6519  | 0  |       carry=0;  | 
6520  | 0  |       continue;  | 
6521  | 0  |       }  | 
6522  |  |     /* result for this unit is negative or >DECDPUNMAX  */  | 
6523  |  |     #if DECDPUN==4                           /* use divide-by-multiply  */  | 
6524  |  |       if (carry>=0) { | 
6525  |  |         est=(((ueInt)carry>>11)*53687)>>18;  | 
6526  |  |         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */  | 
6527  |  |         carry=est;                           /* likely quotient [79.7%]  */  | 
6528  |  |         if (*c<DECDPUNMAX+1) continue;       /* estimate was correct  */  | 
6529  |  |         carry++;  | 
6530  |  |         *c-=DECDPUNMAX+1;  | 
6531  |  |         continue;  | 
6532  |  |         }  | 
6533  |  |       /* negative case  */  | 
6534  |  |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */  | 
6535  |  |       est=(((ueInt)carry>>11)*53687)>>18;  | 
6536  |  |       *c=(Unit)(carry-est*(DECDPUNMAX+1));  | 
6537  |  |       carry=est-(DECDPUNMAX+1);              /* correctly negative  */  | 
6538  |  |       if (*c<DECDPUNMAX+1) continue;         /* was OK  */  | 
6539  |  |       carry++;  | 
6540  |  |       *c-=DECDPUNMAX+1;  | 
6541  |  |     #elif DECDPUN==3  | 
6542  |  |       if (carry>=0) { | 
6543  |  |         est=(((ueInt)carry>>3)*16777)>>21;  | 
6544  |  |         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */  | 
6545  |  |         carry=est;                           /* likely quotient [99%]  */  | 
6546  |  |         if (*c<DECDPUNMAX+1) continue;       /* estimate was correct  */  | 
6547  |  |         carry++;  | 
6548  |  |         *c-=DECDPUNMAX+1;  | 
6549  |  |         continue;  | 
6550  |  |         }  | 
6551  |  |       /* negative case  */  | 
6552  |  |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */  | 
6553  |  |       est=(((ueInt)carry>>3)*16777)>>21;  | 
6554  |  |       *c=(Unit)(carry-est*(DECDPUNMAX+1));  | 
6555  |  |       carry=est-(DECDPUNMAX+1);              /* correctly negative  */  | 
6556  |  |       if (*c<DECDPUNMAX+1) continue;         /* was OK  */  | 
6557  |  |       carry++;  | 
6558  |  |       *c-=DECDPUNMAX+1;  | 
6559  |  |     #elif DECDPUN<=2  | 
6560  | 0  |       if (carry>=0) { | 
6561  | 0  |         est=QUOT10(carry, DECDPUN);  | 
6562  | 0  |         *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder  */  | 
6563  | 0  |         carry=est;                           /* quotient  */  | 
6564  | 0  |         continue;  | 
6565  | 0  |         }  | 
6566  |  |       /* negative case  */  | 
6567  | 0  |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */  | 
6568  | 0  |       est=QUOT10(carry, DECDPUN);  | 
6569  | 0  |       *c=(Unit)(carry-est*(DECDPUNMAX+1));  | 
6570  | 0  |       carry=est-(DECDPUNMAX+1);              /* correctly negative  */  | 
6571  |  |     #else  | 
6572  |  |       if ((ueInt)carry<(DECDPUNMAX+1)*2){    /* fastpath carry 1  */ | 
6573  |  |         *c=(Unit)(carry-(DECDPUNMAX+1));  | 
6574  |  |         carry=1;  | 
6575  |  |         continue;  | 
6576  |  |         }  | 
6577  |  |       /* remainder operator is undefined if negative, so must test  */  | 
6578  |  |       if (carry>=0) { | 
6579  |  |         *c=(Unit)(carry%(DECDPUNMAX+1));  | 
6580  |  |         carry=carry/(DECDPUNMAX+1);  | 
6581  |  |         continue;  | 
6582  |  |         }  | 
6583  |  |       /* negative case  */  | 
6584  |  |       carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive  */  | 
6585  |  |       *c=(Unit)(carry%(DECDPUNMAX+1));  | 
6586  |  |       carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);  | 
6587  |  |     #endif  | 
6588  | 0  |     } /* c  */  | 
6589  |  |  | 
6590  |  |   /* OK, all A and B processed; might still have carry or borrow  */  | 
6591  |  |   /* return number of Units in the result, negated if a borrow  */  | 
6592  | 0  |   if (carry==0) return static_cast<int32_t>(c-clsu);     /* no carry, so no more to do  */  | 
6593  | 0  |   if (carry>0) {                   /* positive carry  */ | 
6594  | 0  |     *c=(Unit)carry;                /* place as new unit  */  | 
6595  | 0  |     c++;                           /* ..  */  | 
6596  | 0  |     return static_cast<int32_t>(c-clsu);  | 
6597  | 0  |     }  | 
6598  |  |   /* -ve carry: it's a borrow; complement needed  */  | 
6599  | 0  |   add=1;                           /* temporary carry...  */  | 
6600  | 0  |   for (c=clsu; c<maxC; c++) { | 
6601  | 0  |     add=DECDPUNMAX+add-*c;  | 
6602  | 0  |     if (add<=DECDPUNMAX) { | 
6603  | 0  |       *c=(Unit)add;  | 
6604  | 0  |       add=0;  | 
6605  | 0  |       }  | 
6606  | 0  |      else { | 
6607  | 0  |       *c=0;  | 
6608  | 0  |       add=1;  | 
6609  | 0  |       }  | 
6610  | 0  |     }  | 
6611  |  |   /* add an extra unit iff it would be non-zero  */  | 
6612  |  |   #if DECTRACE  | 
6613  |  |     printf("UAS borrow: add %ld, carry %ld\n", add, carry); | 
6614  |  |   #endif  | 
6615  | 0  |   if ((add-carry-1)!=0) { | 
6616  | 0  |     *c=(Unit)(add-carry-1);  | 
6617  | 0  |     c++;                      /* interesting, include it  */  | 
6618  | 0  |     }  | 
6619  | 0  |   return static_cast<int32_t>(clsu-c);              /* -ve result indicates borrowed  */  | 
6620  | 0  |   } /* decUnitAddSub  */  | 
6621  |  |  | 
6622  |  | /* ------------------------------------------------------------------ */  | 
6623  |  | /* decTrim -- trim trailing zeros or normalize                        */  | 
6624  |  | /*                                                                    */  | 
6625  |  | /*   dn is the number to trim or normalize                            */  | 
6626  |  | /*   set is the context to use to check for clamp                     */  | 
6627  |  | /*   all is 1 to remove all trailing zeros, 0 for just fraction ones  */  | 
6628  |  | /*   noclamp is 1 to unconditional (unclamped) trim                   */  | 
6629  |  | /*   dropped returns the number of discarded trailing zeros           */  | 
6630  |  | /*   returns dn                                                       */  | 
6631  |  | /*                                                                    */  | 
6632  |  | /* If clamp is set in the context then the number of zeros trimmed    */  | 
6633  |  | /* may be limited if the exponent is high.                            */  | 
6634  |  | /* All fields are updated as required.  This is a utility operation,  */  | 
6635  |  | /* so special values are unchanged and no error is possible.          */  | 
6636  |  | /* ------------------------------------------------------------------ */  | 
6637  |  | static decNumber * decTrim(decNumber *dn, decContext *set, Flag all,  | 
6638  | 0  |                            Flag noclamp, Int *dropped) { | 
6639  | 0  |   Int   d, exp;                    /* work  */  | 
6640  | 0  |   uInt  cut;                       /* ..  */  | 
6641  | 0  |   Unit  *up;                       /* -> current Unit  */  | 
6642  |  | 
  | 
6643  |  |   #if DECCHECK  | 
6644  |  |   if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;  | 
6645  |  |   #endif  | 
6646  |  | 
  | 
6647  | 0  |   *dropped=0;                           /* assume no zeros dropped  */  | 
6648  | 0  |   if ((dn->bits & DECSPECIAL)           /* fast exit if special ..  */  | 
6649  | 0  |     || (*dn->lsu & 0x01)) return dn;    /* .. or odd  */  | 
6650  | 0  |   if (ISZERO(dn)) {                     /* .. or 0  */ | 
6651  | 0  |     dn->exponent=0;                     /* (sign is preserved)  */  | 
6652  | 0  |     return dn;  | 
6653  | 0  |     }  | 
6654  |  |  | 
6655  |  |   /* have a finite number which is even  */  | 
6656  | 0  |   exp=dn->exponent;  | 
6657  | 0  |   cut=1;                           /* digit (1-DECDPUN) in Unit  */  | 
6658  | 0  |   up=dn->lsu;                      /* -> current Unit  */  | 
6659  | 0  |   for (d=0; d<dn->digits-1; d++) { /* [don't strip the final digit]  */ | 
6660  |  |     /* slice by powers  */  | 
6661  | 0  |     #if DECDPUN<=4  | 
6662  | 0  |       uInt quot=QUOT10(*up, cut);  | 
6663  | 0  |       if ((*up-quot*powers[cut])!=0) break;  /* found non-0 digit  */  | 
6664  |  |     #else  | 
6665  |  |       if (*up%powers[cut]!=0) break;         /* found non-0 digit  */  | 
6666  |  |     #endif  | 
6667  |  |     /* have a trailing 0  */  | 
6668  | 0  |     if (!all) {                    /* trimming  */ | 
6669  |  |       /* [if exp>0 then all trailing 0s are significant for trim]  */  | 
6670  | 0  |       if (exp<=0) {                /* if digit might be significant  */ | 
6671  | 0  |         if (exp==0) break;         /* then quit  */  | 
6672  | 0  |         exp++;                     /* next digit might be significant  */  | 
6673  | 0  |         }  | 
6674  | 0  |       }  | 
6675  | 0  |     cut++;                         /* next power  */  | 
6676  | 0  |     if (cut>DECDPUN) {             /* need new Unit  */ | 
6677  | 0  |       up++;  | 
6678  | 0  |       cut=1;  | 
6679  | 0  |       }  | 
6680  | 0  |     } /* d  */  | 
6681  | 0  |   if (d==0) return dn;             /* none to drop  */  | 
6682  |  |  | 
6683  |  |   /* may need to limit drop if clamping  */  | 
6684  | 0  |   if (set->clamp && !noclamp) { | 
6685  | 0  |     Int maxd=set->emax-set->digits+1-dn->exponent;  | 
6686  | 0  |     if (maxd<=0) return dn;        /* nothing possible  */  | 
6687  | 0  |     if (d>maxd) d=maxd;  | 
6688  | 0  |     }  | 
6689  |  |  | 
6690  |  |   /* effect the drop  */  | 
6691  | 0  |   decShiftToLeast(dn->lsu, D2U(dn->digits), d);  | 
6692  | 0  |   dn->exponent+=d;                 /* maintain numerical value  */  | 
6693  | 0  |   dn->digits-=d;                   /* new length  */  | 
6694  | 0  |   *dropped=d;                      /* report the count  */  | 
6695  | 0  |   return dn;  | 
6696  | 0  |   } /* decTrim  */  | 
6697  |  |  | 
6698  |  | /* ------------------------------------------------------------------ */  | 
6699  |  | /* decReverse -- reverse a Unit array in place                        */  | 
6700  |  | /*                                                                    */  | 
6701  |  | /*   ulo    is the start of the array                                 */  | 
6702  |  | /*   uhi    is the end of the array (highest Unit to include)         */  | 
6703  |  | /*                                                                    */  | 
6704  |  | /* The units ulo through uhi are reversed in place (if the number     */  | 
6705  |  | /* of units is odd, the middle one is untouched).  Note that the      */  | 
6706  |  | /* digit(s) in each unit are unaffected.                              */  | 
6707  |  | /* ------------------------------------------------------------------ */  | 
6708  | 0  | static void decReverse(Unit *ulo, Unit *uhi) { | 
6709  | 0  |   Unit temp;  | 
6710  | 0  |   for (; ulo<uhi; ulo++, uhi--) { | 
6711  | 0  |     temp=*ulo;  | 
6712  | 0  |     *ulo=*uhi;  | 
6713  | 0  |     *uhi=temp;  | 
6714  | 0  |     }  | 
6715  | 0  |   return;  | 
6716  | 0  |   } /* decReverse  */  | 
6717  |  |  | 
6718  |  | /* ------------------------------------------------------------------ */  | 
6719  |  | /* decShiftToMost -- shift digits in array towards most significant   */  | 
6720  |  | /*                                                                    */  | 
6721  |  | /*   uar    is the array                                              */  | 
6722  |  | /*   digits is the count of digits in use in the array                */  | 
6723  |  | /*   shift  is the number of zeros to pad with (least significant);   */  | 
6724  |  | /*     it must be zero or positive                                    */  | 
6725  |  | /*                                                                    */  | 
6726  |  | /*   returns the new length of the integer in the array, in digits    */  | 
6727  |  | /*                                                                    */  | 
6728  |  | /* No overflow is permitted (that is, the uar array must be known to  */  | 
6729  |  | /* be large enough to hold the result, after shifting).               */  | 
6730  |  | /* ------------------------------------------------------------------ */  | 
6731  | 0  | static Int decShiftToMost(Unit *uar, Int digits, Int shift) { | 
6732  | 0  |   Unit  *target, *source, *first;  /* work  */  | 
6733  | 0  |   Int   cut;                       /* odd 0's to add  */  | 
6734  | 0  |   uInt  next;                      /* work  */  | 
6735  |  | 
  | 
