/src/icu/source/i18n/double-conversion-fast-dtoa.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | // © 2018 and later: Unicode, Inc. and others.  | 
2  |  | // License & terms of use: http://www.unicode.org/copyright.html  | 
3  |  | //  | 
4  |  | // From the double-conversion library. Original license:  | 
5  |  | //  | 
6  |  | // Copyright 2012 the V8 project authors. All rights reserved.  | 
7  |  | // Redistribution and use in source and binary forms, with or without  | 
8  |  | // modification, are permitted provided that the following conditions are  | 
9  |  | // met:  | 
10  |  | //  | 
11  |  | //     * Redistributions of source code must retain the above copyright  | 
12  |  | //       notice, this list of conditions and the following disclaimer.  | 
13  |  | //     * Redistributions in binary form must reproduce the above  | 
14  |  | //       copyright notice, this list of conditions and the following  | 
15  |  | //       disclaimer in the documentation and/or other materials provided  | 
16  |  | //       with the distribution.  | 
17  |  | //     * Neither the name of Google Inc. nor the names of its  | 
18  |  | //       contributors may be used to endorse or promote products derived  | 
19  |  | //       from this software without specific prior written permission.  | 
20  |  | //  | 
21  |  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS  | 
22  |  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT  | 
23  |  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR  | 
24  |  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT  | 
25  |  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,  | 
26  |  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT  | 
27  |  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,  | 
28  |  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY  | 
29  |  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT  | 
30  |  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE  | 
31  |  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  | 
32  |  |  | 
33  |  | // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING  | 
34  |  | #include "unicode/utypes.h"  | 
35  |  | #if !UCONFIG_NO_FORMATTING  | 
36  |  |  | 
37  |  | // ICU PATCH: Customize header file paths for ICU.  | 
38  |  |  | 
39  |  | #include "double-conversion-fast-dtoa.h"  | 
40  |  |  | 
41  |  | #include "double-conversion-cached-powers.h"  | 
42  |  | #include "double-conversion-diy-fp.h"  | 
43  |  | #include "double-conversion-ieee.h"  | 
44  |  |  | 
45  |  | // ICU PATCH: Wrap in ICU namespace  | 
46  |  | U_NAMESPACE_BEGIN  | 
47  |  |  | 
48  |  | namespace double_conversion { | 
49  |  |  | 
50  |  | // The minimal and maximal target exponent define the range of w's binary  | 
51  |  | // exponent, where 'w' is the result of multiplying the input by a cached power  | 
52  |  | // of ten.  | 
53  |  | //  | 
54  |  | // A different range might be chosen on a different platform, to optimize digit  | 
55  |  | // generation, but a smaller range requires more powers of ten to be cached.  | 
56  |  | static const int kMinimalTargetExponent = -60;  | 
57  |  | static const int kMaximalTargetExponent = -32;  | 
58  |  |  | 
59  |  |  | 
60  |  | // Adjusts the last digit of the generated number, and screens out generated  | 
61  |  | // solutions that may be inaccurate. A solution may be inaccurate if it is  | 
62  |  | // outside the safe interval, or if we cannot prove that it is closer to the  | 
63  |  | // input than a neighboring representation of the same length.  | 
64  |  | //  | 
65  |  | // Input: * buffer containing the digits of too_high / 10^kappa  | 
66  |  | //        * the buffer's length  | 
67  |  | //        * distance_too_high_w == (too_high - w).f() * unit  | 
68  |  | //        * unsafe_interval == (too_high - too_low).f() * unit  | 
69  |  | //        * rest = (too_high - buffer * 10^kappa).f() * unit  | 
70  |  | //        * ten_kappa = 10^kappa * unit  | 
71  |  | //        * unit = the common multiplier  | 
72  |  | // Output: returns true if the buffer is guaranteed to contain the closest  | 
73  |  | //    representable number to the input.  | 
74  |  | //  Modifies the generated digits in the buffer to approach (round towards) w.  | 
75  |  | static bool RoundWeed(Vector<char> buffer,  | 
76  |  |                       int length,  | 
77  |  |                       uint64_t distance_too_high_w,  | 
78  |  |                       uint64_t unsafe_interval,  | 
79  |  |                       uint64_t rest,  | 
80  |  |                       uint64_t ten_kappa,  | 
81  | 0  |                       uint64_t unit) { | 
82  | 0  |   uint64_t small_distance = distance_too_high_w - unit;  | 
83  | 0  |   uint64_t big_distance = distance_too_high_w + unit;  | 
84  |  |   // Let w_low  = too_high - big_distance, and  | 
85  |  |   //     w_high = too_high - small_distance.  | 
86  |  |   // Note: w_low < w < w_high  | 
87  |  |   //  | 
88  |  |   // The real w (* unit) must lie somewhere inside the interval  | 
89  |  |   // ]w_low; w_high[ (often written as "(w_low; w_high)")  | 
90  |  |  | 
