/src/icu/source/i18n/fmtable.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | // © 2016 and later: Unicode, Inc. and others.  | 
2  |  | // License & terms of use: http://www.unicode.org/copyright.html  | 
3  |  | /*  | 
4  |  | *******************************************************************************  | 
5  |  | * Copyright (C) 1997-2016, International Business Machines Corporation and  | 
6  |  | * others. All Rights Reserved.  | 
7  |  | *******************************************************************************  | 
8  |  | *  | 
9  |  | * File FMTABLE.CPP  | 
10  |  | *  | 
11  |  | * Modification History:  | 
12  |  | *  | 
13  |  | *   Date        Name        Description  | 
14  |  | *   03/25/97    clhuang     Initial Implementation.  | 
15  |  | ********************************************************************************  | 
16  |  | */  | 
17  |  |  | 
18  |  | #include "unicode/utypes.h"  | 
19  |  |  | 
20  |  | #if !UCONFIG_NO_FORMATTING  | 
21  |  |  | 
22  |  | #include <cstdlib>  | 
23  |  | #include <math.h>  | 
24  |  | #include "unicode/fmtable.h"  | 
25  |  | #include "unicode/ustring.h"  | 
26  |  | #include "unicode/measure.h"  | 
27  |  | #include "unicode/curramt.h"  | 
28  |  | #include "unicode/uformattable.h"  | 
29  |  | #include "charstr.h"  | 
30  |  | #include "cmemory.h"  | 
31  |  | #include "cstring.h"  | 
32  |  | #include "fmtableimp.h"  | 
33  |  | #include "number_decimalquantity.h"  | 
34  |  |  | 
35  |  | // *****************************************************************************  | 
36  |  | // class Formattable  | 
37  |  | // *****************************************************************************  | 
38  |  |  | 
39  |  | U_NAMESPACE_BEGIN  | 
40  |  |  | 
41  |  | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(Formattable)  | 
42  |  |  | 
43  |  | using number::impl::DecimalQuantity;  | 
44  |  |  | 
45  |  |  | 
46  |  | //-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.  | 
47  |  |  | 
48  |  | // NOTE: As of 3.0, there are limitations to the UObject API.  It does  | 
49  |  | // not (yet) support cloning, operator=, nor operator==.  To  | 
50  |  | // work around this, I implement some simple inlines here.  Later  | 
51  |  | // these can be modified or removed.  [alan]  | 
52  |  |  | 
53  |  | // NOTE: These inlines assume that all fObjects are in fact instances  | 
54  |  | // of the Measure class, which is true as of 3.0.  [alan]  | 
55  |  |  | 
56  |  | // Return TRUE if *a == *b.  | 
57  | 0  | static inline UBool objectEquals(const UObject* a, const UObject* b) { | 
58  |  |     // LATER: return *a == *b;  | 
59  | 0  |     return *((const Measure*) a) == *((const Measure*) b);  | 
60  | 0  | }  | 
61  |  |  | 
62  |  | // Return a clone of *a.  | 
63  | 0  | static inline UObject* objectClone(const UObject* a) { | 
64  |  |     // LATER: return a->clone();  | 
65  | 0  |     return ((const Measure*) a)->clone();  | 
66  | 0  | }  | 
67  |  |  | 
68  |  | // Return TRUE if *a is an instance of Measure.  | 
69  | 0  | static inline UBool instanceOfMeasure(const UObject* a) { | 
70  | 0  |     return dynamic_cast<const Measure*>(a) != NULL;  | 
71  | 0  | }  | 
72  |  |  | 
73  |  | /**  | 
74  |  |  * Creates a new Formattable array and copies the values from the specified  | 
75  |  |  * original.  | 
76  |  |  * @param array the original array  | 
77  |  |  * @param count the original array count  | 
78  |  |  * @return the new Formattable array.  | 
79  |  |  */  | 
80  | 0  | static Formattable* createArrayCopy(const Formattable* array, int32_t count) { | 
81  | 0  |     Formattable *result = new Formattable[count];  | 
82  | 0  |     if (result != NULL) { | 
83  | 0  |         for (int32_t i=0; i<count; ++i)  | 
84  | 0  |             result[i] = array[i]; // Don't memcpy!  | 
85  | 0  |     }  | 
86  | 0  |     return result;  | 
87  | 0  | }  | 
88  |  |  | 
89  |  | //-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.  | 
90  |  |  | 
91  |  | /**  | 
92  |  |  * Set 'ec' to 'err' only if 'ec' is not already set to a failing UErrorCode.  | 
93  |  |  */  | 
94  | 0  | static void setError(UErrorCode& ec, UErrorCode err) { | 
95  | 0  |     if (U_SUCCESS(ec)) { | 
96  | 0  |         ec = err;  | 
97  | 0  |     }  | 
98  | 0  | }  | 
99  |  |  | 
100  |  | //  | 
101  |  | //  Common initialization code, shared by constructors.  | 
102  |  | //  Put everything into a known state.  | 
103  |  | //  | 
104  | 0  | void  Formattable::init() { | 
105  | 0  |     fValue.fInt64 = 0;  | 
106  | 0  |     fType = kLong;  | 
107  | 0  |     fDecimalStr = NULL;  | 
108  | 0  |     fDecimalQuantity = NULL;  | 
109  | 0  |     fBogus.setToBogus();   | 
110  | 0  | }  | 
111  |  |  | 
112  |  | // -------------------------------------  | 
113  |  | // default constructor.  | 
114  |  | // Creates a formattable object with a long value 0.  | 
115  |  |  | 
116  | 0  | Formattable::Formattable() { | 
117  | 0  |     init();  | 
118  | 0  | }  | 
119  |  |  | 
120  |  | // -------------------------------------  | 
121  |  | // Creates a formattable object with a Date instance.  | 
122  |  |  | 
123  |  | Formattable::Formattable(UDate date, ISDATE /*isDate*/)  | 
124  | 0  | { | 
125  | 0  |     init();  | 
126  | 0  |     fType = kDate;  | 
127  | 0  |     fValue.fDate = date;  | 
128  | 0  | }  | 
129  |  |  | 
130  |  | // -------------------------------------  | 