6736  | 0  |   if (shift==0) return digits;     /* [fastpath] nothing to do  */  | 
6737  | 0  |   if ((digits+shift)<=DECDPUN) {   /* [fastpath] single-unit case  */ | 
6738  | 0  |     *uar=(Unit)(*uar*powers[shift]);  | 
6739  | 0  |     return digits+shift;  | 
6740  | 0  |     }  | 
6741  |  |  | 
6742  | 0  |   next=0;                          /* all paths  */  | 
6743  | 0  |   source=uar+D2U(digits)-1;        /* where msu comes from  */  | 
6744  | 0  |   target=source+D2U(shift);        /* where upper part of first cut goes  */  | 
6745  | 0  |   cut=DECDPUN-MSUDIGITS(shift);    /* where to slice  */  | 
6746  | 0  |   if (cut==0) {                    /* unit-boundary case  */ | 
6747  | 0  |     for (; source>=uar; source--, target--) *target=*source;  | 
6748  | 0  |     }  | 
6749  | 0  |    else { | 
6750  | 0  |     first=uar+D2U(digits+shift)-1; /* where msu of source will end up  */  | 
6751  | 0  |     for (; source>=uar; source--, target--) { | 
6752  |  |       /* split the source Unit and accumulate remainder for next  */  | 
6753  | 0  |       #if DECDPUN<=4  | 
6754  | 0  |         uInt quot=QUOT10(*source, cut);  | 
6755  | 0  |         uInt rem=*source-quot*powers[cut];  | 
6756  | 0  |         next+=quot;  | 
6757  |  |       #else  | 
6758  |  |         uInt rem=*source%powers[cut];  | 
6759  |  |         next+=*source/powers[cut];  | 
6760  |  |       #endif  | 
6761  | 0  |       if (target<=first) *target=(Unit)next;   /* write to target iff valid  */  | 
6762  | 0  |       next=rem*powers[DECDPUN-cut];            /* save remainder for next Unit  */  | 
6763  | 0  |       }  | 
6764  | 0  |     } /* shift-move  */  | 
6765  |  |  | 
6766  |  |   /* propagate any partial unit to one below and clear the rest  */  | 
6767  | 0  |   for (; target>=uar; target--) { | 
6768  | 0  |     *target=(Unit)next;  | 
6769  | 0  |     next=0;  | 
6770  | 0  |     }  | 
6771  | 0  |   return digits+shift;  | 
6772  | 0  |   } /* decShiftToMost  */  | 
6773  |  |  | 
6774  |  | /* ------------------------------------------------------------------ */  | 
6775  |  | /* decShiftToLeast -- shift digits in array towards least significant */  | 
6776  |  | /*                                                                    */  | 
6777  |  | /*   uar   is the array                                               */  | 
6778  |  | /*   units is length of the array, in units                           */  | 
6779  |  | /*   shift is the number of digits to remove from the lsu end; it     */  | 
6780  |  | /*     must be zero or positive and <= than units*DECDPUN.            */  | 
6781  |  | /*                                                                    */  | 
6782  |  | /*   returns the new length of the integer in the array, in units     */  | 
6783  |  | /*                                                                    */  | 
6784  |  | /* Removed digits are discarded (lost).  Units not required to hold   */  | 
6785  |  | /* the final result are unchanged.                                    */  | 
6786  |  | /* ------------------------------------------------------------------ */  | 
6787  | 0  | static Int decShiftToLeast(Unit *uar, Int units, Int shift) { | 
6788  | 0  |   Unit  *target, *up;              /* work  */  | 
6789  | 0  |   Int   cut, count;                /* work  */  | 
6790  | 0  |   Int   quot, rem;                 /* for division  */  | 
6791  |  | 
  | 
6792  | 0  |   if (shift==0) return units;      /* [fastpath] nothing to do  */  | 
6793  | 0  |   if (shift==units*DECDPUN) {      /* [fastpath] little to do  */ | 
6794  | 0  |     *uar=0;                        /* all digits cleared gives zero  */  | 
6795  | 0  |     return 1;                      /* leaves just the one  */  | 
6796  | 0  |     }  | 
6797  |  |  | 
6798  | 0  |   target=uar;                      /* both paths  */  | 
6799  | 0  |   cut=MSUDIGITS(shift);  | 
6800  | 0  |   if (cut==DECDPUN) {              /* unit-boundary case; easy  */ | 
6801  | 0  |     up=uar+D2U(shift);  | 
6802  | 0  |     for (; up<uar+units; target++, up++) *target=*up;  | 
6803  | 0  |     return static_cast<int32_t>(target-uar);  | 
6804  | 0  |     }  | 
6805  |  |  | 
6806  |  |   /* messier  */  | 
6807  | 0  |   up=uar+D2U(shift-cut);           /* source; correct to whole Units  */  | 
6808  | 0  |   count=units*DECDPUN-shift;       /* the maximum new length  */  | 
6809  | 0  |   #if DECDPUN<=4  | 
6810  | 0  |     quot=QUOT10(*up, cut);  | 
6811  |  |   #else  | 
6812  |  |     quot=*up/powers[cut];  | 
6813  |  |   #endif  | 
6814  | 0  |   for (; ; target++) { | 
6815  | 0  |     *target=(Unit)quot;  | 
6816  | 0  |     count-=(DECDPUN-cut);  | 
6817  | 0  |     if (count<=0) break;  | 
6818  | 0  |     up++;  | 
6819  | 0  |     quot=*up;  | 
6820  | 0  |     #if DECDPUN<=4  | 
6821  | 0  |       quot=QUOT10(quot, cut);  | 
6822  | 0  |       rem=*up-quot*powers[cut];  | 
6823  |  |     #else  | 
6824  |  |       rem=quot%powers[cut];  | 
6825  |  |       quot=quot/powers[cut];  | 
6826  |  |     #endif  | 
6827  | 0  |     *target=(Unit)(*target+rem*powers[DECDPUN-cut]);  | 
6828  | 0  |     count-=cut;  | 
6829  | 0  |     if (count<=0) break;  | 
6830  | 0  |     }  | 
6831  | 0  |   return static_cast<int32_t>(target-uar+1);  | 
6832  | 0  |   } /* decShiftToLeast  */  | 
6833  |  |  | 
6834  |  | #if DECSUBSET  | 
6835  |  | /* ------------------------------------------------------------------ */  | 
6836  |  | /* decRoundOperand -- round an operand  [used for subset only]        */  | 
6837  |  | /*                                                                    */  | 
6838  |  | /*   dn is the number to round (dn->digits is > set->digits)          */  | 
6839  |  | /*   set is the relevant context                                      */  | 
6840  |  | /*   status is the status accumulator                                 */  | 
6841  |  | /*                                                                    */  | 
6842  |  | /*   returns an allocated decNumber with the rounded result.          */  | 
6843  |  | /*                                                                    */  | 
6844  |  | /* lostDigits and other status may be set by this.                    */  | 
6845  |  | /*                                                                    */  | 
6846  |  | /* Since the input is an operand, it must not be modified.            */  | 
6847  |  | /* Instead, return an allocated decNumber, rounded as required.       */  | 
6848  |  | /* It is the caller's responsibility to free the allocated storage.   */  | 
6849  |  | /*                                                                    */  | 
6850  |  | /* If no storage is available then the result cannot be used, so NULL */  | 
6851  |  | /* is returned.                                                       */  | 
6852  |  | /* ------------------------------------------------------------------ */  | 
6853  |  | static decNumber *decRoundOperand(const decNumber *dn, decContext *set,  | 
6854  |  |                                   uInt *status) { | 
6855  |  |   decNumber *res;                       /* result structure  */  | 
6856  |  |   uInt newstatus=0;                     /* status from round  */  | 
6857  |  |   Int  residue=0;                       /* rounding accumulator  */  | 
6858  |  |  | 
6859  |  |   /* Allocate storage for the returned decNumber, big enough for the  */  | 
6860  |  |   /* length specified by the context  */  | 
6861  |  |   res=(decNumber *)malloc(sizeof(decNumber)  | 
6862  |  |                           +(D2U(set->digits)-1)*sizeof(Unit));  | 
6863  |  |   if (res==NULL) { | 
6864  |  |     *status|=DEC_Insufficient_storage;  | 
6865  |  |     return NULL;  | 
6866  |  |     }  | 
6867  |  |   decCopyFit(res, dn, set, &residue, &newstatus);  | 
6868  |  |   decApplyRound(res, set, residue, &newstatus);  | 
6869  |  |  | 
6870  |  |   /* If that set Inexact then "lost digits" is raised...  */  | 
6871  |  |   if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits;  | 
6872  |  |   *status|=newstatus;  | 
6873  |  |   return res;  | 
6874  |  |   } /* decRoundOperand  */  | 
6875  |  | #endif  | 
6876  |  |  | 
6877  |  | /* ------------------------------------------------------------------ */  | 
6878  |  | /* decCopyFit -- copy a number, truncating the coefficient if needed  */  | 
6879  |  | /*                                                                    */  | 
6880  |  | /*   dest is the target decNumber                                     */  | 
6881  |  | /*   src  is the source decNumber                                     */  | 
6882  |  | /*   set is the context [used for length (digits) and rounding mode]  */  | 
6883  |  | /*   residue is the residue accumulator                               */  | 
6884  |  | /*   status contains the current status to be updated                 */  | 
6885  |  | /*                                                                    */  | 
6886  |  | /* (dest==src is allowed and will be a no-op if fits)                 */  | 
6887  |  | /* All fields are updated as required.                                */  | 
6888  |  | /* ------------------------------------------------------------------ */  | 
6889  |  | static void decCopyFit(decNumber *dest, const decNumber *src,  | 
6890  | 0  |                        decContext *set, Int *residue, uInt *status) { | 
6891  | 0  |   dest->bits=src->bits;  | 
6892  | 0  |   dest->exponent=src->exponent;  | 
6893  | 0  |   decSetCoeff(dest, set, src->lsu, src->digits, residue, status);  | 
6894  | 0  |   } /* decCopyFit  */  | 
6895  |  |  | 
6896  |  | /* ------------------------------------------------------------------ */  | 
6897  |  | /* decSetCoeff -- set the coefficient of a number                     */  | 
6898  |  | /*                                                                    */  | 
6899  |  | /*   dn    is the number whose coefficient array is to be set.        */  | 
6900  |  | /*         It must have space for set->digits digits                  */  | 
6901  |  | /*   set   is the context [for size]                                  */  | 
6902  |  | /*   lsu   -> lsu of the source coefficient [may be dn->lsu]          */  | 
6903  |  | /*   len   is digits in the source coefficient [may be dn->digits]    */  | 
6904  |  | /*   residue is the residue accumulator.  This has values as in       */  | 
6905  |  | /*         decApplyRound, and will be unchanged unless the            */  | 
6906  |  | /*         target size is less than len.  In this case, the           */  | 
6907  |  | /*         coefficient is truncated and the residue is updated to     */  | 
6908  |  | /*         reflect the previous residue and the dropped digits.       */  | 
6909  |  | /*   status is the status accumulator, as usual                       */  | 
6910  |  | /*                                                                    */  | 
6911  |  | /* The coefficient may already be in the number, or it can be an      */  | 
6912  |  | /* external intermediate array.  If it is in the number, lsu must ==  */  | 
6913  |  | /* dn->lsu and len must == dn->digits.                                */  | 
6914  |  | /*                                                                    */  | 
6915  |  | /* Note that the coefficient length (len) may be < set->digits, and   */  | 
6916  |  | /* in this case this merely copies the coefficient (or is a no-op     */  | 
6917  |  | /* if dn->lsu==lsu).                                                  */  | 
6918  |  | /*                                                                    */  | 
6919  |  | /* Note also that (only internally, from decQuantizeOp and            */  | 
6920  |  | /* decSetSubnormal) the value of set->digits may be less than one,    */  | 
6921  |  | /* indicating a round to left.  This routine handles that case        */  | 
6922  |  | /* correctly; caller ensures space.                                   */  | 
6923  |  | /*                                                                    */  | 
6924  |  | /* dn->digits, dn->lsu (and as required), and dn->exponent are        */  | 
6925  |  | /* updated as necessary.   dn->bits (sign) is unchanged.              */  | 
6926  |  | /*                                                                    */  | 
6927  |  | /* DEC_Rounded status is set if any digits are discarded.             */  | 
6928  |  | /* DEC_Inexact status is set if any non-zero digits are discarded, or */  | 
6929  |  | /*                       incoming residue was non-0 (implies rounded) */  | 