91  |  |   // Basically the buffer currently contains a number in the unsafe interval  | 
92  |  |   // ]too_low; too_high[ with too_low < w < too_high  | 
93  |  |   //  | 
94  |  |   //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  | 
95  |  |   //                     ^v 1 unit            ^      ^                 ^      ^  | 
96  |  |   //  boundary_high ---------------------     .      .                 .      .  | 
97  |  |   //                     ^v 1 unit            .      .                 .      .  | 
98  |  |   //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .  | 
99  |  |   //                                          .      .         ^       .      .  | 
100  |  |   //                                          .  big_distance  .       .      .  | 
101  |  |   //                                          .      .         .       .    rest  | 
102  |  |   //                              small_distance     .         .       .      .  | 
103  |  |   //                                          v      .         .       .      .  | 
104  |  |   //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .  | 
105  |  |   //                     ^v 1 unit                   .         .       .      .  | 
106  |  |   //  w ----------------------------------------     .         .       .      .  | 
107  |  |   //                     ^v 1 unit                   v         .       .      .  | 
108  |  |   //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .  | 
109  |  |   //                                                           .       .      v  | 
110  |  |   //  buffer --------------------------------------------------+-------+--------  | 
111  |  |   //                                                           .       .  | 
112  |  |   //                                                  safe_interval    .  | 
113  |  |   //                                                           v       .  | 
114  |  |   //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .  | 
115  |  |   //                     ^v 1 unit                                     .  | 
116  |  |   //  boundary_low -------------------------                     unsafe_interval  | 
117  |  |   //                     ^v 1 unit                                     v  | 
118  |  |   //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  | 
119  |  |   //  | 
120  |  |   //  | 
121  |  |   // Note that the value of buffer could lie anywhere inside the range too_low  | 
122  |  |   // to too_high.  | 
123  |  |   //  | 
124  |  |   // boundary_low, boundary_high and w are approximations of the real boundaries  | 
125  |  |   // and v (the input number). They are guaranteed to be precise up to one unit.  | 
126  |  |   // In fact the error is guaranteed to be strictly less than one unit.  | 
127  |  |   //  | 
128  |  |   // Anything that lies outside the unsafe interval is guaranteed not to round  | 
129  |  |   // to v when read again.  | 
130  |  |   // Anything that lies inside the safe interval is guaranteed to round to v  | 
131  |  |   // when read again.  | 
132  |  |   // If the number inside the buffer lies inside the unsafe interval but not  | 
133  |  |   // inside the safe interval then we simply do not know and bail out (returning  | 
134  |  |   // false).  | 
135  |  |   //  | 
136  |  |   // Similarly we have to take into account the imprecision of 'w' when finding  | 
137  |  |   // the closest representation of 'w'. If we have two potential  | 
138  |  |   // representations, and one is closer to both w_low and w_high, then we know  | 
139  |  |   // it is closer to the actual value v.  | 
140  |  |   //  | 
141  |  |   // By generating the digits of too_high we got the largest (closest to  | 
142  |  |   // too_high) buffer that is still in the unsafe interval. In the case where  | 
143  |  |   // w_high < buffer < too_high we try to decrement the buffer.  | 
144  |  |   // This way the buffer approaches (rounds towards) w.  | 
145  |  |   // There are 3 conditions that stop the decrementation process:  | 
146  |  |   //   1) the buffer is already below w_high  | 
147  |  |   //   2) decrementing the buffer would make it leave the unsafe interval  | 
148  |  |   //   3) decrementing the buffer would yield a number below w_high and farther  | 
149  |  |   //      away than the current number. In other words:  | 
150  |  |   //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high | 
151  |  |   // Instead of using the buffer directly we use its distance to too_high.  | 
152  |  |   // Conceptually rest ~= too_high - buffer  | 
153  |  |   // We need to do the following tests in this order to avoid over- and  | 
154  |  |   // underflows.  | 
155  | 0  |   DOUBLE_CONVERSION_ASSERT(rest <= unsafe_interval);  | 
156  | 0  |   while (rest < small_distance &&  // Negated condition 1  | 
157  | 0  |          unsafe_interval - rest >= ten_kappa &&  // Negated condition 2  | 
158  | 0  |          (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high | 
159  | 0  |           small_distance - rest >= rest + ten_kappa - small_distance)) { | 
160  | 0  |     buffer[length - 1]--;  | 
