/src/icu/source/i18n/number_rounding.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | // © 2017 and later: Unicode, Inc. and others.  | 
2  |  | // License & terms of use: http://www.unicode.org/copyright.html  | 
3  |  |  | 
4  |  | #include "unicode/utypes.h"  | 
5  |  |  | 
6  |  | #if !UCONFIG_NO_FORMATTING  | 
7  |  |  | 
8  |  | #include "charstr.h"  | 
9  |  | #include "uassert.h"  | 
10  |  | #include "unicode/numberformatter.h"  | 
11  |  | #include "number_types.h"  | 
12  |  | #include "number_decimalquantity.h"  | 
13  |  | #include "double-conversion.h"  | 
14  |  | #include "number_roundingutils.h"  | 
15  |  | #include "number_skeletons.h"  | 
16  |  | #include "putilimp.h"  | 
17  |  | #include "string_segment.h"  | 
18  |  |  | 
19  |  | using namespace icu;  | 
20  |  | using namespace icu::number;  | 
21  |  | using namespace icu::number::impl;  | 
22  |  |  | 
23  |  |  | 
24  |  | using double_conversion::DoubleToStringConverter;  | 
25  |  | using icu::StringSegment;  | 
26  |  |  | 
27  |  | void number::impl::parseIncrementOption(const StringSegment &segment,  | 
28  |  |                                         Precision &outPrecision,  | 
29  | 0  |                                         UErrorCode &status) { | 
30  |  |     // Need to do char <-> UChar conversion...  | 
31  | 0  |     U_ASSERT(U_SUCCESS(status));  | 
32  | 0  |     CharString buffer;  | 
33  | 0  |     SKELETON_UCHAR_TO_CHAR(buffer, segment.toTempUnicodeString(), 0, segment.length(), status);  | 
34  |  |  | 
35  |  |     // Utilize DecimalQuantity/decNumber to parse this for us.  | 
36  | 0  |     DecimalQuantity dq;  | 
37  | 0  |     UErrorCode localStatus = U_ZERO_ERROR;  | 
38  | 0  |     dq.setToDecNumber({buffer.data(), buffer.length()}, localStatus); | 
39  | 0  |     if (U_FAILURE(localStatus)) { | 
40  |  |         // throw new SkeletonSyntaxException("Invalid rounding increment", segment, e); | 
41  | 0  |         status = U_NUMBER_SKELETON_SYNTAX_ERROR;  | 
42  | 0  |         return;  | 
43  | 0  |     }  | 
44  | 0  |     double increment = dq.toDouble();  | 
45  |  |  | 
46  |  |     // We also need to figure out how many digits. Do a brute force string operation.  | 
47  | 0  |     int decimalOffset = 0;  | 
48  | 0  |     while (decimalOffset < segment.length() && segment.charAt(decimalOffset) != '.') { | 
49  | 0  |         decimalOffset++;  | 
50  | 0  |     }  | 
51  | 0  |     if (decimalOffset == segment.length()) { | 
52  | 0  |         outPrecision = Precision::increment(increment);  | 
53  | 0  |     } else { | 
54  | 0  |         int32_t fractionLength = segment.length() - decimalOffset - 1;  | 
55  | 0  |         outPrecision = Precision::increment(increment).withMinFraction(fractionLength);  | 
56  | 0  |     }  | 
57  | 0  | }  | 
58  |  |  | 
59  |  | namespace { | 
60  |  |  | 
61  | 0  | int32_t getRoundingMagnitudeFraction(int maxFrac) { | 
62  | 0  |     if (maxFrac == -1) { | 
63  | 0  |         return INT32_MIN;  | 
64  | 0  |     }  | 
65  | 0  |     return -maxFrac;  | 
66  | 0  | }  | 
67  |  |  | 
68  | 0  | int32_t getRoundingMagnitudeSignificant(const DecimalQuantity &value, int maxSig) { | 
69  | 0  |     if (maxSig == -1) { | 
70  | 0  |         return INT32_MIN;  | 
71  | 0  |     }  | 
72  | 0  |     int magnitude = value.isZeroish() ? 0 : value.getMagnitude();  | 
73  | 0  |     return magnitude - maxSig + 1;  | 
74  | 0  | }  | 
75  |  |  | 
76  | 0  | int32_t getDisplayMagnitudeFraction(int minFrac) { | 
77  | 0  |     if (minFrac == 0) { | 
78  | 0  |         return INT32_MAX;  | 
79  | 0  |     }  | 
80  | 0  |     return -minFrac;  | 
81  | 0  | }  | 
82  |  |  | 
83  | 0  | int32_t getDisplayMagnitudeSignificant(const DecimalQuantity &value, int minSig) { | 
