/src/icu/source/i18n/double-conversion-bignum-dtoa.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | // © 2018 and later: Unicode, Inc. and others.  | 
2  |  | // License & terms of use: http://www.unicode.org/copyright.html  | 
3  |  | //  | 
4  |  | // From the double-conversion library. Original license:  | 
5  |  | //  | 
6  |  | // Copyright 2010 the V8 project authors. All rights reserved.  | 
7  |  | // Redistribution and use in source and binary forms, with or without  | 
8  |  | // modification, are permitted provided that the following conditions are  | 
9  |  | // met:  | 
10  |  | //  | 
11  |  | //     * Redistributions of source code must retain the above copyright  | 
12  |  | //       notice, this list of conditions and the following disclaimer.  | 
13  |  | //     * Redistributions in binary form must reproduce the above  | 
14  |  | //       copyright notice, this list of conditions and the following  | 
15  |  | //       disclaimer in the documentation and/or other materials provided  | 
16  |  | //       with the distribution.  | 
17  |  | //     * Neither the name of Google Inc. nor the names of its  | 
18  |  | //       contributors may be used to endorse or promote products derived  | 
19  |  | //       from this software without specific prior written permission.  | 
20  |  | //  | 
21  |  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS  | 
22  |  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT  | 
23  |  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR  | 
24  |  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT  | 
25  |  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,  | 
26  |  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT  | 
27  |  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,  | 
28  |  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY  | 
29  |  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT  | 
30  |  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE  | 
31  |  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  | 
32  |  |  | 
33  |  | // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING  | 
34  |  | #include "unicode/utypes.h"  | 
35  |  | #if !UCONFIG_NO_FORMATTING  | 
36  |  |  | 
37  |  | #include <cmath>  | 
38  |  |  | 
39  |  | // ICU PATCH: Customize header file paths for ICU.  | 
40  |  |  | 
41  |  | #include "double-conversion-bignum-dtoa.h"  | 
42  |  |  | 
43  |  | #include "double-conversion-bignum.h"  | 
44  |  | #include "double-conversion-ieee.h"  | 
45  |  |  | 
46  |  | // ICU PATCH: Wrap in ICU namespace  | 
47  |  | U_NAMESPACE_BEGIN  | 
48  |  |  | 
49  |  | namespace double_conversion { | 
50  |  |  | 
51  | 0  | static int NormalizedExponent(uint64_t significand, int exponent) { | 
52  | 0  |   DOUBLE_CONVERSION_ASSERT(significand != 0);  | 
53  | 0  |   while ((significand & Double::kHiddenBit) == 0) { | 
54  | 0  |     significand = significand << 1;  | 
55  | 0  |     exponent = exponent - 1;  | 
56  | 0  |   }  | 
57  | 0  |   return exponent;  | 
58  | 0  | }  | 
59  |  |  | 
60  |  |  | 
61  |  | // Forward declarations:  | 
62  |  | // Returns an estimation of k such that 10^(k-1) <= v < 10^k.  | 
63  |  | static int EstimatePower(int exponent);  | 
64  |  | // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator  | 
65  |  | // and denominator.  | 
66  |  | static void InitialScaledStartValues(uint64_t significand,  | 
67  |  |                                      int exponent,  | 
68  |  |                                      bool lower_boundary_is_closer,  | 
69  |  |                                      int estimated_power,  | 
70  |  |                                      bool need_boundary_deltas,  | 
71  |  |                                      Bignum* numerator,  | 
72  |  |                                      Bignum* denominator,  | 
73  |  |                                      Bignum* delta_minus,  | 
74  |  |                                      Bignum* delta_plus);  | 
75  |  | // Multiplies numerator/denominator so that its values lies in the range 1-10.  | 
76  |  | // Returns decimal_point s.t.  | 
77  |  | //  v = numerator'/denominator' * 10^(decimal_point-1)  | 
78  |  | //     where numerator' and denominator' are the values of numerator and  | 
79  |  | //     denominator after the call to this function.  | 
80  |  | static void FixupMultiply10(int estimated_power, bool is_even,  | 
81  |  |                             int* decimal_point,  | 
82  |  |                             Bignum* numerator, Bignum* denominator,  | 
83  |  |                             Bignum* delta_minus, Bignum* delta_plus);  | 