6930  |  | /* ------------------------------------------------------------------ */  | 
6931  |  | /* mapping array: maps 0-9 to canonical residues, so that a residue  */  | 
6932  |  | /* can be adjusted in the range [-1, +1] and achieve correct rounding  */  | 
6933  |  | /*                             0  1  2  3  4  5  6  7  8  9  */  | 
6934  |  | static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7}; | 
6935  |  | static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu,  | 
6936  | 0  |                         Int len, Int *residue, uInt *status) { | 
6937  | 0  |   Int   discard;              /* number of digits to discard  */  | 
6938  | 0  |   uInt  cut;                  /* cut point in Unit  */  | 
6939  | 0  |   const Unit *up;             /* work  */  | 
6940  | 0  |   Unit  *target;              /* ..  */  | 
6941  | 0  |   Int   count;                /* ..  */  | 
6942  | 0  |   #if DECDPUN<=4  | 
6943  | 0  |   uInt  temp;                 /* ..  */  | 
6944  | 0  |   #endif  | 
6945  |  | 
  | 
6946  | 0  |   discard=len-set->digits;    /* digits to discard  */  | 
6947  | 0  |   if (discard<=0) {           /* no digits are being discarded  */ | 
6948  | 0  |     if (dn->lsu!=lsu) {       /* copy needed  */ | 
6949  |  |       /* copy the coefficient array to the result number; no shift needed  */  | 
6950  | 0  |       count=len;              /* avoids D2U  */  | 
6951  | 0  |       up=lsu;  | 
6952  | 0  |       for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)  | 
6953  | 0  |         *target=*up;  | 
6954  | 0  |       dn->digits=len;         /* set the new length  */  | 
6955  | 0  |       }  | 
6956  |  |     /* dn->exponent and residue are unchanged, record any inexactitude  */  | 
6957  | 0  |     if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded);  | 
6958  | 0  |     return;  | 
6959  | 0  |     }  | 
6960  |  |  | 
6961  |  |   /* some digits must be discarded ...  */  | 
6962  | 0  |   dn->exponent+=discard;      /* maintain numerical value  */  | 
6963  | 0  |   *status|=DEC_Rounded;       /* accumulate Rounded status  */  | 
6964  | 0  |   if (*residue>1) *residue=1; /* previous residue now to right, so reduce  */  | 
6965  |  | 
  | 
6966  | 0  |   if (discard>len) {          /* everything, +1, is being discarded  */ | 
6967  |  |     /* guard digit is 0  */  | 
6968  |  |     /* residue is all the number [NB could be all 0s]  */  | 
6969  | 0  |     if (*residue<=0) {        /* not already positive  */ | 
6970  | 0  |       count=len;              /* avoids D2U  */  | 
6971  | 0  |       for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { /* found non-0  */ | 
6972  | 0  |         *residue=1;  | 
6973  | 0  |         break;                /* no need to check any others  */  | 
6974  | 0  |         }  | 
6975  | 0  |       }  | 
6976  | 0  |     if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude  */  | 
6977  | 0  |     *dn->lsu=0;               /* coefficient will now be 0  */  | 
6978  | 0  |     dn->digits=1;             /* ..  */  | 
6979  | 0  |     return;  | 
6980  | 0  |     } /* total discard  */  | 
6981  |  |  | 
6982  |  |   /* partial discard [most common case]  */  | 
6983  |  |   /* here, at least the first (most significant) discarded digit exists  */  | 
6984  |  |  | 
6985  |  |   /* spin up the number, noting residue during the spin, until get to  */  | 
6986  |  |   /* the Unit with the first discarded digit.  When reach it, extract  */  | 
6987  |  |   /* it and remember its position  */  | 
6988  | 0  |   count=0;  | 
6989  | 0  |   for (up=lsu;; up++) { | 
6990  | 0  |     count+=DECDPUN;  | 
6991  | 0  |     if (count>=discard) break; /* full ones all checked  */  | 
6992  | 0  |     if (*up!=0) *residue=1;  | 
6993  | 0  |     } /* up  */  | 
6994  |  |  | 
6995  |  |   /* here up -> Unit with first discarded digit  */  | 
6996  | 0  |   cut=discard-(count-DECDPUN)-1;  | 
6997  | 0  |   if (cut==DECDPUN-1) {       /* unit-boundary case (fast)  */ | 
6998  | 0  |     Unit half=(Unit)powers[DECDPUN]>>1;  | 
6999  |  |     /* set residue directly  */  | 
7000  | 0  |     if (*up>=half) { | 
7001  | 0  |       if (*up>half) *residue=7;  | 
7002  | 0  |       else *residue+=5;       /* add sticky bit  */  | 
7003  | 0  |       }  | 
7004  | 0  |      else { /* <half  */ | 
7005  | 0  |       if (*up!=0) *residue=3; /* [else is 0, leave as sticky bit]  */  | 
7006  | 0  |       }  | 
7007  | 0  |     if (set->digits<=0) {     /* special for Quantize/Subnormal :-(  */ | 
7008  | 0  |       *dn->lsu=0;             /* .. result is 0  */  | 
7009  | 0  |       dn->digits=1;           /* ..  */  | 
7010  | 0  |       }  | 
7011  | 0  |      else {                   /* shift to least  */ | 
7012  | 0  |       count=set->digits;      /* now digits to end up with  */  | 
7013  | 0  |       dn->digits=count;       /* set the new length  */  | 
7014  | 0  |       up++;                   /* move to next  */  | 
7015  |  |       /* on unit boundary, so shift-down copy loop is simple  */  | 
7016  | 0  |       for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)  | 
7017  | 0  |         *target=*up;  | 
7018  | 0  |       }  | 
7019  | 0  |     } /* unit-boundary case  */  | 
7020  |  |  | 
7021  | 0  |    else { /* discard digit is in low digit(s), and not top digit  */ | 
7022  | 0  |     uInt  discard1;                /* first discarded digit  */  | 
7023  | 0  |     uInt  quot, rem;               /* for divisions  */  | 
7024  | 0  |     if (cut==0) quot=*up;          /* is at bottom of unit  */  | 
7025  | 0  |      else /* cut>0 */ {            /* it's not at bottom of unit  */ | 
7026  | 0  |       #if DECDPUN<=4  | 
7027  | 0  |         U_ASSERT(/* cut >= 0 &&*/ cut <= 4);  | 
7028  | 0  |         quot=QUOT10(*up, cut);  | 
7029  | 0  |         rem=*up-quot*powers[cut];  | 
7030  |  |       #else  | 
7031  |  |         rem=*up%powers[cut];  | 
7032  |  |         quot=*up/powers[cut];  | 
7033  |  |       #endif  | 
7034  | 0  |       if (rem!=0) *residue=1;  | 
7035  | 0  |       }  | 
7036  |  |     /* discard digit is now at bottom of quot  */  | 
7037  | 0  |     #if DECDPUN<=4  | 
7038  | 0  |       temp=(quot*6554)>>16;        /* fast /10  */  | 
7039  |  |       /* Vowels algorithm here not a win (9 instructions)  */  | 
7040  | 0  |       discard1=quot-X10(temp);  | 
7041  | 0  |       quot=temp;  | 
7042  |  |     #else  | 
7043  |  |       discard1=quot%10;  | 
7044  |  |       quot=quot/10;  | 
7045  |  |     #endif  | 
7046  |  |     /* here, discard1 is the guard digit, and residue is everything  */  | 
7047  |  |     /* else [use mapping array to accumulate residue safely]  */  | 
7048  | 0  |     *residue+=resmap[discard1];  | 
7049  | 0  |     cut++;                         /* update cut  */  | 
7050  |  |     /* here: up -> Unit of the array with bottom digit  */  | 
7051  |  |     /*       cut is the division point for each Unit  */  | 
7052  |  |     /*       quot holds the uncut high-order digits for the current unit  */  | 
7053  | 0  |     if (set->digits<=0) {          /* special for Quantize/Subnormal :-(  */ | 
7054  | 0  |       *dn->lsu=0;                  /* .. result is 0  */  | 
7055  | 0  |       dn->digits=1;                /* ..  */  | 
7056  | 0  |       }  | 
7057  | 0  |      else {                        /* shift to least needed  */ | 
7058  | 0  |       count=set->digits;           /* now digits to end up with  */  | 
7059  | 0  |       dn->digits=count;            /* set the new length  */  | 
7060  |  |       /* shift-copy the coefficient array to the result number  */  | 
7061  | 0  |       for (target=dn->lsu; ; target++) { | 
7062  | 0  |         *target=(Unit)quot;  | 
7063  | 0  |         count-=(DECDPUN-cut);  | 
7064  | 0  |         if (count<=0) break;  | 
7065  | 0  |         up++;  | 
7066  | 0  |         quot=*up;  | 
7067  | 0  |         #if DECDPUN<=4  | 
7068  | 0  |           quot=QUOT10(quot, cut);  | 
7069  | 0  |           rem=*up-quot*powers[cut];  | 
7070  |  |         #else  | 
7071  |  |           rem=quot%powers[cut];  | 
7072  |  |           quot=quot/powers[cut];  | 
7073  |  |         #endif  | 
7074  | 0  |         *target=(Unit)(*target+rem*powers[DECDPUN-cut]);  | 
7075  | 0  |         count-=cut;  | 
7076  | 0  |         if (count<=0) break;  | 
7077  | 0  |         } /* shift-copy loop  */  | 
7078  | 0  |       } /* shift to least  */  | 
7079  | 0  |     } /* not unit boundary  */  | 
7080  |  | 
  | 
7081  | 0  |   if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude  */  | 
7082  | 0  |   return;  | 
7083  | 0  |   } /* decSetCoeff  */  | 
7084  |  |  | 
7085  |  | /* ------------------------------------------------------------------ */  | 
7086  |  | /* decApplyRound -- apply pending rounding to a number                */  | 
7087  |  | /*                                                                    */  | 
7088  |  | /*   dn    is the number, with space for set->digits digits           */  | 
7089  |  | /*   set   is the context [for size and rounding mode]                */  | 
7090  |  | /*   residue indicates pending rounding, being any accumulated        */  | 
7091  |  | /*         guard and sticky information.  It may be:                  */  | 
7092  |  | /*         6-9: rounding digit is >5                                  */  | 
7093  |  | /*         5:   rounding digit is exactly half-way                    */  | 
7094  |  | /*         1-4: rounding digit is <5 and >0                           */  | 
7095  |  | /*         0:   the coefficient is exact                              */  | 
7096  |  | /*        -1:   as 1, but the hidden digits are subtractive, that     */  | 
7097  |  | /*              is, of the opposite sign to dn.  In this case the     */  | 
7098  |  | /*              coefficient must be non-0.  This case occurs when     */  | 
7099  |  | /*              subtracting a small number (which can be reduced to   */  | 
7100  |  | /*              a sticky bit); see decAddOp.                          */  | 
7101  |  | /*   status is the status accumulator, as usual                       */  | 
7102  |  | /*                                                                    */  | 
7103  |  | /* This routine applies rounding while keeping the length of the      */  | 
7104  |  | /* coefficient constant.  The exponent and status are unchanged       */  | 
7105  |  | /* except if:                                                         */  | 
7106  |  | /*                                                                    */  | 
7107  |  | /*   -- the coefficient was increased and is all nines (in which      */  | 
7108  |  | /*      case Overflow could occur, and is handled directly here so    */  | 
7109  |  | /*      the caller does not need to re-test for overflow)             */  | 
7110  |  | /*                                                                    */  | 
7111  |  | /*   -- the coefficient was decreased and becomes all nines (in which */  | 
7112  |  | /*      case Underflow could occur, and is also handled directly).    */  | 
7113  |  | /*                                                                    */  | 
7114  |  | /* All fields in dn are updated as required.                          */  | 
7115  |  | /*                                                                    */  | 
7116  |  | /* ------------------------------------------------------------------ */  | 
7117  |  | static void decApplyRound(decNumber *dn, decContext *set, Int residue,  | 
7118  | 0  |                           uInt *status) { | 
7119  | 0  |   Int  bump;                  /* 1 if coefficient needs to be incremented  */  | 
7120  |  |                               /* -1 if coefficient needs to be decremented  */  | 
7121  |  | 
  | 
7122  | 0  |   if (residue==0) return;     /* nothing to apply  */  | 
7123  |  |  | 
7124  | 0  |   bump=0;                     /* assume a smooth ride  */  | 
7125  |  |  | 
7126  |  |   /* now decide whether, and how, to round, depending on mode  */  | 
7127  | 0  |   switch (set->round) { | 
7128  | 0  |     case DEC_ROUND_05UP: {    /* round zero or five up (for reround)  */ | 
7129  |  |       /* This is the same as DEC_ROUND_DOWN unless there is a  */  | 
7130  |  |       /* positive residue and the lsd of dn is 0 or 5, in which case  */  | 
7131  |  |       /* it is bumped; when residue is <0, the number is therefore  */  | 
7132  |  |       /* bumped down unless the final digit was 1 or 6 (in which  */  | 
