/src/icu/source/i18n/units_converter.cpp
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | // © 2020 and later: Unicode, Inc. and others.  | 
2  |  | // License & terms of use: http://www.unicode.org/copyright.html  | 
3  |  |  | 
4  |  | #include "unicode/utypes.h"  | 
5  |  |  | 
6  |  | #if !UCONFIG_NO_FORMATTING  | 
7  |  |  | 
8  |  | #include "charstr.h"  | 
9  |  | #include "cmemory.h"  | 
10  |  | #include "double-conversion-string-to-double.h"  | 
11  |  | #include "measunit_impl.h"  | 
12  |  | #include "uassert.h"  | 
13  |  | #include "unicode/errorcode.h"  | 
14  |  | #include "unicode/localpointer.h"  | 
15  |  | #include "unicode/stringpiece.h"  | 
16  |  | #include "units_converter.h"  | 
17  |  | #include <algorithm>  | 
18  |  | #include <cmath>  | 
19  |  | #include <stdlib.h>  | 
20  |  | #include <utility>  | 
21  |  |  | 
22  |  | U_NAMESPACE_BEGIN  | 
23  |  | namespace units { | 
24  |  |  | 
25  | 0  | void U_I18N_API Factor::multiplyBy(const Factor &rhs) { | 
26  | 0  |     factorNum *= rhs.factorNum;  | 
27  | 0  |     factorDen *= rhs.factorDen;  | 
28  | 0  |     for (int i = 0; i < CONSTANTS_COUNT; i++) { | 
29  | 0  |         constantExponents[i] += rhs.constantExponents[i];  | 
30  | 0  |     }  | 
31  |  |  | 
32  |  |     // NOTE  | 
33  |  |     //  We need the offset when the source and the target are simple units. e.g. the source is  | 
34  |  |     //  celsius and the target is Fahrenheit. Therefore, we just keep the value using `std::max`.  | 
35  | 0  |     offset = std::max(rhs.offset, offset);  | 
36  | 0  | }  | 
37  |  |  | 
38  | 0  | void U_I18N_API Factor::divideBy(const Factor &rhs) { | 
39  | 0  |     factorNum *= rhs.factorDen;  | 
40  | 0  |     factorDen *= rhs.factorNum;  | 
41  | 0  |     for (int i = 0; i < CONSTANTS_COUNT; i++) { | 
42  | 0  |         constantExponents[i] -= rhs.constantExponents[i];  | 
43  | 0  |     }  | 
44  |  |  | 
45  |  |     // NOTE  | 
46  |  |     //  We need the offset when the source and the target are simple units. e.g. the source is  | 
47  |  |     //  celsius and the target is Fahrenheit. Therefore, we just keep the value using `std::max`.  | 
48  | 0  |     offset = std::max(rhs.offset, offset);  | 
49  | 0  | }  | 
50  |  |  | 
51  | 0  | void U_I18N_API Factor::power(int32_t power) { | 
52  |  |     // multiply all the constant by the power.  | 
53  | 0  |     for (int i = 0; i < CONSTANTS_COUNT; i++) { | 
54  | 0  |         constantExponents[i] *= power;  | 
55  | 0  |     }  | 
56  |  | 
  | 
57  | 0  |     bool shouldFlip = power < 0; // This means that after applying the absolute power, we should flip  | 
58  |  |                                  // the Numerator and Denominator.  | 
59  |  | 
  | 
60  | 0  |     factorNum = std::pow(factorNum, std::abs(power));  | 
61  | 0  |     factorDen = std::pow(factorDen, std::abs(power));  | 
62  |  | 
  | 
63  | 0  |     if (shouldFlip) { | 
64  |  |         // Flip Numerator and Denominator.  | 
65  | 0  |         std::swap(factorNum, factorDen);  | 
66  | 0  |     }  | 
67  | 0  | }  | 
68  |  |  | 
69  | 0  | void U_I18N_API Factor::applyPrefix(UMeasurePrefix unitPrefix) { | 
70  | 0  |     if (unitPrefix == UMeasurePrefix::UMEASURE_PREFIX_ONE) { | 
71  |  |         // No need to do anything  | 
72  | 0  |         return;  | 
73  | 0  |     }  | 
74  |  |  | 
75  | 0  |     int32_t prefixPower = umeas_getPrefixPower(unitPrefix);  | 
76  | 0  |     double prefixFactor = std::pow((double)umeas_getPrefixBase(unitPrefix), (double)std::abs(prefixPower));  | 
77  | 0  |     if (prefixPower >= 0) { | 
78  | 0  |         factorNum *= prefixFactor;  | 
79  | 0  |     } else { | 
80  | 0  |         factorDen *= prefixFactor;  | 
81  | 0  |     }  | 
82  | 0  | }  | 
83  |  |  | 
84  | 0  | void U_I18N_API Factor::substituteConstants() { | 
85  | 0  |     for (int i = 0; i < CONSTANTS_COUNT; i++) { | 
86  | 0  |         if (this->constantExponents[i] == 0) { | 
87  | 0  |             continue;  | 
88  | 0  |         }  | 
89  |  |  | 