84  | 0  |     int magnitude = value.isZeroish() ? 0 : value.getMagnitude();  | 
85  | 0  |     return magnitude - minSig + 1;  | 
86  | 0  | }  | 
87  |  |  | 
88  |  | }  | 
89  |  |  | 
90  |  |  | 
91  | 0  | MultiplierProducer::~MultiplierProducer() = default;  | 
92  |  |  | 
93  |  |  | 
94  | 0  | digits_t roundingutils::doubleFractionLength(double input, int8_t* singleDigit) { | 
95  | 0  |     char buffer[DoubleToStringConverter::kBase10MaximalLength + 1];  | 
96  | 0  |     bool sign; // unused; always positive  | 
97  | 0  |     int32_t length;  | 
98  | 0  |     int32_t point;  | 
99  | 0  |     DoubleToStringConverter::DoubleToAscii(  | 
100  | 0  |             input,  | 
101  | 0  |             DoubleToStringConverter::DtoaMode::SHORTEST,  | 
102  | 0  |             0,  | 
103  | 0  |             buffer,  | 
104  | 0  |             sizeof(buffer),  | 
105  | 0  |             &sign,  | 
106  | 0  |             &length,  | 
107  | 0  |             &point  | 
108  | 0  |     );  | 
109  |  | 
  | 
110  | 0  |     if (singleDigit == nullptr) { | 
111  |  |         // no-op  | 
112  | 0  |     } else if (length == 1) { | 
113  | 0  |         *singleDigit = buffer[0] - '0';  | 
114  | 0  |     } else { | 
115  | 0  |         *singleDigit = -1;  | 
116  | 0  |     }  | 
117  |  | 
  | 
118  | 0  |     return static_cast<digits_t>(length - point);  | 
119  | 0  | }  | 
120  |  |  | 
121  |  |  | 
122  | 0  | Precision Precision::unlimited() { | 
123  | 0  |     return Precision(RND_NONE, {}); | 
124  | 0  | }  | 
125  |  |  | 
126  | 0  | FractionPrecision Precision::integer() { | 
127  | 0  |     return constructFraction(0, 0);  | 
128  | 0  | }  | 
129  |  |  | 
130  | 0  | FractionPrecision Precision::fixedFraction(int32_t minMaxFractionPlaces) { | 
131  | 0  |     if (minMaxFractionPlaces >= 0 && minMaxFractionPlaces <= kMaxIntFracSig) { | 
132  | 0  |         return constructFraction(minMaxFractionPlaces, minMaxFractionPlaces);  | 
133  | 0  |     } else { | 
134  | 0  |         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; | 
135  | 0  |     }  | 
136  | 0  | }  | 
137  |  |  | 
138  | 0  | FractionPrecision Precision::minFraction(int32_t minFractionPlaces) { | 
139  | 0  |     if (minFractionPlaces >= 0 && minFractionPlaces <= kMaxIntFracSig) { | 
140  | 0  |         return constructFraction(minFractionPlaces, -1);  | 
141  | 0  |     } else { | 
142  | 0  |         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; | 
143  | 0  |     }  | 
144  | 0  | }  | 
145  |  |  | 
146  | 0  | FractionPrecision Precision::maxFraction(int32_t maxFractionPlaces) { | 
147  | 0  |     if (maxFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig) { | 
148  | 0  |         return constructFraction(0, maxFractionPlaces);  | 
149  | 0  |     } else { | 
150  | 0  |         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; | 
151  | 0  |     }  | 
152  | 0  | }  | 
153  |  |  | 
154  | 0  | FractionPrecision Precision::minMaxFraction(int32_t minFractionPlaces, int32_t maxFractionPlaces) { | 
155  | 0  |     if (minFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig &&  | 
156  | 0  |         minFractionPlaces <= maxFractionPlaces) { | 
157  | 0  |         return constructFraction(minFractionPlaces, maxFractionPlaces);  | 
158  | 0  |     } else { | 
159  | 0  |         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; | 
160  | 0  |     }  | 
161  | 0  | }  | 
162  |  |  | 
163  | 0  | Precision Precision::fixedSignificantDigits(int32_t minMaxSignificantDigits) { | 
164  | 0  |     if (minMaxSignificantDigits >= 1 && minMaxSignificantDigits <= kMaxIntFracSig) { | 
165  | 0  |         return constructSignificant(minMaxSignificantDigits, minMaxSignificantDigits);  | 
166  | 0  |     } else { | 