7133  |  |       /* case it is bumped down and then up -- a no-op)  */  | 
7134  | 0  |       Int lsd5=*dn->lsu%5;     /* get lsd and quintate  */  | 
7135  | 0  |       if (residue<0 && lsd5!=1) bump=-1;  | 
7136  | 0  |        else if (residue>0 && lsd5==0) bump=1;  | 
7137  |  |       /* [bump==1 could be applied directly; use common path for clarity]  */  | 
7138  | 0  |       break;} /* r-05  */  | 
7139  |  |  | 
7140  | 0  |     case DEC_ROUND_DOWN: { | 
7141  |  |       /* no change, except if negative residue  */  | 
7142  | 0  |       if (residue<0) bump=-1;  | 
7143  | 0  |       break;} /* r-d  */  | 
7144  |  |  | 
7145  | 0  |     case DEC_ROUND_HALF_DOWN: { | 
7146  | 0  |       if (residue>5) bump=1;  | 
7147  | 0  |       break;} /* r-h-d  */  | 
7148  |  |  | 
7149  | 0  |     case DEC_ROUND_HALF_EVEN: { | 
7150  | 0  |       if (residue>5) bump=1;            /* >0.5 goes up  */  | 
7151  | 0  |        else if (residue==5) {           /* exactly 0.5000...  */ | 
7152  |  |         /* 0.5 goes up iff [new] lsd is odd  */  | 
7153  | 0  |         if (*dn->lsu & 0x01) bump=1;  | 
7154  | 0  |         }  | 
7155  | 0  |       break;} /* r-h-e  */  | 
7156  |  |  | 
7157  | 0  |     case DEC_ROUND_HALF_UP: { | 
7158  | 0  |       if (residue>=5) bump=1;  | 
7159  | 0  |       break;} /* r-h-u  */  | 
7160  |  |  | 
7161  | 0  |     case DEC_ROUND_UP: { | 
7162  | 0  |       if (residue>0) bump=1;  | 
7163  | 0  |       break;} /* r-u  */  | 
7164  |  |  | 
7165  | 0  |     case DEC_ROUND_CEILING: { | 
7166  |  |       /* same as _UP for positive numbers, and as _DOWN for negatives  */  | 
7167  |  |       /* [negative residue cannot occur on 0]  */  | 
7168  | 0  |       if (decNumberIsNegative(dn)) { | 
7169  | 0  |         if (residue<0) bump=-1;  | 
7170  | 0  |         }  | 
7171  | 0  |        else { | 
7172  | 0  |         if (residue>0) bump=1;  | 
7173  | 0  |         }  | 
7174  | 0  |       break;} /* r-c  */  | 
7175  |  |  | 
7176  | 0  |     case DEC_ROUND_FLOOR: { | 
7177  |  |       /* same as _UP for negative numbers, and as _DOWN for positive  */  | 
7178  |  |       /* [negative residue cannot occur on 0]  */  | 
7179  | 0  |       if (!decNumberIsNegative(dn)) { | 
7180  | 0  |         if (residue<0) bump=-1;  | 
7181  | 0  |         }  | 
7182  | 0  |        else { | 
7183  | 0  |         if (residue>0) bump=1;  | 
7184  | 0  |         }  | 
7185  | 0  |       break;} /* r-f  */  | 
7186  |  |  | 
7187  | 0  |     default: {      /* e.g., DEC_ROUND_MAX  */ | 
7188  | 0  |       *status|=DEC_Invalid_context;  | 
7189  |  |       #if DECTRACE || (DECCHECK && DECVERB)  | 
7190  |  |       printf("Unknown rounding mode: %d\n", set->round); | 
7191  |  |       #endif  | 
7192  | 0  |       break;}  | 
7193  | 0  |     } /* switch  */  | 
7194  |  |  | 
7195  |  |   /* now bump the number, up or down, if need be  */  | 
7196  | 0  |   if (bump==0) return;                       /* no action required  */  | 
7197  |  |  | 
7198  |  |   /* Simply use decUnitAddSub unless bumping up and the number is  */  | 
7199  |  |   /* all nines.  In this special case set to 100... explicitly  */  | 
7200  |  |   /* and adjust the exponent by one (as otherwise could overflow  */  | 
7201  |  |   /* the array)  */  | 
7202  |  |   /* Similarly handle all-nines result if bumping down.  */  | 
7203  | 0  |   if (bump>0) { | 
7204  | 0  |     Unit *up;                                /* work  */  | 
7205  | 0  |     uInt count=dn->digits;                   /* digits to be checked  */  | 
7206  | 0  |     for (up=dn->lsu; ; up++) { | 
7207  | 0  |       if (count<=DECDPUN) { | 
7208  |  |         /* this is the last Unit (the msu)  */  | 
7209  | 0  |         if (*up!=powers[count]-1) break;     /* not still 9s  */  | 
7210  |  |         /* here if it, too, is all nines  */  | 
7211  | 0  |         *up=(Unit)powers[count-1];           /* here 999 -> 100 etc.  */  | 
7212  | 0  |         for (up=up-1; up>=dn->lsu; up--) *up=0; /* others all to 0  */  | 
7213  | 0  |         dn->exponent++;                      /* and bump exponent  */  | 
7214  |  |         /* [which, very rarely, could cause Overflow...]  */  | 
7215  | 0  |         if ((dn->exponent+dn->digits)>set->emax+1) { | 
7216  | 0  |           decSetOverflow(dn, set, status);  | 
7217  | 0  |           }  | 
7218  | 0  |         return;                              /* done  */  | 
7219  | 0  |         }  | 
7220  |  |       /* a full unit to check, with more to come  */  | 
7221  | 0  |       if (*up!=DECDPUNMAX) break;            /* not still 9s  */  | 
7222  | 0  |       count-=DECDPUN;  | 
7223  | 0  |       } /* up  */  | 
7224  | 0  |     } /* bump>0  */  | 
7225  | 0  |    else {                                    /* -1  */ | 
7226  |  |     /* here checking for a pre-bump of 1000... (leading 1, all  */  | 
7227  |  |     /* other digits zero)  */  | 
7228  | 0  |     Unit *up, *sup;                          /* work  */  | 
7229  | 0  |     uInt count=dn->digits;                   /* digits to be checked  */  | 
7230  | 0  |     for (up=dn->lsu; ; up++) { | 
7231  | 0  |       if (count<=DECDPUN) { | 
7232  |  |         /* this is the last Unit (the msu)  */  | 
7233  | 0  |         if (*up!=powers[count-1]) break;     /* not 100..  */  | 
7234  |  |         /* here if have the 1000... case  */  | 
7235  | 0  |         sup=up;                              /* save msu pointer  */  | 
7236  | 0  |         *up=(Unit)powers[count]-1;           /* here 100 in msu -> 999  */  | 
7237  |  |         /* others all to all-nines, too  */  | 
7238  | 0  |         for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1;  | 
7239  | 0  |         dn->exponent--;                      /* and bump exponent  */  | 
7240  |  |  | 
7241  |  |         /* iff the number was at the subnormal boundary (exponent=etiny)  */  | 
7242  |  |         /* then the exponent is now out of range, so it will in fact get  */  | 
7243  |  |         /* clamped to etiny and the final 9 dropped.  */  | 
7244  |  |         /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin,  */ | 
7245  |  |         /*        dn->exponent, set->digits);  */  | 
7246  | 0  |         if (dn->exponent+1==set->emin-set->digits+1) { | 
7247  | 0  |           if (count==1 && dn->digits==1) *sup=0;  /* here 9 -> 0[.9]  */  | 
7248  | 0  |            else { | 
7249  | 0  |             *sup=(Unit)powers[count-1]-1;    /* here 999.. in msu -> 99..  */  | 
7250  | 0  |             dn->digits--;  | 
7251  | 0  |             }  | 
7252  | 0  |           dn->exponent++;  | 
7253  | 0  |           *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;  | 
7254  | 0  |           }  | 
7255  | 0  |         return;                              /* done  */  | 
7256  | 0  |         }  | 
7257  |  |  | 
7258  |  |       /* a full unit to check, with more to come  */  | 
7259  | 0  |       if (*up!=0) break;                     /* not still 0s  */  | 
7260  | 0  |       count-=DECDPUN;  | 
7261  | 0  |       } /* up  */  | 
7262  |  | 
  | 
7263  | 0  |     } /* bump<0  */  | 
7264  |  |  | 
7265  |  |   /* Actual bump needed.  Do it.  */  | 
7266  | 0  |   decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump);  | 
7267  | 0  |   } /* decApplyRound  */  | 
7268  |  |  | 
7269  |  | #if DECSUBSET  | 
7270  |  | /* ------------------------------------------------------------------ */  | 
7271  |  | /* decFinish -- finish processing a number                            */  | 
7272  |  | /*                                                                    */  | 
7273  |  | /*   dn is the number                                                 */  | 
7274  |  | /*   set is the context                                               */  | 
7275  |  | /*   residue is the rounding accumulator (as in decApplyRound)        */  | 
7276  |  | /*   status is the accumulator                                        */  | 
7277  |  | /*                                                                    */  | 
7278  |  | /* This finishes off the current number by:                           */  | 
7279  |  | /*    1. If not extended:                                             */  | 
7280  |  | /*       a. Converting a zero result to clean '0'                     */  | 
7281  |  | /*       b. Reducing positive exponents to 0, if would fit in digits  */  | 
7282  |  | /*    2. Checking for overflow and subnormals (always)                */  | 
7283  |  | /* Note this is just Finalize when no subset arithmetic.              */  | 
7284  |  | /* All fields are updated as required.                                */  | 
7285  |  | /* ------------------------------------------------------------------ */  | 
7286  |  | static void decFinish(decNumber *dn, decContext *set, Int *residue,  | 
7287  |  |                       uInt *status) { | 
7288  |  |   if (!set->extended) { | 
7289  |  |     if ISZERO(dn) {                /* value is zero  */ | 
7290  |  |       dn->exponent=0;              /* clean exponent ..  */  | 
7291  |  |       dn->bits=0;                  /* .. and sign  */  | 
7292  |  |       return;                      /* no error possible  */  | 
7293  |  |       }  | 
7294  |  |     if (dn->exponent>=0) {         /* non-negative exponent  */ | 
7295  |  |       /* >0; reduce to integer if possible  */  | 
7296  |  |       if (set->digits >= (dn->exponent+dn->digits)) { | 
7297  |  |         dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent);  | 
7298  |  |         dn->exponent=0;  | 
7299  |  |         }  | 
7300  |  |       }  | 
7301  |  |     } /* !extended  */  | 
7302  |  |  | 
7303  |  |   decFinalize(dn, set, residue, status);  | 
7304  |  |   } /* decFinish  */  | 
7305  |  | #endif  | 
7306  |  |  | 
7307  |  | /* ------------------------------------------------------------------ */  | 
7308  |  | /* decFinalize -- final check, clamp, and round of a number           */  | 
7309  |  | /*                                                                    */  | 
7310  |  | /*   dn is the number                                                 */  | 
7311  |  | /*   set is the context                                               */  | 
7312  |  | /*   residue is the rounding accumulator (as in decApplyRound)        */  | 
7313  |  | /*   status is the status accumulator                                 */  | 
7314  |  | /*                                                                    */  | 
7315  |  | /* This finishes off the current number by checking for subnormal     */  | 
7316  |  | /* results, applying any pending rounding, checking for overflow,     */  | 
7317  |  | /* and applying any clamping.                                         */  | 
7318  |  | /* Underflow and overflow conditions are raised as appropriate.       */  | 
7319  |  | /* All fields are updated as required.                                */  | 
7320  |  | /* ------------------------------------------------------------------ */  | 
7321  |  | static void decFinalize(decNumber *dn, decContext *set, Int *residue,  | 
7322  | 0  |                         uInt *status) { | 
7323  | 0  |   Int shift;                            /* shift needed if clamping  */  | 
7324  | 0  |   Int tinyexp=set->emin-dn->digits+1;   /* precalculate subnormal boundary  */  | 
7325  |  |  | 
7326  |  |   /* Must be careful, here, when checking the exponent as the  */  | 
7327  |  |   /* adjusted exponent could overflow 31 bits [because it may already  */  | 
7328  |  |   /* be up to twice the expected].  */  | 
7329  |  |  | 
7330  |  |   /* First test for subnormal.  This must be done before any final  */  | 
7331  |  |   /* round as the result could be rounded to Nmin or 0.  */  | 
7332  | 0  |   if (dn->exponent<=tinyexp) {          /* prefilter  */ | 
7333  | 0  |     Int comp;  | 
7334  | 0  |     decNumber nmin;  | 
7335  |  |     /* A very nasty case here is dn == Nmin and residue<0  */  | 
7336  | 0  |     if (dn->exponent<tinyexp) { | 
7337  |  |       /* Go handle subnormals; this will apply round if needed.  */  | 
7338  | 0  |       decSetSubnormal(dn, set, residue, status);  | 
7339  | 0  |       return;  | 
7340  | 0  |       }  | 
7341  |  |     /* Equals case: only subnormal if dn=Nmin and negative residue  */  | 
7342  | 0  |     uprv_decNumberZero(&nmin);  | 
7343  | 0  |     nmin.lsu[0]=1;  | 
7344  | 0  |     nmin.exponent=set->emin;  | 
7345  | 0  |     comp=decCompare(dn, &nmin, 1);                /* (signless compare)  */  | 
7346  | 0  |     if (comp==BADINT) {                           /* oops  */ | 