90  | 0  |         auto absPower = std::abs(this->constantExponents[i]);  | 
91  | 0  |         Signum powerSig = this->constantExponents[i] < 0 ? Signum::NEGATIVE : Signum::POSITIVE;  | 
92  | 0  |         double absConstantValue = std::pow(constantsValues[i], absPower);  | 
93  |  | 
  | 
94  | 0  |         if (powerSig == Signum::NEGATIVE) { | 
95  | 0  |             this->factorDen *= absConstantValue;  | 
96  | 0  |         } else { | 
97  | 0  |             this->factorNum *= absConstantValue;  | 
98  | 0  |         }  | 
99  |  | 
  | 
100  | 0  |         this->constantExponents[i] = 0;  | 
101  | 0  |     }  | 
102  | 0  | }  | 
103  |  |  | 
104  |  | namespace { | 
105  |  |  | 
106  |  | /* Helpers */  | 
107  |  |  | 
108  |  | using icu::double_conversion::StringToDoubleConverter;  | 
109  |  |  | 
110  |  | // TODO: Make this a shared-utility function.  | 
111  |  | // Returns `double` from a scientific number(i.e. "1", "2.01" or "3.09E+4")  | 
112  | 0  | double strToDouble(StringPiece strNum, UErrorCode &status) { | 
113  |  |     // We are processing well-formed input, so we don't need any special options to  | 
114  |  |     // StringToDoubleConverter.  | 
115  | 0  |     StringToDoubleConverter converter(0, 0, 0, "", "");  | 
116  | 0  |     int32_t count;  | 
117  | 0  |     double result = converter.StringToDouble(strNum.data(), strNum.length(), &count);  | 
118  | 0  |     if (count != strNum.length()) { | 
119  | 0  |         status = U_INVALID_FORMAT_ERROR;  | 
120  | 0  |     }  | 
121  |  | 
  | 
122  | 0  |     return result;  | 
123  | 0  | }  | 
124  |  |  | 
125  |  | // Returns `double` from a scientific number that could has a division sign (i.e. "1", "2.01", "3.09E+4"  | 
126  |  | // or "2E+2/3")  | 
127  | 0  | double strHasDivideSignToDouble(StringPiece strWithDivide, UErrorCode &status) { | 
128  | 0  |     int divisionSignInd = -1;  | 
129  | 0  |     for (int i = 0, n = strWithDivide.length(); i < n; ++i) { | 
130  | 0  |         if (strWithDivide.data()[i] == '/') { | 
131  | 0  |             divisionSignInd = i;  | 
132  | 0  |             break;  | 
133  | 0  |         }  | 
134  | 0  |     }  | 
135  |  | 
  | 
136  | 0  |     if (divisionSignInd >= 0) { | 
137  | 0  |         return strToDouble(strWithDivide.substr(0, divisionSignInd), status) /  | 
138  | 0  |                strToDouble(strWithDivide.substr(divisionSignInd + 1), status);  | 
139  | 0  |     }  | 
140  |  |  | 
141  | 0  |     return strToDouble(strWithDivide, status);  | 
142  | 0  | }  | 
143  |  |  | 
144  |  | /*  | 
145  |  |   Adds single factor to a `Factor` object. Single factor means "23^2", "23.3333", "ft2m^3" ...etc.  | 
146  |  |   However, complex factor are not included, such as "ft2m^3*200/3"  | 
147  |  | */  | 
148  | 0  | void addFactorElement(Factor &factor, StringPiece elementStr, Signum signum, UErrorCode &status) { | 
149  | 0  |     StringPiece baseStr;  | 
150  | 0  |     StringPiece powerStr;  | 
151  | 0  |     int32_t power =  | 
152  | 0  |         1; // In case the power is not written, then, the power is equal 1 ==> `ft2m^1` == `ft2m`  | 
153  |  |  | 
154  |  |     // Search for the power part  | 
155  | 0  |     int32_t powerInd = -1;  | 
156  | 0  |     for (int32_t i = 0, n = elementStr.length(); i < n; ++i) { | 
157  | 0  |         if (elementStr.data()[i] == '^') { | 
158  | 0  |             powerInd = i;  | 
159  | 0  |             break;  | 
160  | 0  |         }  | 
161  | 0  |     }  | 
162  |  | 
  | 
163  | 0  |     if (powerInd > -1) { | 
164  |  |         // There is power  | 
165  | 0  |         baseStr = elementStr.substr(0, powerInd);  | 
166  | 0  |         powerStr = elementStr.substr(powerInd + 1);  | 
167  |  | 
  | 
168  | 0  |         power = static_cast<int32_t>(strToDouble(powerStr, status));  | 
169  | 0  |     } else { | 
170  | 0  |         baseStr = elementStr;  | 
171  | 0  |     }  | 
172  |  | 
  | 
173  | 0  |     addSingleFactorConstant(baseStr, power, signum, factor, status);  | 
174  | 0  | }  | 
175  |  |  | 
176  |  | /*  | 