161  | 0  |     rest += ten_kappa;  | 
162  | 0  |   }  | 
163  |  |  | 
164  |  |   // We have approached w+ as much as possible. We now test if approaching w-  | 
165  |  |   // would require changing the buffer. If yes, then we have two possible  | 
166  |  |   // representations close to w, but we cannot decide which one is closer.  | 
167  | 0  |   if (rest < big_distance &&  | 
168  | 0  |       unsafe_interval - rest >= ten_kappa &&  | 
169  | 0  |       (rest + ten_kappa < big_distance ||  | 
170  | 0  |        big_distance - rest > rest + ten_kappa - big_distance)) { | 
171  | 0  |     return false;  | 
172  | 0  |   }  | 
173  |  |  | 
174  |  |   // Weeding test.  | 
175  |  |   //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]  | 
176  |  |   //   Since too_low = too_high - unsafe_interval this is equivalent to  | 
177  |  |   //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]  | 
178  |  |   //   Conceptually we have: rest ~= too_high - buffer  | 
179  | 0  |   return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);  | 
180  | 0  | }  | 
181  |  |  | 
182  |  |  | 
183  |  | // Rounds the buffer upwards if the result is closer to v by possibly adding  | 
184  |  | // 1 to the buffer. If the precision of the calculation is not sufficient to  | 
185  |  | // round correctly, return false.  | 
186  |  | // The rounding might shift the whole buffer in which case the kappa is  | 
187  |  | // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.  | 
188  |  | //  | 
189  |  | // If 2*rest > ten_kappa then the buffer needs to be round up.  | 
190  |  | // rest can have an error of +/- 1 unit. This function accounts for the  | 
191  |  | // imprecision and returns false, if the rounding direction cannot be  | 
192  |  | // unambiguously determined.  | 
193  |  | //  | 
194  |  | // Precondition: rest < ten_kappa.  | 
195  |  | static bool RoundWeedCounted(Vector<char> buffer,  | 
196  |  |                              int length,  | 
197  |  |                              uint64_t rest,  | 
198  |  |                              uint64_t ten_kappa,  | 
199  |  |                              uint64_t unit,  | 
200  | 0  |                              int* kappa) { | 
201  | 0  |   DOUBLE_CONVERSION_ASSERT(rest < ten_kappa);  | 
202  |  |   // The following tests are done in a specific order to avoid overflows. They  | 
203  |  |   // will work correctly with any uint64 values of rest < ten_kappa and unit.  | 
204  |  |   //  | 
205  |  |   // If the unit is too big, then we don't know which way to round. For example  | 
206  |  |   // a unit of 50 means that the real number lies within rest +/- 50. If  | 
207  |  |   // 10^kappa == 40 then there is no way to tell which way to round.  | 
208  | 0  |   if (unit >= ten_kappa) return false;  | 
209  |  |   // Even if unit is just half the size of 10^kappa we are already completely  | 
210  |  |   // lost. (And after the previous test we know that the expression will not  | 
211  |  |   // over/underflow.)  | 
212  | 0  |   if (ten_kappa - unit <= unit) return false;  | 
213  |  |   // If 2 * (rest + unit) <= 10^kappa we can safely round down.  | 
214  | 0  |   if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) { | 
215  | 0  |     return true;  | 
216  | 0  |   }  | 
217  |  |   // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.  | 
218  | 0  |   if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) { | 
219  |  |     // Increment the last digit recursively until we find a non '9' digit.  | 
220  | 0  |     buffer[length - 1]++;  | 
221  | 0  |     for (int i = length - 1; i > 0; --i) { | 
222  | 0  |       if (buffer[i] != '0' + 10) break;  | 
223  | 0  |       buffer[i] = '0';  | 
224  | 0  |       buffer[i - 1]++;  | 
225  | 0  |     }  | 
226  |  |     // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the  | 
227  |  |     // exception of the first digit all digits are now '0'. Simply switch the  | 
228  |  |     // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and  | 
229  |  |     // the power (the kappa) is increased.  | 
230  | 0  |     if (buffer[0] == '0' + 10) { | 
231  | 0  |       buffer[0] = '1';  | 
232  | 0  |       (*kappa) += 1;  | 
233  | 0  |     }  | 
234  | 0  |     return true;  | 
235  | 0  |   }  | 
236  | 0  |   return false;  | 
237  | 0  | }  | 
238  |  |  | 
239  |  | // Returns the biggest power of ten that is less than or equal to the given  | 
240  |  | // number. We furthermore receive the maximum number of bits 'number' has.  | 
241  |  | //  | 
242  |  | // Returns power == 10^(exponent_plus_one-1) such that  | 
243  |  | //    power <= number < power * 10.  | 
244  |  | // If number_bits == 0 then 0^(0-1) is returned.  | 
245  |  | // The number of bits must be <= 32.  | 
246  |  | // Precondition: number < (1 << (number_bits + 1)).  | 
247  |  |  | 
248  |  | // Inspired by the method for finding an integer log base 10 from here:  | 
249  |  | // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10  | 
250  |  | static unsigned int const kSmallPowersOfTen[] =  | 
251  |  |     {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, | 