131  |  | // Creates a formattable object with a double value.  | 
132  |  |  | 
133  |  | Formattable::Formattable(double value)  | 
134  | 0  | { | 
135  | 0  |     init();  | 
136  | 0  |     fType = kDouble;  | 
137  | 0  |     fValue.fDouble = value;  | 
138  | 0  | }  | 
139  |  |  | 
140  |  | // -------------------------------------  | 
141  |  | // Creates a formattable object with an int32_t value.  | 
142  |  |  | 
143  |  | Formattable::Formattable(int32_t value)  | 
144  | 0  | { | 
145  | 0  |     init();  | 
146  | 0  |     fValue.fInt64 = value;  | 
147  | 0  | }  | 
148  |  |  | 
149  |  | // -------------------------------------  | 
150  |  | // Creates a formattable object with an int64_t value.  | 
151  |  |  | 
152  |  | Formattable::Formattable(int64_t value)  | 
153  | 0  | { | 
154  | 0  |     init();  | 
155  | 0  |     fType = kInt64;  | 
156  | 0  |     fValue.fInt64 = value;  | 
157  | 0  | }  | 
158  |  |  | 
159  |  | // -------------------------------------  | 
160  |  | // Creates a formattable object with a decimal number value from a string.  | 
161  |  |  | 
162  | 0  | Formattable::Formattable(StringPiece number, UErrorCode &status) { | 
163  | 0  |     init();  | 
164  | 0  |     setDecimalNumber(number, status);  | 
165  | 0  | }  | 
166  |  |  | 
167  |  |  | 
168  |  | // -------------------------------------  | 
169  |  | // Creates a formattable object with a UnicodeString instance.  | 
170  |  |  | 
171  |  | Formattable::Formattable(const UnicodeString& stringToCopy)  | 
172  | 0  | { | 
173  | 0  |     init();  | 
174  | 0  |     fType = kString;  | 
175  | 0  |     fValue.fString = new UnicodeString(stringToCopy);  | 
176  | 0  | }  | 
177  |  |  | 
178  |  | // -------------------------------------  | 
179  |  | // Creates a formattable object with a UnicodeString* value.  | 
180  |  | // (adopting semantics)  | 
181  |  |  | 
182  |  | Formattable::Formattable(UnicodeString* stringToAdopt)  | 
183  | 0  | { | 
184  | 0  |     init();  | 
185  | 0  |     fType = kString;  | 
186  | 0  |     fValue.fString = stringToAdopt;  | 
187  | 0  | }  | 
188  |  |  | 
189  |  | Formattable::Formattable(UObject* objectToAdopt)  | 
190  | 0  | { | 
191  | 0  |     init();  | 
192  | 0  |     fType = kObject;  | 
193  | 0  |     fValue.fObject = objectToAdopt;  | 
194  | 0  | }  | 
195  |  |  | 
196  |  | // -------------------------------------  | 
197  |  |  | 
198  |  | Formattable::Formattable(const Formattable* arrayToCopy, int32_t count)  | 
199  | 0  |     :   UObject(), fType(kArray)  | 
200  | 0  | { | 
201  | 0  |     init();  | 
202  | 0  |     fType = kArray;  | 
203  | 0  |     fValue.fArrayAndCount.fArray = createArrayCopy(arrayToCopy, count);  | 
204  | 0  |     fValue.fArrayAndCount.fCount = count;  | 
205  | 0  | }  | 
206  |  |  | 
207  |  | // -------------------------------------  | 
208  |  | // copy constructor  | 
209  |  |  | 
210  |  |  | 
211  |  | Formattable::Formattable(const Formattable &source)  | 
212  | 0  |      :  UObject(*this)  | 
213  | 0  | { | 
214  | 0  |     init();  | 
215  | 0  |     *this = source;  | 
216  | 0  | }  | 
217  |  |  | 
218  |  | // -------------------------------------  | 
219  |  | // assignment operator  | 
220  |  |  | 
221  |  | Formattable&  | 
222  |  | Formattable::operator=(const Formattable& source)  | 
223  | 0  | { | 
224  | 0  |     if (this != &source)  | 
225  | 0  |     { | 
226  |  |         // Disposes the current formattable value/setting.  | 
227  | 0  |         dispose();  | 
228  |  |  | 
229  |  |         // Sets the correct data type for this value.  | 
230  | 0  |         fType = source.fType;  | 
231  | 0  |         switch (fType)  | 
232  | 0  |         { | 
233  | 0  |         case kArray:  | 
234  |  |             // Sets each element in the array one by one and records the array count.  | 
235  | 0  |             fValue.fArrayAndCount.fCount = source.fValue.fArrayAndCount.fCount;  | 
236  | 0  |             fValue.fArrayAndCount.fArray = createArrayCopy(source.fValue.fArrayAndCount.fArray,  | 
237  | 0  |                                                            source.fValue.fArrayAndCount.fCount);  | 
238  | 0  |             break;  | 
239  | 0  |         case kString:  | 
240  |  |             // Sets the string value.  | 
241  | 0  |             fValue.fString = new UnicodeString(*source.fValue.fString);  | 
242  | 0  |             break;  | 
243  | 0  |         case kDouble:  | 
244  |  |             // Sets the double value.  | 
245  | 0  |             fValue.fDouble = source.fValue.fDouble;  | 
246  | 0  |             break;  | 
247  | 0  |         case kLong:  | 
248  | 0  |         case kInt64:  | 
249  |  |             // Sets the long value.  | 
250  | 0  |             fValue.fInt64 = source.fValue.fInt64;  | 
251  | 0  |             break;  | 
252  | 0  |         case kDate:  | 
253  |  |             // Sets the Date value.  | 
254  | 0  |             fValue.fDate = source.fValue.fDate;  | 
255  | 0  |             break;  | 
256  | 0  |         case kObject:  | 
257  | 0  |             fValue.fObject = objectClone(source.fValue.fObject);  | 
258  | 0  |             break;  | 
259  | 0  |         }  | 
260  |  |  | 
261  | 0  |         UErrorCode status = U_ZERO_ERROR;  | 
262  | 0  |         if (source.fDecimalQuantity != NULL) { | 
263  | 0  |           fDecimalQuantity = new DecimalQuantity(*source.fDecimalQuantity);  | 