167  | 0  |         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; | 
168  | 0  |     }  | 
169  | 0  | }  | 
170  |  |  | 
171  | 0  | Precision Precision::minSignificantDigits(int32_t minSignificantDigits) { | 
172  | 0  |     if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) { | 
173  | 0  |         return constructSignificant(minSignificantDigits, -1);  | 
174  | 0  |     } else { | 
175  | 0  |         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; | 
176  | 0  |     }  | 
177  | 0  | }  | 
178  |  |  | 
179  | 0  | Precision Precision::maxSignificantDigits(int32_t maxSignificantDigits) { | 
180  | 0  |     if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) { | 
181  | 0  |         return constructSignificant(1, maxSignificantDigits);  | 
182  | 0  |     } else { | 
183  | 0  |         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; | 
184  | 0  |     }  | 
185  | 0  | }  | 
186  |  |  | 
187  | 0  | Precision Precision::minMaxSignificantDigits(int32_t minSignificantDigits, int32_t maxSignificantDigits) { | 
188  | 0  |     if (minSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig &&  | 
189  | 0  |         minSignificantDigits <= maxSignificantDigits) { | 
190  | 0  |         return constructSignificant(minSignificantDigits, maxSignificantDigits);  | 
191  | 0  |     } else { | 
192  | 0  |         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; | 
193  | 0  |     }  | 
194  | 0  | }  | 
195  |  |  | 
196  | 0  | Precision Precision::trailingZeroDisplay(UNumberTrailingZeroDisplay trailingZeroDisplay) const { | 
197  | 0  |     Precision result(*this); // copy constructor  | 
198  | 0  |     result.fTrailingZeroDisplay = trailingZeroDisplay;  | 
199  | 0  |     return result;  | 
200  | 0  | }  | 
201  |  |  | 
202  | 0  | IncrementPrecision Precision::increment(double roundingIncrement) { | 
203  | 0  |     if (roundingIncrement > 0.0) { | 
204  | 0  |         return constructIncrement(roundingIncrement, 0);  | 
205  | 0  |     } else { | 
206  | 0  |         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; | 
207  | 0  |     }  | 
208  | 0  | }  | 
209  |  |  | 
210  | 0  | CurrencyPrecision Precision::currency(UCurrencyUsage currencyUsage) { | 
211  | 0  |     return constructCurrency(currencyUsage);  | 
212  | 0  | }  | 
213  |  |  | 
214  |  | Precision FractionPrecision::withSignificantDigits(  | 
215  |  |         int32_t minSignificantDigits,  | 
216  |  |         int32_t maxSignificantDigits,  | 
217  | 0  |         UNumberRoundingPriority priority) const { | 
218  | 0  |     if (fType == RND_ERROR) { return *this; } // no-op in error state | 
219  | 0  |     if (minSignificantDigits >= 1 &&  | 
220  | 0  |             maxSignificantDigits >= minSignificantDigits &&  | 
221  | 0  |             maxSignificantDigits <= kMaxIntFracSig) { | 
222  | 0  |         return constructFractionSignificant(  | 
223  | 0  |             *this,  | 
224  | 0  |             minSignificantDigits,  | 
225  | 0  |             maxSignificantDigits,  | 
226  | 0  |             priority);  | 
227  | 0  |     } else { | 
228  | 0  |         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; | 
229  | 0  |     }  | 
230  | 0  | }  | 
231  |  |  | 
232  | 0  | Precision FractionPrecision::withMinDigits(int32_t minSignificantDigits) const { | 
233  | 0  |     if (fType == RND_ERROR) { return *this; } // no-op in error state | 
234  | 0  |     if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) { | 
235  | 0  |         return constructFractionSignificant(  | 
236  | 0  |             *this,  | 
237  | 0  |             1,  | 
238  | 0  |             minSignificantDigits,  | 
239  | 0  |             UNUM_ROUNDING_PRIORITY_RELAXED);  | 
240  | 0  |     } else { | 
241  | 0  |         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; | 