7347  | 0  |       *status|=DEC_Insufficient_storage;          /* abandon...  */  | 
7348  | 0  |       return;  | 
7349  | 0  |       }  | 
7350  | 0  |     if (*residue<0 && comp==0) {                  /* neg residue and dn==Nmin  */ | 
7351  | 0  |       decApplyRound(dn, set, *residue, status);   /* might force down  */  | 
7352  | 0  |       decSetSubnormal(dn, set, residue, status);  | 
7353  | 0  |       return;  | 
7354  | 0  |       }  | 
7355  | 0  |     }  | 
7356  |  |  | 
7357  |  |   /* now apply any pending round (this could raise overflow).  */  | 
7358  | 0  |   if (*residue!=0) decApplyRound(dn, set, *residue, status);  | 
7359  |  |  | 
7360  |  |   /* Check for overflow [redundant in the 'rare' case] or clamp  */  | 
7361  | 0  |   if (dn->exponent<=set->emax-set->digits+1) return;   /* neither needed  */  | 
7362  |  |  | 
7363  |  |  | 
7364  |  |   /* here when might have an overflow or clamp to do  */  | 
7365  | 0  |   if (dn->exponent>set->emax-dn->digits+1) {           /* too big  */ | 
7366  | 0  |     decSetOverflow(dn, set, status);  | 
7367  | 0  |     return;  | 
7368  | 0  |     }  | 
7369  |  |   /* here when the result is normal but in clamp range  */  | 
7370  | 0  |   if (!set->clamp) return;  | 
7371  |  |  | 
7372  |  |   /* here when need to apply the IEEE exponent clamp (fold-down)  */  | 
7373  | 0  |   shift=dn->exponent-(set->emax-set->digits+1);  | 
7374  |  |  | 
7375  |  |   /* shift coefficient (if non-zero)  */  | 
7376  | 0  |   if (!ISZERO(dn)) { | 
7377  | 0  |     dn->digits=decShiftToMost(dn->lsu, dn->digits, shift);  | 
7378  | 0  |     }  | 
7379  | 0  |   dn->exponent-=shift;   /* adjust the exponent to match  */  | 
7380  | 0  |   *status|=DEC_Clamped;  /* and record the dirty deed  */  | 
7381  | 0  |   return;  | 
7382  | 0  |   } /* decFinalize  */  | 
7383  |  |  | 
7384  |  | /* ------------------------------------------------------------------ */  | 
7385  |  | /* decSetOverflow -- set number to proper overflow value              */  | 
7386  |  | /*                                                                    */  | 
7387  |  | /*   dn is the number (used for sign [only] and result)               */  | 
7388  |  | /*   set is the context [used for the rounding mode, etc.]            */  | 
7389  |  | /*   status contains the current status to be updated                 */  | 
7390  |  | /*                                                                    */  | 
7391  |  | /* This sets the sign of a number and sets its value to either        */  | 
7392  |  | /* Infinity or the maximum finite value, depending on the sign of     */  | 
7393  |  | /* dn and the rounding mode, following IEEE 754 rules.                */  | 
7394  |  | /* ------------------------------------------------------------------ */  | 
7395  | 0  | static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) { | 
7396  | 0  |   Flag needmax=0;                  /* result is maximum finite value  */  | 
7397  | 0  |   uByte sign=dn->bits&DECNEG;      /* clean and save sign bit  */  | 
7398  |  | 
  | 
7399  | 0  |   if (ISZERO(dn)) {                /* zero does not overflow magnitude  */ | 
7400  | 0  |     Int emax=set->emax;                      /* limit value  */  | 
7401  | 0  |     if (set->clamp) emax-=set->digits-1;     /* lower if clamping  */  | 
7402  | 0  |     if (dn->exponent>emax) {                 /* clamp required  */ | 
7403  | 0  |       dn->exponent=emax;  | 
7404  | 0  |       *status|=DEC_Clamped;  | 
7405  | 0  |       }  | 
7406  | 0  |     return;  | 
7407  | 0  |     }  | 
7408  |  |  | 
7409  | 0  |   uprv_decNumberZero(dn);  | 
7410  | 0  |   switch (set->round) { | 
7411  | 0  |     case DEC_ROUND_DOWN: { | 
7412  | 0  |       needmax=1;                   /* never Infinity  */  | 
7413  | 0  |       break;} /* r-d  */  | 
7414  | 0  |     case DEC_ROUND_05UP: { | 
7415  | 0  |       needmax=1;                   /* never Infinity  */  | 
7416  | 0  |       break;} /* r-05  */  | 
7417  | 0  |     case DEC_ROUND_CEILING: { | 
7418  | 0  |       if (sign) needmax=1;         /* Infinity if non-negative  */  | 
7419  | 0  |       break;} /* r-c  */  | 
7420  | 0  |     case DEC_ROUND_FLOOR: { | 
7421  | 0  |       if (!sign) needmax=1;        /* Infinity if negative  */  | 
7422  | 0  |       break;} /* r-f  */  | 
7423  | 0  |     default: break;                /* Infinity in all other cases  */  | 
7424  | 0  |     }  | 
7425  | 0  |   if (needmax) { | 
7426  | 0  |     decSetMaxValue(dn, set);  | 
7427  | 0  |     dn->bits=sign;                 /* set sign  */  | 
7428  | 0  |     }  | 
7429  | 0  |    else dn->bits=sign|DECINF;      /* Value is +/-Infinity  */  | 
7430  | 0  |   *status|=DEC_Overflow | DEC_Inexact | DEC_Rounded;  | 
7431  | 0  |   } /* decSetOverflow  */  | 
7432  |  |  | 
7433  |  | /* ------------------------------------------------------------------ */  | 
7434  |  | /* decSetMaxValue -- set number to +Nmax (maximum normal value)       */  | 
7435  |  | /*                                                                    */  | 
7436  |  | /*   dn is the number to set                                          */  | 
7437  |  | /*   set is the context [used for digits and emax]                    */  | 
7438  |  | /*                                                                    */  | 
7439  |  | /* This sets the number to the maximum positive value.                */  | 
7440  |  | /* ------------------------------------------------------------------ */  | 
7441  | 0  | static void decSetMaxValue(decNumber *dn, decContext *set) { | 
7442  | 0  |   Unit *up;                        /* work  */  | 
7443  | 0  |   Int count=set->digits;           /* nines to add  */  | 
7444  | 0  |   dn->digits=count;  | 
7445  |  |   /* fill in all nines to set maximum value  */  | 
7446  | 0  |   for (up=dn->lsu; ; up++) { | 
7447  | 0  |     if (count>DECDPUN) *up=DECDPUNMAX;  /* unit full o'nines  */  | 
7448  | 0  |      else {                             /* this is the msu  */ | 
7449  | 0  |       *up=(Unit)(powers[count]-1);  | 
7450  | 0  |       break;  | 
7451  | 0  |       }  | 
7452  | 0  |     count-=DECDPUN;                /* filled those digits  */  | 
7453  | 0  |     } /* up  */  | 
7454  | 0  |   dn->bits=0;                      /* + sign  */  | 
7455  | 0  |   dn->exponent=set->emax-set->digits+1;  | 
7456  | 0  |   } /* decSetMaxValue  */  | 
7457  |  |  | 
7458  |  | /* ------------------------------------------------------------------ */  | 
7459  |  | /* decSetSubnormal -- process value whose exponent is <Emin           */  | 
7460  |  | /*                                                                    */  | 
7461  |  | /*   dn is the number (used as input as well as output; it may have   */  | 
7462  |  | /*         an allowed subnormal value, which may need to be rounded)  */  | 
7463  |  | /*   set is the context [used for the rounding mode]                  */  | 
7464  |  | /*   residue is any pending residue                                   */  | 
7465  |  | /*   status contains the current status to be updated                 */  | 
7466  |  | /*                                                                    */  | 
7467  |  | /* If subset mode, set result to zero and set Underflow flags.        */  | 
7468  |  | /*                                                                    */  | 
7469  |  | /* Value may be zero with a low exponent; this does not set Subnormal */  | 
7470  |  | /* but the exponent will be clamped to Etiny.                         */  | 
7471  |  | /*                                                                    */  | 
7472  |  | /* Otherwise ensure exponent is not out of range, and round as        */  | 
7473  |  | /* necessary.  Underflow is set if the result is Inexact.             */  | 
7474  |  | /* ------------------------------------------------------------------ */  | 
7475  |  | static void decSetSubnormal(decNumber *dn, decContext *set, Int *residue,  | 
7476  | 0  |                             uInt *status) { | 
7477  | 0  |   decContext workset;         /* work  */  | 
7478  | 0  |   Int        etiny, adjust;   /* ..  */  | 
7479  |  | 
  | 
7480  |  |   #if DECSUBSET  | 
7481  |  |   /* simple set to zero and 'hard underflow' for subset  */  | 
7482  |  |   if (!set->extended) { | 
7483  |  |     uprv_decNumberZero(dn);  | 
7484  |  |     /* always full overflow  */  | 
7485  |  |     *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;  | 
7486  |  |     return;  | 
7487  |  |     }  | 
7488  |  |   #endif  | 
7489  |  |  | 
7490  |  |   /* Full arithmetic -- allow subnormals, rounded to minimum exponent  */  | 
7491  |  |   /* (Etiny) if needed  */  | 
7492  | 0  |   etiny=set->emin-(set->digits-1);      /* smallest allowed exponent  */  | 
7493  |  | 
  | 
7494  | 0  |   if ISZERO(dn) {                       /* value is zero  */ | 
7495  |  |     /* residue can never be non-zero here  */  | 
7496  |  |     #if DECCHECK  | 
7497  |  |       if (*residue!=0) { | 
7498  |  |         printf("++ Subnormal 0 residue %ld\n", (LI)*residue); | 
7499  |  |         *status|=DEC_Invalid_operation;  | 
7500  |  |         }  | 
7501  |  |     #endif  | 
7502  | 0  |     if (dn->exponent<etiny) {           /* clamp required  */ | 
7503  | 0  |       dn->exponent=etiny;  | 
7504  | 0  |       *status|=DEC_Clamped;  | 
7505  | 0  |       }  | 
7506  | 0  |     return;  | 
7507  | 0  |     }  | 
7508  |  |  | 
7509  | 0  |   *status|=DEC_Subnormal;               /* have a non-zero subnormal  */  | 
7510  | 0  |   adjust=etiny-dn->exponent;            /* calculate digits to remove  */  | 
7511  | 0  |   if (adjust<=0) {                      /* not out of range; unrounded  */ | 
7512  |  |     /* residue can never be non-zero here, except in the Nmin-residue  */  | 
7513  |  |     /* case (which is a subnormal result), so can take fast-path here  */  | 
7514  |  |     /* it may already be inexact (from setting the coefficient)  */  | 
7515  | 0  |     if (*status&DEC_Inexact) *status|=DEC_Underflow;  | 
7516  | 0  |     return;  | 
7517  | 0  |     }  | 
7518  |  |  | 
7519  |  |   /* adjust>0, so need to rescale the result so exponent becomes Etiny  */  | 
7520  |  |   /* [this code is similar to that in rescale]  */  | 
7521  | 0  |   workset=*set;                         /* clone rounding, etc.  */  | 
7522  | 0  |   workset.digits=dn->digits-adjust;     /* set requested length  */  | 
7523  | 0  |   workset.emin-=adjust;                 /* and adjust emin to match  */  | 
7524  |  |   /* [note that the latter can be <1, here, similar to Rescale case]  */  | 
7525  | 0  |   decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status);  | 
7526  | 0  |   decApplyRound(dn, &workset, *residue, status);  | 
7527  |  |  | 
7528  |  |   /* Use 754 default rule: Underflow is set iff Inexact  */  | 
7529  |  |   /* [independent of whether trapped]  */  | 
7530  | 0  |   if (*status&DEC_Inexact) *status|=DEC_Underflow;  | 
7531  |  |  | 
7532  |  |   /* if rounded up a 999s case, exponent will be off by one; adjust  */  | 
7533  |  |   /* back if so [it will fit, because it was shortened earlier]  */  | 
7534  | 0  |   if (dn->exponent>etiny) { | 
7535  | 0  |     dn->digits=decShiftToMost(dn->lsu, dn->digits, 1);  | 
7536  | 0  |     dn->exponent--;                     /* (re)adjust the exponent.  */  | 
7537  | 0  |     }  | 
7538  |  |  | 
7539  |  |   /* if rounded to zero, it is by definition clamped...  */  | 
7540  | 0  |   if (ISZERO(dn)) *status|=DEC_Clamped;  | 
7541  | 0  |   } /* decSetSubnormal  */  | 
7542  |  |  | 
7543  |  | /* ------------------------------------------------------------------ */  | 
7544  |  | /* decCheckMath - check entry conditions for a math function          */  | 
7545  |  | /*                                                                    */  | 
7546  |  | /*   This checks the context and the operand                          */  | 
7547  |  | /*                                                                    */  | 
7548  |  | /*   rhs is the operand to check                                      */  | 
7549  |  | /*   set is the context to check                                      */  | 
7550  |  | /*   status is unchanged if both are good                             */  | 
7551  |  | /*                                                                    */  | 
7552  |  | /* returns non-zero if status is changed, 0 otherwise                 */  | 
7553  |  | /*                                                                    */  | 