252  |  |      1000000000};  | 
253  |  |  | 
254  |  | static void BiggestPowerTen(uint32_t number,  | 
255  |  |                             int number_bits,  | 
256  |  |                             uint32_t* power,  | 
257  | 0  |                             int* exponent_plus_one) { | 
258  | 0  |   DOUBLE_CONVERSION_ASSERT(number < (1u << (number_bits + 1)));  | 
259  |  |   // 1233/4096 is approximately 1/lg(10).  | 
260  | 0  |   int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12);  | 
261  |  |   // We increment to skip over the first entry in the kPowersOf10 table.  | 
262  |  |   // Note: kPowersOf10[i] == 10^(i-1).  | 
263  | 0  |   exponent_plus_one_guess++;  | 
264  |  |   // We don't have any guarantees that 2^number_bits <= number.  | 
265  | 0  |   if (number < kSmallPowersOfTen[exponent_plus_one_guess]) { | 
266  | 0  |     exponent_plus_one_guess--;  | 
267  | 0  |   }  | 
268  | 0  |   *power = kSmallPowersOfTen[exponent_plus_one_guess];  | 
269  | 0  |   *exponent_plus_one = exponent_plus_one_guess;  | 
270  | 0  | }  | 
271  |  |  | 
272  |  | // Generates the digits of input number w.  | 
273  |  | // w is a floating-point number (DiyFp), consisting of a significand and an  | 
274  |  | // exponent. Its exponent is bounded by kMinimalTargetExponent and  | 
275  |  | // kMaximalTargetExponent.  | 
276  |  | //       Hence -60 <= w.e() <= -32.  | 
277  |  | //  | 
278  |  | // Returns false if it fails, in which case the generated digits in the buffer  | 
279  |  | // should not be used.  | 
280  |  | // Preconditions:  | 
281  |  | //  * low, w and high are correct up to 1 ulp (unit in the last place). That  | 
282  |  | //    is, their error must be less than a unit of their last digits.  | 
283  |  | //  * low.e() == w.e() == high.e()  | 
284  |  | //  * low < w < high, and taking into account their error: low~ <= high~  | 
285  |  | //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent  | 
286  |  | // Postconditions: returns false if procedure fails.  | 
287  |  | //   otherwise:  | 
288  |  | //     * buffer is not null-terminated, but len contains the number of digits.  | 
289  |  | //     * buffer contains the shortest possible decimal digit-sequence  | 
290  |  | //       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the  | 
291  |  | //       correct values of low and high (without their error).  | 
292  |  | //     * if more than one decimal representation gives the minimal number of  | 
293  |  | //       decimal digits then the one closest to W (where W is the correct value  | 
294  |  | //       of w) is chosen.  | 
295  |  | // Remark: this procedure takes into account the imprecision of its input  | 
296  |  | //   numbers. If the precision is not enough to guarantee all the postconditions  | 
297  |  | //   then false is returned. This usually happens rarely (~0.5%).  | 
298  |  | //  | 
299  |  | // Say, for the sake of example, that  | 
300  |  | //   w.e() == -48, and w.f() == 0x1234567890abcdef  | 
301  |  | // w's value can be computed by w.f() * 2^w.e()  | 
302  |  | // We can obtain w's integral digits by simply shifting w.f() by -w.e().  | 
303  |  | //  -> w's integral part is 0x1234  | 
304  |  | //  w's fractional part is therefore 0x567890abcdef.  | 
305  |  | // Printing w's integral part is easy (simply print 0x1234 in decimal).  | 
306  |  | // In order to print its fraction we repeatedly multiply the fraction by 10 and  | 
307  |  | // get each digit. Example the first digit after the point would be computed by  | 
308  |  | //   (0x567890abcdef * 10) >> 48. -> 3  | 
309  |  | // The whole thing becomes slightly more complicated because we want to stop  | 
310  |  | // once we have enough digits. That is, once the digits inside the buffer  | 
311  |  | // represent 'w' we can stop. Everything inside the interval low - high  | 
312  |  | // represents w. However we have to pay attention to low, high and w's  | 
313  |  | // imprecision.  | 
314  |  | static bool DigitGen(DiyFp low,  | 
315  |  |                      DiyFp w,  | 
316  |  |                      DiyFp high,  | 
317  |  |                      Vector<char> buffer,  | 
318  |  |                      int* length,  | 
319  | 0  |                      int* kappa) { | 
320  | 0  |   DOUBLE_CONVERSION_ASSERT(low.e() == w.e() && w.e() == high.e());  | 
321  | 0  |   DOUBLE_CONVERSION_ASSERT(low.f() + 1 <= high.f() - 1);  | 
322  | 0  |   DOUBLE_CONVERSION_ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);  | 
323  |  |   // low, w and high are imprecise, but by less than one ulp (unit in the last  | 
324  |  |   // place).  | 
325  |  |   // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that  | 
326  |  |   // the new numbers are outside of the interval we want the final  | 
327  |  |   // representation to lie in.  | 
328  |  |   // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield  | 
329  |  |   // numbers that are certain to lie in the interval. We will use this fact  | 
330  |  |   // later on.  | 
331  |  |   // We will now start by generating the digits within the uncertain  | 
