/src/icu/source/i18n/number_decimalquantity.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | // © 2017 and later: Unicode, Inc. and others.  | 
2  |  | // License & terms of use: http://www.unicode.org/copyright.html  | 
3  |  |  | 
4  |  | #include "unicode/utypes.h"  | 
5  |  |  | 
6  |  | #if !UCONFIG_NO_FORMATTING  | 
7  |  |  | 
8  |  | #include <cstdlib>  | 
9  |  | #include <cmath>  | 
10  |  | #include <limits>  | 
11  |  | #include <stdlib.h>  | 
12  |  |  | 
13  |  | #include "unicode/plurrule.h"  | 
14  |  | #include "cmemory.h"  | 
15  |  | #include "number_decnum.h"  | 
16  |  | #include "putilimp.h"  | 
17  |  | #include "number_decimalquantity.h"  | 
18  |  | #include "number_roundingutils.h"  | 
19  |  | #include "double-conversion.h"  | 
20  |  | #include "charstr.h"  | 
21  |  | #include "number_utils.h"  | 
22  |  | #include "uassert.h"  | 
23  |  | #include "util.h"  | 
24  |  |  | 
25  |  | using namespace icu;  | 
26  |  | using namespace icu::number;  | 
27  |  | using namespace icu::number::impl;  | 
28  |  |  | 
29  |  | using icu::double_conversion::DoubleToStringConverter;  | 
30  |  | using icu::double_conversion::StringToDoubleConverter;  | 
31  |  |  | 
32  |  | namespace { | 
33  |  |  | 
34  |  | int8_t NEGATIVE_FLAG = 1;  | 
35  |  | int8_t INFINITY_FLAG = 2;  | 
36  |  | int8_t NAN_FLAG = 4;  | 
37  |  |  | 
38  |  | /** Helper function for safe subtraction (no overflow). */  | 
39  | 0  | inline int32_t safeSubtract(int32_t a, int32_t b) { | 
40  |  |     // Note: In C++, signed integer subtraction is undefined behavior.  | 
41  | 0  |     int32_t diff = static_cast<int32_t>(static_cast<uint32_t>(a) - static_cast<uint32_t>(b));  | 
42  | 0  |     if (b < 0 && diff < a) { return INT32_MAX; } | 
43  | 0  |     if (b > 0 && diff > a) { return INT32_MIN; } | 
44  | 0  |     return diff;  | 
45  | 0  | }  | 
46  |  |  | 
47  |  | static double DOUBLE_MULTIPLIERS[] = { | 
48  |  |         1e0,  | 
49  |  |         1e1,  | 
50  |  |         1e2,  | 
51  |  |         1e3,  | 
52  |  |         1e4,  | 
53  |  |         1e5,  | 
54  |  |         1e6,  | 
55  |  |         1e7,  | 
56  |  |         1e8,  | 
57  |  |         1e9,  | 
58  |  |         1e10,  | 
59  |  |         1e11,  | 
60  |  |         1e12,  | 
61  |  |         1e13,  | 
62  |  |         1e14,  | 
63  |  |         1e15,  | 
64  |  |         1e16,  | 
65  |  |         1e17,  | 
66  |  |         1e18,  | 
67  |  |         1e19,  | 
68  |  |         1e20,  | 
69  |  |         1e21};  | 
70  |  |  | 
71  |  | }  // namespace  | 
72  |  |  | 
73  | 0  | icu::IFixedDecimal::~IFixedDecimal() = default;  | 
74  |  |  | 
75  | 0  | DecimalQuantity::DecimalQuantity() { | 
76  | 0  |     setBcdToZero();  | 
77  | 0  |     flags = 0;  | 
78  | 0  | }  | 
79  |  |  | 
80  | 0  | DecimalQuantity::~DecimalQuantity() { | 
81  | 0  |     if (usingBytes) { | 
82  | 0  |         uprv_free(fBCD.bcdBytes.ptr);  | 
83  | 0  |         fBCD.bcdBytes.ptr = nullptr;  | 
84  | 0  |         usingBytes = false;  | 
85  | 0  |     }  | 
86  | 0  | }  | 
87  |  |  | 
88  | 0  | DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) { | 
89  | 0  |     *this = other;  | 
90  | 0  | }  | 
91  |  |  | 
92  | 0  | DecimalQuantity::DecimalQuantity(DecimalQuantity&& src) U_NOEXCEPT { | 
93  | 0  |     *this = std::move(src);  | 
94  | 0  | }  | 
95  |  |  | 
96  | 0  | DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) { | 
97  | 0  |     if (this == &other) { | 
98  | 0  |         return *this;  | 
99  | 0  |     }  | 
100  | 0  |     copyBcdFrom(other);  | 
101  | 0  |     copyFieldsFrom(other);  | 
102  | 0  |     return *this;  | 
103  | 0  | }  | 
104  |  |  | 
105  | 0  | DecimalQuantity& DecimalQuantity::operator=(DecimalQuantity&& src) U_NOEXCEPT { | 
106  | 0  |     if (this == &src) { | 
107  | 0  |         return *this;  | 
108  | 0  |     }  | 
109  | 0  |     moveBcdFrom(src);  | 
110  | 0  |     copyFieldsFrom(src);  | 
111  | 0  |     return *this;  | 
112  | 0  | }  | 
113  |  |  | 
114  | 0  | void DecimalQuantity::copyFieldsFrom(const DecimalQuantity& other) { | 
115  | 0  |     bogus = other.bogus;  | 
116  | 0  |     lReqPos = other.lReqPos;  | 
117  | 0  |     rReqPos = other.rReqPos;  | 
118  | 0  |     scale = other.scale;  | 
119  | 0  |     precision = other.precision;  | 
120  | 0  |     flags = other.flags;  | 
121  | 0  |     origDouble = other.origDouble;  | 
122  | 0  |     origDelta = other.origDelta;  | 
123  | 0  |     isApproximate = other.isApproximate;  | 
124  | 0  |     exponent = other.exponent;  | 
125  | 0  | }  | 
126  |  |  | 
127  | 0  | void DecimalQuantity::clear() { | 
128  | 0  |     lReqPos = 0;  | 
129  | 0  |     rReqPos = 0;  | 
130  | 0  |     flags = 0;  | 
131  | 0  |     setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data  | 
132  | 0  | }  | 
133  |  |  | 
134  | 0  | void DecimalQuantity::setMinInteger(int32_t minInt) { | 
135  |  |     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.  | 
136  | 0  |     U_ASSERT(minInt >= 0);  | 
137  |  |  | 
138  |  |     // Special behavior: do not set minInt to be less than what is already set.  | 
139  |  |     // This is so significant digits rounding can set the integer length.  | 
140  | 0  |     if (minInt < lReqPos) { | 
141  | 0  |         minInt = lReqPos;  | 
142  | 0  |     }  | 
143  |  |  | 
144  |  |     // Save values into internal state  | 
145  | 0  |     lReqPos = minInt;  | 
146  | 0  | }  | 
147  |  |  | 
148  | 0  | void DecimalQuantity::setMinFraction(int32_t minFrac) { | 
149  |  |     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.  | 
150  | 0  |     U_ASSERT(minFrac >= 0);  | 
151  |  |  | 
152  |  |     // Save values into internal state  | 
153  |  |     // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE  | 
154  | 0  |     rReqPos = -minFrac;  | 
155  | 0  | }  | 
156  |  |  | 
157  | 0  | void DecimalQuantity::applyMaxInteger(int32_t maxInt) { | 
158  |  |     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.  | 
159  | 0  |     U_ASSERT(maxInt >= 0);  | 
160  |  | 
  | 
161  | 0  |     if (precision == 0) { | 
162  | 0  |         return;  | 
163  | 0  |     }  | 
164  |  |  | 
165  | 0  |     if (maxInt <= scale) { | 
166  | 0  |         setBcdToZero();  | 
167  | 0  |         return;  | 
168  | 0  |     }  | 
169  |  |  | 
170  | 0  |     int32_t magnitude = getMagnitude();  | 
171  | 0  |     if (maxInt <= magnitude) { | 
172  | 0  |         popFromLeft(magnitude - maxInt + 1);  | 
173  | 0  |         compact();  | 
174  | 0  |     }  | 
175  | 0  | }  | 
176  |  |  | 
177  | 0  | uint64_t DecimalQuantity::getPositionFingerprint() const { | 
178  | 0  |     uint64_t fingerprint = 0;  | 
179  | 0  |     fingerprint ^= (lReqPos << 16);  | 
180  | 0  |     fingerprint ^= (static_cast<uint64_t>(rReqPos) << 32);  | 
181  | 0  |     return fingerprint;  | 
182  | 0  | }  | 
183  |  |  | 
184  |  | void DecimalQuantity::roundToIncrement(double roundingIncrement, RoundingMode roundingMode,  | 
185  | 0  |                                        UErrorCode& status) { | 
186  |  |     // Do not call this method with an increment having only a 1 or a 5 digit!  | 
187  |  |     // Use a more efficient call to either roundToMagnitude() or roundToNickel().  | 
188  |  |     // Check a few popular rounding increments; a more thorough check is in Java.  | 
189  | 0  |     U_ASSERT(roundingIncrement != 0.01);  | 
190  | 0  |     U_ASSERT(roundingIncrement != 0.05);  | 
191  | 0  |     U_ASSERT(roundingIncrement != 0.1);  | 
192  | 0  |     U_ASSERT(roundingIncrement != 0.5);  | 
193  | 0  |     U_ASSERT(roundingIncrement != 1);  | 
194  | 0  |     U_ASSERT(roundingIncrement != 5);  | 
195  |  | 
  | 
196  | 0  |     DecNum incrementDN;  | 
197  | 0  |     incrementDN.setTo(roundingIncrement, status);  | 
198  | 0  |     if (U_FAILURE(status)) { return; } | 
199  |  |  | 
200  |  |     // Divide this DecimalQuantity by the increment, round, then multiply back.  | 
