/src/icu/source/i18n/double-conversion-strtod.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | // © 2018 and later: Unicode, Inc. and others.  | 
2  |  | // License & terms of use: http://www.unicode.org/copyright.html  | 
3  |  | //  | 
4  |  | // From the double-conversion library. Original license:  | 
5  |  | //  | 
6  |  | // Copyright 2010 the V8 project authors. All rights reserved.  | 
7  |  | // Redistribution and use in source and binary forms, with or without  | 
8  |  | // modification, are permitted provided that the following conditions are  | 
9  |  | // met:  | 
10  |  | //  | 
11  |  | //     * Redistributions of source code must retain the above copyright  | 
12  |  | //       notice, this list of conditions and the following disclaimer.  | 
13  |  | //     * Redistributions in binary form must reproduce the above  | 
14  |  | //       copyright notice, this list of conditions and the following  | 
15  |  | //       disclaimer in the documentation and/or other materials provided  | 
16  |  | //       with the distribution.  | 
17  |  | //     * Neither the name of Google Inc. nor the names of its  | 
18  |  | //       contributors may be used to endorse or promote products derived  | 
19  |  | //       from this software without specific prior written permission.  | 
20  |  | //  | 
21  |  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS  | 
22  |  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT  | 
23  |  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR  | 
24  |  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT  | 
25  |  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,  | 
26  |  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT  | 
27  |  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,  | 
28  |  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY  | 
29  |  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT  | 
30  |  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE  | 
31  |  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  | 
32  |  |  | 
33  |  | // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING  | 
34  |  | #include "unicode/utypes.h"  | 
35  |  | #if !UCONFIG_NO_FORMATTING  | 
36  |  |  | 
37  |  | #include <climits>  | 
38  |  | #include <cstdarg>  | 
39  |  |  | 
40  |  | // ICU PATCH: Customize header file paths for ICU.  | 
41  |  |  | 
42  |  | #include "double-conversion-bignum.h"  | 
43  |  | #include "double-conversion-cached-powers.h"  | 
44  |  | #include "double-conversion-ieee.h"  | 
45  |  | #include "double-conversion-strtod.h"  | 
46  |  |  | 
47  |  | // ICU PATCH: Wrap in ICU namespace  | 
48  |  | U_NAMESPACE_BEGIN  | 
49  |  |  | 
50  |  | namespace double_conversion { | 
51  |  |  | 
52  |  | #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)  | 
53  |  | // 2^53 = 9007199254740992.  | 
54  |  | // Any integer with at most 15 decimal digits will hence fit into a double  | 
55  |  | // (which has a 53bit significand) without loss of precision.  | 
56  |  | static const int kMaxExactDoubleIntegerDecimalDigits = 15;  | 
57  |  | #endif // #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)  | 
58  |  | // 2^64 = 18446744073709551616 > 10^19  | 
59  |  | static const int kMaxUint64DecimalDigits = 19;  | 
60  |  |  | 
61  |  | // Max double: 1.7976931348623157 x 10^308  | 
62  |  | // Min non-zero double: 4.9406564584124654 x 10^-324  | 
63  |  | // Any x >= 10^309 is interpreted as +infinity.  | 
64  |  | // Any x <= 10^-324 is interpreted as 0.  | 
65  |  | // Note that 2.5e-324 (despite being smaller than the min double) will be read  | 
66  |  | // as non-zero (equal to the min non-zero double).  | 
67  |  | static const int kMaxDecimalPower = 309;  | 
68  |  | static const int kMinDecimalPower = -324;  | 
69  |  |  | 
70  |  | // 2^64 = 18446744073709551616  | 
71  |  | static const uint64_t kMaxUint64 = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);  | 
72  |  |  | 
73  |  |  | 
74  |  | #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)  | 
75  |  | static const double exact_powers_of_ten[] = { | 