84  |  | // Generates digits from the left to the right and stops when the generated  | 
85  |  | // digits yield the shortest decimal representation of v.  | 
86  |  | static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,  | 
87  |  |                                    Bignum* delta_minus, Bignum* delta_plus,  | 
88  |  |                                    bool is_even,  | 
89  |  |                                    Vector<char> buffer, int* length);  | 
90  |  | // Generates 'requested_digits' after the decimal point.  | 
91  |  | static void BignumToFixed(int requested_digits, int* decimal_point,  | 
92  |  |                           Bignum* numerator, Bignum* denominator,  | 
93  |  |                           Vector<char> buffer, int* length);  | 
94  |  | // Generates 'count' digits of numerator/denominator.  | 
95  |  | // Once 'count' digits have been produced rounds the result depending on the  | 
96  |  | // remainder (remainders of exactly .5 round upwards). Might update the  | 
97  |  | // decimal_point when rounding up (for example for 0.9999).  | 
98  |  | static void GenerateCountedDigits(int count, int* decimal_point,  | 
99  |  |                                   Bignum* numerator, Bignum* denominator,  | 
100  |  |                                   Vector<char> buffer, int* length);  | 
101  |  |  | 
102  |  |  | 
103  |  | void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,  | 
104  | 0  |                 Vector<char> buffer, int* length, int* decimal_point) { | 
105  | 0  |   DOUBLE_CONVERSION_ASSERT(v > 0);  | 
106  | 0  |   DOUBLE_CONVERSION_ASSERT(!Double(v).IsSpecial());  | 
107  | 0  |   uint64_t significand;  | 
108  | 0  |   int exponent;  | 
109  | 0  |   bool lower_boundary_is_closer;  | 
110  | 0  |   if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) { | 
111  | 0  |     float f = static_cast<float>(v);  | 
112  | 0  |     DOUBLE_CONVERSION_ASSERT(f == v);  | 
113  | 0  |     significand = Single(f).Significand();  | 
114  | 0  |     exponent = Single(f).Exponent();  | 
115  | 0  |     lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser();  | 
116  | 0  |   } else { | 
117  | 0  |     significand = Double(v).Significand();  | 
118  | 0  |     exponent = Double(v).Exponent();  | 
119  | 0  |     lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser();  | 
120  | 0  |   }  | 
121  | 0  |   bool need_boundary_deltas =  | 
122  | 0  |       (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE);  | 
123  |  | 
  | 
124  | 0  |   bool is_even = (significand & 1) == 0;  | 
125  | 0  |   int normalized_exponent = NormalizedExponent(significand, exponent);  | 
126  |  |   // estimated_power might be too low by 1.  | 
127  | 0  |   int estimated_power = EstimatePower(normalized_exponent);  | 
128  |  |  | 
129  |  |   // Shortcut for Fixed.  | 
130  |  |   // The requested digits correspond to the digits after the point. If the  | 
131  |  |   // number is much too small, then there is no need in trying to get any  | 
132  |  |   // digits.  | 
133  | 0  |   if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { | 
134  | 0  |     buffer[0] = '\0';  | 
135  | 0  |     *length = 0;  | 
136  |  |     // Set decimal-point to -requested_digits. This is what Gay does.  | 
137  |  |     // Note that it should not have any effect anyways since the string is  | 
138  |  |     // empty.  | 
139  | 0  |     *decimal_point = -requested_digits;  | 
140  | 0  |     return;  | 
141  | 0  |   }  | 
142  |  |  | 
143  | 0  |   Bignum numerator;  | 
144  | 0  |   Bignum denominator;  | 
145  | 0  |   Bignum delta_minus;  | 
146  | 0  |   Bignum delta_plus;  | 
147  |  |   // Make sure the bignum can grow large enough. The smallest double equals  | 
148  |  |   // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.  | 
149  |  |   // The maximum double is 1.7976931348623157e308 which needs fewer than  | 
150  |  |   // 308*4 binary digits.  | 
151  | 0  |   DOUBLE_CONVERSION_ASSERT(Bignum::kMaxSignificantBits >= 324*4);  | 
152  | 0  |   InitialScaledStartValues(significand, exponent, lower_boundary_is_closer,  | 
153  | 0  |                            estimated_power, need_boundary_deltas,  | 
154  | 0  |                            &numerator, &denominator,  | 
155  | 0  |                            &delta_minus, &delta_plus);  | 
156  |  |   // We now have v = (numerator / denominator) * 10^estimated_power.  | 
157  | 0  |   FixupMultiply10(estimated_power, is_even, decimal_point,  | 
158  | 0  |                   &numerator, &denominator,  | 
159  | 0  |                   &delta_minus, &delta_plus);  | 