201  | 0  |     divideBy(incrementDN, status);  | 
202  | 0  |     if (U_FAILURE(status)) { return; } | 
203  | 0  |     roundToMagnitude(0, roundingMode, status);  | 
204  | 0  |     if (U_FAILURE(status)) { return; } | 
205  | 0  |     multiplyBy(incrementDN, status);  | 
206  | 0  |     if (U_FAILURE(status)) { return; } | 
207  | 0  | }  | 
208  |  |  | 
209  | 0  | void DecimalQuantity::multiplyBy(const DecNum& multiplicand, UErrorCode& status) { | 
210  | 0  |     if (isZeroish()) { | 
211  | 0  |         return;  | 
212  | 0  |     }  | 
213  |  |     // Convert to DecNum, multiply, and convert back.  | 
214  | 0  |     DecNum decnum;  | 
215  | 0  |     toDecNum(decnum, status);  | 
216  | 0  |     if (U_FAILURE(status)) { return; } | 
217  | 0  |     decnum.multiplyBy(multiplicand, status);  | 
218  | 0  |     if (U_FAILURE(status)) { return; } | 
219  | 0  |     setToDecNum(decnum, status);  | 
220  | 0  | }  | 
221  |  |  | 
222  | 0  | void DecimalQuantity::divideBy(const DecNum& divisor, UErrorCode& status) { | 
223  | 0  |     if (isZeroish()) { | 
224  | 0  |         return;  | 
225  | 0  |     }  | 
226  |  |     // Convert to DecNum, multiply, and convert back.  | 
227  | 0  |     DecNum decnum;  | 
228  | 0  |     toDecNum(decnum, status);  | 
229  | 0  |     if (U_FAILURE(status)) { return; } | 
230  | 0  |     decnum.divideBy(divisor, status);  | 
231  | 0  |     if (U_FAILURE(status)) { return; } | 
232  | 0  |     setToDecNum(decnum, status);  | 
233  | 0  | }  | 
234  |  |  | 
235  | 0  | void DecimalQuantity::negate() { | 
236  | 0  |     flags ^= NEGATIVE_FLAG;  | 
237  | 0  | }  | 
238  |  |  | 
239  | 0  | int32_t DecimalQuantity::getMagnitude() const { | 
240  | 0  |     U_ASSERT(precision != 0);  | 
241  | 0  |     return scale + precision - 1;  | 
242  | 0  | }  | 
243  |  |  | 
244  | 0  | bool DecimalQuantity::adjustMagnitude(int32_t delta) { | 
245  | 0  |     if (precision != 0) { | 
246  |  |         // i.e., scale += delta; origDelta += delta  | 
247  | 0  |         bool overflow = uprv_add32_overflow(scale, delta, &scale);  | 
248  | 0  |         overflow = uprv_add32_overflow(origDelta, delta, &origDelta) || overflow;  | 
249  |  |         // Make sure that precision + scale won't overflow, either  | 
250  | 0  |         int32_t dummy;  | 
251  | 0  |         overflow = overflow || uprv_add32_overflow(scale, precision, &dummy);  | 
252  | 0  |         return overflow;  | 
253  | 0  |     }  | 
254  | 0  |     return false;  | 
255  | 0  | }  | 
256  |  |  | 
257  | 0  | double DecimalQuantity::getPluralOperand(PluralOperand operand) const { | 
258  |  |     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.  | 
259  |  |     // See the comment at the top of this file explaining the "isApproximate" field.  | 
260  | 0  |     U_ASSERT(!isApproximate);  | 
261  |  | 
  | 
262  | 0  |     switch (operand) { | 
263  | 0  |         case PLURAL_OPERAND_I:  | 
264  |  |             // Invert the negative sign if necessary  | 
265  | 0  |             return static_cast<double>(isNegative() ? -toLong(true) : toLong(true));  | 
266  | 0  |         case PLURAL_OPERAND_F:  | 
267  | 0  |             return static_cast<double>(toFractionLong(true));  | 
268  | 0  |         case PLURAL_OPERAND_T:  | 
269  | 0  |             return static_cast<double>(toFractionLong(false));  | 
270  | 0  |         case PLURAL_OPERAND_V:  | 
271  | 0  |             return fractionCount();  | 
272  | 0  |         case PLURAL_OPERAND_W:  | 
273  | 0  |             return fractionCountWithoutTrailingZeros();  | 
274  | 0  |         case PLURAL_OPERAND_E:  | 
275  | 0  |             return static_cast<double>(getExponent());  | 
276  | 0  |         case PLURAL_OPERAND_C:  | 
277  |  |             // Plural operand `c` is currently an alias for `e`.  | 
278  | 0  |             return static_cast<double>(getExponent());  | 
279  | 0  |         default:  | 
280  | 0  |             return std::abs(toDouble());  | 
281  | 0  |     }  | 
282  | 0  | }  | 
283  |  |  | 
284  | 0  | int32_t DecimalQuantity::getExponent() const { | 
285  | 0  |     return exponent;  | 
286  | 0  | }  | 
287  |  |  | 
288  | 0  | void DecimalQuantity::adjustExponent(int delta) { | 
289  | 0  |     exponent = exponent + delta;  | 
290  | 0  | }  | 
291  |  |  | 
292  | 0  | void DecimalQuantity::resetExponent() { | 
293  | 0  |     adjustMagnitude(exponent);  | 
294  | 0  |     exponent = 0;  | 
295  | 0  | }  | 
296  |  |  | 
297  | 0  | bool DecimalQuantity::hasIntegerValue() const { | 
298  | 0  |     return scale >= 0;  | 
299  | 0  | }  | 
300  |  |  | 
301  | 0  | int32_t DecimalQuantity::getUpperDisplayMagnitude() const { | 
302  |  |     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.  | 
303  |  |     // See the comment in the header file explaining the "isApproximate" field.  | 
304  | 0  |     U_ASSERT(!isApproximate);  | 
305  |  | 
  | 
306  | 0  |     int32_t magnitude = scale + precision;  | 
307  | 0  |     int32_t result = (lReqPos > magnitude) ? lReqPos : magnitude;  | 
308  | 0  |     return result - 1;  | 
309  | 0  | }  | 
310  |  |  | 
311  | 0  | int32_t DecimalQuantity::getLowerDisplayMagnitude() const { | 
312  |  |     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.  | 
313  |  |     // See the comment in the header file explaining the "isApproximate" field.  | 
314  | 0  |     U_ASSERT(!isApproximate);  | 
315  |  | 
  | 
316  | 0  |     int32_t magnitude = scale;  | 
317  | 0  |     int32_t result = (rReqPos < magnitude) ? rReqPos : magnitude;  | 
318  | 0  |     return result;  | 
319  | 0  | }  | 
320  |  |  | 
321  | 0  | int8_t DecimalQuantity::getDigit(int32_t magnitude) const { | 
322  |  |     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.  | 
323  |  |     // See the comment at the top of this file explaining the "isApproximate" field.  | 
324  | 0  |     U_ASSERT(!isApproximate);  | 
325  |  | 
  | 
326  | 0  |     return getDigitPos(magnitude - scale);  | 
327  | 0  | }  | 
328  |  |  | 
329  | 0  | int32_t DecimalQuantity::fractionCount() const { | 
330  | 0  |     int32_t fractionCountWithExponent = -getLowerDisplayMagnitude() - exponent;  | 
331  | 0  |     return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0;  | 
332  | 0  | }  | 
333  |  |  | 
334  | 0  | int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const { | 
335  | 0  |     int32_t fractionCountWithExponent = -scale - exponent;  | 
336  | 0  |     return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0;  // max(-fractionCountWithExponent, 0)  | 
337  | 0  | }  | 
338  |  |  | 
339  | 0  | bool DecimalQuantity::isNegative() const { | 
340  | 0  |     return (flags & NEGATIVE_FLAG) != 0;  | 
341  | 0  | }  | 
342  |  |  | 
343  | 0  | Signum DecimalQuantity::signum() const { | 
344  | 0  |     bool isZero = (isZeroish() && !isInfinite());  | 
345  | 0  |     bool isNeg = isNegative();  | 
346  | 0  |     if (isZero && isNeg) { | 
347  | 0  |         return SIGNUM_NEG_ZERO;  | 
348  | 0  |     } else if (isZero) { | 
349  | 0  |         return SIGNUM_POS_ZERO;  | 
350  | 0  |     } else if (isNeg) { | 
351  | 0  |         return SIGNUM_NEG;  | 
352  | 0  |     } else { | 
353  | 0  |         return SIGNUM_POS;  | 
354  | 0  |     }  | 
355  | 0  | }  | 
356  |  |  | 
357  | 0  | bool DecimalQuantity::isInfinite() const { | 
358  | 0  |     return (flags & INFINITY_FLAG) != 0;  | 
359  | 0  | }  | 
360  |  |  | 
361  | 0  | bool DecimalQuantity::isNaN() const { | 
362  | 0  |     return (flags & NAN_FLAG) != 0;  | 
363  | 0  | }  | 
364  |  |  | 
365  | 0  | bool DecimalQuantity::isZeroish() const { | 
366  | 0  |     return precision == 0;  | 
367  | 0  | }  | 
368  |  |  | 
369  | 0  | DecimalQuantity &DecimalQuantity::setToInt(int32_t n) { | 
370  | 0  |     setBcdToZero();  | 
371  | 0  |     flags = 0;  | 
372  | 0  |     if (n == INT32_MIN) { | 
373  | 0  |         flags |= NEGATIVE_FLAG;  | 