177  |  |  * Extracts `Factor` from a complete string factor. e.g. "ft2m^3*1007/cup2m3*3"  | 
178  |  |  */  | 
179  | 0  | Factor extractFactorConversions(StringPiece stringFactor, UErrorCode &status) { | 
180  | 0  |     Factor result;  | 
181  | 0  |     Signum signum = Signum::POSITIVE;  | 
182  | 0  |     auto factorData = stringFactor.data();  | 
183  | 0  |     for (int32_t i = 0, start = 0, n = stringFactor.length(); i < n; i++) { | 
184  | 0  |         if (factorData[i] == '*' || factorData[i] == '/') { | 
185  | 0  |             StringPiece factorElement = stringFactor.substr(start, i - start);  | 
186  | 0  |             addFactorElement(result, factorElement, signum, status);  | 
187  |  | 
  | 
188  | 0  |             start = i + 1; // Set `start` to point to the start of the new element.  | 
189  | 0  |         } else if (i == n - 1) { | 
190  |  |             // Last element  | 
191  | 0  |             addFactorElement(result, stringFactor.substr(start, i + 1), signum, status);  | 
192  | 0  |         }  | 
193  |  | 
  | 
194  | 0  |         if (factorData[i] == '/') { | 
195  | 0  |             signum = Signum::NEGATIVE; // Change the signum because we reached the Denominator.  | 
196  | 0  |         }  | 
197  | 0  |     }  | 
198  |  | 
  | 
199  | 0  |     return result;  | 
200  | 0  | }  | 
201  |  |  | 
202  |  | // Load factor for a single source  | 
203  | 0  | Factor loadSingleFactor(StringPiece source, const ConversionRates &ratesInfo, UErrorCode &status) { | 
204  | 0  |     const auto conversionUnit = ratesInfo.extractConversionInfo(source, status);  | 
205  | 0  |     if (U_FAILURE(status)) return Factor();  | 
206  | 0  |     if (conversionUnit == nullptr) { | 
207  | 0  |         status = U_INTERNAL_PROGRAM_ERROR;  | 
208  | 0  |         return Factor();  | 
209  | 0  |     }  | 
210  |  |  | 
211  | 0  |     Factor result = extractFactorConversions(conversionUnit->factor.toStringPiece(), status);  | 
212  | 0  |     result.offset = strHasDivideSignToDouble(conversionUnit->offset.toStringPiece(), status);  | 
213  |  | 
  | 
214  | 0  |     return result;  | 
215  | 0  | }  | 
216  |  |  | 
217  |  | // Load Factor of a compound source unit.  | 
218  |  | // In ICU4J, this is a pair of ConversionRates.getFactorToBase() functions.  | 
219  |  | Factor loadCompoundFactor(const MeasureUnitImpl &source, const ConversionRates &ratesInfo,  | 
220  | 0  |                           UErrorCode &status) { | 
221  |  | 
  | 
222  | 0  |     Factor result;  | 
223  | 0  |     for (int32_t i = 0, n = source.singleUnits.length(); i < n; i++) { | 
224  | 0  |         SingleUnitImpl singleUnit = *source.singleUnits[i];  | 
225  |  | 
  | 
226  | 0  |         Factor singleFactor = loadSingleFactor(singleUnit.getSimpleUnitID(), ratesInfo, status);  | 
227  | 0  |         if (U_FAILURE(status)) return result;  | 
228  |  |  | 
229  |  |         // Prefix before power, because:  | 
230  |  |         // - square-kilometer to square-meter: (1000)^2  | 
231  |  |         // - square-kilometer to square-foot (approximate): (3.28*1000)^2  | 
232  | 0  |         singleFactor.applyPrefix(singleUnit.unitPrefix);  | 
233  |  |  | 
234  |  |         // Apply the power of the `dimensionality`  | 
235  | 0  |         singleFactor.power(singleUnit.dimensionality);  | 
236  |  | 
  | 
237  | 0  |         result.multiplyBy(singleFactor);  | 
238  | 0  |     }  | 
239  |  |  | 
240  | 0  |     return result;  | 
241  | 0  | }  | 
242  |  |  | 
243  |  | /**  | 
244  |  |  * Checks if the source unit and the target unit are simple. For example celsius or fahrenheit. But not  | 
245  |  |  * square-celsius or square-fahrenheit.  | 
246  |  |  *  | 
247  |  |  * NOTE:  | 
248  |  |  *  Empty unit means simple unit.  | 
249  |  |  *  | 
250  |  |  * In ICU4J, this is ConversionRates.checkSimpleUnit().  | 
251  |  |  */  | 
252  | 0  | UBool checkSimpleUnit(const MeasureUnitImpl &unit, UErrorCode &status) { | 
253  | 0  |     if (U_FAILURE(status)) return false;  | 
254  |  |  | 
255  | 0  |     if (unit.complexity != UMEASURE_UNIT_SINGLE) { | 