160  |  |   // We now have v = (numerator / denominator) * 10^(decimal_point-1), and  | 
161  |  |   //  1 <= (numerator + delta_plus) / denominator < 10  | 
162  | 0  |   switch (mode) { | 
163  | 0  |     case BIGNUM_DTOA_SHORTEST:  | 
164  | 0  |     case BIGNUM_DTOA_SHORTEST_SINGLE:  | 
165  | 0  |       GenerateShortestDigits(&numerator, &denominator,  | 
166  | 0  |                              &delta_minus, &delta_plus,  | 
167  | 0  |                              is_even, buffer, length);  | 
168  | 0  |       break;  | 
169  | 0  |     case BIGNUM_DTOA_FIXED:  | 
170  | 0  |       BignumToFixed(requested_digits, decimal_point,  | 
171  | 0  |                     &numerator, &denominator,  | 
172  | 0  |                     buffer, length);  | 
173  | 0  |       break;  | 
174  | 0  |     case BIGNUM_DTOA_PRECISION:  | 
175  | 0  |       GenerateCountedDigits(requested_digits, decimal_point,  | 
176  | 0  |                             &numerator, &denominator,  | 
177  | 0  |                             buffer, length);  | 
178  | 0  |       break;  | 
179  | 0  |     default:  | 
180  | 0  |       DOUBLE_CONVERSION_UNREACHABLE();  | 
181  | 0  |   }  | 
182  | 0  |   buffer[*length] = '\0';  | 
183  | 0  | }  | 
184  |  |  | 
185  |  |  | 
186  |  | // The procedure starts generating digits from the left to the right and stops  | 
187  |  | // when the generated digits yield the shortest decimal representation of v. A  | 
188  |  | // decimal representation of v is a number lying closer to v than to any other  | 
189  |  | // double, so it converts to v when read.  | 
190  |  | //  | 
191  |  | // This is true if d, the decimal representation, is between m- and m+, the  | 
192  |  | // upper and lower boundaries. d must be strictly between them if !is_even.  | 
193  |  | //           m- := (numerator - delta_minus) / denominator  | 
194  |  | //           m+ := (numerator + delta_plus) / denominator  | 
195  |  | //  | 
196  |  | // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.  | 
197  |  | //   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit  | 
198  |  | //   will be produced. This should be the standard precondition.  | 
199  |  | static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,  | 
200  |  |                                    Bignum* delta_minus, Bignum* delta_plus,  | 
201  |  |                                    bool is_even,  | 
202  | 0  |                                    Vector<char> buffer, int* length) { | 
203  |  |   // Small optimization: if delta_minus and delta_plus are the same just reuse  | 
204  |  |   // one of the two bignums.  | 
205  | 0  |   if (Bignum::Equal(*delta_minus, *delta_plus)) { | 
206  | 0  |     delta_plus = delta_minus;  | 
207  | 0  |   }  | 
208  | 0  |   *length = 0;  | 
209  | 0  |   for (;;) { | 
210  | 0  |     uint16_t digit;  | 
211  | 0  |     digit = numerator->DivideModuloIntBignum(*denominator);  | 
212  | 0  |     DOUBLE_CONVERSION_ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.  | 
213  |  |     // digit = numerator / denominator (integer division).  | 
214  |  |     // numerator = numerator % denominator.  | 
215  | 0  |     buffer[(*length)++] = static_cast<char>(digit + '0');  | 
216  |  |  | 
217  |  |     // Can we stop already?  | 
218  |  |     // If the remainder of the division is less than the distance to the lower  | 
219  |  |     // boundary we can stop. In this case we simply round down (discarding the  | 
220  |  |     // remainder).  | 
221  |  |     // Similarly we test if we can round up (using the upper boundary).  | 
222  | 0  |     bool in_delta_room_minus;  | 
223  | 0  |     bool in_delta_room_plus;  | 
224  | 0  |     if (is_even) { | 
225  | 0  |       in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);  | 
226  | 0  |     } else { | 
227  | 0  |       in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);  | 
228  | 0  |     }  | 
229  | 0  |     if (is_even) { | 
230  | 0  |       in_delta_room_plus =  | 
231  | 0  |           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;  | 
232  | 0  |     } else { | 
233  | 0  |       in_delta_room_plus =  | 
234  | 0  |           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;  | 
235  | 0  |     }  | 
236  | 0  |     if (!in_delta_room_minus && !in_delta_room_plus) { | 
237  |  |       // Prepare for next iteration.  | 
238  | 0  |       numerator->Times10();  | 
239  | 0  |       delta_minus->Times10();  | 
240  |  |       // We optimized delta_plus to be equal to delta_minus (if they share the  | 
241  |  |       // same value). So don't multiply delta_plus if they point to the same  | 