374  |  |         // leave as INT32_MIN; handled below in _setToInt()  | 
375  | 0  |     } else if (n < 0) { | 
376  | 0  |         flags |= NEGATIVE_FLAG;  | 
377  | 0  |         n = -n;  | 
378  | 0  |     }  | 
379  | 0  |     if (n != 0) { | 
380  | 0  |         _setToInt(n);  | 
381  | 0  |         compact();  | 
382  | 0  |     }  | 
383  | 0  |     return *this;  | 
384  | 0  | }  | 
385  |  |  | 
386  | 0  | void DecimalQuantity::_setToInt(int32_t n) { | 
387  | 0  |     if (n == INT32_MIN) { | 
388  | 0  |         readLongToBcd(-static_cast<int64_t>(n));  | 
389  | 0  |     } else { | 
390  | 0  |         readIntToBcd(n);  | 
391  | 0  |     }  | 
392  | 0  | }  | 
393  |  |  | 
394  | 0  | DecimalQuantity &DecimalQuantity::setToLong(int64_t n) { | 
395  | 0  |     setBcdToZero();  | 
396  | 0  |     flags = 0;  | 
397  | 0  |     if (n < 0 && n > INT64_MIN) { | 
398  | 0  |         flags |= NEGATIVE_FLAG;  | 
399  | 0  |         n = -n;  | 
400  | 0  |     }  | 
401  | 0  |     if (n != 0) { | 
402  | 0  |         _setToLong(n);  | 
403  | 0  |         compact();  | 
404  | 0  |     }  | 
405  | 0  |     return *this;  | 
406  | 0  | }  | 
407  |  |  | 
408  | 0  | void DecimalQuantity::_setToLong(int64_t n) { | 
409  | 0  |     if (n == INT64_MIN) { | 
410  | 0  |         DecNum decnum;  | 
411  | 0  |         UErrorCode localStatus = U_ZERO_ERROR;  | 
412  | 0  |         decnum.setTo("9.223372036854775808E+18", localStatus); | 
413  | 0  |         if (U_FAILURE(localStatus)) { return; } // unexpected | 
414  | 0  |         flags |= NEGATIVE_FLAG;  | 
415  | 0  |         readDecNumberToBcd(decnum);  | 
416  | 0  |     } else if (n <= INT32_MAX) { | 
417  | 0  |         readIntToBcd(static_cast<int32_t>(n));  | 
418  | 0  |     } else { | 
419  | 0  |         readLongToBcd(n);  | 
420  | 0  |     }  | 
421  | 0  | }  | 
422  |  |  | 
423  | 0  | DecimalQuantity &DecimalQuantity::setToDouble(double n) { | 
424  | 0  |     setBcdToZero();  | 
425  | 0  |     flags = 0;  | 
426  |  |     // signbit() from <math.h> handles +0.0 vs -0.0  | 
427  | 0  |     if (std::signbit(n)) { | 
428  | 0  |         flags |= NEGATIVE_FLAG;  | 
429  | 0  |         n = -n;  | 
430  | 0  |     }  | 
431  | 0  |     if (std::isnan(n) != 0) { | 
432  | 0  |         flags |= NAN_FLAG;  | 
433  | 0  |     } else if (std::isfinite(n) == 0) { | 
434  | 0  |         flags |= INFINITY_FLAG;  | 
435  | 0  |     } else if (n != 0) { | 
436  | 0  |         _setToDoubleFast(n);  | 
437  | 0  |         compact();  | 
438  | 0  |     }  | 
439  | 0  |     return *this;  | 
440  | 0  | }  | 
441  |  |  | 
442  | 0  | void DecimalQuantity::_setToDoubleFast(double n) { | 
443  | 0  |     isApproximate = true;  | 
444  | 0  |     origDouble = n;  | 
445  | 0  |     origDelta = 0;  | 
446  |  |  | 
447  |  |     // Make sure the double is an IEEE 754 double.  If not, fall back to the slow path right now.  | 
448  |  |     // TODO: Make a fast path for other types of doubles.  | 
449  | 0  |     if (!std::numeric_limits<double>::is_iec559) { | 
450  | 0  |         convertToAccurateDouble();  | 
451  | 0  |         return;  | 
452  | 0  |     }  | 
453  |  |  | 
454  |  |     // To get the bits from the double, use memcpy, which takes care of endianness.  | 
455  | 0  |     uint64_t ieeeBits;  | 
456  | 0  |     uprv_memcpy(&ieeeBits, &n, sizeof(n));  | 
457  | 0  |     int32_t exponent = static_cast<int32_t>((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff;  | 
458  |  |  | 
459  |  |     // Not all integers can be represented exactly for exponent > 52  | 
460  | 0  |     if (exponent <= 52 && static_cast<int64_t>(n) == n) { | 
461  | 0  |         _setToLong(static_cast<int64_t>(n));  | 
462  | 0  |         return;  | 
463  | 0  |     }  | 
464  |  |  | 
465  | 0  |     if (exponent == -1023 || exponent == 1024) { | 
466  |  |         // The extreme values of exponent are special; use slow path.  | 
467  | 0  |         convertToAccurateDouble();  | 
468  | 0  |         return;  | 
469  | 0  |     }  | 
470  |  |  | 
471  |  |     // 3.3219... is log2(10)  | 
472  | 0  |     auto fracLength = static_cast<int32_t> ((52 - exponent) / 3.32192809488736234787031942948939017586);  | 
473  | 0  |     if (fracLength >= 0) { | 
474  | 0  |         int32_t i = fracLength;  | 
475  |  |         // 1e22 is the largest exact double.  | 
476  | 0  |         for (; i >= 22; i -= 22) n *= 1e22;  | 
477  | 0  |         n *= DOUBLE_MULTIPLIERS[i];  | 
478  | 0  |     } else { | 
479  | 0  |         int32_t i = fracLength;  | 
480  |  |         // 1e22 is the largest exact double.  | 
481  | 0  |         for (; i <= -22; i += 22) n /= 1e22;  | 
482  | 0  |         n /= DOUBLE_MULTIPLIERS[-i];  | 
483  | 0  |     }  | 
484  | 0  |     auto result = static_cast<int64_t>(uprv_round(n));  | 
485  | 0  |     if (result != 0) { | 
486  | 0  |         _setToLong(result);  | 
487  | 0  |         scale -= fracLength;  | 
488  | 0  |     }  | 
489  | 0  | }  | 
490  |  |  | 
491  | 0  | void DecimalQuantity::convertToAccurateDouble() { | 
492  | 0  |     U_ASSERT(origDouble != 0);  | 
493  | 0  |     int32_t delta = origDelta;  | 
494  |  |  | 
495  |  |     // Call the slow oracle function (Double.toString in Java, DoubleToAscii in C++).  | 
496  | 0  |     char buffer[DoubleToStringConverter::kBase10MaximalLength + 1];  | 
497  | 0  |     bool sign; // unused; always positive  | 
498  | 0  |     int32_t length;  | 
499  | 0  |     int32_t point;  | 
500  | 0  |     DoubleToStringConverter::DoubleToAscii(  | 
501  | 0  |         origDouble,  | 
502  | 0  |         DoubleToStringConverter::DtoaMode::SHORTEST,  | 
503  | 0  |         0,  | 
504  | 0  |         buffer,  | 
505  | 0  |         sizeof(buffer),  | 
506  | 0  |         &sign,  | 
507  | 0  |         &length,  | 
508  | 0  |         &point  | 
509  | 0  |     );  | 
510  |  | 
  | 
511  | 0  |     setBcdToZero();  | 
512  | 0  |     readDoubleConversionToBcd(buffer, length, point);  | 
513  | 0  |     scale += delta;  | 
514  | 0  |     explicitExactDouble = true;  | 
515  | 0  | }  | 
516  |  |  | 
517  | 0  | DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n, UErrorCode& status) { | 
518  | 0  |     setBcdToZero();  | 
519  | 0  |     flags = 0;  | 
520  |  |  | 
521  |  |     // Compute the decNumber representation  | 
522  | 0  |     DecNum decnum;  | 
523  | 0  |     decnum.setTo(n, status);  | 
524  |  | 
  | 
525  | 0  |     _setToDecNum(decnum, status);  | 
526  | 0  |     return *this;  | 
527  | 0  | }  | 
528  |  |  | 
529  | 0  | DecimalQuantity& DecimalQuantity::setToDecNum(const DecNum& decnum, UErrorCode& status) { | 
530  | 0  |     setBcdToZero();  | 
531  | 0  |     flags = 0;  | 
532  |  | 
  | 
533  | 0  |     _setToDecNum(decnum, status);  | 
534  | 0  |     return *this;  | 
535  | 0  | }  | 
536  |  |  | 
537  | 0  | void DecimalQuantity::_setToDecNum(const DecNum& decnum, UErrorCode& status) { | 
538  | 0  |     if (U_FAILURE(status)) { return; } | 
539  | 0  |     if (decnum.isNegative()) { | 
540  | 0  |         flags |= NEGATIVE_FLAG;  | 
541  | 0  |     }  | 
542  | 0  |     if (!decnum.isZero()) { | 
543  | 0  |         readDecNumberToBcd(decnum);  | 
544  | 0  |         compact();  | 
545  | 0  |     }  | 
546  | 0  | }  | 
547  |  |  | 
548  | 0  | int64_t DecimalQuantity::toLong(bool truncateIfOverflow) const { | 
549  |  |     // NOTE: Call sites should be guarded by fitsInLong(), like this:  | 
550  |  |     // if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ } | 
551  |  |     // Fallback behavior upon truncateIfOverflow is to truncate at 17 digits.  | 
552  | 0  |     uint64_t result = 0L;  | 
553  | 0  |     int32_t upperMagnitude = exponent + scale + precision - 1;  | 
554  | 0  |     if (truncateIfOverflow) { | 
555  | 0  |         upperMagnitude = std::min(upperMagnitude, 17);  | 
556  | 0  |     }  | 
557  | 0  |     for (int32_t magnitude = upperMagnitude; magnitude >= 0; magnitude--) { | 