76  |  |   1.0,  // 10^0  | 
77  |  |   10.0,  | 
78  |  |   100.0,  | 
79  |  |   1000.0,  | 
80  |  |   10000.0,  | 
81  |  |   100000.0,  | 
82  |  |   1000000.0,  | 
83  |  |   10000000.0,  | 
84  |  |   100000000.0,  | 
85  |  |   1000000000.0,  | 
86  |  |   10000000000.0,  // 10^10  | 
87  |  |   100000000000.0,  | 
88  |  |   1000000000000.0,  | 
89  |  |   10000000000000.0,  | 
90  |  |   100000000000000.0,  | 
91  |  |   1000000000000000.0,  | 
92  |  |   10000000000000000.0,  | 
93  |  |   100000000000000000.0,  | 
94  |  |   1000000000000000000.0,  | 
95  |  |   10000000000000000000.0,  | 
96  |  |   100000000000000000000.0,  // 10^20  | 
97  |  |   1000000000000000000000.0,  | 
98  |  |   // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22  | 
99  |  |   10000000000000000000000.0  | 
100  |  | };  | 
101  |  | static const int kExactPowersOfTenSize = DOUBLE_CONVERSION_ARRAY_SIZE(exact_powers_of_ten);  | 
102  |  | #endif // #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)  | 
103  |  |  | 
104  |  | // Maximum number of significant digits in the decimal representation.  | 
105  |  | // In fact the value is 772 (see conversions.cc), but to give us some margin  | 
106  |  | // we round up to 780.  | 
107  |  | static const int kMaxSignificantDecimalDigits = 780;  | 
108  |  |  | 
109  | 0  | static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { | 
110  | 0  |   for (int i = 0; i < buffer.length(); i++) { | 
111  | 0  |     if (buffer[i] != '0') { | 
112  | 0  |       return buffer.SubVector(i, buffer.length());  | 
113  | 0  |     }  | 
114  | 0  |   }  | 
115  | 0  |   return Vector<const char>(buffer.start(), 0);  | 
116  | 0  | }  | 
117  |  |  | 
118  |  | static void CutToMaxSignificantDigits(Vector<const char> buffer,  | 
119  |  |                                        int exponent,  | 
120  |  |                                        char* significant_buffer,  | 
121  | 0  |                                        int* significant_exponent) { | 
122  | 0  |   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { | 
123  | 0  |     significant_buffer[i] = buffer[i];  | 
124  | 0  |   }  | 
125  |  |   // The input buffer has been trimmed. Therefore the last digit must be  | 
126  |  |   // different from '0'.  | 
127  | 0  |   DOUBLE_CONVERSION_ASSERT(buffer[buffer.length() - 1] != '0');  | 
128  |  |   // Set the last digit to be non-zero. This is sufficient to guarantee  | 
129  |  |   // correct rounding.  | 
130  | 0  |   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';  | 
131  | 0  |   *significant_exponent =  | 
132  | 0  |       exponent + (buffer.length() - kMaxSignificantDecimalDigits);  | 
133  | 0  | }  | 
134  |  |  | 
135  |  |  | 
136  |  | // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.  | 
137  |  | // If possible the input-buffer is reused, but if the buffer needs to be  | 
138  |  | // modified (due to cutting), then the input needs to be copied into the  | 
139  |  | // buffer_copy_space.  | 
140  |  | static void TrimAndCut(Vector<const char> buffer, int exponent,  | 
141  |  |                        char* buffer_copy_space, int space_size,  | 
142  | 0  |                        Vector<const char>* trimmed, int* updated_exponent) { | 
143  | 0  |   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);  | 
144  | 0  |   Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);  | 
145  | 0  |   exponent += left_trimmed.length() - right_trimmed.length();  | 
146  | 0  |   if (right_trimmed.length() > kMaxSignificantDecimalDigits) { | 
147  | 0  |     (void) space_size;  // Mark variable as used.  | 
148  | 0  |     DOUBLE_CONVERSION_ASSERT(space_size >= kMaxSignificantDecimalDigits);  | 
149  | 0  |     CutToMaxSignificantDigits(right_trimmed, exponent,  | 
150  | 0  |                               buffer_copy_space, updated_exponent);  | 
151  | 0  |     *trimmed = Vector<const char>(buffer_copy_space,  | 
152  | 0  |                                  kMaxSignificantDecimalDigits);  | 
153  | 0  |   } else { | 
154  | 0  |     *trimmed = right_trimmed;  | 
