/src/icu/source/common/caniter.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /* |
4 | | ***************************************************************************** |
5 | | * Copyright (C) 1996-2015, International Business Machines Corporation and |
6 | | * others. All Rights Reserved. |
7 | | ***************************************************************************** |
8 | | */ |
9 | | |
10 | | #include "unicode/utypes.h" |
11 | | |
12 | | #if !UCONFIG_NO_NORMALIZATION |
13 | | |
14 | | #include "unicode/caniter.h" |
15 | | #include "unicode/normalizer2.h" |
16 | | #include "unicode/uchar.h" |
17 | | #include "unicode/uniset.h" |
18 | | #include "unicode/usetiter.h" |
19 | | #include "unicode/ustring.h" |
20 | | #include "unicode/utf16.h" |
21 | | #include "cmemory.h" |
22 | | #include "hash.h" |
23 | | #include "normalizer2impl.h" |
24 | | |
25 | | /** |
26 | | * This class allows one to iterate through all the strings that are canonically equivalent to a given |
27 | | * string. For example, here are some sample results: |
28 | | Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
29 | | 1: \u0041\u030A\u0064\u0307\u0327 |
30 | | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
31 | | 2: \u0041\u030A\u0064\u0327\u0307 |
32 | | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} |
33 | | 3: \u0041\u030A\u1E0B\u0327 |
34 | | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} |
35 | | 4: \u0041\u030A\u1E11\u0307 |
36 | | = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} |
37 | | 5: \u00C5\u0064\u0307\u0327 |
38 | | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
39 | | 6: \u00C5\u0064\u0327\u0307 |
40 | | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} |
41 | | 7: \u00C5\u1E0B\u0327 |
42 | | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} |
43 | | 8: \u00C5\u1E11\u0307 |
44 | | = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} |
45 | | 9: \u212B\u0064\u0307\u0327 |
46 | | = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
47 | | 10: \u212B\u0064\u0327\u0307 |
48 | | = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} |
49 | | 11: \u212B\u1E0B\u0327 |
50 | | = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} |
51 | | 12: \u212B\u1E11\u0307 |
52 | | = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} |
53 | | *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones, |
54 | | * since it has not been optimized for that situation. |
55 | | *@author M. Davis |
56 | | *@draft |
57 | | */ |
58 | | |
59 | | // public |
60 | | |
61 | | U_NAMESPACE_BEGIN |
62 | | |
63 | | // TODO: add boilerplate methods. |
64 | | |
65 | | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator) |
66 | | |
67 | | /** |
68 | | *@param source string to get results for |
69 | | */ |
70 | | CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) : |
71 | | pieces(NULL), |
72 | 0 | pieces_length(0), |
73 | | pieces_lengths(NULL), |
74 | | current(NULL), |
75 | 0 | current_length(0), |
76 | 0 | nfd(*Normalizer2::getNFDInstance(status)), |
77 | 0 | nfcImpl(*Normalizer2Factory::getNFCImpl(status)) |
78 | 0 | { |
79 | 0 | if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) { |
80 | 0 | setSource(sourceStr, status); |
81 | 0 | } |
82 | 0 | } |
83 | | |
84 | 0 | CanonicalIterator::~CanonicalIterator() { |
85 | 0 | cleanPieces(); |
86 | 0 | } |
87 | | |
88 | 0 | void CanonicalIterator::cleanPieces() { |
89 | 0 | int32_t i = 0; |
90 | 0 | if(pieces != NULL) { |
91 | 0 | for(i = 0; i < pieces_length; i++) { |
92 | 0 | if(pieces[i] != NULL) { |
93 | 0 | delete[] pieces[i]; |
94 | 0 | } |
95 | 0 | } |
96 | 0 | uprv_free(pieces); |
97 | 0 | pieces = NULL; |
98 | 0 | pieces_length = 0; |
99 | 0 | } |
100 | 0 | if(pieces_lengths != NULL) { |
101 | 0 | uprv_free(pieces_lengths); |
102 | 0 | pieces_lengths = NULL; |
103 | 0 | } |
104 | 0 | if(current != NULL) { |
105 | 0 | uprv_free(current); |
106 | 0 | current = NULL; |
107 | 0 | current_length = 0; |
108 | 0 | } |
109 | 0 | } |
110 | | |
111 | | /** |
112 | | *@return gets the source: NOTE: it is the NFD form of source |
113 | | */ |
114 | 0 | UnicodeString CanonicalIterator::getSource() { |
115 | 0 | return source; |
116 | 0 | } |
117 | | |
118 | | /** |
119 | | * Resets the iterator so that one can start again from the beginning. |
120 | | */ |
121 | 0 | void CanonicalIterator::reset() { |
122 | 0 | done = FALSE; |
123 | 0 | for (int i = 0; i < current_length; ++i) { |
124 | 0 | current[i] = 0; |
125 | 0 | } |
126 | 0 | } |
127 | | |
128 | | /** |