558  | 0  |         result = result * 10 + getDigitPos(magnitude - scale - exponent);  | 
559  | 0  |     }  | 
560  | 0  |     if (isNegative()) { | 
561  | 0  |         return static_cast<int64_t>(0LL - result); // i.e., -result  | 
562  | 0  |     }  | 
563  | 0  |     return static_cast<int64_t>(result);  | 
564  | 0  | }  | 
565  |  |  | 
566  | 0  | uint64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const { | 
567  | 0  |     uint64_t result = 0L;  | 
568  | 0  |     int32_t magnitude = -1 - exponent;  | 
569  | 0  |     int32_t lowerMagnitude = scale;  | 
570  | 0  |     if (includeTrailingZeros) { | 
571  | 0  |         lowerMagnitude = std::min(lowerMagnitude, rReqPos);  | 
572  | 0  |     }  | 
573  | 0  |     for (; magnitude >= lowerMagnitude && result <= 1e18L; magnitude--) { | 
574  | 0  |         result = result * 10 + getDigitPos(magnitude - scale);  | 
575  | 0  |     }  | 
576  |  |     // Remove trailing zeros; this can happen during integer overflow cases.  | 
577  | 0  |     if (!includeTrailingZeros) { | 
578  | 0  |         while (result > 0 && (result % 10) == 0) { | 
579  | 0  |             result /= 10;  | 
580  | 0  |         }  | 
581  | 0  |     }  | 
582  | 0  |     return result;  | 
583  | 0  | }  | 
584  |  |  | 
585  | 0  | bool DecimalQuantity::fitsInLong(bool ignoreFraction) const { | 
586  | 0  |     if (isInfinite() || isNaN()) { | 
587  | 0  |         return false;  | 
588  | 0  |     }  | 
589  | 0  |     if (isZeroish()) { | 
590  | 0  |         return true;  | 
591  | 0  |     }  | 
592  | 0  |     if (exponent + scale < 0 && !ignoreFraction) { | 
593  | 0  |         return false;  | 
594  | 0  |     }  | 
595  | 0  |     int magnitude = getMagnitude();  | 
596  | 0  |     if (magnitude < 18) { | 
597  | 0  |         return true;  | 
598  | 0  |     }  | 
599  | 0  |     if (magnitude > 18) { | 
600  | 0  |         return false;  | 
601  | 0  |     }  | 
602  |  |     // Hard case: the magnitude is 10^18.  | 
603  |  |     // The largest int64 is: 9,223,372,036,854,775,807  | 
604  | 0  |     for (int p = 0; p < precision; p++) { | 
605  | 0  |         int8_t digit = getDigit(18 - p);  | 
606  | 0  |         static int8_t INT64_BCD[] = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 }; | 
607  | 0  |         if (digit < INT64_BCD[p]) { | 
608  | 0  |             return true;  | 
609  | 0  |         } else if (digit > INT64_BCD[p]) { | 
610  | 0  |             return false;  | 
611  | 0  |         }  | 
612  | 0  |     }  | 
613  |  |     // Exactly equal to max long plus one.  | 
614  | 0  |     return isNegative();  | 
615  | 0  | }  | 
616  |  |  | 
617  | 0  | double DecimalQuantity::toDouble() const { | 
618  |  |     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.  | 
619  |  |     // See the comment in the header file explaining the "isApproximate" field.  | 
620  | 0  |     U_ASSERT(!isApproximate);  | 
621  |  | 
  | 
622  | 0  |     if (isNaN()) { | 
623  | 0  |         return NAN;  | 
624  | 0  |     } else if (isInfinite()) { | 
625  | 0  |         return isNegative() ? -INFINITY : INFINITY;  | 
626  | 0  |     }  | 
627  |  |  | 
628  |  |     // We are processing well-formed input, so we don't need any special options to StringToDoubleConverter.  | 
629  | 0  |     StringToDoubleConverter converter(0, 0, 0, "", "");  | 
630  | 0  |     UnicodeString numberString = this->toScientificString();  | 
631  | 0  |     int32_t count;  | 
632  | 0  |     return converter.StringToDouble(  | 
633  | 0  |             reinterpret_cast<const uint16_t*>(numberString.getBuffer()),  | 
634  | 0  |             numberString.length(),  | 
635  | 0  |             &count);  | 
636  | 0  | }  | 
637  |  |  | 
638  | 0  | DecNum& DecimalQuantity::toDecNum(DecNum& output, UErrorCode& status) const { | 
639  |  |     // Special handling for zero  | 
640  | 0  |     if (precision == 0) { | 
641  | 0  |         output.setTo("0", status); | 
642  | 0  |         return output;  | 
643  | 0  |     }  | 
644  |  |  | 
645  |  |     // Use the BCD constructor. We need to do a little bit of work to convert, though.  | 
646  |  |     // The decNumber constructor expects most-significant first, but we store least-significant first.  | 
647  | 0  |     MaybeStackArray<uint8_t, 20> ubcd(precision, status);  | 
648  | 0  |     if (U_FAILURE(status)) { | 
649  | 0  |         return output;  | 
650  | 0  |     }  | 
651  | 0  |     for (int32_t m = 0; m < precision; m++) { | 
652  | 0  |         ubcd[precision - m - 1] = static_cast<uint8_t>(getDigitPos(m));  | 
653  | 0  |     }  | 
654  | 0  |     output.setTo(ubcd.getAlias(), precision, scale, isNegative(), status);  | 
655  | 0  |     return output;  | 
656  | 0  | }  | 
657  |  |  | 
658  | 0  | void DecimalQuantity::truncate() { | 
659  | 0  |     if (scale < 0) { | 
660  | 0  |         shiftRight(-scale);  | 
661  | 0  |         scale = 0;  | 
662  | 0  |         compact();  | 
663  | 0  |     }  | 
664  | 0  | }  | 
665  |  |  | 
666  | 0  | void DecimalQuantity::roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) { | 
667  | 0  |     roundToMagnitude(magnitude, roundingMode, true, status);  | 
668  | 0  | }  | 
669  |  |  | 
670  | 0  | void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) { | 
671  | 0  |     roundToMagnitude(magnitude, roundingMode, false, status);  | 
672  | 0  | }  | 
673  |  |  | 
674  | 0  | void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status) { | 
675  |  |     // The position in the BCD at which rounding will be performed; digits to the right of position  | 
676  |  |     // will be rounded away.  | 
677  | 0  |     int position = safeSubtract(magnitude, scale);  | 
678  |  |  | 
679  |  |     // "trailing" = least significant digit to the left of rounding  | 
680  | 0  |     int8_t trailingDigit = getDigitPos(position);  | 
681  |  | 
  | 
682  | 0  |     if (position <= 0 && !isApproximate && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { | 
683  |  |         // All digits are to the left of the rounding magnitude.  | 
684  | 0  |     } else if (precision == 0) { | 
685  |  |         // No rounding for zero.  | 
686  | 0  |     } else { | 
687  |  |         // Perform rounding logic.  | 
688  |  |         // "leading" = most significant digit to the right of rounding  | 
689  | 0  |         int8_t leadingDigit = getDigitPos(safeSubtract(position, 1));  | 
690  |  |  | 
691  |  |         // Compute which section of the number we are in.  | 
692  |  |         // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles)  | 
693  |  |         // LOWER means we are between the bottom edge and the midpoint, like 1.391  | 
694  |  |         // MIDPOINT means we are exactly in the middle, like 1.500  | 
695  |  |         // UPPER means we are between the midpoint and the top edge, like 1.916  | 
696  | 0  |         roundingutils::Section section;  | 
697  | 0  |         if (!isApproximate) { | 
698  | 0  |             if (nickel && trailingDigit != 2 && trailingDigit != 7) { | 
699  |  |                 // Nickel rounding, and not at .02x or .07x  | 
700  | 0  |                 if (trailingDigit < 2) { | 
701  |  |                     // .00, .01 => down to .00  | 
702  | 0  |                     section = roundingutils::SECTION_LOWER;  | 
703  | 0  |                 } else if (trailingDigit < 5) { | 
704  |  |                     // .03, .04 => up to .05  | 
705  | 0  |                     section = roundingutils::SECTION_UPPER;  | 
706  | 0  |                 } else if (trailingDigit < 7) { | 
707  |  |                     // .05, .06 => down to .05  | 
708  | 0  |                     section = roundingutils::SECTION_LOWER;  | 
709  | 0  |                 } else { | 
710  |  |                     // .08, .09 => up to .10  | 
711  | 0  |                     section = roundingutils::SECTION_UPPER;  | 
712  | 0  |                 }  | 
713  | 0  |             } else if (leadingDigit < 5) { | 