155  | 0  |     *updated_exponent = exponent;  | 
156  | 0  |   }  | 
157  | 0  | }  | 
158  |  |  | 
159  |  |  | 
160  |  | // Reads digits from the buffer and converts them to a uint64.  | 
161  |  | // Reads in as many digits as fit into a uint64.  | 
162  |  | // When the string starts with "1844674407370955161" no further digit is read.  | 
163  |  | // Since 2^64 = 18446744073709551616 it would still be possible read another  | 
164  |  | // digit if it was less or equal than 6, but this would complicate the code.  | 
165  |  | static uint64_t ReadUint64(Vector<const char> buffer,  | 
166  | 0  |                            int* number_of_read_digits) { | 
167  | 0  |   uint64_t result = 0;  | 
168  | 0  |   int i = 0;  | 
169  | 0  |   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { | 
170  | 0  |     int digit = buffer[i++] - '0';  | 
171  | 0  |     DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);  | 
172  | 0  |     result = 10 * result + digit;  | 
173  | 0  |   }  | 
174  | 0  |   *number_of_read_digits = i;  | 
175  | 0  |   return result;  | 
176  | 0  | }  | 
177  |  |  | 
178  |  |  | 
179  |  | // Reads a DiyFp from the buffer.  | 
180  |  | // The returned DiyFp is not necessarily normalized.  | 
181  |  | // If remaining_decimals is zero then the returned DiyFp is accurate.  | 
182  |  | // Otherwise it has been rounded and has error of at most 1/2 ulp.  | 
183  |  | static void ReadDiyFp(Vector<const char> buffer,  | 
184  |  |                       DiyFp* result,  | 
185  | 0  |                       int* remaining_decimals) { | 
186  | 0  |   int read_digits;  | 
187  | 0  |   uint64_t significand = ReadUint64(buffer, &read_digits);  | 
188  | 0  |   if (buffer.length() == read_digits) { | 
189  | 0  |     *result = DiyFp(significand, 0);  | 
190  | 0  |     *remaining_decimals = 0;  | 
191  | 0  |   } else { | 
192  |  |     // Round the significand.  | 
193  | 0  |     if (buffer[read_digits] >= '5') { | 
194  | 0  |       significand++;  | 
195  | 0  |     }  | 
196  |  |     // Compute the binary exponent.  | 
197  | 0  |     int exponent = 0;  | 
198  | 0  |     *result = DiyFp(significand, exponent);  | 
199  | 0  |     *remaining_decimals = buffer.length() - read_digits;  | 
200  | 0  |   }  | 
201  | 0  | }  | 
202  |  |  | 
203  |  |  | 
204  |  | static bool DoubleStrtod(Vector<const char> trimmed,  | 
205  |  |                          int exponent,  | 
206  | 0  |                          double* result) { | 
207  |  | #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)  | 
208  |  |   // Avoid "unused parameter" warnings  | 
209  |  |   (void) trimmed;  | 
210  |  |   (void) exponent;  | 
211  |  |   (void) result;  | 
212  |  |   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is  | 
213  |  |   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the  | 
214  |  |   // result is not accurate.  | 
215  |  |   // We know that Windows32 uses 64 bits and is therefore accurate.  | 
216  |  |   return false;  | 
217  |  | #else  | 
218  | 0  |   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { | 
219  | 0  |     int read_digits;  | 
220  |  |     // The trimmed input fits into a double.  | 
221  |  |     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we  | 
222  |  |     // can compute the result-double simply by multiplying (resp. dividing) the  | 
223  |  |     // two numbers.  | 
224  |  |     // This is possible because IEEE guarantees that floating-point operations  | 
225  |  |     // return the best possible approximation.  | 
226  | 0  |     if (exponent < 0 && -exponent < kExactPowersOfTenSize) { | 
227  |  |       // 10^-exponent fits into a double.  | 
228  | 0  |       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));  | 
229  | 0  |       DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());  | 
230  | 0  |       *result /= exact_powers_of_ten[-exponent];  | 
231  | 0  |       return true;  | 
232  | 0  |     }  | 
233  | 0  |     if (0 <= exponent && exponent < kExactPowersOfTenSize) { | 
234  |  |       // 10^exponent fits into a double.  | 