332  |  |   // interval. Later we will weed out representations that lie outside the safe  | 
333  |  |   // interval and thus _might_ lie outside the correct interval.  | 
334  | 0  |   uint64_t unit = 1;  | 
335  | 0  |   DiyFp too_low = DiyFp(low.f() - unit, low.e());  | 
336  | 0  |   DiyFp too_high = DiyFp(high.f() + unit, high.e());  | 
337  |  |   // too_low and too_high are guaranteed to lie outside the interval we want the  | 
338  |  |   // generated number in.  | 
339  | 0  |   DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);  | 
340  |  |   // We now cut the input number into two parts: the integral digits and the  | 
341  |  |   // fractionals. We will not write any decimal separator though, but adapt  | 
342  |  |   // kappa instead.  | 
343  |  |   // Reminder: we are currently computing the digits (stored inside the buffer)  | 
344  |  |   // such that:   too_low < buffer * 10^kappa < too_high  | 
345  |  |   // We use too_high for the digit_generation and stop as soon as possible.  | 
346  |  |   // If we stop early we effectively round down.  | 
347  | 0  |   DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());  | 
348  |  |   // Division by one is a shift.  | 
349  | 0  |   uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());  | 
350  |  |   // Modulo by one is an and.  | 
351  | 0  |   uint64_t fractionals = too_high.f() & (one.f() - 1);  | 
352  | 0  |   uint32_t divisor;  | 
353  | 0  |   int divisor_exponent_plus_one;  | 
354  | 0  |   BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),  | 
355  | 0  |                   &divisor, &divisor_exponent_plus_one);  | 
356  | 0  |   *kappa = divisor_exponent_plus_one;  | 
357  | 0  |   *length = 0;  | 
358  |  |   // Loop invariant: buffer = too_high / 10^kappa  (integer division)  | 
359  |  |   // The invariant holds for the first iteration: kappa has been initialized  | 
360  |  |   // with the divisor exponent + 1. And the divisor is the biggest power of ten  | 
361  |  |   // that is smaller than integrals.  | 
362  | 0  |   while (*kappa > 0) { | 
363  | 0  |     int digit = integrals / divisor;  | 
364  | 0  |     DOUBLE_CONVERSION_ASSERT(digit <= 9);  | 
365  | 0  |     buffer[*length] = static_cast<char>('0' + digit); | 
366  | 0  |     (*length)++;  | 
367  | 0  |     integrals %= divisor;  | 
368  | 0  |     (*kappa)--;  | 
369  |  |     // Note that kappa now equals the exponent of the divisor and that the  | 
370  |  |     // invariant thus holds again.  | 
371  | 0  |     uint64_t rest =  | 
372  | 0  |         (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;  | 
373  |  |     // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())  | 
374  |  |     // Reminder: unsafe_interval.e() == one.e()  | 
375  | 0  |     if (rest < unsafe_interval.f()) { | 
376  |  |       // Rounding down (by not emitting the remaining digits) yields a number  | 
377  |  |       // that lies within the unsafe interval.  | 
378  | 0  |       return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),  | 
379  | 0  |                        unsafe_interval.f(), rest,  | 
380  | 0  |                        static_cast<uint64_t>(divisor) << -one.e(), unit);  | 
381  | 0  |     }  | 
382  | 0  |     divisor /= 10;  | 
383  | 0  |   }  | 
384  |  |  | 
385  |  |   // The integrals have been generated. We are at the point of the decimal  | 
386  |  |   // separator. In the following loop we simply multiply the remaining digits by  | 
387  |  |   // 10 and divide by one. We just need to pay attention to multiply associated  | 
388  |  |   // data (like the interval or 'unit'), too.  | 
389  |  |   // Note that the multiplication by 10 does not overflow, because w.e >= -60  | 
390  |  |   // and thus one.e >= -60.  | 
391  | 0  |   DOUBLE_CONVERSION_ASSERT(one.e() >= -60);  | 
392  | 0  |   DOUBLE_CONVERSION_ASSERT(fractionals < one.f());  | 
393  | 0  |   DOUBLE_CONVERSION_ASSERT(DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());  | 
394  | 0  |   for (;;) { | 
395  | 0  |     fractionals *= 10;  | 
396  | 0  |     unit *= 10;  | 
397  | 0  |     unsafe_interval.set_f(unsafe_interval.f() * 10);  | 
398  |  |     // Integer division by one.  | 
399  | 0  |     int digit = static_cast<int>(fractionals >> -one.e());  | 
400  | 0  |     DOUBLE_CONVERSION_ASSERT(digit <= 9);  | 
401  | 0  |     buffer[*length] = static_cast<char>('0' + digit); | 
402  | 0  |     (*length)++;  | 
403  | 0  |     fractionals &= one.f() - 1;  // Modulo by one.  | 
404  | 0  |     (*kappa)--;  | 
405  | 0  |     if (fractionals < unsafe_interval.f()) { | 
406  | 0  |       return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,  | 
407  | 0  |                        unsafe_interval.f(), fractionals, one.f(), unit);  | 
408  | 0  |     }  | 
409  | 0  |   }  | 
410  | 0  | }  | 
411  |  |  | 
412  |  |  | 
413  |  |  | 
414  |  | // Generates (at most) requested_digits digits of input number w.  | 
415  |  | // w is a floating-point number (DiyFp), consisting of a significand and an  | 
416  |  | // exponent. Its exponent is bounded by kMinimalTargetExponent and  | 
417  |  | // kMaximalTargetExponent.  | 