7554  |  | /* Restrictions enforced:                                             */  | 
7555  |  | /*                                                                    */  | 
7556  |  | /*   digits, emax, and -emin in the context must be less than         */  | 
7557  |  | /*   DEC_MAX_MATH (999999), and A must be within these bounds if      */  | 
7558  |  | /*   non-zero.  Invalid_operation is set in the status if a           */  | 
7559  |  | /*   restriction is violated.                                         */  | 
7560  |  | /* ------------------------------------------------------------------ */  | 
7561  |  | static uInt decCheckMath(const decNumber *rhs, decContext *set,  | 
7562  | 0  |                          uInt *status) { | 
7563  | 0  |   uInt save=*status;                         /* record  */  | 
7564  | 0  |   if (set->digits>DEC_MAX_MATH  | 
7565  | 0  |    || set->emax>DEC_MAX_MATH  | 
7566  | 0  |    || -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context;  | 
7567  | 0  |    else if ((rhs->digits>DEC_MAX_MATH  | 
7568  | 0  |      || rhs->exponent+rhs->digits>DEC_MAX_MATH+1  | 
7569  | 0  |      || rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH))  | 
7570  | 0  |      && !ISZERO(rhs)) *status|=DEC_Invalid_operation;  | 
7571  | 0  |   return (*status!=save);  | 
7572  | 0  |   } /* decCheckMath  */  | 
7573  |  |  | 
7574  |  | /* ------------------------------------------------------------------ */  | 
7575  |  | /* decGetInt -- get integer from a number                             */  | 
7576  |  | /*                                                                    */  | 
7577  |  | /*   dn is the number [which will not be altered]                     */  | 
7578  |  | /*                                                                    */  | 
7579  |  | /*   returns one of:                                                  */  | 
7580  |  | /*     BADINT if there is a non-zero fraction                         */  | 
7581  |  | /*     the converted integer                                          */  | 
7582  |  | /*     BIGEVEN if the integer is even and magnitude > 2*10**9         */  | 
7583  |  | /*     BIGODD  if the integer is odd  and magnitude > 2*10**9         */  | 
7584  |  | /*                                                                    */  | 
7585  |  | /* This checks and gets a whole number from the input decNumber.      */  | 
7586  |  | /* The sign can be determined from dn by the caller when BIGEVEN or   */  | 
7587  |  | /* BIGODD is returned.                                                */  | 
7588  |  | /* ------------------------------------------------------------------ */  | 
7589  | 0  | static Int decGetInt(const decNumber *dn) { | 
7590  | 0  |   Int  theInt;                          /* result accumulator  */  | 
7591  | 0  |   const Unit *up;                       /* work  */  | 
7592  | 0  |   Int  got;                             /* digits (real or not) processed  */  | 
7593  | 0  |   Int  ilength=dn->digits+dn->exponent; /* integral length  */  | 
7594  | 0  |   Flag neg=decNumberIsNegative(dn);     /* 1 if -ve  */  | 
7595  |  |  | 
7596  |  |   /* The number must be an integer that fits in 10 digits  */  | 
7597  |  |   /* Assert, here, that 10 is enough for any rescale Etiny  */  | 
7598  |  |   #if DEC_MAX_EMAX > 999999999  | 
7599  |  |     #error GetInt may need updating [for Emax]  | 
7600  |  |   #endif  | 
7601  |  |   #if DEC_MIN_EMIN < -999999999  | 
7602  |  |     #error GetInt may need updating [for Emin]  | 
7603  |  |   #endif  | 
7604  | 0  |   if (ISZERO(dn)) return 0;             /* zeros are OK, with any exponent  */  | 
7605  |  |  | 
7606  | 0  |   up=dn->lsu;                           /* ready for lsu  */  | 
7607  | 0  |   theInt=0;                             /* ready to accumulate  */  | 
7608  | 0  |   if (dn->exponent>=0) {                /* relatively easy  */ | 
7609  |  |     /* no fractional part [usual]; allow for positive exponent  */  | 
7610  | 0  |     got=dn->exponent;  | 
7611  | 0  |     }  | 
7612  | 0  |    else { /* -ve exponent; some fractional part to check and discard  */ | 
7613  | 0  |     Int count=-dn->exponent;            /* digits to discard  */  | 
7614  |  |     /* spin up whole units until reach the Unit with the unit digit  */  | 
7615  | 0  |     for (; count>=DECDPUN; up++) { | 
7616  | 0  |       if (*up!=0) return BADINT;        /* non-zero Unit to discard  */  | 
7617  | 0  |       count-=DECDPUN;  | 
7618  | 0  |       }  | 
7619  | 0  |     if (count==0) got=0;                /* [a multiple of DECDPUN]  */  | 
7620  | 0  |      else {                             /* [not multiple of DECDPUN]  */ | 
7621  | 0  |       Int rem;                          /* work  */  | 
7622  |  |       /* slice off fraction digits and check for non-zero  */  | 
7623  | 0  |       #if DECDPUN<=4  | 
7624  | 0  |         theInt=QUOT10(*up, count);  | 
7625  | 0  |         rem=*up-theInt*powers[count];  | 
7626  |  |       #else  | 
7627  |  |         rem=*up%powers[count];          /* slice off discards  */  | 
7628  |  |         theInt=*up/powers[count];  | 
7629  |  |       #endif  | 
7630  | 0  |       if (rem!=0) return BADINT;        /* non-zero fraction  */  | 
7631  |  |       /* it looks good  */  | 
7632  | 0  |       got=DECDPUN-count;                /* number of digits so far  */  | 
7633  | 0  |       up++;                             /* ready for next  */  | 
7634  | 0  |       }  | 
7635  | 0  |     }  | 
7636  |  |   /* now it's known there's no fractional part  */  | 
7637  |  |  | 
7638  |  |   /* tricky code now, to accumulate up to 9.3 digits  */  | 
7639  | 0  |   if (got==0) {theInt=*up; got+=DECDPUN; up++;} /* ensure lsu is there  */ | 
7640  |  | 
  | 
7641  | 0  |   if (ilength<11) { | 
7642  | 0  |     Int save=theInt;  | 
7643  |  |     /* collect any remaining unit(s)  */  | 
7644  | 0  |     for (; got<ilength; up++) { | 
7645  | 0  |       theInt+=*up*powers[got];  | 
7646  | 0  |       got+=DECDPUN;  | 
7647  | 0  |       }  | 
7648  | 0  |     if (ilength==10) {                  /* need to check for wrap  */ | 
7649  | 0  |       if (theInt/(Int)powers[got-DECDPUN]!=(Int)*(up-1)) ilength=11;  | 
7650  |  |          /* [that test also disallows the BADINT result case]  */  | 
7651  | 0  |        else if (neg && theInt>1999999997) ilength=11;  | 
7652  | 0  |        else if (!neg && theInt>999999999) ilength=11;  | 
7653  | 0  |       if (ilength==11) theInt=save;     /* restore correct low bit  */  | 
7654  | 0  |       }  | 
7655  | 0  |     }  | 
7656  |  | 
  | 
7657  | 0  |   if (ilength>10) {                     /* too big  */ | 
7658  | 0  |     if (theInt&1) return BIGODD;        /* bottom bit 1  */  | 
7659  | 0  |     return BIGEVEN;                     /* bottom bit 0  */  | 
7660  | 0  |     }  | 
7661  |  |  | 
7662  | 0  |   if (neg) theInt=-theInt;              /* apply sign  */  | 
7663  | 0  |   return theInt;  | 
7664  | 0  |   } /* decGetInt  */  | 
7665  |  |  | 
7666  |  | /* ------------------------------------------------------------------ */  | 
7667  |  | /* decDecap -- decapitate the coefficient of a number                 */  | 
7668  |  | /*                                                                    */  | 
7669  |  | /*   dn   is the number to be decapitated                             */  | 
7670  |  | /*   drop is the number of digits to be removed from the left of dn;  */  | 
7671  |  | /*     this must be <= dn->digits (if equal, the coefficient is       */  | 
7672  |  | /*     set to 0)                                                      */  | 
7673  |  | /*                                                                    */  | 
7674  |  | /* Returns dn; dn->digits will be <= the initial digits less drop     */  | 
7675  |  | /* (after removing drop digits there may be leading zero digits       */  | 
7676  |  | /* which will also be removed).  Only dn->lsu and dn->digits change.  */  | 
7677  |  | /* ------------------------------------------------------------------ */  | 
7678  | 0  | static decNumber *decDecap(decNumber *dn, Int drop) { | 
7679  | 0  |   Unit *msu;                            /* -> target cut point  */  | 
7680  | 0  |   Int cut;                              /* work  */  | 
7681  | 0  |   if (drop>=dn->digits) {               /* losing the whole thing  */ | 
7682  |  |     #if DECCHECK  | 
7683  |  |     if (drop>dn->digits)  | 
7684  |  |       printf("decDecap called with drop>digits [%ld>%ld]\n", | 
7685  |  |              (LI)drop, (LI)dn->digits);  | 
7686  |  |     #endif  | 
7687  | 0  |     dn->lsu[0]=0;  | 
7688  | 0  |     dn->digits=1;  | 
7689  | 0  |     return dn;  | 
7690  | 0  |     }  | 
7691  | 0  |   msu=dn->lsu+D2U(dn->digits-drop)-1;   /* -> likely msu  */  | 
7692  | 0  |   cut=MSUDIGITS(dn->digits-drop);       /* digits to be in use in msu  */  | 
7693  | 0  |   if (cut!=DECDPUN) *msu%=powers[cut];  /* clear left digits  */  | 
7694  |  |   /* that may have left leading zero digits, so do a proper count...  */  | 
7695  | 0  |   dn->digits=decGetDigits(dn->lsu, static_cast<int32_t>(msu-dn->lsu+1));  | 
7696  | 0  |   return dn;  | 
7697  | 0  |   } /* decDecap  */  | 
7698  |  |  | 
7699  |  | /* ------------------------------------------------------------------ */  | 
7700  |  | /* decBiStr -- compare string with pairwise options                   */  | 
7701  |  | /*                                                                    */  | 
7702  |  | /*   targ is the string to compare                                    */  | 
7703  |  | /*   str1 is one of the strings to compare against (length may be 0)  */  | 
7704  |  | /*   str2 is the other; it must be the same length as str1            */  | 
7705  |  | /*                                                                    */  | 
7706  |  | /*   returns 1 if strings compare equal, (that is, it is the same     */  | 
7707  |  | /*   length as str1 and str2, and each character of targ is in either */  | 
7708  |  | /*   str1 or str2 in the corresponding position), or 0 otherwise      */  | 
7709  |  | /*                                                                    */  | 
7710  |  | /* This is used for generic caseless compare, including the awkward   */  | 
7711  |  | /* case of the Turkish dotted and dotless Is.  Use as (for example):  */  | 
7712  |  | /*   if (decBiStr(test, "mike", "MIKE")) ...                          */  | 
7713  |  | /* ------------------------------------------------------------------ */  | 
7714  | 0  | static Flag decBiStr(const char *targ, const char *str1, const char *str2) { | 
7715  | 0  |   for (;;targ++, str1++, str2++) { | 
7716  | 0  |     if (*targ!=*str1 && *targ!=*str2) return 0;  | 
7717  |  |     /* *targ has a match in one (or both, if terminator)  */  | 
7718  | 0  |     if (*targ=='\0') break;  | 
7719  | 0  |     } /* forever  */  | 
7720  | 0  |   return 1;  | 
7721  | 0  |   } /* decBiStr  */  | 
7722  |  |  | 
7723  |  | /* ------------------------------------------------------------------ */  | 
7724  |  | /* decNaNs -- handle NaN operand or operands                          */  | 
7725  |  | /*                                                                    */  | 
7726  |  | /*   res     is the result number                                     */  | 
7727  |  | /*   lhs     is the first operand                                     */  | 
7728  |  | /*   rhs     is the second operand, or NULL if none                   */  | 
7729  |  | /*   context is used to limit payload length                          */  | 
7730  |  | /*   status  contains the current status                              */  | 
7731  |  | /*   returns res in case convenient                                   */  | 
7732  |  | /*                                                                    */  | 
7733  |  | /* Called when one or both operands is a NaN, and propagates the      */  | 
7734  |  | /* appropriate result to res.  When an sNaN is found, it is changed   */  | 
7735  |  | /* to a qNaN and Invalid operation is set.                            */  | 
7736  |  | /* ------------------------------------------------------------------ */  | 
7737  |  | static decNumber * decNaNs(decNumber *res, const decNumber *lhs,  | 
7738  |  |                            const decNumber *rhs, decContext *set,  | 
7739  | 0  |                            uInt *status) { | 
7740  |  |   /* This decision tree ends up with LHS being the source pointer,  */  | 