264  | 0  |         }  | 
265  | 0  |         if (source.fDecimalStr != NULL) { | 
266  | 0  |             fDecimalStr = new CharString(*source.fDecimalStr, status);  | 
267  | 0  |             if (U_FAILURE(status)) { | 
268  | 0  |                 delete fDecimalStr;  | 
269  | 0  |                 fDecimalStr = NULL;  | 
270  | 0  |             }  | 
271  | 0  |         }  | 
272  | 0  |     }  | 
273  | 0  |     return *this;  | 
274  | 0  | }  | 
275  |  |  | 
276  |  | // -------------------------------------  | 
277  |  |  | 
278  |  | bool  | 
279  |  | Formattable::operator==(const Formattable& that) const  | 
280  | 0  | { | 
281  | 0  |     int32_t i;  | 
282  |  | 
  | 
283  | 0  |     if (this == &that) return TRUE;  | 
284  |  |  | 
285  |  |     // Returns FALSE if the data types are different.  | 
286  | 0  |     if (fType != that.fType) return FALSE;  | 
287  |  |  | 
288  |  |     // Compares the actual data values.  | 
289  | 0  |     UBool equal = TRUE;  | 
290  | 0  |     switch (fType) { | 
291  | 0  |     case kDate:  | 
292  | 0  |         equal = (fValue.fDate == that.fValue.fDate);  | 
293  | 0  |         break;  | 
294  | 0  |     case kDouble:  | 
295  | 0  |         equal = (fValue.fDouble == that.fValue.fDouble);  | 
296  | 0  |         break;  | 
297  | 0  |     case kLong:  | 
298  | 0  |     case kInt64:  | 
299  | 0  |         equal = (fValue.fInt64 == that.fValue.fInt64);  | 
300  | 0  |         break;  | 
301  | 0  |     case kString:  | 
302  | 0  |         equal = (*(fValue.fString) == *(that.fValue.fString));  | 
303  | 0  |         break;  | 
304  | 0  |     case kArray:  | 
305  | 0  |         if (fValue.fArrayAndCount.fCount != that.fValue.fArrayAndCount.fCount) { | 
306  | 0  |             equal = FALSE;  | 
307  | 0  |             break;  | 
308  | 0  |         }  | 
309  |  |         // Checks each element for equality.  | 
310  | 0  |         for (i=0; i<fValue.fArrayAndCount.fCount; ++i) { | 
311  | 0  |             if (fValue.fArrayAndCount.fArray[i] != that.fValue.fArrayAndCount.fArray[i]) { | 
312  | 0  |                 equal = FALSE;  | 
313  | 0  |                 break;  | 
314  | 0  |             }  | 
315  | 0  |         }  | 
316  | 0  |         break;  | 
317  | 0  |     case kObject:  | 
318  | 0  |         if (fValue.fObject == NULL || that.fValue.fObject == NULL) { | 
319  | 0  |             equal = FALSE;  | 
320  | 0  |         } else { | 
321  | 0  |             equal = objectEquals(fValue.fObject, that.fValue.fObject);  | 
322  | 0  |         }  | 
323  | 0  |         break;  | 
324  | 0  |     }  | 
325  |  |  | 
326  |  |     // TODO:  compare digit lists if numeric.  | 
327  | 0  |     return equal;  | 
328  | 0  | }  | 
329  |  |  | 
330  |  | // -------------------------------------  | 
331  |  |  | 
332  |  | Formattable::~Formattable()  | 
333  | 0  | { | 
334  | 0  |     dispose();  | 
335  | 0  | }  | 
336  |  |  | 
337  |  | // -------------------------------------  | 
338  |  |  | 
339  |  | void Formattable::dispose()  | 
340  | 0  | { | 
341  |  |     // Deletes the data value if necessary.  | 
342  | 0  |     switch (fType) { | 
343  | 0  |     case kString:  | 
344  | 0  |         delete fValue.fString;  | 
345  | 0  |         break;  | 
346  | 0  |     case kArray:  | 
347  | 0  |         delete[] fValue.fArrayAndCount.fArray;  | 
348  | 0  |         break;  | 
349  | 0  |     case kObject:  | 
350  | 0  |         delete fValue.fObject;  | 
351  | 0  |         break;  | 
352  | 0  |     default:  | 
353  | 0  |         break;  | 
354  | 0  |     }  | 
355  |  |  | 
356  | 0  |     fType = kLong;  | 
357  | 0  |     fValue.fInt64 = 0;  | 
358  |  | 
  | 
359  | 0  |     delete fDecimalStr;  | 
360  | 0  |     fDecimalStr = NULL;  | 
361  |  | 
  | 
362  | 0  |     delete fDecimalQuantity;  | 
363  | 0  |     fDecimalQuantity = NULL;  | 
364  | 0  | }  | 
365  |  |  | 
366  |  | Formattable *  | 
367  | 0  | Formattable::clone() const { | 
368  | 0  |     return new Formattable(*this);  | 
369  | 0  | }  | 
370  |  |  | 
371  |  | // -------------------------------------  | 
372  |  | // Gets the data type of this Formattable object.   | 
373  |  | Formattable::Type  | 
374  |  | Formattable::getType() const  | 
375  | 0  | { | 
376  | 0  |     return fType;  | 
377  | 0  | }  | 
378  |  |  | 
379  |  | UBool  | 
380  | 0  | Formattable::isNumeric() const { | 
381  | 0  |     switch (fType) { | 
382  | 0  |     case kDouble:  | 
383  | 0  |     case kLong:  | 
384  | 0  |     case kInt64:  | 
385  | 0  |         return TRUE;  | 
386  | 0  |     default:  | 
387  | 0  |         return FALSE;  | 
388  | 0  |     }  | 
389  | 0  | }  | 
390  |  |  | 
391  |  | // -------------------------------------  | 
392  |  | int32_t  | 
393  |  | //Formattable::getLong(UErrorCode* status) const  | 
394  |  | Formattable::getLong(UErrorCode& status) const  | 
395  | 0  | { | 
396  | 0  |     if (U_FAILURE(status)) { | 
397  | 0  |         return 0;  | 
398  | 0  |     }  | 
399  |  |           | 
400  | 0  |     switch (fType) { | 
401  | 0  |     case Formattable::kLong:   | 
402  | 0  |         return (int32_t)fValue.fInt64;  | 
403  | 0  |     case Formattable::kInt64:  | 
404  | 0  |         if (fValue.fInt64 > INT32_MAX) { | 
405  | 0  |             status = U_INVALID_FORMAT_ERROR;  | 
406  | 0  |             return INT32_MAX;  | 