256  | 0  |         return false;  | 
257  | 0  |     }  | 
258  | 0  |     if (unit.singleUnits.length() == 0) { | 
259  |  |         // Empty units means simple unit.  | 
260  | 0  |         return true;  | 
261  | 0  |     }  | 
262  |  |  | 
263  | 0  |     auto singleUnit = *(unit.singleUnits[0]);  | 
264  |  | 
  | 
265  | 0  |     if (singleUnit.dimensionality != 1 || singleUnit.unitPrefix != UMEASURE_PREFIX_ONE) { | 
266  | 0  |         return false;  | 
267  | 0  |     }  | 
268  |  |  | 
269  | 0  |     return true;  | 
270  | 0  | }  | 
271  |  |  | 
272  |  | /**  | 
273  |  |  *  Extract conversion rate from `source` to `target`  | 
274  |  |  */  | 
275  |  | // In ICU4J, this function is partially inlined in the UnitsConverter constructor.  | 
276  |  | void loadConversionRate(ConversionRate &conversionRate, const MeasureUnitImpl &source,  | 
277  |  |                         const MeasureUnitImpl &target, Convertibility unitsState,  | 
278  | 0  |                         const ConversionRates &ratesInfo, UErrorCode &status) { | 
279  |  |     // Represents the conversion factor from the source to the target.  | 
280  | 0  |     Factor finalFactor;  | 
281  |  |  | 
282  |  |     // Represents the conversion factor from the source to the base unit that specified in the conversion  | 
283  |  |     // data which is considered as the root of the source and the target.  | 
284  | 0  |     Factor sourceToBase = loadCompoundFactor(source, ratesInfo, status);  | 
285  | 0  |     Factor targetToBase = loadCompoundFactor(target, ratesInfo, status);  | 
286  |  |  | 
287  |  |     // Merger Factors  | 
288  | 0  |     finalFactor.multiplyBy(sourceToBase);  | 
289  | 0  |     if (unitsState == Convertibility::CONVERTIBLE) { | 
290  | 0  |         finalFactor.divideBy(targetToBase);  | 
291  | 0  |     } else if (unitsState == Convertibility::RECIPROCAL) { | 
292  | 0  |         finalFactor.multiplyBy(targetToBase);  | 
293  | 0  |     } else { | 
294  | 0  |         status = UErrorCode::U_ARGUMENT_TYPE_MISMATCH;  | 
295  | 0  |         return;  | 
296  | 0  |     }  | 
297  |  |  | 
298  | 0  |     finalFactor.substituteConstants();  | 
299  |  | 
  | 
300  | 0  |     conversionRate.factorNum = finalFactor.factorNum;  | 
301  | 0  |     conversionRate.factorDen = finalFactor.factorDen;  | 
302  |  |  | 
303  |  |     // This code corresponds to ICU4J's ConversionRates.getOffset().  | 
304  |  |     // In case of simple units (such as: celsius or fahrenheit), offsets are considered.  | 
305  | 0  |     if (checkSimpleUnit(source, status) && checkSimpleUnit(target, status)) { | 
306  | 0  |         conversionRate.sourceOffset =  | 
307  | 0  |             sourceToBase.offset * sourceToBase.factorDen / sourceToBase.factorNum;  | 
308  | 0  |         conversionRate.targetOffset =  | 
309  | 0  |             targetToBase.offset * targetToBase.factorDen / targetToBase.factorNum;  | 
310  | 0  |     }  | 
311  |  |     // TODO(icu-units#127): should we consider failure if there's an offset for  | 
312  |  |     // a not-simple-unit? What about kilokelvin / kilocelsius?  | 
313  |  | 
  | 
314  | 0  |     conversionRate.reciprocal = unitsState == Convertibility::RECIPROCAL;  | 
315  | 0  | }  | 
316  |  |  | 
317  |  | struct UnitIndexAndDimension : UMemory { | 
318  |  |     int32_t index = 0;  | 
319  |  |     int32_t dimensionality = 0;  | 
320  |  |  | 
321  | 0  |     UnitIndexAndDimension(const SingleUnitImpl &singleUnit, int32_t multiplier) { | 
322  | 0  |         index = singleUnit.index;  | 
323  | 0  |         dimensionality = singleUnit.dimensionality * multiplier;  | 
324  | 0  |     }  | 
325  |  | };  | 
326  |  |  | 
327  |  | void mergeSingleUnitWithDimension(MaybeStackVector<UnitIndexAndDimension> &unitIndicesWithDimension,  | 
328  | 0  |                                   const SingleUnitImpl &shouldBeMerged, int32_t multiplier) { | 
329  | 0  |     for (int32_t i = 0; i < unitIndicesWithDimension.length(); i++) { | 
330  | 0  |         auto &unitWithIndex = *unitIndicesWithDimension[i];  | 