7741  |  |   /* and status updated if need be  */  | 
7742  | 0  |   if (lhs->bits & DECSNAN)  | 
7743  | 0  |     *status|=DEC_Invalid_operation | DEC_sNaN;  | 
7744  | 0  |    else if (rhs==NULL);  | 
7745  | 0  |    else if (rhs->bits & DECSNAN) { | 
7746  | 0  |     lhs=rhs;  | 
7747  | 0  |     *status|=DEC_Invalid_operation | DEC_sNaN;  | 
7748  | 0  |     }  | 
7749  | 0  |    else if (lhs->bits & DECNAN);  | 
7750  | 0  |    else lhs=rhs;  | 
7751  |  |  | 
7752  |  |   /* propagate the payload  */  | 
7753  | 0  |   if (lhs->digits<=set->digits) uprv_decNumberCopy(res, lhs); /* easy  */  | 
7754  | 0  |    else { /* too long  */ | 
7755  | 0  |     const Unit *ul;  | 
7756  | 0  |     Unit *ur, *uresp1;  | 
7757  |  |     /* copy safe number of units, then decapitate  */  | 
7758  | 0  |     res->bits=lhs->bits;                /* need sign etc.  */  | 
7759  | 0  |     uresp1=res->lsu+D2U(set->digits);  | 
7760  | 0  |     for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul;  | 
7761  | 0  |     res->digits=D2U(set->digits)*DECDPUN;  | 
7762  |  |     /* maybe still too long  */  | 
7763  | 0  |     if (res->digits>set->digits) decDecap(res, res->digits-set->digits);  | 
7764  | 0  |     }  | 
7765  |  | 
  | 
7766  | 0  |   res->bits&=~DECSNAN;        /* convert any sNaN to NaN, while  */  | 
7767  | 0  |   res->bits|=DECNAN;          /* .. preserving sign  */  | 
7768  | 0  |   res->exponent=0;            /* clean exponent  */  | 
7769  |  |                               /* [coefficient was copied/decapitated]  */  | 
7770  | 0  |   return res;  | 
7771  | 0  |   } /* decNaNs  */  | 
7772  |  |  | 
7773  |  | /* ------------------------------------------------------------------ */  | 
7774  |  | /* decStatus -- apply non-zero status                                 */  | 
7775  |  | /*                                                                    */  | 
7776  |  | /*   dn     is the number to set if error                             */  | 
7777  |  | /*   status contains the current status (not yet in context)          */  | 
7778  |  | /*   set    is the context                                            */  | 
7779  |  | /*                                                                    */  | 
7780  |  | /* If the status is an error status, the number is set to a NaN,      */  | 
7781  |  | /* unless the error was an overflow, divide-by-zero, or underflow,    */  | 
7782  |  | /* in which case the number will have already been set.               */  | 
7783  |  | /*                                                                    */  | 
7784  |  | /* The context status is then updated with the new status.  Note that */  | 
7785  |  | /* this may raise a signal, so control may never return from this     */  | 
7786  |  | /* routine (hence resources must be recovered before it is called).   */  | 
7787  |  | /* ------------------------------------------------------------------ */  | 
7788  | 0  | static void decStatus(decNumber *dn, uInt status, decContext *set) { | 
7789  | 0  |   if (status & DEC_NaNs) {              /* error status -> NaN  */ | 
7790  |  |     /* if cause was an sNaN, clear and propagate [NaN is already set up]  */  | 
7791  | 0  |     if (status & DEC_sNaN) status&=~DEC_sNaN;  | 
7792  | 0  |      else { | 
7793  | 0  |       uprv_decNumberZero(dn);                /* other error: clean throughout  */  | 
7794  | 0  |       dn->bits=DECNAN;                  /* and make a quiet NaN  */  | 
7795  | 0  |       }  | 
7796  | 0  |     }  | 
7797  | 0  |   uprv_decContextSetStatus(set, status);     /* [may not return]  */  | 
7798  | 0  |   return;  | 
7799  | 0  |   } /* decStatus  */  | 
7800  |  |  | 
7801  |  | /* ------------------------------------------------------------------ */  | 
7802  |  | /* decGetDigits -- count digits in a Units array                      */  | 
7803  |  | /*                                                                    */  | 
7804  |  | /*   uar is the Unit array holding the number (this is often an       */  | 
7805  |  | /*          accumulator of some sort)                                 */  | 
7806  |  | /*   len is the length of the array in units [>=1]                    */  | 
7807  |  | /*                                                                    */  | 
7808  |  | /*   returns the number of (significant) digits in the array          */  | 
7809  |  | /*                                                                    */  | 
7810  |  | /* All leading zeros are excluded, except the last if the array has   */  | 
7811  |  | /* only zero Units.                                                   */  | 
7812  |  | /* ------------------------------------------------------------------ */  | 
7813  |  | /* This may be called twice during some operations.  */  | 
7814  | 0  | static Int decGetDigits(Unit *uar, Int len) { | 
7815  | 0  |   Unit *up=uar+(len-1);            /* -> msu  */  | 
7816  | 0  |   Int  digits=(len-1)*DECDPUN+1;   /* possible digits excluding msu  */  | 
7817  |  |   #if DECDPUN>4  | 
7818  |  |   uInt const *pow;                 /* work  */  | 
7819  |  |   #endif  | 
7820  |  |                                    /* (at least 1 in final msu)  */  | 
7821  |  |   #if DECCHECK  | 
7822  |  |   if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len); | 
7823  |  |   #endif  | 
7824  |  | 
  | 
7825  | 0  |   for (; up>=uar; up--) { | 
7826  | 0  |     if (*up==0) {                  /* unit is all 0s  */ | 
7827  | 0  |       if (digits==1) break;        /* a zero has one digit  */  | 
7828  | 0  |       digits-=DECDPUN;             /* adjust for 0 unit  */  | 
7829  | 0  |       continue;}  | 
7830  |  |     /* found the first (most significant) non-zero Unit  */  | 
7831  |  |     #if DECDPUN>1                  /* not done yet  */  | 
7832  |  |     if (*up<10) break;             /* is 1-9  */  | 
7833  |  |     digits++;  | 
7834  |  |     #if DECDPUN>2                  /* not done yet  */  | 
7835  |  |     if (*up<100) break;            /* is 10-99  */  | 
7836  |  |     digits++;  | 
7837  |  |     #if DECDPUN>3                  /* not done yet  */  | 
7838  |  |     if (*up<1000) break;           /* is 100-999  */  | 
7839  |  |     digits++;  | 
7840  |  |     #if DECDPUN>4                  /* count the rest ...  */  | 
7841  |  |     for (pow=&powers[4]; *up>=*pow; pow++) digits++;  | 
7842  |  |     #endif  | 
7843  |  |     #endif  | 
7844  |  |     #endif  | 
7845  |  |     #endif  | 
7846  | 0  |     break;  | 
7847  | 0  |     } /* up  */  | 
7848  | 0  |   return digits;  | 
7849  | 0  |   } /* decGetDigits  */  | 
7850  |  |  | 
7851  |  | #if DECTRACE | DECCHECK  | 
7852  |  | /* ------------------------------------------------------------------ */  | 
7853  |  | /* decNumberShow -- display a number [debug aid]                      */  | 
7854  |  | /*   dn is the number to show                                         */  | 
7855  |  | /*                                                                    */  | 
7856  |  | /* Shows: sign, exponent, coefficient (msu first), digits             */  | 
7857  |  | /*    or: sign, special-value                                         */  | 
7858  |  | /* ------------------------------------------------------------------ */  | 
7859  |  | /* this is public so other modules can use it  */  | 
7860  |  | void uprv_decNumberShow(const decNumber *dn) { | 
7861  |  |   const Unit *up;                  /* work  */  | 
7862  |  |   uInt u, d;                       /* ..  */  | 
7863  |  |   Int cut;                         /* ..  */  | 
7864  |  |   char isign='+';                  /* main sign  */  | 
7865  |  |   if (dn==NULL) { | 
7866  |  |     printf("NULL\n"); | 
7867  |  |     return;}  | 
7868  |  |   if (decNumberIsNegative(dn)) isign='-';  | 
7869  |  |   printf(" >> %c ", isign); | 
7870  |  |   if (dn->bits&DECSPECIAL) {       /* Is a special value  */ | 
7871  |  |     if (decNumberIsInfinite(dn)) printf("Infinity"); | 
7872  |  |      else {                                  /* a NaN  */ | 
7873  |  |       if (dn->bits&DECSNAN) printf("sNaN");  /* signalling NaN  */ | 
7874  |  |        else printf("NaN"); | 
7875  |  |       }  | 
7876  |  |     /* if coefficient and exponent are 0, no more to do  */  | 
7877  |  |     if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) { | 
7878  |  |       printf("\n"); | 
7879  |  |       return;}  | 
7880  |  |     /* drop through to report other information  */  | 
7881  |  |     printf(" "); | 
7882  |  |     }  | 
7883  |  |  | 
7884  |  |   /* now carefully display the coefficient  */  | 
7885  |  |   up=dn->lsu+D2U(dn->digits)-1;         /* msu  */  | 
7886  |  |   printf("%ld", (LI)*up); | 
7887  |  |   for (up=up-1; up>=dn->lsu; up--) { | 
7888  |  |     u=*up;  | 
7889  |  |     printf(":"); | 
7890  |  |     for (cut=DECDPUN-1; cut>=0; cut--) { | 
7891  |  |       d=u/powers[cut];  | 
7892  |  |       u-=d*powers[cut];  | 
7893  |  |       printf("%ld", (LI)d); | 
7894  |  |       } /* cut  */  | 
7895  |  |     } /* up  */  | 
7896  |  |   if (dn->exponent!=0) { | 
7897  |  |     char esign='+';  | 
7898  |  |     if (dn->exponent<0) esign='-';  | 
7899  |  |     printf(" E%c%ld", esign, (LI)abs(dn->exponent)); | 
7900  |  |     }  | 
7901  |  |   printf(" [%ld]\n", (LI)dn->digits); | 
7902  |  |   } /* decNumberShow  */  | 
7903  |  | #endif  | 
7904  |  |  | 
7905  |  | #if DECTRACE || DECCHECK  | 
7906  |  | /* ------------------------------------------------------------------ */  | 
7907  |  | /* decDumpAr -- display a unit array [debug/check aid]                */  | 
7908  |  | /*   name is a single-character tag name                              */  | 
7909  |  | /*   ar   is the array to display                                     */  | 
7910  |  | /*   len  is the length of the array in Units                         */  | 
7911  |  | /* ------------------------------------------------------------------ */  | 
7912  |  | static void decDumpAr(char name, const Unit *ar, Int len) { | 
7913  |  |   Int i;  | 
7914  |  |   const char *spec;  | 
7915  |  |   #if DECDPUN==9  | 
7916  |  |     spec="%09d ";  | 
7917  |  |   #elif DECDPUN==8  | 
7918  |  |     spec="%08d ";  | 
7919  |  |   #elif DECDPUN==7  | 
7920  |  |     spec="%07d ";  | 
7921  |  |   #elif DECDPUN==6  | 
7922  |  |     spec="%06d ";  | 
7923  |  |   #elif DECDPUN==5  | 
7924  |  |     spec="%05d ";  | 
7925  |  |   #elif DECDPUN==4  | 
7926  |  |     spec="%04d ";  | 
7927  |  |   #elif DECDPUN==3  | 
7928  |  |     spec="%03d ";  | 
7929  |  |   #elif DECDPUN==2  | 
7930  |  |     spec="%02d ";  | 
7931  |  |   #else  | 
7932  |  |     spec="%d ";  | 
7933  |  |   #endif  | 
7934  |  |   printf("  :%c: ", name); | 
7935  |  |   for (i=len-1; i>=0; i--) { | 
7936  |  |     if (i==len-1) printf("%ld ", (LI)ar[i]); | 
7937  |  |      else printf(spec, ar[i]);  | 
7938  |  |     }  | 
7939  |  |   printf("\n"); | 
7940  |  |   return;}  | 
7941  |  | #endif  | 
7942  |  |  | 
7943  |  | #if DECCHECK  | 
7944  |  | /* ------------------------------------------------------------------ */  | 
7945  |  | /* decCheckOperands -- check operand(s) to a routine                  */  | 
7946  |  | /*   res is the result structure (not checked; it will be set to      */  | 
7947  |  | /*          quiet NaN if error found (and it is not NULL))            */  | 
7948  |  | /*   lhs is the first operand (may be DECUNRESU)                      */  | 
7949  |  | /*   rhs is the second (may be DECUNUSED)                             */  | 
7950  |  | /*   set is the context (may be DECUNCONT)                            */  | 
7951  |  | /*   returns 0 if both operands, and the context are clean, or 1      */  | 
7952  |  | /*     otherwise (in which case the context will show an error,       */  | 
7953  |  | /*     unless NULL).  Note that res is not cleaned; caller should     */  | 
7954  |  | /*     handle this so res=NULL case is safe.                          */  | 
7955  |  | /* The caller is expected to abandon immediately if 1 is returned.    */  | 
7956  |  | /* ------------------------------------------------------------------ */  | 
7957  |  | static Flag decCheckOperands(decNumber *res, const decNumber *lhs,  | 
7958  |  |                              const decNumber *rhs, decContext *set) { | 
7959  |  |   Flag bad=0;  | 
7960  |  |   if (set==NULL) {                 /* oops; hopeless  */ | 
7961  |  |     #if DECTRACE || DECVERB  | 
7962  |  |     printf("Reference to context is NULL.\n"); | 