242  |  |       // object.  | 
243  | 0  |       if (delta_minus != delta_plus) { | 
244  | 0  |         delta_plus->Times10();  | 
245  | 0  |       }  | 
246  | 0  |     } else if (in_delta_room_minus && in_delta_room_plus) { | 
247  |  |       // Let's see if 2*numerator < denominator.  | 
248  |  |       // If yes, then the next digit would be < 5 and we can round down.  | 
249  | 0  |       int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);  | 
250  | 0  |       if (compare < 0) { | 
251  |  |         // Remaining digits are less than .5. -> Round down (== do nothing).  | 
252  | 0  |       } else if (compare > 0) { | 
253  |  |         // Remaining digits are more than .5 of denominator. -> Round up.  | 
254  |  |         // Note that the last digit could not be a '9' as otherwise the whole  | 
255  |  |         // loop would have stopped earlier.  | 
256  |  |         // We still have an assert here in case the preconditions were not  | 
257  |  |         // satisfied.  | 
258  | 0  |         DOUBLE_CONVERSION_ASSERT(buffer[(*length) - 1] != '9');  | 
259  | 0  |         buffer[(*length) - 1]++;  | 
260  | 0  |       } else { | 
261  |  |         // Halfway case.  | 
262  |  |         // TODO(floitsch): need a way to solve half-way cases.  | 
263  |  |         //   For now let's round towards even (since this is what Gay seems to  | 
264  |  |         //   do).  | 
265  |  | 
  | 
266  | 0  |         if ((buffer[(*length) - 1] - '0') % 2 == 0) { | 
267  |  |           // Round down => Do nothing.  | 
268  | 0  |         } else { | 
269  | 0  |           DOUBLE_CONVERSION_ASSERT(buffer[(*length) - 1] != '9');  | 
270  | 0  |           buffer[(*length) - 1]++;  | 
271  | 0  |         }  | 
272  | 0  |       }  | 
273  | 0  |       return;  | 
274  | 0  |     } else if (in_delta_room_minus) { | 
275  |  |       // Round down (== do nothing).  | 
276  | 0  |       return;  | 
277  | 0  |     } else {  // in_delta_room_plus | 
278  |  |       // Round up.  | 
279  |  |       // Note again that the last digit could not be '9' since this would have  | 
280  |  |       // stopped the loop earlier.  | 
281  |  |       // We still have an DOUBLE_CONVERSION_ASSERT here, in case the preconditions were not  | 
282  |  |       // satisfied.  | 
283  | 0  |       DOUBLE_CONVERSION_ASSERT(buffer[(*length) -1] != '9');  | 
284  | 0  |       buffer[(*length) - 1]++;  | 
285  | 0  |       return;  | 
286  | 0  |     }  | 
287  | 0  |   }  | 
288  | 0  | }  | 
289  |  |  | 
290  |  |  | 
291  |  | // Let v = numerator / denominator < 10.  | 
292  |  | // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)  | 
293  |  | // from left to right. Once 'count' digits have been produced we decide whether  | 
294  |  | // to round up or down. Remainders of exactly .5 round upwards. Numbers such  | 
295  |  | // as 9.999999 propagate a carry all the way, and change the  | 
296  |  | // exponent (decimal_point), when rounding upwards.  | 
297  |  | static void GenerateCountedDigits(int count, int* decimal_point,  | 
298  |  |                                   Bignum* numerator, Bignum* denominator,  | 
299  | 0  |                                   Vector<char> buffer, int* length) { | 
300  | 0  |   DOUBLE_CONVERSION_ASSERT(count >= 0);  | 
301  | 0  |   for (int i = 0; i < count - 1; ++i) { | 
302  | 0  |     uint16_t digit;  | 
303  | 0  |     digit = numerator->DivideModuloIntBignum(*denominator);  | 
304  | 0  |     DOUBLE_CONVERSION_ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.  | 
305  |  |     // digit = numerator / denominator (integer division).  | 
306  |  |     // numerator = numerator % denominator.  | 
307  | 0  |     buffer[i] = static_cast<char>(digit + '0');  | 
308  |  |     // Prepare for next iteration.  | 
309  | 0  |     numerator->Times10();  | 
310  | 0  |   }  | 
311  |  |   // Generate the last digit.  | 
312  | 0  |   uint16_t digit;  | 
313  | 0  |   digit = numerator->DivideModuloIntBignum(*denominator);  | 
314  | 0  |   if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { | 
315  | 0  |     digit++;  | 
316  | 0  |   }  | 
317  | 0  |   DOUBLE_CONVERSION_ASSERT(digit <= 10);  | 
318  | 0  |   buffer[count - 1] = static_cast<char>(digit + '0');  | 
319  |  |   // Correct bad digits (in case we had a sequence of '9's). Propagate the  | 
320  |  |   // carry until we hat a non-'9' or til we reach the first digit.  | 
321  | 0  |   for (int i = count - 1; i > 0; --i) { | 
322  | 0  |     if (buffer[i] != '0' + 10) break;  | 
323  | 0  |     buffer[i] = '0';  | 
324  | 0  |     buffer[i - 1]++;  | 