331  | 0  |         if (unitWithIndex.index == shouldBeMerged.index) { | 
332  | 0  |             unitWithIndex.dimensionality += shouldBeMerged.dimensionality * multiplier;  | 
333  | 0  |             return;  | 
334  | 0  |         }  | 
335  | 0  |     }  | 
336  |  |  | 
337  | 0  |     unitIndicesWithDimension.emplaceBack(shouldBeMerged, multiplier);  | 
338  | 0  | }  | 
339  |  |  | 
340  |  | void mergeUnitsAndDimensions(MaybeStackVector<UnitIndexAndDimension> &unitIndicesWithDimension,  | 
341  | 0  |                              const MeasureUnitImpl &shouldBeMerged, int32_t multiplier) { | 
342  | 0  |     for (int32_t unit_i = 0; unit_i < shouldBeMerged.singleUnits.length(); unit_i++) { | 
343  | 0  |         auto singleUnit = *shouldBeMerged.singleUnits[unit_i];  | 
344  | 0  |         mergeSingleUnitWithDimension(unitIndicesWithDimension, singleUnit, multiplier);  | 
345  | 0  |     }  | 
346  | 0  | }  | 
347  |  |  | 
348  | 0  | UBool checkAllDimensionsAreZeros(const MaybeStackVector<UnitIndexAndDimension> &dimensionVector) { | 
349  | 0  |     for (int32_t i = 0; i < dimensionVector.length(); i++) { | 
350  | 0  |         if (dimensionVector[i]->dimensionality != 0) { | 
351  | 0  |             return false;  | 
352  | 0  |         }  | 
353  | 0  |     }  | 
354  |  |  | 
355  | 0  |     return true;  | 
356  | 0  | }  | 
357  |  |  | 
358  |  | } // namespace  | 
359  |  |  | 
360  |  | // Conceptually, this modifies factor: factor *= baseStr^(signum*power).  | 
361  |  | //  | 
362  |  | // baseStr must be a known constant or a value that strToDouble() is able to  | 
363  |  | // parse.  | 
364  |  | void U_I18N_API addSingleFactorConstant(StringPiece baseStr, int32_t power, Signum signum,  | 
365  | 0  |                                         Factor &factor, UErrorCode &status) { | 
366  | 0  |     if (baseStr == "ft_to_m") { | 
367  | 0  |         factor.constantExponents[CONSTANT_FT2M] += power * signum;  | 
368  | 0  |     } else if (baseStr == "ft2_to_m2") { | 
369  | 0  |         factor.constantExponents[CONSTANT_FT2M] += 2 * power * signum;  | 
370  | 0  |     } else if (baseStr == "ft3_to_m3") { | 
371  | 0  |         factor.constantExponents[CONSTANT_FT2M] += 3 * power * signum;  | 
372  | 0  |     } else if (baseStr == "in3_to_m3") { | 
373  | 0  |         factor.constantExponents[CONSTANT_FT2M] += 3 * power * signum;  | 
374  | 0  |         factor.factorDen *= 12 * 12 * 12;  | 
375  | 0  |     } else if (baseStr == "gal_to_m3") { | 
376  | 0  |         factor.factorNum *= 231;  | 
377  | 0  |         factor.constantExponents[CONSTANT_FT2M] += 3 * power * signum;  | 
378  | 0  |         factor.factorDen *= 12 * 12 * 12;  | 
379  | 0  |     } else if (baseStr == "gal_imp_to_m3") { | 
380  | 0  |         factor.constantExponents[CONSTANT_GAL_IMP2M3] += power * signum;  | 
381  | 0  |     } else if (baseStr == "G") { | 
382  | 0  |         factor.constantExponents[CONSTANT_G] += power * signum;  | 
383  | 0  |     } else if (baseStr == "gravity") { | 
384  | 0  |         factor.constantExponents[CONSTANT_GRAVITY] += power * signum;  | 
385  | 0  |     } else if (baseStr == "lb_to_kg") { | 
386  | 0  |         factor.constantExponents[CONSTANT_LB2KG] += power * signum;  | 
387  | 0  |     } else if (baseStr == "glucose_molar_mass") { | 
388  | 0  |         factor.constantExponents[CONSTANT_GLUCOSE_MOLAR_MASS] += power * signum;  | 
389  | 0  |     } else if (baseStr == "item_per_mole") { | 
390  | 0  |         factor.constantExponents[CONSTANT_ITEM_PER_MOLE] += power * signum;  | 
391  | 0  |     } else if (baseStr == "PI") { | 
392  | 0  |         factor.constantExponents[CONSTANT_PI] += power * signum;  | 
393  | 0  |     } else { | 
394  | 0  |         if (signum == Signum::NEGATIVE) { | 
395  | 0  |             factor.factorDen *= std::pow(strToDouble(baseStr, status), power);  | 
396  | 0  |         } else { | 
397  | 0  |             factor.factorNum *= std::pow(strToDouble(baseStr, status), power);  | 
398  | 0  |         }  | 
399  | 0  |     }  | 