235  | 0  |       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));  | 
236  | 0  |       DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());  | 
237  | 0  |       *result *= exact_powers_of_ten[exponent];  | 
238  | 0  |       return true;  | 
239  | 0  |     }  | 
240  | 0  |     int remaining_digits =  | 
241  | 0  |         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();  | 
242  | 0  |     if ((0 <= exponent) &&  | 
243  | 0  |         (exponent - remaining_digits < kExactPowersOfTenSize)) { | 
244  |  |       // The trimmed string was short and we can multiply it with  | 
245  |  |       // 10^remaining_digits. As a result the remaining exponent now fits  | 
246  |  |       // into a double too.  | 
247  | 0  |       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));  | 
248  | 0  |       DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());  | 
249  | 0  |       *result *= exact_powers_of_ten[remaining_digits];  | 
250  | 0  |       *result *= exact_powers_of_ten[exponent - remaining_digits];  | 
251  | 0  |       return true;  | 
252  | 0  |     }  | 
253  | 0  |   }  | 
254  | 0  |   return false;  | 
255  | 0  | #endif  | 
256  | 0  | }  | 
257  |  |  | 
258  |  |  | 
259  |  | // Returns 10^exponent as an exact DiyFp.  | 
260  |  | // The given exponent must be in the range [1; kDecimalExponentDistance[.  | 
261  | 0  | static DiyFp AdjustmentPowerOfTen(int exponent) { | 
262  | 0  |   DOUBLE_CONVERSION_ASSERT(0 < exponent);  | 
263  | 0  |   DOUBLE_CONVERSION_ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);  | 
264  |  |   // Simply hardcode the remaining powers for the given decimal exponent  | 
265  |  |   // distance.  | 
266  | 0  |   DOUBLE_CONVERSION_ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);  | 
267  | 0  |   switch (exponent) { | 
268  | 0  |     case 1: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xa0000000, 00000000), -60);  | 
269  | 0  |     case 2: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc8000000, 00000000), -57);  | 
270  | 0  |     case 3: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xfa000000, 00000000), -54);  | 
271  | 0  |     case 4: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x9c400000, 00000000), -50);  | 
272  | 0  |     case 5: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc3500000, 00000000), -47);  | 
273  | 0  |     case 6: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xf4240000, 00000000), -44);  | 
274  | 0  |     case 7: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x98968000, 00000000), -40);  | 
275  | 0  |     default:  | 
276  | 0  |       DOUBLE_CONVERSION_UNREACHABLE();  | 
277  | 0  |   }  | 
278  | 0  | }  | 
279  |  |  | 
280  |  |  | 
281  |  | // If the function returns true then the result is the correct double.  | 
282  |  | // Otherwise it is either the correct double or the double that is just below  | 
283  |  | // the correct double.  | 
284  |  | static bool DiyFpStrtod(Vector<const char> buffer,  | 
285  |  |                         int exponent,  | 
286  | 0  |                         double* result) { | 
287  | 0  |   DiyFp input;  | 
288  | 0  |   int remaining_decimals;  | 
289  | 0  |   ReadDiyFp(buffer, &input, &remaining_decimals);  | 
290  |  |   // Since we may have dropped some digits the input is not accurate.  | 
291  |  |   // If remaining_decimals is different than 0 than the error is at most  | 
292  |  |   // .5 ulp (unit in the last place).  | 
293  |  |   // We don't want to deal with fractions and therefore keep a common  | 
294  |  |   // denominator.  | 
295  | 0  |   const int kDenominatorLog = 3;  | 
296  | 0  |   const int kDenominator = 1 << kDenominatorLog;  | 
297  |  |   // Move the remaining decimals into the exponent.  | 
298  | 0  |   exponent += remaining_decimals;  | 
299  | 0  |   uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);  | 
300  |  | 
  | 
301  | 0  |   int old_e = input.e();  | 
302  | 0  |   input.Normalize();  | 
303  | 0  |   error <<= old_e - input.e();  | 
304  |  | 
  | 