325  | 0  |   }  | 
326  | 0  |   if (buffer[0] == '0' + 10) { | 
327  |  |     // Propagate a carry past the top place.  | 
328  | 0  |     buffer[0] = '1';  | 
329  | 0  |     (*decimal_point)++;  | 
330  | 0  |   }  | 
331  | 0  |   *length = count;  | 
332  | 0  | }  | 
333  |  |  | 
334  |  |  | 
335  |  | // Generates 'requested_digits' after the decimal point. It might omit  | 
336  |  | // trailing '0's. If the input number is too small then no digits at all are  | 
337  |  | // generated (ex.: 2 fixed digits for 0.00001).  | 
338  |  | //  | 
339  |  | // Input verifies:  1 <= (numerator + delta) / denominator < 10.  | 
340  |  | static void BignumToFixed(int requested_digits, int* decimal_point,  | 
341  |  |                           Bignum* numerator, Bignum* denominator,  | 
342  | 0  |                           Vector<char> buffer, int* length) { | 
343  |  |   // Note that we have to look at more than just the requested_digits, since  | 
344  |  |   // a number could be rounded up. Example: v=0.5 with requested_digits=0.  | 
345  |  |   // Even though the power of v equals 0 we can't just stop here.  | 
346  | 0  |   if (-(*decimal_point) > requested_digits) { | 
347  |  |     // The number is definitively too small.  | 
348  |  |     // Ex: 0.001 with requested_digits == 1.  | 
349  |  |     // Set decimal-point to -requested_digits. This is what Gay does.  | 
350  |  |     // Note that it should not have any effect anyways since the string is  | 
351  |  |     // empty.  | 
352  | 0  |     *decimal_point = -requested_digits;  | 
353  | 0  |     *length = 0;  | 
354  | 0  |     return;  | 
355  | 0  |   } else if (-(*decimal_point) == requested_digits) { | 
356  |  |     // We only need to verify if the number rounds down or up.  | 
357  |  |     // Ex: 0.04 and 0.06 with requested_digits == 1.  | 
358  | 0  |     DOUBLE_CONVERSION_ASSERT(*decimal_point == -requested_digits);  | 
359  |  |     // Initially the fraction lies in range (1, 10]. Multiply the denominator  | 
360  |  |     // by 10 so that we can compare more easily.  | 
361  | 0  |     denominator->Times10();  | 
362  | 0  |     if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { | 
363  |  |       // If the fraction is >= 0.5 then we have to include the rounded  | 
364  |  |       // digit.  | 
365  | 0  |       buffer[0] = '1';  | 
366  | 0  |       *length = 1;  | 
367  | 0  |       (*decimal_point)++;  | 
368  | 0  |     } else { | 
369  |  |       // Note that we caught most of similar cases earlier.  | 
370  | 0  |       *length = 0;  | 
371  | 0  |     }  | 
372  | 0  |     return;  | 
373  | 0  |   } else { | 
374  |  |     // The requested digits correspond to the digits after the point.  | 
375  |  |     // The variable 'needed_digits' includes the digits before the point.  | 
376  | 0  |     int needed_digits = (*decimal_point) + requested_digits;  | 
377  | 0  |     GenerateCountedDigits(needed_digits, decimal_point,  | 
378  | 0  |                           numerator, denominator,  | 
379  | 0  |                           buffer, length);  | 
380  | 0  |   }  | 
381  | 0  | }  | 
382  |  |  | 
383  |  |  | 
384  |  | // Returns an estimation of k such that 10^(k-1) <= v < 10^k where  | 
385  |  | // v = f * 2^exponent and 2^52 <= f < 2^53.  | 
386  |  | // v is hence a normalized double with the given exponent. The output is an  | 
387  |  | // approximation for the exponent of the decimal approximation .digits * 10^k.  | 
388  |  | //  | 
389  |  | // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.  | 
390  |  | // Note: this property holds for v's upper boundary m+ too.  | 
391  |  | //    10^k <= m+ < 10^k+1.  | 
392  |  | //   (see explanation below).  | 
393  |  | //  | 
394  |  | // Examples:  | 
395  |  | //  EstimatePower(0)   => 16  | 
396  |  | //  EstimatePower(-52) => 0  | 
397  |  | //  | 
398  |  | // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.  | 
399  | 0  | static int EstimatePower(int exponent) { | 
400  |  |   // This function estimates log10 of v where v = f*2^e (with e == exponent).  | 
401  |  |   // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).  | 
402  |  |   // Note that f is bounded by its container size. Let p = 53 (the double's  | 
403  |  |   // significand size). Then 2^(p-1) <= f < 2^p.  | 
404  |  |   //  | 
405  |  |   // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close  | 
406  |  |   // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).  | 
407  |  |   // The computed number undershoots by less than 0.631 (when we compute log3  | 
408  |  |   // and not log10).  | 