400  | 0  | }  | 
401  |  |  | 
402  |  | /**  | 
403  |  |  * Extracts the compound base unit of a compound unit (`source`). For example, if the source unit is  | 
404  |  |  * `square-mile-per-hour`, the compound base unit will be `square-meter-per-second`  | 
405  |  |  */  | 
406  |  | MeasureUnitImpl U_I18N_API extractCompoundBaseUnit(const MeasureUnitImpl &source,  | 
407  |  |                                                    const ConversionRates &conversionRates,  | 
408  | 0  |                                                    UErrorCode &status) { | 
409  |  | 
  | 
410  | 0  |     MeasureUnitImpl result;  | 
411  | 0  |     if (U_FAILURE(status)) return result;  | 
412  |  |  | 
413  | 0  |     const auto &singleUnits = source.singleUnits;  | 
414  | 0  |     for (int i = 0, count = singleUnits.length(); i < count; ++i) { | 
415  | 0  |         const auto &singleUnit = *singleUnits[i];  | 
416  |  |         // Extract `ConversionRateInfo` using the absolute unit. For example: in case of `square-meter`,  | 
417  |  |         // we will use `meter`  | 
418  | 0  |         const auto rateInfo =  | 
419  | 0  |             conversionRates.extractConversionInfo(singleUnit.getSimpleUnitID(), status);  | 
420  | 0  |         if (U_FAILURE(status)) { | 
421  | 0  |             return result;  | 
422  | 0  |         }  | 
423  | 0  |         if (rateInfo == nullptr) { | 
424  | 0  |             status = U_INTERNAL_PROGRAM_ERROR;  | 
425  | 0  |             return result;  | 
426  | 0  |         }  | 
427  |  |  | 
428  |  |         // Multiply the power of the singleUnit by the power of the baseUnit. For example, square-hectare  | 
429  |  |         // must be pow4-meter. (NOTE: hectare --> square-meter)  | 
430  | 0  |         auto baseUnits =  | 
431  | 0  |             MeasureUnitImpl::forIdentifier(rateInfo->baseUnit.toStringPiece(), status).singleUnits;  | 
432  | 0  |         for (int32_t i = 0, baseUnitsCount = baseUnits.length(); i < baseUnitsCount; i++) { | 
433  | 0  |             baseUnits[i]->dimensionality *= singleUnit.dimensionality;  | 
434  |  |             // TODO: Deal with SI-prefix  | 
435  | 0  |             result.appendSingleUnit(*baseUnits[i], status);  | 
436  |  | 
  | 
437  | 0  |             if (U_FAILURE(status)) { | 
438  | 0  |                 return result;  | 
439  | 0  |             }  | 
440  | 0  |         }  | 
441  | 0  |     }  | 
442  |  |  | 
443  | 0  |     return result;  | 
444  | 0  | }  | 
445  |  |  | 
446  |  | /**  | 
447  |  |  * Determine the convertibility between `source` and `target`.  | 
448  |  |  * For example:  | 
449  |  |  *    `meter` and `foot` are `CONVERTIBLE`.  | 
450  |  |  *    `meter-per-second` and `second-per-meter` are `RECIPROCAL`.  | 
451  |  |  *    `meter` and `pound` are `UNCONVERTIBLE`.  | 
452  |  |  *  | 
453  |  |  * NOTE:  | 
454  |  |  *    Only works with SINGLE and COMPOUND units. If one of the units is a  | 
455  |  |  *    MIXED unit, an error will occur. For more information, see UMeasureUnitComplexity.  | 
456  |  |  */  | 
457  |  | Convertibility U_I18N_API extractConvertibility(const MeasureUnitImpl &source,  | 
458  |  |                                                 const MeasureUnitImpl &target,  | 
459  |  |                                                 const ConversionRates &conversionRates,  | 
460  | 0  |                                                 UErrorCode &status) { | 
461  |  | 
  | 
462  | 0  |     if (source.complexity == UMeasureUnitComplexity::UMEASURE_UNIT_MIXED ||  | 
463  | 0  |         target.complexity == UMeasureUnitComplexity::UMEASURE_UNIT_MIXED) { | 
464  | 0  |         status = U_INTERNAL_PROGRAM_ERROR;  | 
465  | 0  |         return UNCONVERTIBLE;  | 
466  | 0  |     }  | 
467  |  |  | 
468  | 0  |     MeasureUnitImpl sourceBaseUnit = extractCompoundBaseUnit(source, conversionRates, status);  | 
469  | 0  |     MeasureUnitImpl targetBaseUnit = extractCompoundBaseUnit(target, conversionRates, status);  | 
470  | 0  |     if (U_FAILURE(status)) return UNCONVERTIBLE;  | 