714  |  |                 // Includes nickel rounding .020-.024 and .070-.074  | 
715  | 0  |                 section = roundingutils::SECTION_LOWER;  | 
716  | 0  |             } else if (leadingDigit > 5) { | 
717  |  |                 // Includes nickel rounding .026-.029 and .076-.079  | 
718  | 0  |                 section = roundingutils::SECTION_UPPER;  | 
719  | 0  |             } else { | 
720  |  |                 // Includes nickel rounding .025 and .075  | 
721  | 0  |                 section = roundingutils::SECTION_MIDPOINT;  | 
722  | 0  |                 for (int p = safeSubtract(position, 2); p >= 0; p--) { | 
723  | 0  |                     if (getDigitPos(p) != 0) { | 
724  | 0  |                         section = roundingutils::SECTION_UPPER;  | 
725  | 0  |                         break;  | 
726  | 0  |                     }  | 
727  | 0  |                 }  | 
728  | 0  |             }  | 
729  | 0  |         } else { | 
730  | 0  |             int32_t p = safeSubtract(position, 2);  | 
731  | 0  |             int32_t minP = uprv_max(0, precision - 14);  | 
732  | 0  |             if (leadingDigit == 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { | 
733  | 0  |                 section = roundingutils::SECTION_LOWER_EDGE;  | 
734  | 0  |                 for (; p >= minP; p--) { | 
735  | 0  |                     if (getDigitPos(p) != 0) { | 
736  | 0  |                         section = roundingutils::SECTION_LOWER;  | 
737  | 0  |                         break;  | 
738  | 0  |                     }  | 
739  | 0  |                 }  | 
740  | 0  |             } else if (leadingDigit == 4 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) { | 
741  | 0  |                 section = roundingutils::SECTION_MIDPOINT;  | 
742  | 0  |                 for (; p >= minP; p--) { | 
743  | 0  |                     if (getDigitPos(p) != 9) { | 
744  | 0  |                         section = roundingutils::SECTION_LOWER;  | 
745  | 0  |                         break;  | 
746  | 0  |                     }  | 
747  | 0  |                 }  | 
748  | 0  |             } else if (leadingDigit == 5 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) { | 
749  | 0  |                 section = roundingutils::SECTION_MIDPOINT;  | 
750  | 0  |                 for (; p >= minP; p--) { | 
751  | 0  |                     if (getDigitPos(p) != 0) { | 
752  | 0  |                         section = roundingutils::SECTION_UPPER;  | 
753  | 0  |                         break;  | 
754  | 0  |                     }  | 
755  | 0  |                 }  | 
756  | 0  |             } else if (leadingDigit == 9 && (!nickel || trailingDigit == 4 || trailingDigit == 9)) { | 
757  | 0  |                 section = roundingutils::SECTION_UPPER_EDGE;  | 
758  | 0  |                 for (; p >= minP; p--) { | 
759  | 0  |                     if (getDigitPos(p) != 9) { | 
760  | 0  |                         section = roundingutils::SECTION_UPPER;  | 
761  | 0  |                         break;  | 
762  | 0  |                     }  | 
763  | 0  |                 }  | 
764  | 0  |             } else if (nickel && trailingDigit != 2 && trailingDigit != 7) { | 
765  |  |                 // Nickel rounding, and not at .02x or .07x  | 
766  | 0  |                 if (trailingDigit < 2) { | 
767  |  |                     // .00, .01 => down to .00  | 
768  | 0  |                     section = roundingutils::SECTION_LOWER;  | 
769  | 0  |                 } else if (trailingDigit < 5) { | 
770  |  |                     // .03, .04 => up to .05  | 
771  | 0  |                     section = roundingutils::SECTION_UPPER;  | 
772  | 0  |                 } else if (trailingDigit < 7) { | 
773  |  |                     // .05, .06 => down to .05  | 
774  | 0  |                     section = roundingutils::SECTION_LOWER;  | 
775  | 0  |                 } else { | 
776  |  |                     // .08, .09 => up to .10  | 
777  | 0  |                     section = roundingutils::SECTION_UPPER;  | 
778  | 0  |                 }  | 
779  | 0  |             } else if (leadingDigit < 5) { | 
780  |  |                 // Includes nickel rounding .020-.024 and .070-.074  | 
781  | 0  |                 section = roundingutils::SECTION_LOWER;  | 
782  | 0  |             } else { | 
783  |  |                 // Includes nickel rounding .026-.029 and .076-.079  | 
784  | 0  |                 section = roundingutils::SECTION_UPPER;  | 
785  | 0  |             }  | 
786  |  | 
  | 
787  | 0  |             bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode);  | 
788  | 0  |             if (safeSubtract(position, 1) < precision - 14 ||  | 
789  | 0  |                 (roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) ||  | 
790  | 0  |                 (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) { | 
791  |  |                 // Oops! This means that we have to get the exact representation of the double,  | 
792  |  |                 // because the zone of uncertainty is along the rounding boundary.  | 
793  | 0  |                 convertToAccurateDouble();  | 
794  | 0  |                 roundToMagnitude(magnitude, roundingMode, nickel, status); // start over  | 
795  | 0  |                 return;  | 
796  | 0  |             }  | 
797  |  |  | 
798  |  |             // Turn off the approximate double flag, since the value is now confirmed to be exact.  | 
799  | 0  |             isApproximate = false;  | 
800  | 0  |             origDouble = 0.0;  | 
801  | 0  |             origDelta = 0;  | 
802  |  | 
  | 
803  | 0  |             if (position <= 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { | 
804  |  |                 // All digits are to the left of the rounding magnitude.  | 
805  | 0  |                 return;  | 
806  | 0  |             }  | 
807  |  |  | 
808  |  |             // Good to continue rounding.  | 
809  | 0  |             if (section == -1) { section = roundingutils::SECTION_LOWER; } | 
810  | 0  |             if (section == -2) { section = roundingutils::SECTION_UPPER; } | 
811  | 0  |         }  | 
812  |  |  | 
813  |  |         // Nickel rounding "half even" goes to the nearest whole (away from the 5).  | 
814  | 0  |         bool isEven = nickel  | 
815  | 0  |                 ? (trailingDigit < 2 || trailingDigit > 7  | 
816  | 0  |                         || (trailingDigit == 2 && section != roundingutils::SECTION_UPPER)  | 
817  | 0  |                         || (trailingDigit == 7 && section == roundingutils::SECTION_UPPER))  | 
818  | 0  |                 : (trailingDigit % 2) == 0;  | 
819  |  | 
  | 
820  | 0  |         bool roundDown = roundingutils::getRoundingDirection(isEven,  | 
821  | 0  |                 isNegative(),  | 
822  | 0  |                 section,  | 
823  | 0  |                 roundingMode,  | 
824  | 0  |                 status);  | 
825  | 0  |         if (U_FAILURE(status)) { | 
826  | 0  |             return;  | 
827  | 0  |         }  | 
828  |  |  | 
829  |  |         // Perform truncation  | 
830  | 0  |         if (position >= precision) { | 
831  | 0  |             setBcdToZero();  | 
832  | 0  |             scale = magnitude;  | 
833  | 0  |         } else { | 
834  | 0  |             shiftRight(position);  | 
835  | 0  |         }  | 
836  |  | 
  | 
837  | 0  |         if (nickel) { | 
838  | 0  |             if (trailingDigit < 5 && roundDown) { | 
839  | 0  |                 setDigitPos(0, 0);  | 
840  | 0  |                 compact();  | 
841  | 0  |                 return;  | 
842  | 0  |             } else if (trailingDigit >= 5 && !roundDown) { | 
843  | 0  |                 setDigitPos(0, 9);  | 
844  | 0  |                 trailingDigit = 9;  | 
845  |  |                 // do not return: use the bubbling logic below  | 
846  | 0  |             } else { | 
847  | 0  |                 setDigitPos(0, 5);  | 
848  |  |                 // compact not necessary: digit at position 0 is nonzero  | 
849  | 0  |                 return;  | 