305  | 0  |   DOUBLE_CONVERSION_ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);  | 
306  | 0  |   if (exponent < PowersOfTenCache::kMinDecimalExponent) { | 
307  | 0  |     *result = 0.0;  | 
308  | 0  |     return true;  | 
309  | 0  |   }  | 
310  | 0  |   DiyFp cached_power;  | 
311  | 0  |   int cached_decimal_exponent;  | 
312  | 0  |   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,  | 
313  | 0  |                                                      &cached_power,  | 
314  | 0  |                                                      &cached_decimal_exponent);  | 
315  |  | 
  | 
316  | 0  |   if (cached_decimal_exponent != exponent) { | 
317  | 0  |     int adjustment_exponent = exponent - cached_decimal_exponent;  | 
318  | 0  |     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);  | 
319  | 0  |     input.Multiply(adjustment_power);  | 
320  | 0  |     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { | 
321  |  |       // The product of input with the adjustment power fits into a 64 bit  | 
322  |  |       // integer.  | 
323  | 0  |       DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64);  | 
324  | 0  |     } else { | 
325  |  |       // The adjustment power is exact. There is hence only an error of 0.5.  | 
326  | 0  |       error += kDenominator / 2;  | 
327  | 0  |     }  | 
328  | 0  |   }  | 
329  |  | 
  | 
330  | 0  |   input.Multiply(cached_power);  | 
331  |  |   // The error introduced by a multiplication of a*b equals  | 
332  |  |   //   error_a + error_b + error_a*error_b/2^64 + 0.5  | 
333  |  |   // Substituting a with 'input' and b with 'cached_power' we have  | 
334  |  |   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),  | 
335  |  |   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64  | 
336  | 0  |   int error_b = kDenominator / 2;  | 
337  | 0  |   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.  | 
338  | 0  |   int fixed_error = kDenominator / 2;  | 
339  | 0  |   error += error_b + error_ab + fixed_error;  | 
340  |  | 
  | 
341  | 0  |   old_e = input.e();  | 
342  | 0  |   input.Normalize();  | 
343  | 0  |   error <<= old_e - input.e();  | 
344  |  |  | 
345  |  |   // See if the double's significand changes if we add/subtract the error.  | 
346  | 0  |   int order_of_magnitude = DiyFp::kSignificandSize + input.e();  | 
347  | 0  |   int effective_significand_size =  | 
348  | 0  |       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);  | 
349  | 0  |   int precision_digits_count =  | 
350  | 0  |       DiyFp::kSignificandSize - effective_significand_size;  | 
351  | 0  |   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { | 
352  |  |     // This can only happen for very small denormals. In this case the  | 
353  |  |     // half-way multiplied by the denominator exceeds the range of an uint64.  | 
354  |  |     // Simply shift everything to the right.  | 
355  | 0  |     int shift_amount = (precision_digits_count + kDenominatorLog) -  | 
356  | 0  |         DiyFp::kSignificandSize + 1;  | 
357  | 0  |     input.set_f(input.f() >> shift_amount);  | 
358  | 0  |     input.set_e(input.e() + shift_amount);  | 
359  |  |     // We add 1 for the lost precision of error, and kDenominator for  | 
360  |  |     // the lost precision of input.f().  | 
361  | 0  |     error = (error >> shift_amount) + 1 + kDenominator;  | 
362  | 0  |     precision_digits_count -= shift_amount;  | 
363  | 0  |   }  | 
364  |  |   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.  | 
365  | 0  |   DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64);  | 
366  | 0  |   DOUBLE_CONVERSION_ASSERT(precision_digits_count < 64);  | 
367  | 0  |   uint64_t one64 = 1;  | 
368  | 0  |   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;  | 
369  | 0  |   uint64_t precision_bits = input.f() & precision_bits_mask;  | 
370  | 0  |   uint64_t half_way = one64 << (precision_digits_count - 1);  | 
371  | 0  |   precision_bits *= kDenominator;  | 
372  | 0  |   half_way *= kDenominator;  | 
373  | 0  |   DiyFp rounded_input(input.f() >> precision_digits_count,  | 