7963  |  |     #endif  | 
7964  |  |     bad=1;  | 
7965  |  |     return 1;}  | 
7966  |  |    else if (set!=DECUNCONT  | 
7967  |  |      && (set->digits<1 || set->round>=DEC_ROUND_MAX)) { | 
7968  |  |     bad=1;  | 
7969  |  |     #if DECTRACE || DECVERB  | 
7970  |  |     printf("Bad context [digits=%ld round=%ld].\n", | 
7971  |  |            (LI)set->digits, (LI)set->round);  | 
7972  |  |     #endif  | 
7973  |  |     }  | 
7974  |  |    else { | 
7975  |  |     if (res==NULL) { | 
7976  |  |       bad=1;  | 
7977  |  |       #if DECTRACE  | 
7978  |  |       /* this one not DECVERB as standard tests include NULL  */  | 
7979  |  |       printf("Reference to result is NULL.\n"); | 
7980  |  |       #endif  | 
7981  |  |       }  | 
7982  |  |     if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs));  | 
7983  |  |     if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs));  | 
7984  |  |     }  | 
7985  |  |   if (bad) { | 
7986  |  |     if (set!=DECUNCONT) uprv_decContextSetStatus(set, DEC_Invalid_operation);  | 
7987  |  |     if (res!=DECUNRESU && res!=NULL) { | 
7988  |  |       uprv_decNumberZero(res);  | 
7989  |  |       res->bits=DECNAN;       /* qNaN  */  | 
7990  |  |       }  | 
7991  |  |     }  | 
7992  |  |   return bad;  | 
7993  |  |   } /* decCheckOperands  */  | 
7994  |  |  | 
7995  |  | /* ------------------------------------------------------------------ */  | 
7996  |  | /* decCheckNumber -- check a number                                   */  | 
7997  |  | /*   dn is the number to check                                        */  | 
7998  |  | /*   returns 0 if the number is clean, or 1 otherwise                 */  | 
7999  |  | /*                                                                    */  | 
8000  |  | /* The number is considered valid if it could be a result from some   */  | 
8001  |  | /* operation in some valid context.                                   */  | 
8002  |  | /* ------------------------------------------------------------------ */  | 
8003  |  | static Flag decCheckNumber(const decNumber *dn) { | 
8004  |  |   const Unit *up;             /* work  */  | 
8005  |  |   uInt maxuint;               /* ..  */  | 
8006  |  |   Int ae, d, digits;          /* ..  */  | 
8007  |  |   Int emin, emax;             /* ..  */  | 
8008  |  |  | 
8009  |  |   if (dn==NULL) {             /* hopeless  */ | 
8010  |  |     #if DECTRACE  | 
8011  |  |     /* this one not DECVERB as standard tests include NULL  */  | 
8012  |  |     printf("Reference to decNumber is NULL.\n"); | 
8013  |  |     #endif  | 
8014  |  |     return 1;}  | 
8015  |  |  | 
8016  |  |   /* check special values  */  | 
8017  |  |   if (dn->bits & DECSPECIAL) { | 
8018  |  |     if (dn->exponent!=0) { | 
8019  |  |       #if DECTRACE || DECVERB  | 
8020  |  |       printf("Exponent %ld (not 0) for a special value [%02x].\n", | 
8021  |  |              (LI)dn->exponent, dn->bits);  | 
8022  |  |       #endif  | 
8023  |  |       return 1;}  | 
8024  |  |  | 
8025  |  |     /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only  */  | 
8026  |  |     if (decNumberIsInfinite(dn)) { | 
8027  |  |       if (dn->digits!=1) { | 
8028  |  |         #if DECTRACE || DECVERB  | 
8029  |  |         printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits); | 
8030  |  |         #endif  | 
8031  |  |         return 1;}  | 
8032  |  |       if (*dn->lsu!=0) { | 
8033  |  |         #if DECTRACE || DECVERB  | 
8034  |  |         printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu); | 
8035  |  |         #endif  | 
8036  |  |         decDumpAr('I', dn->lsu, D2U(dn->digits)); | 
8037  |  |         return 1;}  | 
8038  |  |       } /* Inf  */  | 
8039  |  |     /* 2002.12.26: negative NaNs can now appear through proposed IEEE  */  | 
8040  |  |     /*             concrete formats (decimal64, etc.).  */  | 
8041  |  |     return 0;  | 
8042  |  |     }  | 
8043  |  |  | 
8044  |  |   /* check the coefficient  */  | 
8045  |  |   if (dn->digits<1 || dn->digits>DECNUMMAXP) { | 
8046  |  |     #if DECTRACE || DECVERB  | 
8047  |  |     printf("Digits %ld in number.\n", (LI)dn->digits); | 
8048  |  |     #endif  | 
8049  |  |     return 1;}  | 
8050  |  |  | 
8051  |  |   d=dn->digits;  | 
8052  |  |  | 
8053  |  |   for (up=dn->lsu; d>0; up++) { | 
8054  |  |     if (d>DECDPUN) maxuint=DECDPUNMAX;  | 
8055  |  |      else {                   /* reached the msu  */ | 
8056  |  |       maxuint=powers[d]-1;  | 
8057  |  |       if (dn->digits>1 && *up<powers[d-1]) { | 
8058  |  |         #if DECTRACE || DECVERB  | 
8059  |  |         printf("Leading 0 in number.\n"); | 
8060  |  |         uprv_decNumberShow(dn);  | 
8061  |  |         #endif  | 
8062  |  |         return 1;}  | 
8063  |  |       }  | 
8064  |  |     if (*up>maxuint) { | 
8065  |  |       #if DECTRACE || DECVERB  | 
8066  |  |       printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n", | 
8067  |  |               (LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint);  | 
8068  |  |       #endif  | 
8069  |  |       return 1;}  | 
8070  |  |     d-=DECDPUN;  | 
8071  |  |     }  | 
8072  |  |  | 
8073  |  |   /* check the exponent.  Note that input operands can have exponents  */  | 
8074  |  |   /* which are out of the set->emin/set->emax and set->digits range  */  | 
8075  |  |   /* (just as they can have more digits than set->digits).  */  | 
8076  |  |   ae=dn->exponent+dn->digits-1;    /* adjusted exponent  */  | 
8077  |  |   emax=DECNUMMAXE;  | 
8078  |  |   emin=DECNUMMINE;  | 
8079  |  |   digits=DECNUMMAXP;  | 
8080  |  |   if (ae<emin-(digits-1)) { | 
8081  |  |     #if DECTRACE || DECVERB  | 
8082  |  |     printf("Adjusted exponent underflow [%ld].\n", (LI)ae); | 
8083  |  |     uprv_decNumberShow(dn);  | 
8084  |  |     #endif  | 
8085  |  |     return 1;}  | 
8086  |  |   if (ae>+emax) { | 
8087  |  |     #if DECTRACE || DECVERB  | 
8088  |  |     printf("Adjusted exponent overflow [%ld].\n", (LI)ae); | 
8089  |  |     uprv_decNumberShow(dn);  | 
8090  |  |     #endif  | 
8091  |  |     return 1;}  | 
8092  |  |  | 
8093  |  |   return 0;              /* it's OK  */  | 
8094  |  |   } /* decCheckNumber  */  | 
8095  |  |  | 
8096  |  | /* ------------------------------------------------------------------ */  | 
8097  |  | /* decCheckInexact -- check a normal finite inexact result has digits */  | 
8098  |  | /*   dn is the number to check                                        */  | 
8099  |  | /*   set is the context (for status and precision)                    */  | 
8100  |  | /*   sets Invalid operation, etc., if some digits are missing         */  | 
8101  |  | /* [this check is not made for DECSUBSET compilation or when          */  | 
8102  |  | /* subnormal is not set]                                              */  | 
8103  |  | /* ------------------------------------------------------------------ */  | 
8104  |  | static void decCheckInexact(const decNumber *dn, decContext *set) { | 
8105  |  |   #if !DECSUBSET && DECEXTFLAG  | 
8106  |  |     if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact  | 
8107  |  |      && (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) { | 
8108  |  |       #if DECTRACE || DECVERB  | 
8109  |  |       printf("Insufficient digits [%ld] on normal Inexact result.\n", | 
8110  |  |              (LI)dn->digits);  | 
8111  |  |       uprv_decNumberShow(dn);  | 
8112  |  |       #endif  | 
8113  |  |       uprv_decContextSetStatus(set, DEC_Invalid_operation);  | 
8114  |  |       }  | 
8115  |  |   #else  | 
8116  |  |     /* next is a noop for quiet compiler  */  | 
8117  |  |     if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation;  | 
8118  |  |   #endif  | 
8119  |  |   return;  | 
8120  |  |   } /* decCheckInexact  */  | 
8121  |  | #endif  | 
8122  |  |  | 
8123  |  | #if DECALLOC  | 
8124  |  | #undef malloc  | 
8125  |  | #undef free  | 
8126  |  | /* ------------------------------------------------------------------ */  | 
8127  |  | /* decMalloc -- accountable allocation routine                        */  | 
8128  |  | /*   n is the number of bytes to allocate                             */  | 
8129  |  | /*                                                                    */  | 
8130  |  | /* Semantics is the same as the stdlib malloc routine, but bytes      */  | 
8131  |  | /* allocated are accounted for globally, and corruption fences are    */  | 
8132  |  | /* added before and after the 'actual' storage.                       */  | 
8133  |  | /* ------------------------------------------------------------------ */  | 
8134  |  | /* This routine allocates storage with an extra twelve bytes; 8 are   */  | 
8135  |  | /* at the start and hold:                                             */  | 
8136  |  | /*   0-3 the original length requested                                */  | 
8137  |  | /*   4-7 buffer corruption detection fence (DECFENCE, x4)             */  | 
8138  |  | /* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */  | 
8139  |  | /* ------------------------------------------------------------------ */  | 
8140  |  | static void *decMalloc(size_t n) { | 
8141  |  |   uInt  size=n+12;                 /* true size  */  | 
8142  |  |   void  *alloc;                    /* -> allocated storage  */  | 
8143  |  |   uByte *b, *b0;                   /* work  */  | 
8144  |  |   uInt  uiwork;                    /* for macros  */  | 
8145  |  |  | 
8146  |  |   alloc=malloc(size);              /* -> allocated storage  */  | 
8147  |  |   if (alloc==NULL) return NULL;    /* out of strorage  */  | 
8148  |  |   b0=(uByte *)alloc;               /* as bytes  */  | 
8149  |  |   decAllocBytes+=n;                /* account for storage  */  | 
8150  |  |   UBFROMUI(alloc, n);              /* save n  */  | 
8151  |  |   /* printf(" alloc ++ dAB: %ld (%ld)\n", (LI)decAllocBytes, (LI)n);  */ | 
8152  |  |   for (b=b0+4; b<b0+8; b++) *b=DECFENCE;  | 
8153  |  |   for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE;  | 
8154  |  |   return b0+8;                     /* -> play area  */  | 
8155  |  |   } /* decMalloc  */  | 
8156  |  |  | 
8157  |  | /* ------------------------------------------------------------------ */  | 
8158  |  | /* decFree -- accountable free routine                                */  | 
8159  |  | /*   alloc is the storage to free                                     */  | 
8160  |  | /*                                                                    */  | 
8161  |  | /* Semantics is the same as the stdlib malloc routine, except that    */  | 
8162  |  | /* the global storage accounting is updated and the fences are        */  | 
8163  |  | /* checked to ensure that no routine has written 'out of bounds'.     */  | 
8164  |  | /* ------------------------------------------------------------------ */  | 
8165  |  | /* This routine first checks that the fences have not been corrupted. */  | 
8166  |  | /* It then frees the storage using the 'truw' storage address (that   */  | 
8167  |  | /* is, offset by 8).                                                  */  | 
8168  |  | /* ------------------------------------------------------------------ */  | 
8169  |  | static void decFree(void *alloc) { | 
8170  |  |   uInt  n;                         /* original length  */  | 
8171  |  |   uByte *b, *b0;                   /* work  */  | 
8172  |  |   uInt  uiwork;                    /* for macros  */  | 
8173  |  |  | 
8174  |  |   if (alloc==NULL) return;         /* allowed; it's a nop  */  | 
8175  |  |   b0=(uByte *)alloc;               /* as bytes  */  | 
8176  |  |   b0-=8;                           /* -> true start of storage  */  | 
8177  |  |   n=UBTOUI(b0);                    /* lift length  */  | 
8178  |  |   for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE)  | 
8179  |  |     printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b, | 
8180  |  |            b-b0-8, (LI)b0);  | 
8181  |  |   for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE)  | 
8182  |  |     printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b, | 
8183  |  |            b-b0-8, (LI)b0, (LI)n);  | 
8184  |  |   free(b0);                        /* drop the storage  */  | 
8185  |  |   decAllocBytes-=n;                /* account for storage  */  | 
8186  |  |   /* printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n);  */ | 
8187  |  |   } /* decFree  */  | 
8188  |  | #define malloc(a) decMalloc(a)  | 
8189  |  | #define free(a) decFree(a)  | 
8190  |  | #endif  |