407  | 0  |         } else if (fValue.fInt64 < INT32_MIN) { | 
408  | 0  |             status = U_INVALID_FORMAT_ERROR;  | 
409  | 0  |             return INT32_MIN;  | 
410  | 0  |         } else { | 
411  | 0  |             return (int32_t)fValue.fInt64;  | 
412  | 0  |         }  | 
413  | 0  |     case Formattable::kDouble:  | 
414  | 0  |         if (fValue.fDouble > INT32_MAX) { | 
415  | 0  |             status = U_INVALID_FORMAT_ERROR;  | 
416  | 0  |             return INT32_MAX;  | 
417  | 0  |         } else if (fValue.fDouble < INT32_MIN) { | 
418  | 0  |             status = U_INVALID_FORMAT_ERROR;  | 
419  | 0  |             return INT32_MIN;  | 
420  | 0  |         } else { | 
421  | 0  |             return (int32_t)fValue.fDouble; // loses fraction  | 
422  | 0  |         }  | 
423  | 0  |     case Formattable::kObject:  | 
424  | 0  |         if (fValue.fObject == NULL) { | 
425  | 0  |             status = U_MEMORY_ALLOCATION_ERROR;  | 
426  | 0  |             return 0;  | 
427  | 0  |         }  | 
428  |  |         // TODO Later replace this with instanceof call  | 
429  | 0  |         if (instanceOfMeasure(fValue.fObject)) { | 
430  | 0  |             return ((const Measure*) fValue.fObject)->  | 
431  | 0  |                 getNumber().getLong(status);  | 
432  | 0  |         }  | 
433  | 0  |         U_FALLTHROUGH;  | 
434  | 0  |     default:  | 
435  | 0  |         status = U_INVALID_FORMAT_ERROR;  | 
436  | 0  |         return 0;  | 
437  | 0  |     }  | 
438  | 0  | }  | 
439  |  |  | 
440  |  | // -------------------------------------  | 
441  |  | // Maximum int that can be represented exactly in a double.  (53 bits)  | 
442  |  | //    Larger ints may be rounded to a near-by value as not all are representable.  | 
443  |  | // TODO:  move this constant elsewhere, possibly configure it for different  | 
444  |  | //        floating point formats, if any non-standard ones are still in use.  | 
445  |  | static const int64_t U_DOUBLE_MAX_EXACT_INT = 9007199254740992LL;  | 
446  |  |  | 
447  |  | int64_t  | 
448  |  | Formattable::getInt64(UErrorCode& status) const  | 
449  | 0  | { | 
450  | 0  |     if (U_FAILURE(status)) { | 
451  | 0  |         return 0;  | 
452  | 0  |     }  | 
453  |  |           | 
454  | 0  |     switch (fType) { | 
455  | 0  |     case Formattable::kLong:   | 
456  | 0  |     case Formattable::kInt64:   | 
457  | 0  |         return fValue.fInt64;  | 
458  | 0  |     case Formattable::kDouble:  | 
459  | 0  |         if (fValue.fDouble > (double)U_INT64_MAX) { | 
460  | 0  |             status = U_INVALID_FORMAT_ERROR;  | 
461  | 0  |             return U_INT64_MAX;  | 
462  | 0  |         } else if (fValue.fDouble < (double)U_INT64_MIN) { | 
463  | 0  |             status = U_INVALID_FORMAT_ERROR;  | 
464  | 0  |             return U_INT64_MIN;  | 
465  | 0  |         } else if (fabs(fValue.fDouble) > U_DOUBLE_MAX_EXACT_INT && fDecimalQuantity != NULL) { | 
466  | 0  |             if (fDecimalQuantity->fitsInLong(true)) { | 
467  | 0  |                 return fDecimalQuantity->toLong();  | 
468  | 0  |             } else { | 
469  |  |                 // Unexpected  | 
470  | 0  |                 status = U_INVALID_FORMAT_ERROR;  | 
471  | 0  |                 return fDecimalQuantity->isNegative() ? U_INT64_MIN : U_INT64_MAX;  | 
472  | 0  |             }  | 
473  | 0  |         } else { | 
474  | 0  |             return (int64_t)fValue.fDouble;  | 
475  | 0  |         }   | 
476  | 0  |     case Formattable::kObject:  | 
477  | 0  |         if (fValue.fObject == NULL) { | 
478  | 0  |             status = U_MEMORY_ALLOCATION_ERROR;  | 
479  | 0  |             return 0;  | 
480  | 0  |         }  | 
481  | 0  |         if (instanceOfMeasure(fValue.fObject)) { | 
482  | 0  |             return ((const Measure*) fValue.fObject)->  | 
483  | 0  |                 getNumber().getInt64(status);  | 
484  | 0  |         }  | 
485  | 0  |         U_FALLTHROUGH;  | 
486  | 0  |     default:  | 
487  | 0  |         status = U_INVALID_FORMAT_ERROR;  | 
488  | 0  |         return 0;  | 
489  | 0  |     }  | 
490  | 0  | }  | 
491  |  |  | 
492  |  | // -------------------------------------  | 
493  |  | double  | 
494  |  | Formattable::getDouble(UErrorCode& status) const  | 
495  | 0  | { | 
496  | 0  |     if (U_FAILURE(status)) { | 
497  | 0  |         return 0;  | 
498  | 0  |     }  | 
499  |  |           | 
500  | 0  |     switch (fType) { | 
501  | 0  |     case Formattable::kLong:   | 
502  | 0  |     case Formattable::kInt64: // loses precision  | 
503  | 0  |         return (double)fValue.fInt64;  | 
504  | 0  |     case Formattable::kDouble:  | 
505  | 0  |         return fValue.fDouble;  | 
506  | 0  |     case Formattable::kObject:  | 
507  | 0  |         if (fValue.fObject == NULL) { | 
508  | 0  |             status = U_MEMORY_ALLOCATION_ERROR;  | 
509  | 0  |             return 0;  | 
510  | 0  |         }  | 
511  |  |         // TODO Later replace this with instanceof call  | 
512  | 0  |         if (instanceOfMeasure(fValue.fObject)) { | 
513  | 0  |             return ((const Measure*) fValue.fObject)->  | 
514  | 0  |                 getNumber().getDouble(status);  | 
515  | 0  |         }  | 
516  | 0  |         U_FALLTHROUGH;  | 
517  | 0  |     default:  | 
518  | 0  |         status = U_INVALID_FORMAT_ERROR;  | 
519  | 0  |         return 0;  | 
520  | 0  |     }  | 
521  | 0  | }  | 