418  |  | //       Hence -60 <= w.e() <= -32.  | 
419  |  | //  | 
420  |  | // Returns false if it fails, in which case the generated digits in the buffer  | 
421  |  | // should not be used.  | 
422  |  | // Preconditions:  | 
423  |  | //  * w is correct up to 1 ulp (unit in the last place). That  | 
424  |  | //    is, its error must be strictly less than a unit of its last digit.  | 
425  |  | //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent  | 
426  |  | //  | 
427  |  | // Postconditions: returns false if procedure fails.  | 
428  |  | //   otherwise:  | 
429  |  | //     * buffer is not null-terminated, but length contains the number of  | 
430  |  | //       digits.  | 
431  |  | //     * the representation in buffer is the most precise representation of  | 
432  |  | //       requested_digits digits.  | 
433  |  | //     * buffer contains at most requested_digits digits of w. If there are less  | 
434  |  | //       than requested_digits digits then some trailing '0's have been removed.  | 
435  |  | //     * kappa is such that  | 
436  |  | //            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.  | 
437  |  | //  | 
438  |  | // Remark: This procedure takes into account the imprecision of its input  | 
439  |  | //   numbers. If the precision is not enough to guarantee all the postconditions  | 
440  |  | //   then false is returned. This usually happens rarely, but the failure-rate  | 
441  |  | //   increases with higher requested_digits.  | 
442  |  | static bool DigitGenCounted(DiyFp w,  | 
443  |  |                             int requested_digits,  | 
444  |  |                             Vector<char> buffer,  | 
445  |  |                             int* length,  | 
446  | 0  |                             int* kappa) { | 
447  | 0  |   DOUBLE_CONVERSION_ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);  | 
448  | 0  |   DOUBLE_CONVERSION_ASSERT(kMinimalTargetExponent >= -60);  | 
449  | 0  |   DOUBLE_CONVERSION_ASSERT(kMaximalTargetExponent <= -32);  | 
450  |  |   // w is assumed to have an error less than 1 unit. Whenever w is scaled we  | 
451  |  |   // also scale its error.  | 
452  | 0  |   uint64_t w_error = 1;  | 
453  |  |   // We cut the input number into two parts: the integral digits and the  | 
454  |  |   // fractional digits. We don't emit any decimal separator, but adapt kappa  | 
455  |  |   // instead. Example: instead of writing "1.2" we put "12" into the buffer and  | 
456  |  |   // increase kappa by 1.  | 
457  | 0  |   DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());  | 
458  |  |   // Division by one is a shift.  | 
459  | 0  |   uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());  | 
460  |  |   // Modulo by one is an and.  | 
461  | 0  |   uint64_t fractionals = w.f() & (one.f() - 1);  | 
462  | 0  |   uint32_t divisor;  | 
463  | 0  |   int divisor_exponent_plus_one;  | 
464  | 0  |   BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),  | 
465  | 0  |                   &divisor, &divisor_exponent_plus_one);  | 
466  | 0  |   *kappa = divisor_exponent_plus_one;  | 
467  | 0  |   *length = 0;  | 
468  |  |  | 
469  |  |   // Loop invariant: buffer = w / 10^kappa  (integer division)  | 
470  |  |   // The invariant holds for the first iteration: kappa has been initialized  | 
471  |  |   // with the divisor exponent + 1. And the divisor is the biggest power of ten  | 
472  |  |   // that is smaller than 'integrals'.  | 
473  | 0  |   while (*kappa > 0) { | 
474  | 0  |     int digit = integrals / divisor;  | 
475  | 0  |     DOUBLE_CONVERSION_ASSERT(digit <= 9);  | 
476  | 0  |     buffer[*length] = static_cast<char>('0' + digit); | 
477  | 0  |     (*length)++;  | 
478  | 0  |     requested_digits--;  | 
479  | 0  |     integrals %= divisor;  | 
480  | 0  |     (*kappa)--;  | 
481  |  |     // Note that kappa now equals the exponent of the divisor and that the  | 
482  |  |     // invariant thus holds again.  | 
483  | 0  |     if (requested_digits == 0) break;  | 
484  | 0  |     divisor /= 10;  | 
485  | 0  |   }  | 
486  |  | 
  | 
487  | 0  |   if (requested_digits == 0) { | 
488  | 0  |     uint64_t rest =  | 
489  | 0  |         (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;  | 
490  | 0  |     return RoundWeedCounted(buffer, *length, rest,  | 
491  | 0  |                             static_cast<uint64_t>(divisor) << -one.e(), w_error,  | 
492  | 0  |                             kappa);  | 
493  | 0  |   }  | 
494  |  |  | 
495  |  |   // The integrals have been generated. We are at the point of the decimal  | 
496  |  |   // separator. In the following loop we simply multiply the remaining digits by  | 
497  |  |   // 10 and divide by one. We just need to pay attention to multiply associated  | 
498  |  |   // data (the 'unit'), too.  | 
499  |  |   // Note that the multiplication by 10 does not overflow, because w.e >= -60  | 
500  |  |   // and thus one.e >= -60.  | 
501  | 0  |   DOUBLE_CONVERSION_ASSERT(one.e() >= -60);  | 
502  | 0  |   DOUBLE_CONVERSION_ASSERT(fractionals < one.f());  | 
503  | 0  |   DOUBLE_CONVERSION_ASSERT(DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());  | 