850  | 0  |             }  | 
851  | 0  |         }  | 
852  |  |  | 
853  |  |         // Bubble the result to the higher digits  | 
854  | 0  |         if (!roundDown) { | 
855  | 0  |             if (trailingDigit == 9) { | 
856  | 0  |                 int bubblePos = 0;  | 
857  |  |                 // Note: in the long implementation, the most digits BCD can have at this point is  | 
858  |  |                 // 15, so bubblePos <= 15 and getDigitPos(bubblePos) is safe.  | 
859  | 0  |                 for (; getDigitPos(bubblePos) == 9; bubblePos++) {} | 
860  | 0  |                 shiftRight(bubblePos); // shift off the trailing 9s  | 
861  | 0  |             }  | 
862  | 0  |             int8_t digit0 = getDigitPos(0);  | 
863  | 0  |             U_ASSERT(digit0 != 9);  | 
864  | 0  |             setDigitPos(0, static_cast<int8_t>(digit0 + 1));  | 
865  | 0  |             precision += 1; // in case an extra digit got added  | 
866  | 0  |         }  | 
867  |  | 
  | 
868  | 0  |         compact();  | 
869  | 0  |     }  | 
870  | 0  | }  | 
871  |  |  | 
872  | 0  | void DecimalQuantity::roundToInfinity() { | 
873  | 0  |     if (isApproximate) { | 
874  | 0  |         convertToAccurateDouble();  | 
875  | 0  |     }  | 
876  | 0  | }  | 
877  |  |  | 
878  | 0  | void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) { | 
879  | 0  |     U_ASSERT(leadingZeros >= 0);  | 
880  |  |  | 
881  |  |     // Zero requires special handling to maintain the invariant that the least-significant digit  | 
882  |  |     // in the BCD is nonzero.  | 
883  | 0  |     if (value == 0) { | 
884  | 0  |         if (appendAsInteger && precision != 0) { | 
885  | 0  |             scale += leadingZeros + 1;  | 
886  | 0  |         }  | 
887  | 0  |         return;  | 
888  | 0  |     }  | 
889  |  |  | 
890  |  |     // Deal with trailing zeros  | 
891  | 0  |     if (scale > 0) { | 
892  | 0  |         leadingZeros += scale;  | 
893  | 0  |         if (appendAsInteger) { | 
894  | 0  |             scale = 0;  | 
895  | 0  |         }  | 
896  | 0  |     }  | 
897  |  |  | 
898  |  |     // Append digit  | 
899  | 0  |     shiftLeft(leadingZeros + 1);  | 
900  | 0  |     setDigitPos(0, value);  | 
901  |  |  | 
902  |  |     // Fix scale if in integer mode  | 
903  | 0  |     if (appendAsInteger) { | 
904  | 0  |         scale += leadingZeros + 1;  | 
905  | 0  |     }  | 
906  | 0  | }  | 
907  |  |  | 
908  | 0  | UnicodeString DecimalQuantity::toPlainString() const { | 
909  | 0  |     U_ASSERT(!isApproximate);  | 
910  | 0  |     UnicodeString sb;  | 
911  | 0  |     if (isNegative()) { | 
912  | 0  |         sb.append(u'-');  | 
913  | 0  |     }  | 
914  | 0  |     if (precision == 0) { | 
915  | 0  |         sb.append(u'0');  | 
916  | 0  |         return sb;  | 
917  | 0  |     }  | 
918  | 0  |     int32_t upper = scale + precision + exponent - 1;  | 
919  | 0  |     int32_t lower = scale + exponent;  | 
920  | 0  |     if (upper < lReqPos - 1) { | 
921  | 0  |         upper = lReqPos - 1;  | 
922  | 0  |     }  | 
923  | 0  |     if (lower > rReqPos) { | 
924  | 0  |         lower = rReqPos;  | 
925  | 0  |     }      | 
926  | 0  |     int32_t p = upper;  | 
927  | 0  |     if (p < 0) { | 
928  | 0  |         sb.append(u'0');  | 
929  | 0  |     }  | 
930  | 0  |     for (; p >= 0; p--) { | 
931  | 0  |         sb.append(u'0' + getDigitPos(p - scale - exponent));  | 
932  | 0  |     }  | 
933  | 0  |     if (lower < 0) { | 
934  | 0  |         sb.append(u'.');  | 
935  | 0  |     }  | 
936  | 0  |     for(; p >= lower; p--) { | 
937  | 0  |         sb.append(u'0' + getDigitPos(p - scale - exponent));  | 
938  | 0  |     }  | 
939  | 0  |     return sb;  | 
940  | 0  | }  | 
941  |  |  | 
942  | 0  | UnicodeString DecimalQuantity::toScientificString() const { | 
943  | 0  |     U_ASSERT(!isApproximate);  | 
944  | 0  |     UnicodeString result;  | 
945  | 0  |     if (isNegative()) { | 
946  | 0  |         result.append(u'-');  | 
947  | 0  |     }  | 
948  | 0  |     if (precision == 0) { | 
949  | 0  |         result.append(u"0E+0", -1);  | 
950  | 0  |         return result;  | 
951  | 0  |     }  | 
952  | 0  |     int32_t upperPos = precision - 1;  | 
953  | 0  |     int32_t lowerPos = 0;  | 
954  | 0  |     int32_t p = upperPos;  | 
955  | 0  |     result.append(u'0' + getDigitPos(p));  | 
956  | 0  |     if ((--p) >= lowerPos) { | 
957  | 0  |         result.append(u'.');  | 
958  | 0  |         for (; p >= lowerPos; p--) { | 
959  | 0  |             result.append(u'0' + getDigitPos(p));  | 
960  | 0  |         }  | 
961  | 0  |     }  | 
962  | 0  |     result.append(u'E');  | 
963  | 0  |     int32_t _scale = upperPos + scale + exponent;  | 
964  | 0  |     if (_scale == INT32_MIN) { | 
965  | 0  |         result.append({u"-2147483648", -1}); | 
966  | 0  |         return result;  | 
967  | 0  |     } else if (_scale < 0) { | 
968  | 0  |         _scale *= -1;  | 
969  | 0  |         result.append(u'-');  | 
970  | 0  |     } else { | 
971  | 0  |         result.append(u'+');  | 
972  | 0  |     }  | 
973  | 0  |     if (_scale == 0) { | 
974  | 0  |         result.append(u'0');  | 
975  | 0  |     }  | 
976  | 0  |     int32_t insertIndex = result.length();  | 
977  | 0  |     while (_scale > 0) { | 
978  | 0  |         std::div_t res = std::div(_scale, 10);  | 
979  | 0  |         result.insert(insertIndex, u'0' + res.rem);  | 
980  | 0  |         _scale = res.quot;  | 
981  | 0  |     }  | 
982  | 0  |     return result;  | 
983  | 0  | }  | 
984  |  |  | 
985  |  | ////////////////////////////////////////////////////  | 
986  |  | /// End of DecimalQuantity_AbstractBCD.java      ///  | 
987  |  | /// Start of DecimalQuantity_DualStorageBCD.java ///  | 
988  |  | ////////////////////////////////////////////////////  | 
989  |  |  | 
990  | 0  | int8_t DecimalQuantity::getDigitPos(int32_t position) const { | 
991  | 0  |     if (usingBytes) { | 
992  | 0  |         if (position < 0 || position >= precision) { return 0; } | 
993  | 0  |         return fBCD.bcdBytes.ptr[position];  | 
994  | 0  |     } else { | 
995  | 0  |         if (position < 0 || position >= 16) { return 0; } | 
996  | 0  |         return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf);  | 
997  | 0  |     }  | 
998  | 0  | }  | 
999  |  |  | 
1000  | 0  | void DecimalQuantity::setDigitPos(int32_t position, int8_t value) { | 
1001  | 0  |     U_ASSERT(position >= 0);  | 
1002  | 0  |     if (usingBytes) { | 
1003  | 0  |         ensureCapacity(position + 1);  | 
1004  | 0  |         fBCD.bcdBytes.ptr[position] = value;  | 
1005  | 0  |     } else if (position >= 16) { | 
1006  | 0  |         switchStorage();  | 
1007  | 0  |         ensureCapacity(position + 1);  | 
1008  | 0  |         fBCD.bcdBytes.ptr[position] = value;  | 
1009  | 0  |     } else { | 
1010  | 0  |         int shift = position * 4;  | 
1011  | 0  |         fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift);  | 
1012  | 0  |     }  | 
1013  | 0  | }  | 
1014  |  |  | 
1015  | 0  | void DecimalQuantity::shiftLeft(int32_t numDigits) { | 
1016  | 0  |     if (!usingBytes && precision + numDigits > 16) { | 
1017  | 0  |         switchStorage();  | 
1018  | 0  |     }  | 
1019  | 0  |     if (usingBytes) { | 
1020  | 0  |         ensureCapacity(precision + numDigits);  | 
1021  | 0  |         uprv_memmove(fBCD.bcdBytes.ptr + numDigits, fBCD.bcdBytes.ptr, precision);  | 
1022  | 0  |         uprv_memset(fBCD.bcdBytes.ptr, 0, numDigits);  | 
1023  | 0  |     } else { | 
1024  | 0  |         fBCD.bcdLong <<= (numDigits * 4);  | 
1025  | 0  |     }  | 
1026  | 0  |     scale -= numDigits;  | 
1027  | 0  |     precision += numDigits;  | 
1028  | 0  | }  | 
1029  |  |  | 
1030  | 0  | void DecimalQuantity::shiftRight(int32_t numDigits) { | 
1031  | 0  |     if (usingBytes) { | 
1032  | 0  |         int i = 0;  | 
1033  | 0  |         for (; i < precision - numDigits; i++) { | 