522  |  |  | 
523  |  | const UObject*  | 
524  | 0  | Formattable::getObject() const { | 
525  | 0  |     return (fType == kObject) ? fValue.fObject : NULL;  | 
526  | 0  | }  | 
527  |  |  | 
528  |  | // -------------------------------------  | 
529  |  | // Sets the value to a double value d.  | 
530  |  |  | 
531  |  | void  | 
532  |  | Formattable::setDouble(double d)  | 
533  | 0  | { | 
534  | 0  |     dispose();  | 
535  | 0  |     fType = kDouble;  | 
536  | 0  |     fValue.fDouble = d;  | 
537  | 0  | }  | 
538  |  |  | 
539  |  | // -------------------------------------  | 
540  |  | // Sets the value to a long value l.  | 
541  |  |  | 
542  |  | void  | 
543  |  | Formattable::setLong(int32_t l)  | 
544  | 0  | { | 
545  | 0  |     dispose();  | 
546  | 0  |     fType = kLong;  | 
547  | 0  |     fValue.fInt64 = l;  | 
548  | 0  | }  | 
549  |  |  | 
550  |  | // -------------------------------------  | 
551  |  | // Sets the value to an int64 value ll.  | 
552  |  |  | 
553  |  | void  | 
554  |  | Formattable::setInt64(int64_t ll)  | 
555  | 0  | { | 
556  | 0  |     dispose();  | 
557  | 0  |     fType = kInt64;  | 
558  | 0  |     fValue.fInt64 = ll;  | 
559  | 0  | }  | 
560  |  |  | 
561  |  | // -------------------------------------  | 
562  |  | // Sets the value to a Date instance d.  | 
563  |  |  | 
564  |  | void  | 
565  |  | Formattable::setDate(UDate d)  | 
566  | 0  | { | 
567  | 0  |     dispose();  | 
568  | 0  |     fType = kDate;  | 
569  | 0  |     fValue.fDate = d;  | 
570  | 0  | }  | 
571  |  |  | 
572  |  | // -------------------------------------  | 
573  |  | // Sets the value to a string value stringToCopy.  | 
574  |  |  | 
575  |  | void  | 
576  |  | Formattable::setString(const UnicodeString& stringToCopy)  | 
577  | 0  | { | 
578  | 0  |     dispose();  | 
579  | 0  |     fType = kString;  | 
580  | 0  |     fValue.fString = new UnicodeString(stringToCopy);  | 
581  | 0  | }  | 
582  |  |  | 
583  |  | // -------------------------------------  | 
584  |  | // Sets the value to an array of Formattable objects.  | 
585  |  |  | 
586  |  | void  | 
587  |  | Formattable::setArray(const Formattable* array, int32_t count)  | 
588  | 0  | { | 
589  | 0  |     dispose();  | 
590  | 0  |     fType = kArray;  | 
591  | 0  |     fValue.fArrayAndCount.fArray = createArrayCopy(array, count);  | 
592  | 0  |     fValue.fArrayAndCount.fCount = count;  | 
593  | 0  | }  | 
594  |  |  | 
595  |  | // -------------------------------------  | 
596  |  | // Adopts the stringToAdopt value.  | 
597  |  |  | 
598  |  | void  | 
599  |  | Formattable::adoptString(UnicodeString* stringToAdopt)  | 
600  | 0  | { | 
601  | 0  |     dispose();  | 
602  | 0  |     fType = kString;  | 
603  | 0  |     fValue.fString = stringToAdopt;  | 
604  | 0  | }  | 
605  |  |  | 
606  |  | // -------------------------------------  | 
607  |  | // Adopts the array value and its count.  | 
608  |  |  | 
609  |  | void  | 
610  |  | Formattable::adoptArray(Formattable* array, int32_t count)  | 
611  | 0  | { | 
612  | 0  |     dispose();  | 
613  | 0  |     fType = kArray;  | 
614  | 0  |     fValue.fArrayAndCount.fArray = array;  | 
615  | 0  |     fValue.fArrayAndCount.fCount = count;  | 
616  | 0  | }  | 
617  |  |  | 
618  |  | void  | 
619  | 0  | Formattable::adoptObject(UObject* objectToAdopt) { | 
620  | 0  |     dispose();  | 
621  | 0  |     fType = kObject;  | 
622  | 0  |     fValue.fObject = objectToAdopt;  | 
623  | 0  | }  | 
624  |  |  | 
625  |  | // -------------------------------------  | 
626  |  | UnicodeString&   | 
627  |  | Formattable::getString(UnicodeString& result, UErrorCode& status) const   | 
628  | 0  | { | 
629  | 0  |     if (fType != kString) { | 
630  | 0  |         setError(status, U_INVALID_FORMAT_ERROR);  | 
631  | 0  |         result.setToBogus();  | 
632  | 0  |     } else { | 
633  | 0  |         if (fValue.fString == NULL) { | 
634  | 0  |             setError(status, U_MEMORY_ALLOCATION_ERROR);  | 
635  | 0  |         } else { | 
636  | 0  |             result = *fValue.fString;  | 
637  | 0  |         }  | 
638  | 0  |     }  | 
639  | 0  |     return result;  | 
640  | 0  | }  | 
641  |  |  | 
642  |  | // -------------------------------------  | 
643  |  | const UnicodeString&   | 
644  |  | Formattable::getString(UErrorCode& status) const   | 
645  | 0  | { | 
646  | 0  |     if (fType != kString) { | 
647  | 0  |         setError(status, U_INVALID_FORMAT_ERROR);  | 
648  | 0  |         return *getBogus();  | 
649  | 0  |     }  | 
650  | 0  |     if (fValue.fString == NULL) { | 
651  | 0  |         setError(status, U_MEMORY_ALLOCATION_ERROR);  | 
652  | 0  |         return *getBogus();  | 
653  | 0  |     }  | 
654  | 0  |     return *fValue.fString;  | 
655  | 0  | }  | 
656  |  |  | 
657  |  | // -------------------------------------  | 
658  |  | UnicodeString&   | 
659  |  | Formattable::getString(UErrorCode& status)   | 
660  | 0  | { | 
661  | 0  |     if (fType != kString) { | 
662  | 0  |         setError(status, U_INVALID_FORMAT_ERROR);  | 
663  | 0  |         return *getBogus();  | 
664  | 0  |     }  | 
665  | 0  |     if (fValue.fString == NULL) { | 
666  | 0  |       setError(status, U_MEMORY_ALLOCATION_ERROR);  | 
667  | 0  |       return *getBogus();  | 
668  | 0  |     }  | 
669  | 0  |     return *fValue.fString;  | 
670  | 0  | }  | 
671  |  |  | 