242  | 0  |     }  | 
243  | 0  | }  | 
244  |  |  | 
245  | 0  | Precision FractionPrecision::withMaxDigits(int32_t maxSignificantDigits) const { | 
246  | 0  |     if (fType == RND_ERROR) { return *this; } // no-op in error state | 
247  | 0  |     if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) { | 
248  | 0  |         return constructFractionSignificant(*this,  | 
249  | 0  |             1,  | 
250  | 0  |             maxSignificantDigits,  | 
251  | 0  |             UNUM_ROUNDING_PRIORITY_STRICT);  | 
252  | 0  |     } else { | 
253  | 0  |         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; | 
254  | 0  |     }  | 
255  | 0  | }  | 
256  |  |  | 
257  |  | // Private method on base class  | 
258  | 0  | Precision Precision::withCurrency(const CurrencyUnit ¤cy, UErrorCode &status) const { | 
259  | 0  |     if (fType == RND_ERROR) { return *this; } // no-op in error state | 
260  | 0  |     U_ASSERT(fType == RND_CURRENCY);  | 
261  | 0  |     const char16_t *isoCode = currency.getISOCurrency();  | 
262  | 0  |     double increment = ucurr_getRoundingIncrementForUsage(isoCode, fUnion.currencyUsage, &status);  | 
263  | 0  |     int32_t minMaxFrac = ucurr_getDefaultFractionDigitsForUsage(  | 
264  | 0  |             isoCode, fUnion.currencyUsage, &status);  | 
265  | 0  |     Precision retval = (increment != 0.0)  | 
266  | 0  |         ? static_cast<Precision>(constructIncrement(increment, minMaxFrac))  | 
267  | 0  |         : static_cast<Precision>(constructFraction(minMaxFrac, minMaxFrac));  | 
268  | 0  |     retval.fTrailingZeroDisplay = fTrailingZeroDisplay;  | 
269  | 0  |     return retval;  | 
270  | 0  | }  | 
271  |  |  | 
272  |  | // Public method on CurrencyPrecision subclass  | 
273  | 0  | Precision CurrencyPrecision::withCurrency(const CurrencyUnit ¤cy) const { | 
274  | 0  |     UErrorCode localStatus = U_ZERO_ERROR;  | 
275  | 0  |     Precision result = Precision::withCurrency(currency, localStatus);  | 
276  | 0  |     if (U_FAILURE(localStatus)) { | 
277  | 0  |         return {localStatus}; | 
278  | 0  |     }  | 
279  | 0  |     return result;  | 
280  | 0  | }  | 
281  |  |  | 
282  | 0  | Precision IncrementPrecision::withMinFraction(int32_t minFrac) const { | 
283  | 0  |     if (fType == RND_ERROR) { return *this; } // no-op in error state | 
284  | 0  |     if (minFrac >= 0 && minFrac <= kMaxIntFracSig) { | 
285  | 0  |         return constructIncrement(fUnion.increment.fIncrement, minFrac);  | 
286  | 0  |     } else { | 
287  | 0  |         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; | 
288  | 0  |     }  | 
289  | 0  | }  | 
290  |  |  | 
291  | 0  | FractionPrecision Precision::constructFraction(int32_t minFrac, int32_t maxFrac) { | 
292  | 0  |     FractionSignificantSettings settings;  | 
293  | 0  |     settings.fMinFrac = static_cast<digits_t>(minFrac);  | 
294  | 0  |     settings.fMaxFrac = static_cast<digits_t>(maxFrac);  | 
295  | 0  |     settings.fMinSig = -1;  | 
296  | 0  |     settings.fMaxSig = -1;  | 
297  | 0  |     PrecisionUnion union_;  | 
298  | 0  |     union_.fracSig = settings;  | 
299  | 0  |     return {RND_FRACTION, union_}; | 
300  | 0  | }  | 
301  |  |  | 
302  | 0  | Precision Precision::constructSignificant(int32_t minSig, int32_t maxSig) { | 
303  | 0  |     FractionSignificantSettings settings;  | 
304  | 0  |     settings.fMinFrac = -1;  | 
305  | 0  |     settings.fMaxFrac = -1;  | 
306  | 0  |     settings.fMinSig = static_cast<digits_t>(minSig);  | 
307  | 0  |     settings.fMaxSig = static_cast<digits_t>(maxSig);  | 
308  | 0  |     PrecisionUnion union_;  | 
309  | 0  |     union_.fracSig = settings;  | 
310  | 0  |     return {RND_SIGNIFICANT, union_}; | 
311  | 0  | }  | 
312  |  |  | 