409  |  |   //  | 
410  |  |   // Optimization: since we only need an approximated result this computation  | 
411  |  |   // can be performed on 64 bit integers. On x86/x64 architecture the speedup is  | 
412  |  |   // not really measurable, though.  | 
413  |  |   //  | 
414  |  |   // Since we want to avoid overshooting we decrement by 1e10 so that  | 
415  |  |   // floating-point imprecisions don't affect us.  | 
416  |  |   //  | 
417  |  |   // Explanation for v's boundary m+: the computation takes advantage of  | 
418  |  |   // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement  | 
419  |  |   // (even for denormals where the delta can be much more important).  | 
420  |  | 
  | 
421  | 0  |   const double k1Log10 = 0.30102999566398114;  // 1/lg(10)  | 
422  |  |  | 
423  |  |   // For doubles len(f) == 53 (don't forget the hidden bit).  | 
424  | 0  |   const int kSignificandSize = Double::kSignificandSize;  | 
425  | 0  |   double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);  | 
426  | 0  |   return static_cast<int>(estimate);  | 
427  | 0  | }  | 
428  |  |  | 
429  |  |  | 
430  |  | // See comments for InitialScaledStartValues.  | 
431  |  | static void InitialScaledStartValuesPositiveExponent(  | 
432  |  |     uint64_t significand, int exponent,  | 
433  |  |     int estimated_power, bool need_boundary_deltas,  | 
434  |  |     Bignum* numerator, Bignum* denominator,  | 
435  | 0  |     Bignum* delta_minus, Bignum* delta_plus) { | 
436  |  |   // A positive exponent implies a positive power.  | 
437  | 0  |   DOUBLE_CONVERSION_ASSERT(estimated_power >= 0);  | 
438  |  |   // Since the estimated_power is positive we simply multiply the denominator  | 
439  |  |   // by 10^estimated_power.  | 
440  |  |  | 
441  |  |   // numerator = v.  | 
442  | 0  |   numerator->AssignUInt64(significand);  | 
443  | 0  |   numerator->ShiftLeft(exponent);  | 
444  |  |   // denominator = 10^estimated_power.  | 
445  | 0  |   denominator->AssignPowerUInt16(10, estimated_power);  | 
446  |  | 
  | 
447  | 0  |   if (need_boundary_deltas) { | 
448  |  |     // Introduce a common denominator so that the deltas to the boundaries are  | 
449  |  |     // integers.  | 
450  | 0  |     denominator->ShiftLeft(1);  | 
451  | 0  |     numerator->ShiftLeft(1);  | 
452  |  |     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common  | 
453  |  |     // denominator (of 2) delta_plus equals 2^e.  | 
454  | 0  |     delta_plus->AssignUInt16(1);  | 
455  | 0  |     delta_plus->ShiftLeft(exponent);  | 
456  |  |     // Same for delta_minus. The adjustments if f == 2^p-1 are done later.  | 
457  | 0  |     delta_minus->AssignUInt16(1);  | 
458  | 0  |     delta_minus->ShiftLeft(exponent);  | 
459  | 0  |   }  | 
460  | 0  | }  | 
461  |  |  | 
462  |  |  | 
463  |  | // See comments for InitialScaledStartValues  | 
464  |  | static void InitialScaledStartValuesNegativeExponentPositivePower(  | 
465  |  |     uint64_t significand, int exponent,  | 
466  |  |     int estimated_power, bool need_boundary_deltas,  | 
467  |  |     Bignum* numerator, Bignum* denominator,  | 
468  | 0  |     Bignum* delta_minus, Bignum* delta_plus) { | 
469  |  |   // v = f * 2^e with e < 0, and with estimated_power >= 0.  | 
470  |  |   // This means that e is close to 0 (have a look at how estimated_power is  | 
471  |  |   // computed).  | 
472  |  |  | 
473  |  |   // numerator = significand  | 
474  |  |   //  since v = significand * 2^exponent this is equivalent to  | 
475  |  |   //  numerator = v * / 2^-exponent  | 
476  | 0  |   numerator->AssignUInt64(significand);  | 
477  |  |   // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)  | 
478  | 0  |   denominator->AssignPowerUInt16(10, estimated_power);  | 
479  | 0  |   denominator->ShiftLeft(-exponent);  | 
480  |  | 
  | 
481  | 0  |   if (need_boundary_deltas) { | 
482  |  |     // Introduce a common denominator so that the deltas to the boundaries are  | 
483  |  |     // integers.  | 
484  | 0  |     denominator->ShiftLeft(1);  | 
485  | 0  |     numerator->ShiftLeft(1);  | 
486  |  |     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common  | 
487  |  |     // denominator (of 2) delta_plus equals 2^e.  | 
488  |  |     // Given that the denominator already includes v's exponent the distance  | 
489  |  |     // to the boundaries is simply 1.  | 
490  | 0  |     delta_plus->AssignUInt16(1);  | 
491  |  |     // Same for delta_minus. The adjustments if f == 2^p-1 are done later.  | 
492  | 0  |     delta_minus->AssignUInt16(1);  | 
493  | 0  |   }  | 
494  | 0  | }  | 
495  |  |  | 
496  |  |  | 