672  |  | // -------------------------------------  | 
673  |  | const Formattable*   | 
674  |  | Formattable::getArray(int32_t& count, UErrorCode& status) const   | 
675  | 0  | { | 
676  | 0  |     if (fType != kArray) { | 
677  | 0  |         setError(status, U_INVALID_FORMAT_ERROR);  | 
678  | 0  |         count = 0;  | 
679  | 0  |         return NULL;  | 
680  | 0  |     }  | 
681  | 0  |     count = fValue.fArrayAndCount.fCount;   | 
682  | 0  |     return fValue.fArrayAndCount.fArray;  | 
683  | 0  | }  | 
684  |  |  | 
685  |  | // -------------------------------------  | 
686  |  | // Gets the bogus string, ensures mondo bogosity.  | 
687  |  |  | 
688  |  | UnicodeString*  | 
689  |  | Formattable::getBogus() const   | 
690  | 0  | { | 
691  | 0  |     return (UnicodeString*)&fBogus; /* cast away const :-( */  | 
692  | 0  | }  | 
693  |  |  | 
694  |  |  | 
695  |  | // --------------------------------------  | 
696  | 0  | StringPiece Formattable::getDecimalNumber(UErrorCode &status) { | 
697  | 0  |     if (U_FAILURE(status)) { | 
698  | 0  |         return "";  | 
699  | 0  |     }  | 
700  | 0  |     if (fDecimalStr != NULL) { | 
701  | 0  |       return fDecimalStr->toStringPiece();  | 
702  | 0  |     }  | 
703  |  |  | 
704  | 0  |     CharString *decimalStr = internalGetCharString(status);  | 
705  | 0  |     if(decimalStr == NULL) { | 
706  | 0  |       return ""; // getDecimalNumber returns "" for error cases  | 
707  | 0  |     } else { | 
708  | 0  |       return decimalStr->toStringPiece();  | 
709  | 0  |     }  | 
710  | 0  | }  | 
711  |  |  | 
712  | 0  | CharString *Formattable::internalGetCharString(UErrorCode &status) { | 
713  | 0  |     if(fDecimalStr == NULL) { | 
714  | 0  |       if (fDecimalQuantity == NULL) { | 
715  |  |         // No decimal number for the formattable yet.  Which means the value was  | 
716  |  |         // set directly by the user as an int, int64 or double.  If the value came  | 
717  |  |         // from parsing, or from the user setting a decimal number, fDecimalNum  | 
718  |  |         // would already be set.  | 
719  |  |         //  | 
720  | 0  |         LocalPointer<DecimalQuantity> dq(new DecimalQuantity(), status);  | 
721  | 0  |         if (U_FAILURE(status)) { return nullptr; } | 
722  | 0  |         populateDecimalQuantity(*dq, status);  | 
723  | 0  |         if (U_FAILURE(status)) { return nullptr; } | 
724  | 0  |         fDecimalQuantity = dq.orphan();  | 
725  | 0  |       }  | 
726  |  |  | 
727  | 0  |       fDecimalStr = new CharString();  | 
728  | 0  |       if (fDecimalStr == NULL) { | 
729  | 0  |         status = U_MEMORY_ALLOCATION_ERROR;  | 
730  | 0  |         return NULL;  | 
731  | 0  |       }  | 
732  |  |       // Older ICUs called uprv_decNumberToString here, which is not exactly the same as  | 
733  |  |       // DecimalQuantity::toScientificString(). The biggest difference is that uprv_decNumberToString does  | 
734  |  |       // not print scientific notation for magnitudes greater than -5 and smaller than some amount (+5?).  | 
735  | 0  |       if (fDecimalQuantity->isInfinite()) { | 
736  | 0  |         fDecimalStr->append("Infinity", status); | 
737  | 0  |       } else if (fDecimalQuantity->isNaN()) { | 
738  | 0  |         fDecimalStr->append("NaN", status); | 
739  | 0  |       } else if (fDecimalQuantity->isZeroish()) { | 
740  | 0  |         fDecimalStr->append("0", -1, status); | 
741  | 0  |       } else if (fType==kLong || fType==kInt64 || // use toPlainString for integer types  | 
742  | 0  |                   (fDecimalQuantity->getMagnitude() != INT32_MIN && std::abs(fDecimalQuantity->getMagnitude()) < 5)) { | 
743  | 0  |         fDecimalStr->appendInvariantChars(fDecimalQuantity->toPlainString(), status);  | 
744  | 0  |       } else { | 
745  | 0  |         fDecimalStr->appendInvariantChars(fDecimalQuantity->toScientificString(), status);  | 
746  | 0  |       }  | 
747  | 0  |     }  | 
748  | 0  |     return fDecimalStr;  | 
749  | 0  | }  | 
750  |  |  | 
751  |  | void  | 
752  | 0  | Formattable::populateDecimalQuantity(number::impl::DecimalQuantity& output, UErrorCode& status) const { | 
753  | 0  |     if (fDecimalQuantity != nullptr) { | 
754  | 0  |         output = *fDecimalQuantity;  | 
755  | 0  |         return;  | 
756  | 0  |     }  | 
757  |  |  | 
758  | 0  |     switch (fType) { | 
759  | 0  |         case kDouble:  | 
760  | 0  |             output.setToDouble(this->getDouble());  | 
761  | 0  |             output.roundToInfinity();  | 
762  | 0  |             break;  | 
763  | 0  |         case kLong:  | 
764  | 0  |             output.setToInt(this->getLong());  | 
765  | 0  |             break;  | 
766  | 0  |         case kInt64:  | 
767  | 0  |             output.setToLong(this->getInt64());  | 
768  | 0  |             break;  | 
769  | 0  |         default:  | 
770  |  |             // The formattable's value is not a numeric type.  | 
771  | 0  |             status = U_INVALID_STATE_ERROR;  | 
772  | 0  |     }  | 
773  | 0  | }  | 
774  |  |  | 
775  |  | // ---------------------------------------  | 
776  |  | void  | 
777  | 0  | Formattable::adoptDecimalQuantity(DecimalQuantity *dq) { | 
778  | 0  |     if (fDecimalQuantity != NULL) { | 
779  | 0  |         delete fDecimalQuantity;  | 
780  | 0  |     }  | 
781  | 0  |     fDecimalQuantity = dq;  | 
782  | 0  |     if (dq == NULL) { // allow adoptDigitList(NULL) to clear | 