471  |  |  | 
472  | 0  |     MaybeStackVector<UnitIndexAndDimension> convertible;  | 
473  | 0  |     MaybeStackVector<UnitIndexAndDimension> reciprocal;  | 
474  |  | 
  | 
475  | 0  |     mergeUnitsAndDimensions(convertible, sourceBaseUnit, 1);  | 
476  | 0  |     mergeUnitsAndDimensions(reciprocal, sourceBaseUnit, 1);  | 
477  |  | 
  | 
478  | 0  |     mergeUnitsAndDimensions(convertible, targetBaseUnit, -1);  | 
479  | 0  |     mergeUnitsAndDimensions(reciprocal, targetBaseUnit, 1);  | 
480  |  | 
  | 
481  | 0  |     if (checkAllDimensionsAreZeros(convertible)) { | 
482  | 0  |         return CONVERTIBLE;  | 
483  | 0  |     }  | 
484  |  |  | 
485  | 0  |     if (checkAllDimensionsAreZeros(reciprocal)) { | 
486  | 0  |         return RECIPROCAL;  | 
487  | 0  |     }  | 
488  |  |  | 
489  | 0  |     return UNCONVERTIBLE;  | 
490  | 0  | }  | 
491  |  |  | 
492  |  | UnitsConverter::UnitsConverter(const MeasureUnitImpl &source, const MeasureUnitImpl &target,  | 
493  |  |                                const ConversionRates &ratesInfo, UErrorCode &status)  | 
494  | 0  |     : conversionRate_(source.copy(status), target.copy(status)) { | 
495  | 0  |     this->init(ratesInfo, status);  | 
496  | 0  | }  | 
497  |  |  | 
498  |  | UnitsConverter::UnitsConverter(StringPiece sourceIdentifier, StringPiece targetIdentifier,  | 
499  |  |                                UErrorCode &status)  | 
500  | 0  |     : conversionRate_(MeasureUnitImpl::forIdentifier(sourceIdentifier, status),  | 
501  | 0  |                       MeasureUnitImpl::forIdentifier(targetIdentifier, status)) { | 
502  | 0  |     if (U_FAILURE(status)) { | 
503  | 0  |         return;  | 
504  | 0  |     }  | 
505  |  |  | 
506  | 0  |     ConversionRates ratesInfo(status);  | 
507  | 0  |     this->init(ratesInfo, status);  | 
508  | 0  | }  | 
509  |  |  | 
510  | 0  | void UnitsConverter::init(const ConversionRates &ratesInfo, UErrorCode &status) { | 
511  | 0  |     if (U_FAILURE(status)) { | 
512  | 0  |         return;  | 
513  | 0  |     }  | 
514  |  |  | 
515  | 0  |     if (this->conversionRate_.source.complexity == UMeasureUnitComplexity::UMEASURE_UNIT_MIXED ||  | 
516  | 0  |         this->conversionRate_.target.complexity == UMeasureUnitComplexity::UMEASURE_UNIT_MIXED) { | 
517  | 0  |         status = U_INTERNAL_PROGRAM_ERROR;  | 
518  | 0  |         return;  | 
519  | 0  |     }  | 
520  |  |  | 
521  | 0  |     Convertibility unitsState = extractConvertibility(this->conversionRate_.source,  | 
522  | 0  |                                                       this->conversionRate_.target, ratesInfo, status);  | 
523  | 0  |     if (U_FAILURE(status)) return;  | 
524  | 0  |     if (unitsState == Convertibility::UNCONVERTIBLE) { | 
525  | 0  |         status = U_INTERNAL_PROGRAM_ERROR;  | 
526  | 0  |         return;  | 
527  | 0  |     }  | 
528  |  |  | 
529  | 0  |     loadConversionRate(conversionRate_, conversionRate_.source, conversionRate_.target, unitsState,  | 
530  | 0  |                        ratesInfo, status);  | 
531  |  |                             | 
532  | 0  | }  | 
533  |  |  | 
534  |  | int32_t UnitsConverter::compareTwoUnits(const MeasureUnitImpl &firstUnit,  | 
535  |  |                                         const MeasureUnitImpl &secondUnit,  | 
536  | 0  |                                         const ConversionRates &ratesInfo, UErrorCode &status) { | 
537  | 0  |     if (U_FAILURE(status)) { | 
538  | 0  |         return 0;  | 
539  | 0  |     }  | 
540  |  |  | 
541  | 0  |     if (firstUnit.complexity == UMeasureUnitComplexity::UMEASURE_UNIT_MIXED ||  | 
542  | 0  |         secondUnit.complexity == UMeasureUnitComplexity::UMEASURE_UNIT_MIXED) { | 
543  | 0  |         status = U_INTERNAL_PROGRAM_ERROR;  | 
544  | 0  |         return 0;  | 
545  | 0  |     }  | 
546  |  |  | 
547  | 0  |     Convertibility unitsState = extractConvertibility(firstUnit, secondUnit, ratesInfo, status);  | 
548  | 0  |     if (U_FAILURE(status)) { | 
549  | 0  |         return 0;  | 
550  | 0  |     }  | 