313  |  | Precision  | 
314  |  | Precision::constructFractionSignificant(  | 
315  |  |         const FractionPrecision &base,  | 
316  |  |         int32_t minSig,  | 
317  |  |         int32_t maxSig,  | 
318  | 0  |         UNumberRoundingPriority priority) { | 
319  | 0  |     FractionSignificantSettings settings = base.fUnion.fracSig;  | 
320  | 0  |     settings.fMinSig = static_cast<digits_t>(minSig);  | 
321  | 0  |     settings.fMaxSig = static_cast<digits_t>(maxSig);  | 
322  | 0  |     settings.fPriority = priority;  | 
323  | 0  |     PrecisionUnion union_;  | 
324  | 0  |     union_.fracSig = settings;  | 
325  | 0  |     return {RND_FRACTION_SIGNIFICANT, union_}; | 
326  | 0  | }  | 
327  |  |  | 
328  | 0  | IncrementPrecision Precision::constructIncrement(double increment, int32_t minFrac) { | 
329  | 0  |     IncrementSettings settings;  | 
330  |  |     // Note: For number formatting, fIncrement is used for RND_INCREMENT but not  | 
331  |  |     // RND_INCREMENT_ONE or RND_INCREMENT_FIVE. However, fIncrement is used in all  | 
332  |  |     // three when constructing a skeleton.  | 
333  | 0  |     settings.fIncrement = increment;  | 
334  | 0  |     settings.fMinFrac = static_cast<digits_t>(minFrac);  | 
335  |  |     // One of the few pre-computed quantities:  | 
336  |  |     // Note: it is possible for minFrac to be more than maxFrac... (misleading)  | 
337  | 0  |     int8_t singleDigit;  | 
338  | 0  |     settings.fMaxFrac = roundingutils::doubleFractionLength(increment, &singleDigit);  | 
339  | 0  |     PrecisionUnion union_;  | 
340  | 0  |     union_.increment = settings;  | 
341  | 0  |     if (singleDigit == 1) { | 
342  |  |         // NOTE: In C++, we must return the correct value type with the correct union.  | 
343  |  |         // It would be invalid to return a RND_FRACTION here because the methods on the  | 
344  |  |         // IncrementPrecision type assume that the union is backed by increment data.  | 
345  | 0  |         return {RND_INCREMENT_ONE, union_}; | 
346  | 0  |     } else if (singleDigit == 5) { | 
347  | 0  |         return {RND_INCREMENT_FIVE, union_}; | 
348  | 0  |     } else { | 
349  | 0  |         return {RND_INCREMENT, union_}; | 
350  | 0  |     }  | 
351  | 0  | }  | 
352  |  |  | 
353  | 0  | CurrencyPrecision Precision::constructCurrency(UCurrencyUsage usage) { | 
354  | 0  |     PrecisionUnion union_;  | 
355  | 0  |     union_.currencyUsage = usage;  | 
356  | 0  |     return {RND_CURRENCY, union_}; | 
357  | 0  | }  | 
358  |  |  | 
359  |  |  | 
360  |  | RoundingImpl::RoundingImpl(const Precision& precision, UNumberFormatRoundingMode roundingMode,  | 
361  |  |                            const CurrencyUnit& currency, UErrorCode& status)  | 
362  | 0  |         : fPrecision(precision), fRoundingMode(roundingMode), fPassThrough(false) { | 
363  | 0  |     if (precision.fType == Precision::RND_CURRENCY) { | 
364  | 0  |         fPrecision = precision.withCurrency(currency, status);  | 
365  | 0  |     }  | 
366  | 0  | }  | 
367  |  |  | 
368  | 0  | RoundingImpl RoundingImpl::passThrough() { | 
369  | 0  |     return {}; | 
370  | 0  | }  | 
371  |  |  | 
372  | 0  | bool RoundingImpl::isSignificantDigits() const { | 
373  | 0  |     return fPrecision.fType == Precision::RND_SIGNIFICANT;  | 
374  | 0  | }  | 
375  |  |  | 
376  |  | int32_t  | 
377  |  | RoundingImpl::chooseMultiplierAndApply(impl::DecimalQuantity &input, const impl::MultiplierProducer &producer,  | 
378  | 0  |                                   UErrorCode &status) { | 
379  |  |     // Do not call this method with zero, NaN, or infinity.  | 
380  | 0  |     U_ASSERT(!input.isZeroish());  | 
381  |  |  | 
382  |  |     // Perform the first attempt at rounding.  | 