783  | 0  |         return;  | 
784  | 0  |     }  | 
785  |  |  | 
786  |  |     // Set the value into the Union of simple type values.  | 
787  |  |     // Cannot use the set() functions because they would delete the fDecimalNum value.  | 
788  | 0  |     if (fDecimalQuantity->fitsInLong()) { | 
789  | 0  |         fValue.fInt64 = fDecimalQuantity->toLong();  | 
790  | 0  |         if (fValue.fInt64 <= INT32_MAX && fValue.fInt64 >= INT32_MIN) { | 
791  | 0  |             fType = kLong;  | 
792  | 0  |         } else { | 
793  | 0  |             fType = kInt64;  | 
794  | 0  |         }  | 
795  | 0  |     } else { | 
796  | 0  |         fType = kDouble;  | 
797  | 0  |         fValue.fDouble = fDecimalQuantity->toDouble();  | 
798  | 0  |     }  | 
799  | 0  | }  | 
800  |  |  | 
801  |  |  | 
802  |  | // ---------------------------------------  | 
803  |  | void  | 
804  | 0  | Formattable::setDecimalNumber(StringPiece numberString, UErrorCode &status) { | 
805  | 0  |     if (U_FAILURE(status)) { | 
806  | 0  |         return;  | 
807  | 0  |     }  | 
808  | 0  |     dispose();  | 
809  |  | 
  | 
810  | 0  |     auto* dq = new DecimalQuantity();  | 
811  | 0  |     dq->setToDecNumber(numberString, status);  | 
812  | 0  |     adoptDecimalQuantity(dq);  | 
813  |  |  | 
814  |  |     // Note that we do not hang on to the caller's input string.  | 
815  |  |     // If we are asked for the string, we will regenerate one from fDecimalQuantity.  | 
816  | 0  | }  | 
817  |  |  | 
818  |  | #if 0  | 
819  |  | //----------------------------------------------------  | 
820  |  | // console I/O  | 
821  |  | //----------------------------------------------------  | 
822  |  | #ifdef _DEBUG  | 
823  |  |  | 
824  |  | #include <iostream>  | 
825  |  | using namespace std;  | 
826  |  |  | 
827  |  | #include "unicode/datefmt.h"  | 
828  |  | #include "unistrm.h"  | 
829  |  |  | 
830  |  | class FormattableStreamer /* not : public UObject because all methods are static */ { | 
831  |  | public:  | 
832  |  |     static void streamOut(ostream& stream, const Formattable& obj);  | 
833  |  |  | 
834  |  | private:  | 
835  |  |     FormattableStreamer() {} // private - forbid instantiation | 
836  |  | };  | 
837  |  |  | 
838  |  | // This is for debugging purposes only.  This will send a displayable  | 
839  |  | // form of the Formattable object to the output stream.  | 
840  |  |  | 
841  |  | void  | 
842  |  | FormattableStreamer::streamOut(ostream& stream, const Formattable& obj)  | 
843  |  | { | 
844  |  |     static DateFormat *defDateFormat = 0;  | 
845  |  |  | 
846  |  |     UnicodeString buffer;  | 
847  |  |     switch(obj.getType()) { | 
848  |  |         case Formattable::kDate :   | 
849  |  |             // Creates a DateFormat instance for formatting the  | 
850  |  |             // Date instance.  | 
851  |  |             if (defDateFormat == 0) { | 
852  |  |                 defDateFormat = DateFormat::createInstance();  | 
853  |  |             }  | 
854  |  |             defDateFormat->format(obj.getDate(), buffer);  | 
855  |  |             stream << buffer;  | 
856  |  |             break;  | 
857  |  |         case Formattable::kDouble :  | 
858  |  |             // Output the double as is.  | 
859  |  |             stream << obj.getDouble() << 'D';  | 
860  |  |             break;  | 
861  |  |         case Formattable::kLong :  | 
862  |  |             // Output the double as is.  | 
863  |  |             stream << obj.getLong() << 'L';  | 
864  |  |             break;  | 
865  |  |         case Formattable::kString:  | 
866  |  |             // Output the double as is.  Please see UnicodeString console  | 
867  |  |             // I/O routine for more details.  | 
868  |  |             stream << '"' << obj.getString(buffer) << '"';  | 
869  |  |             break;  | 
870  |  |         case Formattable::kArray:  | 
871  |  |             int32_t i, count;  | 
872  |  |             const Formattable* array;  | 
873  |  |             array = obj.getArray(count);  | 
874  |  |             stream << '[';  | 
875  |  |             // Recursively calling the console I/O routine for each element in the array.  | 
876  |  |             for (i=0; i<count; ++i) { | 
877  |  |                 FormattableStreamer::streamOut(stream, array[i]);  | 
878  |  |                 stream << ( (i==(count-1)) ? "" : ", " );  | 
879  |  |             }  | 
880  |  |             stream << ']';  | 
881  |  |             break;  | 
882  |  |         default:  | 
883  |  |             // Not a recognizable Formattable object.  | 
884  |  |             stream << "INVALID_Formattable";  | 
885  |  |     }  | 
886  |  |     stream.flush();  | 
887  |  | }  | 
888  |  | #endif  | 
889  |  |  | 
890  |  | #endif  | 
891  |  |  | 
892  |  | U_NAMESPACE_END  | 
893  |  |  | 
894  |  | /* ---- UFormattable implementation ---- */  | 
895  |  |  | 
896  |  | U_NAMESPACE_USE  | 
897  |  |  | 
898  |  | U_CAPI UFormattable* U_EXPORT2  | 
899  | 0  | ufmt_open(UErrorCode *status) { | 
900  | 0  |   if( U_FAILURE(*status) ) { | 
901  | 0  |     return NULL;  | 
902  | 0  |   }  | 
903  | 0  |   UFormattable *fmt = (new Formattable())->toUFormattable();  | 
904  |  | 
  | 
905  | 0  |   if( fmt == NULL ) { | 
906  | 0  |     *status = U_MEMORY_ALLOCATION_ERROR;  | 
907  | 0  |   }  | 
908  | 0  |   return fmt;  | 
909  | 0  | }  | 
910  |  |  | 