1034  | 0  |             fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits];  | 
1035  | 0  |         }  | 
1036  | 0  |         for (; i < precision; i++) { | 
1037  | 0  |             fBCD.bcdBytes.ptr[i] = 0;  | 
1038  | 0  |         }  | 
1039  | 0  |     } else { | 
1040  | 0  |         fBCD.bcdLong >>= (numDigits * 4);  | 
1041  | 0  |     }  | 
1042  | 0  |     scale += numDigits;  | 
1043  | 0  |     precision -= numDigits;  | 
1044  | 0  | }  | 
1045  |  |  | 
1046  | 0  | void DecimalQuantity::popFromLeft(int32_t numDigits) { | 
1047  | 0  |     U_ASSERT(numDigits <= precision);  | 
1048  | 0  |     if (usingBytes) { | 
1049  | 0  |         int i = precision - 1;  | 
1050  | 0  |         for (; i >= precision - numDigits; i--) { | 
1051  | 0  |             fBCD.bcdBytes.ptr[i] = 0;  | 
1052  | 0  |         }  | 
1053  | 0  |     } else { | 
1054  | 0  |         fBCD.bcdLong &= (static_cast<uint64_t>(1) << ((precision - numDigits) * 4)) - 1;  | 
1055  | 0  |     }  | 
1056  | 0  |     precision -= numDigits;  | 
1057  | 0  | }  | 
1058  |  |  | 
1059  | 0  | void DecimalQuantity::setBcdToZero() { | 
1060  | 0  |     if (usingBytes) { | 
1061  | 0  |         uprv_free(fBCD.bcdBytes.ptr);  | 
1062  | 0  |         fBCD.bcdBytes.ptr = nullptr;  | 
1063  | 0  |         usingBytes = false;  | 
1064  | 0  |     }  | 
1065  | 0  |     fBCD.bcdLong = 0L;  | 
1066  | 0  |     scale = 0;  | 
1067  | 0  |     precision = 0;  | 
1068  | 0  |     isApproximate = false;  | 
1069  | 0  |     origDouble = 0;  | 
1070  | 0  |     origDelta = 0;  | 
1071  | 0  |     exponent = 0;  | 
1072  | 0  | }  | 
1073  |  |  | 
1074  | 0  | void DecimalQuantity::readIntToBcd(int32_t n) { | 
1075  | 0  |     U_ASSERT(n != 0);  | 
1076  |  |     // ints always fit inside the long implementation.  | 
1077  | 0  |     uint64_t result = 0L;  | 
1078  | 0  |     int i = 16;  | 
1079  | 0  |     for (; n != 0; n /= 10, i--) { | 
1080  | 0  |         result = (result >> 4) + ((static_cast<uint64_t>(n) % 10) << 60);  | 
1081  | 0  |     }  | 
1082  | 0  |     U_ASSERT(!usingBytes);  | 
1083  | 0  |     fBCD.bcdLong = result >> (i * 4);  | 
1084  | 0  |     scale = 0;  | 
1085  | 0  |     precision = 16 - i;  | 
1086  | 0  | }  | 
1087  |  |  | 
1088  | 0  | void DecimalQuantity::readLongToBcd(int64_t n) { | 
1089  | 0  |     U_ASSERT(n != 0);  | 
1090  | 0  |     if (n >= 10000000000000000L) { | 
1091  | 0  |         ensureCapacity();  | 
1092  | 0  |         int i = 0;  | 
1093  | 0  |         for (; n != 0L; n /= 10L, i++) { | 
1094  | 0  |             fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(n % 10);  | 
1095  | 0  |         }  | 
1096  | 0  |         U_ASSERT(usingBytes);  | 
1097  | 0  |         scale = 0;  | 
1098  | 0  |         precision = i;  | 
1099  | 0  |     } else { | 
1100  | 0  |         uint64_t result = 0L;  | 
1101  | 0  |         int i = 16;  | 
1102  | 0  |         for (; n != 0L; n /= 10L, i--) { | 
1103  | 0  |             result = (result >> 4) + ((n % 10) << 60);  | 
1104  | 0  |         }  | 
1105  | 0  |         U_ASSERT(i >= 0);  | 
1106  | 0  |         U_ASSERT(!usingBytes);  | 
1107  | 0  |         fBCD.bcdLong = result >> (i * 4);  | 
1108  | 0  |         scale = 0;  | 
1109  | 0  |         precision = 16 - i;  | 
1110  | 0  |     }  | 
1111  | 0  | }  | 
1112  |  |  | 
1113  | 0  | void DecimalQuantity::readDecNumberToBcd(const DecNum& decnum) { | 
1114  | 0  |     const decNumber* dn = decnum.getRawDecNumber();  | 
1115  | 0  |     if (dn->digits > 16) { | 
1116  | 0  |         ensureCapacity(dn->digits);  | 
1117  | 0  |         for (int32_t i = 0; i < dn->digits; i++) { | 
1118  | 0  |             fBCD.bcdBytes.ptr[i] = dn->lsu[i];  | 
1119  | 0  |         }  | 
1120  | 0  |     } else { | 
1121  | 0  |         uint64_t result = 0L;  | 
1122  | 0  |         for (int32_t i = 0; i < dn->digits; i++) { | 
1123  | 0  |             result |= static_cast<uint64_t>(dn->lsu[i]) << (4 * i);  | 
1124  | 0  |         }  | 
1125  | 0  |         fBCD.bcdLong = result;  | 
1126  | 0  |     }  | 
1127  | 0  |     scale = dn->exponent;  | 
1128  | 0  |     precision = dn->digits;  | 
1129  | 0  | }  | 
1130  |  |  | 
1131  |  | void DecimalQuantity::readDoubleConversionToBcd(  | 
1132  | 0  |         const char* buffer, int32_t length, int32_t point) { | 
1133  |  |     // NOTE: Despite the fact that double-conversion's API is called  | 
1134  |  |     // "DoubleToAscii", they actually use '0' (as opposed to u8'0').  | 
1135  | 0  |     if (length > 16) { | 
1136  | 0  |         ensureCapacity(length);  | 
1137  | 0  |         for (int32_t i = 0; i < length; i++) { | 
1138  | 0  |             fBCD.bcdBytes.ptr[i] = buffer[length-i-1] - '0';  | 
1139  | 0  |         }  | 
1140  | 0  |     } else { | 
1141  | 0  |         uint64_t result = 0L;  | 
1142  | 0  |         for (int32_t i = 0; i < length; i++) { | 
1143  | 0  |             result |= static_cast<uint64_t>(buffer[length-i-1] - '0') << (4 * i);  | 
1144  | 0  |         }  | 
1145  | 0  |         fBCD.bcdLong = result;  | 
1146  | 0  |     }  | 
1147  | 0  |     scale = point - length;  | 
1148  | 0  |     precision = length;  | 
1149  | 0  | }  | 
1150  |  |  | 
1151  | 0  | void DecimalQuantity::compact() { | 
1152  | 0  |     if (usingBytes) { | 
1153  | 0  |         int32_t delta = 0;  | 
1154  | 0  |         for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++);  | 
1155  | 0  |         if (delta == precision) { | 
1156  |  |             // Number is zero  | 
1157  | 0  |             setBcdToZero();  | 
1158  | 0  |             return;  | 
1159  | 0  |         } else { | 
1160  |  |             // Remove trailing zeros  | 
1161  | 0  |             shiftRight(delta);  | 
1162  | 0  |         }  | 
1163  |  |  | 
1164  |  |         // Compute precision  | 
1165  | 0  |         int32_t leading = precision - 1;  | 
1166  | 0  |         for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--);  | 
1167  | 0  |         precision = leading + 1;  | 
1168  |  |  | 
1169  |  |         // Switch storage mechanism if possible  | 
1170  | 0  |         if (precision <= 16) { | 
1171  | 0  |             switchStorage();  | 
1172  | 0  |         }  | 
1173  |  | 
  | 
1174  | 0  |     } else { | 
1175  | 0  |         if (fBCD.bcdLong == 0L) { | 
1176  |  |             // Number is zero  | 
1177  | 0  |             setBcdToZero();  | 
1178  | 0  |             return;  | 
1179  | 0  |         }  | 
1180  |  |  | 
1181  |  |         // Compact the number (remove trailing zeros)  | 
1182  |  |         // TODO: Use a more efficient algorithm here and below. There is a logarithmic one.  | 
1183  | 0  |         int32_t delta = 0;  | 
1184  | 0  |         for (; delta < precision && getDigitPos(delta) == 0; delta++);  | 
1185  | 0  |         fBCD.bcdLong >>= delta * 4;  | 
1186  | 0  |         scale += delta;  | 
1187  |  |  | 
1188  |  |         // Compute precision  | 
1189  | 0  |         int32_t leading = precision - 1;  | 
1190  | 0  |         for (; leading >= 0 && getDigitPos(leading) == 0; leading--);  | 
1191  | 0  |         precision = leading + 1;  | 
1192  | 0  |     }  | 
1193  | 0  | }  | 
1194  |  |  | 
1195  | 0  | void DecimalQuantity::ensureCapacity() { | 
1196  | 0  |     ensureCapacity(40);  | 
1197  | 0  | }  | 
1198  |  |  | 
1199  | 0  | void DecimalQuantity::ensureCapacity(int32_t capacity) { | 
1200  | 0  |     if (capacity == 0) { return; } | 
1201  | 0  |     int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0;  | 
1202  | 0  |     if (!usingBytes) { | 
1203  |  |         // TODO: There is nothing being done to check for memory allocation failures.  | 
1204  |  |         // TODO: Consider indexing by nybbles instead of bytes in C++, so that we can  | 
1205  |  |         // make these arrays half the size.  | 
1206  | 0  |         fBCD.bcdBytes.ptr = static_cast<int8_t*>(uprv_malloc(capacity * sizeof(int8_t)));  | 
1207  | 0  |         fBCD.bcdBytes.len = capacity;  | 