497  |  | // See comments for InitialScaledStartValues  | 
498  |  | static void InitialScaledStartValuesNegativeExponentNegativePower(  | 
499  |  |     uint64_t significand, int exponent,  | 
500  |  |     int estimated_power, bool need_boundary_deltas,  | 
501  |  |     Bignum* numerator, Bignum* denominator,  | 
502  | 0  |     Bignum* delta_minus, Bignum* delta_plus) { | 
503  |  |   // Instead of multiplying the denominator with 10^estimated_power we  | 
504  |  |   // multiply all values (numerator and deltas) by 10^-estimated_power.  | 
505  |  |  | 
506  |  |   // Use numerator as temporary container for power_ten.  | 
507  | 0  |   Bignum* power_ten = numerator;  | 
508  | 0  |   power_ten->AssignPowerUInt16(10, -estimated_power);  | 
509  |  | 
  | 
510  | 0  |   if (need_boundary_deltas) { | 
511  |  |     // Since power_ten == numerator we must make a copy of 10^estimated_power  | 
512  |  |     // before we complete the computation of the numerator.  | 
513  |  |     // delta_plus = delta_minus = 10^estimated_power  | 
514  | 0  |     delta_plus->AssignBignum(*power_ten);  | 
515  | 0  |     delta_minus->AssignBignum(*power_ten);  | 
516  | 0  |   }  | 
517  |  |  | 
518  |  |   // numerator = significand * 2 * 10^-estimated_power  | 
519  |  |   //  since v = significand * 2^exponent this is equivalent to  | 
520  |  |   // numerator = v * 10^-estimated_power * 2 * 2^-exponent.  | 
521  |  |   // Remember: numerator has been abused as power_ten. So no need to assign it  | 
522  |  |   //  to itself.  | 
523  | 0  |   DOUBLE_CONVERSION_ASSERT(numerator == power_ten);  | 
524  | 0  |   numerator->MultiplyByUInt64(significand);  | 
525  |  |  | 
526  |  |   // denominator = 2 * 2^-exponent with exponent < 0.  | 
527  | 0  |   denominator->AssignUInt16(1);  | 
528  | 0  |   denominator->ShiftLeft(-exponent);  | 
529  |  | 
  | 
530  | 0  |   if (need_boundary_deltas) { | 
531  |  |     // Introduce a common denominator so that the deltas to the boundaries are  | 
532  |  |     // integers.  | 
533  | 0  |     numerator->ShiftLeft(1);  | 
534  | 0  |     denominator->ShiftLeft(1);  | 
535  |  |     // With this shift the boundaries have their correct value, since  | 
536  |  |     // delta_plus = 10^-estimated_power, and  | 
537  |  |     // delta_minus = 10^-estimated_power.  | 
538  |  |     // These assignments have been done earlier.  | 
539  |  |     // The adjustments if f == 2^p-1 (lower boundary is closer) are done later.  | 
540  | 0  |   }  | 
541  | 0  | }  | 
542  |  |  | 
543  |  |  | 
544  |  | // Let v = significand * 2^exponent.  | 
545  |  | // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator  | 
546  |  | // and denominator. The functions GenerateShortestDigits and  | 
547  |  | // GenerateCountedDigits will then convert this ratio to its decimal  | 
548  |  | // representation d, with the required accuracy.  | 
549  |  | // Then d * 10^estimated_power is the representation of v.  | 
550  |  | // (Note: the fraction and the estimated_power might get adjusted before  | 
551  |  | // generating the decimal representation.)  | 
552  |  | //  | 
553  |  | // The initial start values consist of:  | 
554  |  | //  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.  | 
555  |  | //  - a scaled (common) denominator.  | 
556  |  | //  optionally (used by GenerateShortestDigits to decide if it has the shortest  | 
557  |  | //  decimal converting back to v):  | 
558  |  | //  - v - m-: the distance to the lower boundary.  | 
559  |  | //  - m+ - v: the distance to the upper boundary.  | 
560  |  | //  | 
561  |  | // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.  | 
562  |  | //  | 
563  |  | // Let ep == estimated_power, then the returned values will satisfy:  | 
564  |  | //  v / 10^ep = numerator / denominator.  | 
565  |  | //  v's boundaries m- and m+:  | 
566  |  | //    m- / 10^ep == v / 10^ep - delta_minus / denominator  | 
567  |  | //    m+ / 10^ep == v / 10^ep + delta_plus / denominator  | 
568  |  | //  Or in other words:  | 
569  |  | //    m- == v - delta_minus * 10^ep / denominator;  | 
570  |  | //    m+ == v + delta_plus * 10^ep / denominator;  | 
571  |  | //  | 
572  |  | // Since 10^(k-1) <= v < 10^k    (with k == estimated_power)  | 
573  |  | //  or       10^k <= v < 10^(k+1)  | 
574  |  | //  we then have 0.1 <= numerator/denominator < 1  | 
575  |  | //           or    1 <= numerator/denominator < 10  | 
576  |  | //  | 
577  |  | // It is then easy to kickstart the digit-generation routine.  | 
578  |  | //  | 
579  |  | // The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST  | 