504  | 0  |   while (requested_digits > 0 && fractionals > w_error) { | 
505  | 0  |     fractionals *= 10;  | 
506  | 0  |     w_error *= 10;  | 
507  |  |     // Integer division by one.  | 
508  | 0  |     int digit = static_cast<int>(fractionals >> -one.e());  | 
509  | 0  |     DOUBLE_CONVERSION_ASSERT(digit <= 9);  | 
510  | 0  |     buffer[*length] = static_cast<char>('0' + digit); | 
511  | 0  |     (*length)++;  | 
512  | 0  |     requested_digits--;  | 
513  | 0  |     fractionals &= one.f() - 1;  // Modulo by one.  | 
514  | 0  |     (*kappa)--;  | 
515  | 0  |   }  | 
516  | 0  |   if (requested_digits != 0) return false;  | 
517  | 0  |   return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,  | 
518  | 0  |                           kappa);  | 
519  | 0  | }  | 
520  |  |  | 
521  |  |  | 
522  |  | // Provides a decimal representation of v.  | 
523  |  | // Returns true if it succeeds, otherwise the result cannot be trusted.  | 
524  |  | // There will be *length digits inside the buffer (not null-terminated).  | 
525  |  | // If the function returns true then  | 
526  |  | //        v == (double) (buffer * 10^decimal_exponent).  | 
527  |  | // The digits in the buffer are the shortest representation possible: no  | 
528  |  | // 0.09999999999999999 instead of 0.1. The shorter representation will even be  | 
529  |  | // chosen even if the longer one would be closer to v.  | 
530  |  | // The last digit will be closest to the actual v. That is, even if several  | 
531  |  | // digits might correctly yield 'v' when read again, the closest will be  | 
532  |  | // computed.  | 
533  |  | static bool Grisu3(double v,  | 
534  |  |                    FastDtoaMode mode,  | 
535  |  |                    Vector<char> buffer,  | 
536  |  |                    int* length,  | 
537  | 0  |                    int* decimal_exponent) { | 
538  | 0  |   DiyFp w = Double(v).AsNormalizedDiyFp();  | 
539  |  |   // boundary_minus and boundary_plus are the boundaries between v and its  | 
540  |  |   // closest floating-point neighbors. Any number strictly between  | 
541  |  |   // boundary_minus and boundary_plus will round to v when convert to a double.  | 
542  |  |   // Grisu3 will never output representations that lie exactly on a boundary.  | 
543  | 0  |   DiyFp boundary_minus, boundary_plus;  | 
544  | 0  |   if (mode == FAST_DTOA_SHORTEST) { | 
545  | 0  |     Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);  | 
546  | 0  |   } else { | 
547  | 0  |     DOUBLE_CONVERSION_ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE);  | 
548  | 0  |     float single_v = static_cast<float>(v);  | 
549  | 0  |     Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus);  | 
550  | 0  |   }  | 
551  | 0  |   DOUBLE_CONVERSION_ASSERT(boundary_plus.e() == w.e());  | 
552  | 0  |   DiyFp ten_mk;  // Cached power of ten: 10^-k  | 
553  | 0  |   int mk;        // -k  | 
554  | 0  |   int ten_mk_minimal_binary_exponent =  | 
555  | 0  |      kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);  | 
556  | 0  |   int ten_mk_maximal_binary_exponent =  | 
557  | 0  |      kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);  | 
558  | 0  |   PowersOfTenCache::GetCachedPowerForBinaryExponentRange(  | 
559  | 0  |       ten_mk_minimal_binary_exponent,  | 
560  | 0  |       ten_mk_maximal_binary_exponent,  | 
561  | 0  |       &ten_mk, &mk);  | 
562  | 0  |   DOUBLE_CONVERSION_ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +  | 
563  | 0  |           DiyFp::kSignificandSize) &&  | 
564  | 0  |          (kMaximalTargetExponent >= w.e() + ten_mk.e() +  | 
565  | 0  |           DiyFp::kSignificandSize));  | 
566  |  |   // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a  | 
567  |  |   // 64 bit significand and ten_mk is thus only precise up to 64 bits.  | 
568  |  |  | 
569  |  |   // The DiyFp::Times procedure rounds its result, and ten_mk is approximated  | 
570  |  |   // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now  | 
571  |  |   // off by a small amount.  | 
572  |  |   // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.  | 
573  |  |   // In other words: let f = scaled_w.f() and e = scaled_w.e(), then  | 
574  |  |   //           (f-1) * 2^e < w*10^k < (f+1) * 2^e  | 
575  | 0  |   DiyFp scaled_w = DiyFp::Times(w, ten_mk);  | 
576  | 0  |   DOUBLE_CONVERSION_ASSERT(scaled_w.e() ==  | 
577  | 0  |          boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);  | 
578  |  |   // In theory it would be possible to avoid some recomputations by computing  | 
579  |  |   // the difference between w and boundary_minus/plus (a power of 2) and to  | 
580  |  |   // compute scaled_boundary_minus/plus by subtracting/adding from  | 
581  |  |   // scaled_w. However the code becomes much less readable and the speed  | 
582  |  |   // enhancements are not terriffic.  | 
583  | 0  |   DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);  | 
584  | 0  |   DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk);  | 
585  |  |  | 
586  |  |   // DigitGen will generate the digits of scaled_w. Therefore we have  | 