383  | 0  |     int magnitude = input.getMagnitude();  | 
384  | 0  |     int multiplier = producer.getMultiplier(magnitude);  | 
385  | 0  |     input.adjustMagnitude(multiplier);  | 
386  | 0  |     apply(input, status);  | 
387  |  |  | 
388  |  |     // If the number rounded to zero, exit.  | 
389  | 0  |     if (input.isZeroish() || U_FAILURE(status)) { | 
390  | 0  |         return multiplier;  | 
391  | 0  |     }  | 
392  |  |  | 
393  |  |     // If the new magnitude after rounding is the same as it was before rounding, then we are done.  | 
394  |  |     // This case applies to most numbers.  | 
395  | 0  |     if (input.getMagnitude() == magnitude + multiplier) { | 
396  | 0  |         return multiplier;  | 
397  | 0  |     }  | 
398  |  |  | 
399  |  |     // If the above case DIDN'T apply, then we have a case like 99.9 -> 100 or 999.9 -> 1000:  | 
400  |  |     // The number rounded up to the next magnitude. Check if the multiplier changes; if it doesn't,  | 
401  |  |     // we do not need to make any more adjustments.  | 
402  | 0  |     int _multiplier = producer.getMultiplier(magnitude + 1);  | 
403  | 0  |     if (multiplier == _multiplier) { | 
404  | 0  |         return multiplier;  | 
405  | 0  |     }  | 
406  |  |  | 
407  |  |     // We have a case like 999.9 -> 1000, where the correct output is "1K", not "1000".  | 
408  |  |     // Fix the magnitude and re-apply the rounding strategy.  | 
409  | 0  |     input.adjustMagnitude(_multiplier - multiplier);  | 
410  | 0  |     apply(input, status);  | 
411  | 0  |     return _multiplier;  | 
412  | 0  | }  | 
413  |  |  | 
414  |  | /** This is the method that contains the actual rounding logic. */  | 
415  | 0  | void RoundingImpl::apply(impl::DecimalQuantity &value, UErrorCode& status) const { | 
416  | 0  |     if (U_FAILURE(status)) { | 
417  | 0  |         return;  | 
418  | 0  |     }  | 
419  | 0  |     if (fPassThrough) { | 
420  | 0  |         return;  | 
421  | 0  |     }  | 
422  | 0  |     int32_t resolvedMinFraction = 0;  | 
423  | 0  |     switch (fPrecision.fType) { | 
424  | 0  |         case Precision::RND_BOGUS:  | 
425  | 0  |         case Precision::RND_ERROR:  | 
426  |  |             // Errors should be caught before the apply() method is called  | 
427  | 0  |             status = U_INTERNAL_PROGRAM_ERROR;  | 
428  | 0  |             break;  | 
429  |  |  | 
430  | 0  |         case Precision::RND_NONE:  | 
431  | 0  |             value.roundToInfinity();  | 
432  | 0  |             break;  | 
433  |  |  | 
434  | 0  |         case Precision::RND_FRACTION:  | 
435  | 0  |             value.roundToMagnitude(  | 
436  | 0  |                     getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac),  | 
437  | 0  |                     fRoundingMode,  | 
438  | 0  |                     status);  | 
439  | 0  |             resolvedMinFraction =  | 
440  | 0  |                     uprv_max(0, -getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac));  | 
441  | 0  |             break;  | 
442  |  |  | 
443  | 0  |         case Precision::RND_SIGNIFICANT:  | 
444  | 0  |             value.roundToMagnitude(  | 
445  | 0  |                     getRoundingMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMaxSig),  | 
446  | 0  |                     fRoundingMode,  | 
447  | 0  |                     status);  | 
448  | 0  |             resolvedMinFraction =  | 
449  | 0  |                     uprv_max(0, -getDisplayMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMinSig));  | 
450  |  |             // Make sure that digits are displayed on zero.  | 
451  | 0  |             if (value.isZeroish() && fPrecision.fUnion.fracSig.fMinSig > 0) { | 
452  | 0  |                 value.setMinInteger(1);  | 
453  | 0  |             }  | 
454  | 0  |             break;  | 