374  | 0  |                       input.e() + precision_digits_count);  | 
375  | 0  |   if (precision_bits >= half_way + error) { | 
376  | 0  |     rounded_input.set_f(rounded_input.f() + 1);  | 
377  | 0  |   }  | 
378  |  |   // If the last_bits are too close to the half-way case than we are too  | 
379  |  |   // inaccurate and round down. In this case we return false so that we can  | 
380  |  |   // fall back to a more precise algorithm.  | 
381  |  | 
  | 
382  | 0  |   *result = Double(rounded_input).value();  | 
383  | 0  |   if (half_way - error < precision_bits && precision_bits < half_way + error) { | 
384  |  |     // Too imprecise. The caller will have to fall back to a slower version.  | 
385  |  |     // However the returned number is guaranteed to be either the correct  | 
386  |  |     // double, or the next-lower double.  | 
387  | 0  |     return false;  | 
388  | 0  |   } else { | 
389  | 0  |     return true;  | 
390  | 0  |   }  | 
391  | 0  | }  | 
392  |  |  | 
393  |  |  | 
394  |  | // Returns  | 
395  |  | //   - -1 if buffer*10^exponent < diy_fp.  | 
396  |  | //   -  0 if buffer*10^exponent == diy_fp.  | 
397  |  | //   - +1 if buffer*10^exponent > diy_fp.  | 
398  |  | // Preconditions:  | 
399  |  | //   buffer.length() + exponent <= kMaxDecimalPower + 1  | 
400  |  | //   buffer.length() + exponent > kMinDecimalPower  | 
401  |  | //   buffer.length() <= kMaxDecimalSignificantDigits  | 
402  |  | static int CompareBufferWithDiyFp(Vector<const char> buffer,  | 
403  |  |                                   int exponent,  | 
404  | 0  |                                   DiyFp diy_fp) { | 
405  | 0  |   DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);  | 
406  | 0  |   DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent > kMinDecimalPower);  | 
407  | 0  |   DOUBLE_CONVERSION_ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);  | 
408  |  |   // Make sure that the Bignum will be able to hold all our numbers.  | 
409  |  |   // Our Bignum implementation has a separate field for exponents. Shifts will  | 
410  |  |   // consume at most one bigit (< 64 bits).  | 
411  |  |   // ln(10) == 3.3219...  | 
412  | 0  |   DOUBLE_CONVERSION_ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);  | 
413  | 0  |   Bignum buffer_bignum;  | 
414  | 0  |   Bignum diy_fp_bignum;  | 
415  | 0  |   buffer_bignum.AssignDecimalString(buffer);  | 
416  | 0  |   diy_fp_bignum.AssignUInt64(diy_fp.f());  | 
417  | 0  |   if (exponent >= 0) { | 
418  | 0  |     buffer_bignum.MultiplyByPowerOfTen(exponent);  | 
419  | 0  |   } else { | 
420  | 0  |     diy_fp_bignum.MultiplyByPowerOfTen(-exponent);  | 
421  | 0  |   }  | 
422  | 0  |   if (diy_fp.e() > 0) { | 
423  | 0  |     diy_fp_bignum.ShiftLeft(diy_fp.e());  | 
424  | 0  |   } else { | 
425  | 0  |     buffer_bignum.ShiftLeft(-diy_fp.e());  | 
426  | 0  |   }  | 
427  | 0  |   return Bignum::Compare(buffer_bignum, diy_fp_bignum);  | 
428  | 0  | }  | 
429  |  |  | 
430  |  |  | 
431  |  | // Returns true if the guess is the correct double.  | 
432  |  | // Returns false, when guess is either correct or the next-lower double.  | 
433  |  | static bool ComputeGuess(Vector<const char> trimmed, int exponent,  | 
434  | 0  |                          double* guess) { | 
435  | 0  |   if (trimmed.length() == 0) { | 
436  | 0  |     *guess = 0.0;  | 
437  | 0  |     return true;  | 
438  | 0  |   }  | 
439  | 0  |   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) { | 
440  | 0  |     *guess = Double::Infinity();  | 
441  | 0  |     return true;  | 
442  | 0  |   }  | 
443  | 0  |   if (exponent + trimmed.length() <= kMinDecimalPower) { | 
444  | 0  |     *guess = 0.0;  | 
445  | 0  |     return true;  | 
446  | 0  |   }  | 
447  |  |  | 
448  | 0  |   if (DoubleStrtod(trimmed, exponent, guess) ||  | 
449  | 0  |       DiyFpStrtod(trimmed, exponent, guess)) { | 
450  | 0  |     return true;  | 
451  | 0  |   }  | 
452  | 0  |   if (*guess == Double::Infinity()) { | 
453  | 0  |     return true;  | 
454  | 0  |   }  | 
455  | 0  |   return false;  | 
456  | 0  | }  | 