911  |  | U_CAPI void U_EXPORT2  | 
912  | 0  | ufmt_close(UFormattable *fmt) { | 
913  | 0  |   Formattable *obj = Formattable::fromUFormattable(fmt);  | 
914  |  | 
  | 
915  | 0  |   delete obj;  | 
916  | 0  | }  | 
917  |  |  | 
918  |  | U_CAPI UFormattableType U_EXPORT2  | 
919  | 0  | ufmt_getType(const UFormattable *fmt, UErrorCode *status) { | 
920  | 0  |   if(U_FAILURE(*status)) { | 
921  | 0  |     return (UFormattableType)UFMT_COUNT;  | 
922  | 0  |   }  | 
923  | 0  |   const Formattable *obj = Formattable::fromUFormattable(fmt);  | 
924  | 0  |   return (UFormattableType)obj->getType();  | 
925  | 0  | }  | 
926  |  |  | 
927  |  |  | 
928  |  | U_CAPI UBool U_EXPORT2  | 
929  | 0  | ufmt_isNumeric(const UFormattable *fmt) { | 
930  | 0  |   const Formattable *obj = Formattable::fromUFormattable(fmt);  | 
931  | 0  |   return obj->isNumeric();  | 
932  | 0  | }  | 
933  |  |  | 
934  |  | U_CAPI UDate U_EXPORT2  | 
935  | 0  | ufmt_getDate(const UFormattable *fmt, UErrorCode *status) { | 
936  | 0  |   const Formattable *obj = Formattable::fromUFormattable(fmt);  | 
937  |  | 
  | 
938  | 0  |   return obj->getDate(*status);  | 
939  | 0  | }  | 
940  |  |  | 
941  |  | U_CAPI double U_EXPORT2  | 
942  | 0  | ufmt_getDouble(UFormattable *fmt, UErrorCode *status) { | 
943  | 0  |   Formattable *obj = Formattable::fromUFormattable(fmt);  | 
944  |  | 
  | 
945  | 0  |   return obj->getDouble(*status);  | 
946  | 0  | }  | 
947  |  |  | 
948  |  | U_CAPI int32_t U_EXPORT2  | 
949  | 0  | ufmt_getLong(UFormattable *fmt, UErrorCode *status) { | 
950  | 0  |   Formattable *obj = Formattable::fromUFormattable(fmt);  | 
951  |  | 
  | 
952  | 0  |   return obj->getLong(*status);  | 
953  | 0  | }  | 
954  |  |  | 
955  |  |  | 
956  |  | U_CAPI const void *U_EXPORT2  | 
957  | 0  | ufmt_getObject(const UFormattable *fmt, UErrorCode *status) { | 
958  | 0  |   const Formattable *obj = Formattable::fromUFormattable(fmt);  | 
959  |  | 
  | 
960  | 0  |   const void *ret = obj->getObject();  | 
961  | 0  |   if( ret==NULL &&  | 
962  | 0  |       (obj->getType() != Formattable::kObject) &&  | 
963  | 0  |       U_SUCCESS( *status )) { | 
964  | 0  |     *status = U_INVALID_FORMAT_ERROR;  | 
965  | 0  |   }  | 
966  | 0  |   return ret;  | 
967  | 0  | }  | 
968  |  |  | 
969  |  | U_CAPI const UChar* U_EXPORT2  | 
970  | 0  | ufmt_getUChars(UFormattable *fmt, int32_t *len, UErrorCode *status) { | 
971  | 0  |   Formattable *obj = Formattable::fromUFormattable(fmt);  | 
972  |  |  | 
973  |  |   // avoid bogosity by checking the type first.  | 
974  | 0  |   if( obj->getType() != Formattable::kString ) { | 
975  | 0  |     if( U_SUCCESS(*status) ){ | 
976  | 0  |       *status = U_INVALID_FORMAT_ERROR;  | 
977  | 0  |     }  | 
978  | 0  |     return NULL;  | 
979  | 0  |   }  | 
980  |  |  | 
981  |  |   // This should return a valid string  | 
982  | 0  |   UnicodeString &str = obj->getString(*status);  | 
983  | 0  |   if( U_SUCCESS(*status) && len != NULL ) { | 
984  | 0  |     *len = str.length();  | 
985  | 0  |   }  | 
986  | 0  |   return str.getTerminatedBuffer();  | 
987  | 0  | }  | 
988  |  |  | 
989  |  | U_CAPI int32_t U_EXPORT2  | 
990  | 0  | ufmt_getArrayLength(const UFormattable* fmt, UErrorCode *status) { | 
991  | 0  |   const Formattable *obj = Formattable::fromUFormattable(fmt);  | 
992  |  | 
  | 
993  | 0  |   int32_t count;  | 
994  | 0  |   (void)obj->getArray(count, *status);  | 
995  | 0  |   return count;  | 
996  | 0  | }  | 
997  |  |  | 
998  |  | U_CAPI UFormattable * U_EXPORT2  | 
999  | 0  | ufmt_getArrayItemByIndex(UFormattable* fmt, int32_t n, UErrorCode *status) { | 
1000  | 0  |   Formattable *obj = Formattable::fromUFormattable(fmt);  | 
1001  | 0  |   int32_t count;  | 
1002  | 0  |   (void)obj->getArray(count, *status);  | 
1003  | 0  |   if(U_FAILURE(*status)) { | 
1004  | 0  |     return NULL;  | 
1005  | 0  |   } else if(n<0 || n>=count) { | 
1006  | 0  |     setError(*status, U_INDEX_OUTOFBOUNDS_ERROR);  | 
1007  | 0  |     return NULL;  | 
1008  | 0  |   } else { | 
1009  | 0  |     return (*obj)[n].toUFormattable(); // returns non-const Formattable  | 
1010  | 0  |   }  | 
1011  | 0  | }  | 
1012  |  |  | 
1013  |  | U_CAPI const char * U_EXPORT2  | 
1014  | 0  | ufmt_getDecNumChars(UFormattable *fmt, int32_t *len, UErrorCode *status) { | 
1015  | 0  |   if(U_FAILURE(*status)) { | 
1016  | 0  |     return "";  | 
1017  | 0  |   }  | 
1018  | 0  |   Formattable *obj = Formattable::fromUFormattable(fmt);  | 
1019  | 0  |   CharString *charString = obj->internalGetCharString(*status);  | 
1020  | 0  |   if(U_FAILURE(*status)) { | 
1021  | 0  |     return "";  | 
1022  | 0  |   }  | 
1023  | 0  |   if(charString == NULL) { | 
1024  | 0  |     *status = U_MEMORY_ALLOCATION_ERROR;  | 
1025  | 0  |     return "";  | 
1026  | 0  |   } else { | 
1027  | 0  |     if(len!=NULL) { | 
1028  | 0  |       *len = charString->length();  | 
1029  | 0  |     }  | 
1030  | 0  |     return charString->data();  | 
1031  | 0  |   }  | 
1032  | 0  | }  | 
1033  |  |  | 
1034  |  | U_CAPI int64_t U_EXPORT2  | 
1035  | 0  | ufmt_getInt64(UFormattable *fmt, UErrorCode *status) { | 
1036  | 0  |   Formattable *obj = Formattable::fromUFormattable(fmt);  | 
1037  | 0  |   return obj->getInt64(*status);  | 
1038  | 0  | }  | 
1039  |  |  | 
1040  |  | #endif /* #if !UCONFIG_NO_FORMATTING */  | 
1041  |  |  | 
1042  |  | //eof  |