455  |  |  | 
456  | 0  |         case Precision::RND_FRACTION_SIGNIFICANT: { | 
457  | 0  |             int32_t roundingMag1 = getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac);  | 
458  | 0  |             int32_t roundingMag2 = getRoundingMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMaxSig);  | 
459  | 0  |             int32_t roundingMag;  | 
460  | 0  |             if (fPrecision.fUnion.fracSig.fPriority == UNUM_ROUNDING_PRIORITY_RELAXED) { | 
461  | 0  |                 roundingMag = uprv_min(roundingMag1, roundingMag2);  | 
462  | 0  |             } else { | 
463  | 0  |                 roundingMag = uprv_max(roundingMag1, roundingMag2);  | 
464  | 0  |             }  | 
465  | 0  |             value.roundToMagnitude(roundingMag, fRoundingMode, status);  | 
466  |  | 
  | 
467  | 0  |             int32_t displayMag1 = getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac);  | 
468  | 0  |             int32_t displayMag2 = getDisplayMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMinSig);  | 
469  | 0  |             int32_t displayMag = uprv_min(displayMag1, displayMag2);  | 
470  | 0  |             resolvedMinFraction = uprv_max(0, -displayMag);  | 
471  |  | 
  | 
472  | 0  |             break;  | 
473  | 0  |         }  | 
474  |  |  | 
475  | 0  |         case Precision::RND_INCREMENT:  | 
476  | 0  |             value.roundToIncrement(  | 
477  | 0  |                     fPrecision.fUnion.increment.fIncrement,  | 
478  | 0  |                     fRoundingMode,  | 
479  | 0  |                     status);  | 
480  | 0  |             resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac;  | 
481  | 0  |             break;  | 
482  |  |  | 
483  | 0  |         case Precision::RND_INCREMENT_ONE:  | 
484  | 0  |             value.roundToMagnitude(  | 
485  | 0  |                     -fPrecision.fUnion.increment.fMaxFrac,  | 
486  | 0  |                     fRoundingMode,  | 
487  | 0  |                     status);  | 
488  | 0  |             resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac;  | 
489  | 0  |             break;  | 
490  |  |  | 
491  | 0  |         case Precision::RND_INCREMENT_FIVE:  | 
492  | 0  |             value.roundToNickel(  | 
493  | 0  |                     -fPrecision.fUnion.increment.fMaxFrac,  | 
494  | 0  |                     fRoundingMode,  | 
495  | 0  |                     status);  | 
496  | 0  |             resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac;  | 
497  | 0  |             break;  | 
498  |  |  | 
499  | 0  |         case Precision::RND_CURRENCY:  | 
500  |  |             // Call .withCurrency() before .apply()!  | 
501  | 0  |             UPRV_UNREACHABLE;  | 
502  |  |  | 
503  | 0  |         default:  | 
504  | 0  |             UPRV_UNREACHABLE;  | 
505  | 0  |     }  | 
506  |  |  | 
507  | 0  |     if (fPrecision.fTrailingZeroDisplay == UNUM_TRAILING_ZERO_AUTO ||  | 
508  |  |             // PLURAL_OPERAND_T returns fraction digits as an integer  | 
509  | 0  |             value.getPluralOperand(PLURAL_OPERAND_T) != 0) { | 
510  | 0  |         value.setMinFraction(resolvedMinFraction);  | 
511  | 0  |     }  | 
512  | 0  | }  | 
513  |  |  | 
514  | 0  | void RoundingImpl::apply(impl::DecimalQuantity &value, int32_t minInt, UErrorCode /*status*/) { | 
515  |  |     // This method is intended for the one specific purpose of helping print "00.000E0".  | 
516  |  |     // Question: Is it useful to look at trailingZeroDisplay here?  | 
517  | 0  |     U_ASSERT(isSignificantDigits());  | 
518  | 0  |     U_ASSERT(value.isZeroish());  | 
519  | 0  |     value.setMinFraction(fPrecision.fUnion.fracSig.fMinSig - minInt);  | 
520  | 0  | }  | 
521  |  |  | 
522  |  | #endif /* #if !UCONFIG_NO_FORMATTING */  |