457  |  |  | 
458  |  | #if U_DEBUG // needed for ICU only in debug mode  | 
459  |  | static bool IsDigit(const char d) { | 
460  |  |   return ('0' <= d) && (d <= '9'); | 
461  |  | }  | 
462  |  |  | 
463  |  | static bool IsNonZeroDigit(const char d) { | 
464  |  |   return ('1' <= d) && (d <= '9'); | 
465  |  | }  | 
466  |  |  | 
467  |  | #ifdef __has_cpp_attribute  | 
468  |  | #if __has_cpp_attribute(maybe_unused)  | 
469  |  | [[maybe_unused]]  | 
470  |  | #endif  | 
471  |  | #endif  | 
472  |  | static bool AssertTrimmedDigits(const Vector<const char>& buffer) { | 
473  |  |   for(int i = 0; i < buffer.length(); ++i) { | 
474  |  |     if(!IsDigit(buffer[i])) { | 
475  |  |       return false;  | 
476  |  |     }  | 
477  |  |   }  | 
478  |  |   return (buffer.length() == 0) || (IsNonZeroDigit(buffer[0]) && IsNonZeroDigit(buffer[buffer.length()-1]));  | 
479  |  | }  | 
480  |  | #endif // needed for ICU only in debug mode  | 
481  |  |  | 
482  | 0  | double StrtodTrimmed(Vector<const char> trimmed, int exponent) { | 
483  | 0  |   DOUBLE_CONVERSION_ASSERT(trimmed.length() <= kMaxSignificantDecimalDigits);  | 
484  | 0  |   DOUBLE_CONVERSION_ASSERT(AssertTrimmedDigits(trimmed));  | 
485  | 0  |   double guess;  | 
486  | 0  |   const bool is_correct = ComputeGuess(trimmed, exponent, &guess);  | 
487  | 0  |   if (is_correct) { | 
488  | 0  |     return guess;  | 
489  | 0  |   }  | 
490  | 0  |   DiyFp upper_boundary = Double(guess).UpperBoundary();  | 
491  | 0  |   int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);  | 
492  | 0  |   if (comparison < 0) { | 
493  | 0  |     return guess;  | 
494  | 0  |   } else if (comparison > 0) { | 
495  | 0  |     return Double(guess).NextDouble();  | 
496  | 0  |   } else if ((Double(guess).Significand() & 1) == 0) { | 
497  |  |     // Round towards even.  | 
498  | 0  |     return guess;  | 
499  | 0  |   } else { | 
500  | 0  |     return Double(guess).NextDouble();  | 
501  | 0  |   }  | 
502  | 0  | }  | 
503  |  |  | 
504  | 0  | double Strtod(Vector<const char> buffer, int exponent) { | 
505  | 0  |   char copy_buffer[kMaxSignificantDecimalDigits];  | 
506  | 0  |   Vector<const char> trimmed;  | 
507  | 0  |   int updated_exponent;  | 
508  | 0  |   TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,  | 
509  | 0  |              &trimmed, &updated_exponent);  | 
510  | 0  |   return StrtodTrimmed(trimmed, updated_exponent);  | 
511  | 0  | }  | 
512  |  |  | 
513  | 0  | static float SanitizedDoubletof(double d) { | 
514  | 0  |   DOUBLE_CONVERSION_ASSERT(d >= 0.0);  | 
515  |  |   // ASAN has a sanitize check that disallows casting doubles to floats if  | 
516  |  |   // they are too big.  | 
517  |  |   // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks  | 
518  |  |   // The behavior should be covered by IEEE 754, but some projects use this  | 
519  |  |   // flag, so work around it.  | 
520  | 0  |   float max_finite = 3.4028234663852885981170418348451692544e+38;  | 
521  |  |   // The half-way point between the max-finite and infinity value.  | 
522  |  |   // Since infinity has an even significand everything equal or greater than  | 
523  |  |   // this value should become infinity.  | 
524  | 0  |   double half_max_finite_infinity =  | 
525  | 0  |       3.40282356779733661637539395458142568448e+38;  | 
526  | 0  |   if (d >= max_finite) { | 
527  | 0  |     if (d >= half_max_finite_infinity) { | 
528  | 0  |       return Single::Infinity();  | 
529  | 0  |     } else { | 
530  | 0  |       return max_finite;  | 
531  | 0  |     }  | 
532  | 0  |   } else { | 
533  | 0  |     return static_cast<float>(d);  | 
534  | 0  |   }  | 
535  | 0  | }  | 
536  |  |  | 
537  | 0  | float Strtof(Vector<const char> buffer, int exponent) { | 
538  | 0  |   char copy_buffer[kMaxSignificantDecimalDigits];  | 
539  | 0  |   Vector<const char> trimmed;  | 
540  | 0  |   int updated_exponent;  | 
541  | 0  |   TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,  | 
542  | 0  |              &trimmed, &updated_exponent);  | 
543  | 0  |   exponent = updated_exponent;  | 