587  |  |   // v == (double) (scaled_w * 10^-mk).  | 
588  |  |   // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an  | 
589  |  |   // integer than it will be updated. For instance if scaled_w == 1.23 then  | 
590  |  |   // the buffer will be filled with "123" und the decimal_exponent will be  | 
591  |  |   // decreased by 2.  | 
592  | 0  |   int kappa;  | 
593  | 0  |   bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,  | 
594  | 0  |                          buffer, length, &kappa);  | 
595  | 0  |   *decimal_exponent = -mk + kappa;  | 
596  | 0  |   return result;  | 
597  | 0  | }  | 
598  |  |  | 
599  |  |  | 
600  |  | // The "counted" version of grisu3 (see above) only generates requested_digits  | 
601  |  | // number of digits. This version does not generate the shortest representation,  | 
602  |  | // and with enough requested digits 0.1 will at some point print as 0.9999999...  | 
603  |  | // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and  | 
604  |  | // therefore the rounding strategy for halfway cases is irrelevant.  | 
605  |  | static bool Grisu3Counted(double v,  | 
606  |  |                           int requested_digits,  | 
607  |  |                           Vector<char> buffer,  | 
608  |  |                           int* length,  | 
609  | 0  |                           int* decimal_exponent) { | 
610  | 0  |   DiyFp w = Double(v).AsNormalizedDiyFp();  | 
611  | 0  |   DiyFp ten_mk;  // Cached power of ten: 10^-k  | 
612  | 0  |   int mk;        // -k  | 
613  | 0  |   int ten_mk_minimal_binary_exponent =  | 
614  | 0  |      kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);  | 
615  | 0  |   int ten_mk_maximal_binary_exponent =  | 
616  | 0  |      kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);  | 
617  | 0  |   PowersOfTenCache::GetCachedPowerForBinaryExponentRange(  | 
618  | 0  |       ten_mk_minimal_binary_exponent,  | 
619  | 0  |       ten_mk_maximal_binary_exponent,  | 
620  | 0  |       &ten_mk, &mk);  | 
621  | 0  |   DOUBLE_CONVERSION_ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +  | 
622  | 0  |           DiyFp::kSignificandSize) &&  | 
623  | 0  |          (kMaximalTargetExponent >= w.e() + ten_mk.e() +  | 
624  | 0  |           DiyFp::kSignificandSize));  | 
625  |  |   // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a  | 
626  |  |   // 64 bit significand and ten_mk is thus only precise up to 64 bits.  | 
627  |  |  | 
628  |  |   // The DiyFp::Times procedure rounds its result, and ten_mk is approximated  | 
629  |  |   // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now  | 
630  |  |   // off by a small amount.  | 
631  |  |   // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.  | 
632  |  |   // In other words: let f = scaled_w.f() and e = scaled_w.e(), then  | 
633  |  |   //           (f-1) * 2^e < w*10^k < (f+1) * 2^e  | 
634  | 0  |   DiyFp scaled_w = DiyFp::Times(w, ten_mk);  | 
635  |  |  | 
636  |  |   // We now have (double) (scaled_w * 10^-mk).  | 
637  |  |   // DigitGen will generate the first requested_digits digits of scaled_w and  | 
638  |  |   // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It  | 
639  |  |   // will not always be exactly the same since DigitGenCounted only produces a  | 
640  |  |   // limited number of digits.)  | 
641  | 0  |   int kappa;  | 
642  | 0  |   bool result = DigitGenCounted(scaled_w, requested_digits,  | 
643  | 0  |                                 buffer, length, &kappa);  | 
644  | 0  |   *decimal_exponent = -mk + kappa;  | 
645  | 0  |   return result;  | 
646  | 0  | }  | 
647  |  |  | 
648  |  |  | 
649  |  | bool FastDtoa(double v,  | 
650  |  |               FastDtoaMode mode,  | 
651  |  |               int requested_digits,  | 
652  |  |               Vector<char> buffer,  | 
653  |  |               int* length,  | 
654  | 0  |               int* decimal_point) { | 
655  | 0  |   DOUBLE_CONVERSION_ASSERT(v > 0);  | 
656  | 0  |   DOUBLE_CONVERSION_ASSERT(!Double(v).IsSpecial());  | 
657  |  | 
  | 
658  | 0  |   bool result = false;  | 
659  | 0  |   int decimal_exponent = 0;  | 
660  | 0  |   switch (mode) { | 
661  | 0  |     case FAST_DTOA_SHORTEST:  | 
662  | 0  |     case FAST_DTOA_SHORTEST_SINGLE:  | 
663  | 0  |       result = Grisu3(v, mode, buffer, length, &decimal_exponent);  | 
664  | 0  |       break;  | 
665  | 0  |     case FAST_DTOA_PRECISION:  | 
666  | 0  |       result = Grisu3Counted(v, requested_digits,  | 
667  | 0  |                              buffer, length, &decimal_exponent);  | 
668  | 0  |       break;  | 
669  | 0  |     default:  | 
670  | 0  |       DOUBLE_CONVERSION_UNREACHABLE();  | 
671  | 0  |   }  | 
672  | 0  |   if (result) { | 
673  | 0  |     *decimal_point = *length + decimal_exponent;  | 
674  | 0  |     buffer[*length] = '\0';  | 
675  | 0  |   }  | 
676  | 0  |   return result;  | 
677  | 0  | }  | 
678  |  |  | 
679  |  | }  // namespace double_conversion  | 
680  |  |  | 
681  |  | // ICU PATCH: Close ICU namespace  | 
682  |  | U_NAMESPACE_END  | 
683  |  | #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING  |