551  |  |  | 
552  | 0  |     if (unitsState == Convertibility::UNCONVERTIBLE || unitsState == Convertibility::RECIPROCAL) { | 
553  | 0  |         status = U_INTERNAL_PROGRAM_ERROR;  | 
554  | 0  |         return 0;  | 
555  | 0  |     }  | 
556  |  |  | 
557  |  |     // Represents the conversion factor from the firstUnit to the base  | 
558  |  |     // unit that specified in the conversion data which is considered as  | 
559  |  |     // the root of the firstUnit and the secondUnit.  | 
560  | 0  |     Factor firstUnitToBase = loadCompoundFactor(firstUnit, ratesInfo, status);  | 
561  | 0  |     Factor secondUnitToBase = loadCompoundFactor(secondUnit, ratesInfo, status);  | 
562  |  | 
  | 
563  | 0  |     firstUnitToBase.substituteConstants();  | 
564  | 0  |     secondUnitToBase.substituteConstants();  | 
565  |  | 
  | 
566  | 0  |     double firstUnitToBaseConversionRate = firstUnitToBase.factorNum / firstUnitToBase.factorDen;  | 
567  | 0  |     double secondUnitToBaseConversionRate = secondUnitToBase.factorNum / secondUnitToBase.factorDen;  | 
568  |  | 
  | 
569  | 0  |     double diff = firstUnitToBaseConversionRate - secondUnitToBaseConversionRate;  | 
570  | 0  |     if (diff > 0) { | 
571  | 0  |         return 1;  | 
572  | 0  |     }  | 
573  |  |  | 
574  | 0  |     if (diff < 0) { | 
575  | 0  |         return -1;  | 
576  | 0  |     }  | 
577  |  |  | 
578  | 0  |     return 0;  | 
579  | 0  | }  | 
580  |  |  | 
581  | 0  | double UnitsConverter::convert(double inputValue) const { | 
582  | 0  |     double result =  | 
583  | 0  |         inputValue + conversionRate_.sourceOffset; // Reset the input to the target zero index.  | 
584  |  |     // Convert the quantity to from the source scale to the target scale.  | 
585  | 0  |     result *= conversionRate_.factorNum / conversionRate_.factorDen;  | 
586  |  | 
  | 
587  | 0  |     result -= conversionRate_.targetOffset; // Set the result to its index.  | 
588  |  | 
  | 
589  | 0  |     if (conversionRate_.reciprocal) { | 
590  | 0  |         if (result == 0) { | 
591  |  |             // TODO: demonstrate the resulting behaviour in tests... and figure  | 
592  |  |             // out desired behaviour. (Theoretical result should be infinity,  | 
593  |  |             // not 0.)  | 
594  | 0  |             return 0.0;  | 
595  | 0  |         }  | 
596  | 0  |         result = 1.0 / result;  | 
597  | 0  |     }  | 
598  |  |  | 
599  | 0  |     return result;  | 
600  | 0  | }  | 
601  |  |  | 
602  | 0  | double UnitsConverter::convertInverse(double inputValue) const { | 
603  | 0  |     double result = inputValue;  | 
604  | 0  |     if (conversionRate_.reciprocal) { | 
605  | 0  |         if (result == 0) { | 
606  |  |             // TODO: demonstrate the resulting behaviour in tests... and figure  | 
607  |  |             // out desired behaviour. (Theoretical result should be infinity,  | 
608  |  |             // not 0.)  | 
609  | 0  |             return 0.0;  | 
610  | 0  |         }  | 
611  | 0  |         result = 1.0 / result;  | 
612  | 0  |     }  | 
613  | 0  |     result += conversionRate_.targetOffset;  | 
614  | 0  |     result *= conversionRate_.factorDen / conversionRate_.factorNum;  | 
615  | 0  |     result -= conversionRate_.sourceOffset;  | 
616  | 0  |     return result;  | 
617  | 0  | }  | 
618  |  |  | 
619  | 0  | ConversionInfo UnitsConverter::getConversionInfo() const { | 
620  | 0  |     ConversionInfo result;  | 
621  | 0  |     result.conversionRate = conversionRate_.factorNum / conversionRate_.factorDen;  | 
622  | 0  |     result.offset =  | 
623  | 0  |         (conversionRate_.sourceOffset * (conversionRate_.factorNum / conversionRate_.factorDen)) -  | 
624  | 0  |         conversionRate_.targetOffset;  | 
625  | 0  |     result.reciprocal = conversionRate_.reciprocal;  | 
626  |  | 
  | 
627  | 0  |     return result;  | 
628  | 0  | }  | 
629  |  |  | 
630  |  | } // namespace units  | 
631  |  | U_NAMESPACE_END  | 
632  |  |  | 
633  |  | #endif /* #if !UCONFIG_NO_FORMATTING */  |