544  | 0  |   return StrtofTrimmed(trimmed, exponent);  | 
545  | 0  | }  | 
546  |  |  | 
547  | 0  | float StrtofTrimmed(Vector<const char> trimmed, int exponent) { | 
548  | 0  |   DOUBLE_CONVERSION_ASSERT(trimmed.length() <= kMaxSignificantDecimalDigits);  | 
549  | 0  |   DOUBLE_CONVERSION_ASSERT(AssertTrimmedDigits(trimmed));  | 
550  |  | 
  | 
551  | 0  |   double double_guess;  | 
552  | 0  |   bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);  | 
553  |  | 
  | 
554  | 0  |   float float_guess = SanitizedDoubletof(double_guess);  | 
555  | 0  |   if (float_guess == double_guess) { | 
556  |  |     // This shortcut triggers for integer values.  | 
557  | 0  |     return float_guess;  | 
558  | 0  |   }  | 
559  |  |  | 
560  |  |   // We must catch double-rounding. Say the double has been rounded up, and is  | 
561  |  |   // now a boundary of a float, and rounds up again. This is why we have to  | 
562  |  |   // look at previous too.  | 
563  |  |   // Example (in decimal numbers):  | 
564  |  |   //    input: 12349  | 
565  |  |   //    high-precision (4 digits): 1235  | 
566  |  |   //    low-precision (3 digits):  | 
567  |  |   //       when read from input: 123  | 
568  |  |   //       when rounded from high precision: 124.  | 
569  |  |   // To do this we simply look at the neighbors of the correct result and see  | 
570  |  |   // if they would round to the same float. If the guess is not correct we have  | 
571  |  |   // to look at four values (since two different doubles could be the correct  | 
572  |  |   // double).  | 
573  |  |  | 
574  | 0  |   double double_next = Double(double_guess).NextDouble();  | 
575  | 0  |   double double_previous = Double(double_guess).PreviousDouble();  | 
576  |  | 
  | 
577  | 0  |   float f1 = SanitizedDoubletof(double_previous);  | 
578  | 0  |   float f2 = float_guess;  | 
579  | 0  |   float f3 = SanitizedDoubletof(double_next);  | 
580  | 0  |   float f4;  | 
581  | 0  |   if (is_correct) { | 
582  | 0  |     f4 = f3;  | 
583  | 0  |   } else { | 
584  | 0  |     double double_next2 = Double(double_next).NextDouble();  | 
585  | 0  |     f4 = SanitizedDoubletof(double_next2);  | 
586  | 0  |   }  | 
587  | 0  |   (void) f2;  // Mark variable as used.  | 
588  | 0  |   DOUBLE_CONVERSION_ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);  | 
589  |  |  | 
590  |  |   // If the guess doesn't lie near a single-precision boundary we can simply  | 
591  |  |   // return its float-value.  | 
592  | 0  |   if (f1 == f4) { | 
593  | 0  |     return float_guess;  | 
594  | 0  |   }  | 
595  |  |  | 
596  | 0  |   DOUBLE_CONVERSION_ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||  | 
597  | 0  |          (f1 == f2 && f2 != f3 && f3 == f4) ||  | 
598  | 0  |          (f1 == f2 && f2 == f3 && f3 != f4));  | 
599  |  |  | 
600  |  |   // guess and next are the two possible candidates (in the same way that  | 
601  |  |   // double_guess was the lower candidate for a double-precision guess).  | 
602  | 0  |   float guess = f1;  | 
603  | 0  |   float next = f4;  | 
604  | 0  |   DiyFp upper_boundary;  | 
605  | 0  |   if (guess == 0.0f) { | 
606  | 0  |     float min_float = 1e-45f;  | 
607  | 0  |     upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();  | 
608  | 0  |   } else { | 
609  | 0  |     upper_boundary = Single(guess).UpperBoundary();  | 
610  | 0  |   }  | 
611  | 0  |   int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);  | 
612  | 0  |   if (comparison < 0) { | 
613  | 0  |     return guess;  | 
614  | 0  |   } else if (comparison > 0) { | 
615  | 0  |     return next;  | 
616  | 0  |   } else if ((Single(guess).Significand() & 1) == 0) { | 
617  |  |     // Round towards even.  | 
618  | 0  |     return guess;  | 
619  | 0  |   } else { | 
620  | 0  |     return next;  | 
621  | 0  |   }  | 
622  | 0  | }  | 
623  |  |  | 
624  |  | }  // namespace double_conversion  | 
625  |  |  | 
626  |  | // ICU PATCH: Close ICU namespace  | 
627  |  | U_NAMESPACE_END  | 
628  |  | #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING  |