580  |  | // or BIGNUM_DTOA_SHORTEST_SINGLE.  | 
581  |  |  | 
582  |  | static void InitialScaledStartValues(uint64_t significand,  | 
583  |  |                                      int exponent,  | 
584  |  |                                      bool lower_boundary_is_closer,  | 
585  |  |                                      int estimated_power,  | 
586  |  |                                      bool need_boundary_deltas,  | 
587  |  |                                      Bignum* numerator,  | 
588  |  |                                      Bignum* denominator,  | 
589  |  |                                      Bignum* delta_minus,  | 
590  | 0  |                                      Bignum* delta_plus) { | 
591  | 0  |   if (exponent >= 0) { | 
592  | 0  |     InitialScaledStartValuesPositiveExponent(  | 
593  | 0  |         significand, exponent, estimated_power, need_boundary_deltas,  | 
594  | 0  |         numerator, denominator, delta_minus, delta_plus);  | 
595  | 0  |   } else if (estimated_power >= 0) { | 
596  | 0  |     InitialScaledStartValuesNegativeExponentPositivePower(  | 
597  | 0  |         significand, exponent, estimated_power, need_boundary_deltas,  | 
598  | 0  |         numerator, denominator, delta_minus, delta_plus);  | 
599  | 0  |   } else { | 
600  | 0  |     InitialScaledStartValuesNegativeExponentNegativePower(  | 
601  | 0  |         significand, exponent, estimated_power, need_boundary_deltas,  | 
602  | 0  |         numerator, denominator, delta_minus, delta_plus);  | 
603  | 0  |   }  | 
604  |  | 
  | 
605  | 0  |   if (need_boundary_deltas && lower_boundary_is_closer) { | 
606  |  |     // The lower boundary is closer at half the distance of "normal" numbers.  | 
607  |  |     // Increase the common denominator and adapt all but the delta_minus.  | 
608  | 0  |     denominator->ShiftLeft(1);  // *2  | 
609  | 0  |     numerator->ShiftLeft(1);    // *2  | 
610  | 0  |     delta_plus->ShiftLeft(1);   // *2  | 
611  | 0  |   }  | 
612  | 0  | }  | 
613  |  |  | 
614  |  |  | 
615  |  | // This routine multiplies numerator/denominator so that its values lies in the  | 
616  |  | // range 1-10. That is after a call to this function we have:  | 
617  |  | //    1 <= (numerator + delta_plus) /denominator < 10.  | 
618  |  | // Let numerator the input before modification and numerator' the argument  | 
619  |  | // after modification, then the output-parameter decimal_point is such that  | 
620  |  | //  numerator / denominator * 10^estimated_power ==  | 
621  |  | //    numerator' / denominator' * 10^(decimal_point - 1)  | 
622  |  | // In some cases estimated_power was too low, and this is already the case. We  | 
623  |  | // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==  | 
624  |  | // estimated_power) but do not touch the numerator or denominator.  | 
625  |  | // Otherwise the routine multiplies the numerator and the deltas by 10.  | 
626  |  | static void FixupMultiply10(int estimated_power, bool is_even,  | 
627  |  |                             int* decimal_point,  | 
628  |  |                             Bignum* numerator, Bignum* denominator,  | 
629  | 0  |                             Bignum* delta_minus, Bignum* delta_plus) { | 
630  | 0  |   bool in_range;  | 
631  | 0  |   if (is_even) { | 
632  |  |     // For IEEE doubles half-way cases (in decimal system numbers ending with 5)  | 
633  |  |     // are rounded to the closest floating-point number with even significand.  | 
634  | 0  |     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;  | 
635  | 0  |   } else { | 
636  | 0  |     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;  | 
637  | 0  |   }  | 
638  | 0  |   if (in_range) { | 
639  |  |     // Since numerator + delta_plus >= denominator we already have  | 
640  |  |     // 1 <= numerator/denominator < 10. Simply update the estimated_power.  | 
641  | 0  |     *decimal_point = estimated_power + 1;  | 
642  | 0  |   } else { | 
643  | 0  |     *decimal_point = estimated_power;  | 
644  | 0  |     numerator->Times10();  | 
645  | 0  |     if (Bignum::Equal(*delta_minus, *delta_plus)) { | 
646  | 0  |       delta_minus->Times10();  | 
647  | 0  |       delta_plus->AssignBignum(*delta_minus);  | 
648  | 0  |     } else { | 
649  | 0  |       delta_minus->Times10();  | 
650  | 0  |       delta_plus->Times10();  | 
651  | 0  |     }  | 
652  | 0  |   }  | 
653  | 0  | }  | 
654  |  |  | 
655  |  | }  // namespace double_conversion  | 
656  |  |  | 
657  |  | // ICU PATCH: Close ICU namespace  | 
658  |  | U_NAMESPACE_END  | 
659  |  | #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING  |