1208  |  |         // Initialize the byte array to zeros (this is done automatically in Java)  | 
1209  | 0  |         uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t));  | 
1210  | 0  |     } else if (oldCapacity < capacity) { | 
1211  | 0  |         auto bcd1 = static_cast<int8_t*>(uprv_malloc(capacity * 2 * sizeof(int8_t)));  | 
1212  | 0  |         uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t));  | 
1213  |  |         // Initialize the rest of the byte array to zeros (this is done automatically in Java)  | 
1214  | 0  |         uprv_memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t));  | 
1215  | 0  |         uprv_free(fBCD.bcdBytes.ptr);  | 
1216  | 0  |         fBCD.bcdBytes.ptr = bcd1;  | 
1217  | 0  |         fBCD.bcdBytes.len = capacity * 2;  | 
1218  | 0  |     }  | 
1219  | 0  |     usingBytes = true;  | 
1220  | 0  | }  | 
1221  |  |  | 
1222  | 0  | void DecimalQuantity::switchStorage() { | 
1223  | 0  |     if (usingBytes) { | 
1224  |  |         // Change from bytes to long  | 
1225  | 0  |         uint64_t bcdLong = 0L;  | 
1226  | 0  |         for (int i = precision - 1; i >= 0; i--) { | 
1227  | 0  |             bcdLong <<= 4;  | 
1228  | 0  |             bcdLong |= fBCD.bcdBytes.ptr[i];  | 
1229  | 0  |         }  | 
1230  | 0  |         uprv_free(fBCD.bcdBytes.ptr);  | 
1231  | 0  |         fBCD.bcdBytes.ptr = nullptr;  | 
1232  | 0  |         fBCD.bcdLong = bcdLong;  | 
1233  | 0  |         usingBytes = false;  | 
1234  | 0  |     } else { | 
1235  |  |         // Change from long to bytes  | 
1236  |  |         // Copy the long into a local variable since it will get munged when we allocate the bytes  | 
1237  | 0  |         uint64_t bcdLong = fBCD.bcdLong;  | 
1238  | 0  |         ensureCapacity();  | 
1239  | 0  |         for (int i = 0; i < precision; i++) { | 
1240  | 0  |             fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(bcdLong & 0xf);  | 
1241  | 0  |             bcdLong >>= 4;  | 
1242  | 0  |         }  | 
1243  | 0  |         U_ASSERT(usingBytes);  | 
1244  | 0  |     }  | 
1245  | 0  | }  | 
1246  |  |  | 
1247  | 0  | void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) { | 
1248  | 0  |     setBcdToZero();  | 
1249  | 0  |     if (other.usingBytes) { | 
1250  | 0  |         ensureCapacity(other.precision);  | 
1251  | 0  |         uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t));  | 
1252  | 0  |     } else { | 
1253  | 0  |         fBCD.bcdLong = other.fBCD.bcdLong;  | 
1254  | 0  |     }  | 
1255  | 0  | }  | 
1256  |  |  | 
1257  | 0  | void DecimalQuantity::moveBcdFrom(DecimalQuantity &other) { | 
1258  | 0  |     setBcdToZero();  | 
1259  | 0  |     if (other.usingBytes) { | 
1260  | 0  |         usingBytes = true;  | 
1261  | 0  |         fBCD.bcdBytes.ptr = other.fBCD.bcdBytes.ptr;  | 
1262  | 0  |         fBCD.bcdBytes.len = other.fBCD.bcdBytes.len;  | 
1263  |  |         // Take ownership away from the old instance:  | 
1264  | 0  |         other.fBCD.bcdBytes.ptr = nullptr;  | 
1265  | 0  |         other.usingBytes = false;  | 
1266  | 0  |     } else { | 
1267  | 0  |         fBCD.bcdLong = other.fBCD.bcdLong;  | 
1268  | 0  |     }  | 
1269  | 0  | }  | 
1270  |  |  | 
1271  | 0  | const char16_t* DecimalQuantity::checkHealth() const { | 
1272  | 0  |     if (usingBytes) { | 
1273  | 0  |         if (precision == 0) { return u"Zero precision but we are in byte mode"; } | 
1274  | 0  |         int32_t capacity = fBCD.bcdBytes.len;  | 
1275  | 0  |         if (precision > capacity) { return u"Precision exceeds length of byte array"; } | 
1276  | 0  |         if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode"; } | 
1277  | 0  |         if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode"; } | 
1278  | 0  |         for (int i = 0; i < precision; i++) { | 
1279  | 0  |             if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array"; } | 
1280  | 0  |             if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array"; } | 
1281  | 0  |         }  | 
1282  | 0  |         for (int i = precision; i < capacity; i++) { | 
1283  | 0  |             if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array"; } | 
1284  | 0  |         }  | 
1285  | 0  |     } else { | 
1286  | 0  |         if (precision == 0 && fBCD.bcdLong != 0) { | 
1287  | 0  |             return u"Value in bcdLong even though precision is zero";  | 
1288  | 0  |         }  | 
1289  | 0  |         if (precision > 16) { return u"Precision exceeds length of long"; } | 
1290  | 0  |         if (precision != 0 && getDigitPos(precision - 1) == 0) { | 
1291  | 0  |             return u"Most significant digit is zero in long mode";  | 
1292  | 0  |         }  | 
1293  | 0  |         if (precision != 0 && getDigitPos(0) == 0) { | 
1294  | 0  |             return u"Least significant digit is zero in long mode";  | 
1295  | 0  |         }  | 
1296  | 0  |         for (int i = 0; i < precision; i++) { | 
1297  | 0  |             if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long"; } | 
1298  | 0  |             if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)"; } | 
1299  | 0  |         }  | 
1300  | 0  |         for (int i = precision; i < 16; i++) { | 
1301  | 0  |             if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long"; } | 
1302  | 0  |         }  | 
1303  | 0  |     }  | 
1304  |  |  | 
1305  |  |     // No error  | 
1306  | 0  |     return nullptr;  | 
1307  | 0  | }  | 
1308  |  |  | 
1309  | 0  | bool DecimalQuantity::operator==(const DecimalQuantity& other) const { | 
1310  | 0  |     bool basicEquals =  | 
1311  | 0  |             scale == other.scale  | 
1312  | 0  |             && precision == other.precision  | 
1313  | 0  |             && flags == other.flags  | 
1314  | 0  |             && lReqPos == other.lReqPos  | 
1315  | 0  |             && rReqPos == other.rReqPos  | 
1316  | 0  |             && isApproximate == other.isApproximate;  | 
1317  | 0  |     if (!basicEquals) { | 
1318  | 0  |         return false;  | 
1319  | 0  |     }  | 
1320  |  |  | 
1321  | 0  |     if (precision == 0) { | 
1322  | 0  |         return true;  | 
1323  | 0  |     } else if (isApproximate) { | 
1324  | 0  |         return origDouble == other.origDouble && origDelta == other.origDelta;  | 
1325  | 0  |     } else { | 
1326  | 0  |         for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) { | 
1327  | 0  |             if (getDigit(m) != other.getDigit(m)) { | 
1328  | 0  |                 return false;  | 
1329  | 0  |             }  | 
1330  | 0  |         }  | 
1331  | 0  |         return true;  | 
1332  | 0  |     }  | 
1333  | 0  | }  | 
1334  |  |  | 
1335  | 0  | UnicodeString DecimalQuantity::toString() const { | 
1336  | 0  |     UErrorCode localStatus = U_ZERO_ERROR;  | 
1337  | 0  |     MaybeStackArray<char, 30> digits(precision + 1, localStatus);  | 
1338  | 0  |     if (U_FAILURE(localStatus)) { | 
1339  | 0  |         return ICU_Utility::makeBogusString();  | 
1340  | 0  |     }  | 
1341  | 0  |     for (int32_t i = 0; i < precision; i++) { | 
1342  | 0  |         digits[i] = getDigitPos(precision - i - 1) + '0';  | 
1343  | 0  |     }  | 
1344  | 0  |     digits[precision] = 0; // terminate buffer  | 
1345  | 0  |     char buffer8[100];  | 
1346  | 0  |     snprintf(  | 
1347  | 0  |             buffer8,  | 
1348  | 0  |             sizeof(buffer8),  | 
1349  | 0  |             "<DecimalQuantity %d:%d %s %s%s%s%d>",  | 
1350  | 0  |             lReqPos,  | 
1351  | 0  |             rReqPos,  | 
1352  | 0  |             (usingBytes ? "bytes" : "long"),  | 
1353  | 0  |             (isNegative() ? "-" : ""),  | 
1354  | 0  |             (precision == 0 ? "0" : digits.getAlias()),  | 
1355  | 0  |             "E",  | 
1356  | 0  |             scale);  | 
1357  | 0  |     return UnicodeString(buffer8, -1, US_INV);  | 
1358  | 0  | }  | 
1359  |  |  | 
1360  |  | #endif /* #if !UCONFIG_NO_FORMATTING */  |