129 | | *@return the next string that is canonically equivalent. The value null is returned when |
130 | | * the iteration is done. |
131 | | */ |
132 | 0 | UnicodeString CanonicalIterator::next() { |
133 | 0 | int32_t i = 0; |
134 | |
|
135 | 0 | if (done) { |
136 | 0 | buffer.setToBogus(); |
137 | 0 | return buffer; |
138 | 0 | } |
139 | | |
140 | | // delete old contents |
141 | 0 | buffer.remove(); |
142 | | |
143 | | // construct return value |
144 | |
|
145 | 0 | for (i = 0; i < pieces_length; ++i) { |
146 | 0 | buffer.append(pieces[i][current[i]]); |
147 | 0 | } |
148 | | //String result = buffer.toString(); // not needed |
149 | | |
150 | | // find next value for next time |
151 | |
|
152 | 0 | for (i = current_length - 1; ; --i) { |
153 | 0 | if (i < 0) { |
154 | 0 | done = TRUE; |
155 | 0 | break; |
156 | 0 | } |
157 | 0 | current[i]++; |
158 | 0 | if (current[i] < pieces_lengths[i]) break; // got sequence |
159 | 0 | current[i] = 0; |
160 | 0 | } |
161 | 0 | return buffer; |
162 | 0 | } |
163 | | |
164 | | /** |
165 | | *@param set the source string to iterate against. This allows the same iterator to be used |
166 | | * while changing the source string, saving object creation. |
167 | | */ |
168 | 0 | void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) { |
169 | 0 | int32_t list_length = 0; |
170 | 0 | UChar32 cp = 0; |
171 | 0 | int32_t start = 0; |
172 | 0 | int32_t i = 0; |
173 | 0 | UnicodeString *list = NULL; |
174 | |
|
175 | 0 | nfd.normalize(newSource, source, status); |
176 | 0 | if(U_FAILURE(status)) { |
177 | 0 | return; |
178 | 0 | } |
179 | 0 | done = FALSE; |
180 | |
|
181 | 0 | cleanPieces(); |
182 | | |
183 | | // catch degenerate case |
184 | 0 | if (newSource.length() == 0) { |
185 | 0 | pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *)); |
186 | 0 | pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); |
187 | 0 | pieces_length = 1; |
188 | 0 | current = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); |
189 | 0 | current_length = 1; |
190 | 0 | if (pieces == NULL || pieces_lengths == NULL || current == NULL) { |
191 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
192 | 0 | goto CleanPartialInitialization; |
193 | 0 | } |
194 | 0 | current[0] = 0; |
195 | 0 | pieces[0] = new UnicodeString[1]; |
196 | 0 | pieces_lengths[0] = 1; |
197 | 0 | if (pieces[0] == 0) { |
198 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
199 | 0 | goto CleanPartialInitialization; |
200 | 0 | } |
201 | 0 | return; |
202 | 0 | } |
203 | | |
204 | | |
205 | 0 | list = new UnicodeString[source.length()]; |
206 | 0 | if (list == 0) { |
207 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
208 | 0 | goto CleanPartialInitialization; |
209 | 0 | } |
210 | | |
211 | | // i should initially be the number of code units at the |
212 | | // start of the string |
213 | 0 | i = U16_LENGTH(source.char32At(0)); |
214 | | // int32_t i = 1; |
215 | | // find the segments |
216 | | // This code iterates through the source string and |
217 | | // extracts segments that end up on a codepoint that |
218 | | // doesn't start any decompositions. (Analysis is done |
219 | | // on the NFD form - see above). |
220 | 0 | for (; i < source.length(); i += U16_LENGTH(cp)) { |
221 | 0 | cp = source.char32At(i); |
222 | 0 | if (nfcImpl.isCanonSegmentStarter(cp)) { |
223 | 0 | source.extract(start, i-start, list[list_length++]); // add up to i |
224 | 0 | start = i; |
225 | 0 | } |
226 | 0 | } |
227 | 0 | source.extract(start, i-start, list[list_length++]); // add last one |
228 | | |
229 | | |
230 | | // allocate the arrays, and find the strings that are CE to each segment |
231 | 0 | pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *)); |
232 | 0 | pieces_length = list_length; |
233 | 0 | pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); |
234 | 0 | current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); |
235 | 0 | current_length = list_length; |
236 | 0 | if (pieces == NULL || pieces_lengths == NULL || current == NULL) { |
237 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
238 | 0 | goto CleanPartialInitialization; |
239 | 0 | } |
240 | | |
241 | 0 | for (i = 0; i < current_length; i++) { |
242 | 0 | current[i] = 0; |
243 | 0 | } |
244 | | // for each segment, get all the combinations that can produce |
245 | | // it after NFD normalization |
246 | 0 | for (i = 0; i < pieces_length; ++i) { |
247 | | //if (PROGRESS) printf("SEGMENT\n"); |
248 | 0 | pieces[i] = getEquivalents(list[i], pieces_lengths[i], status); |
249 | 0 | } |
250 | |
|
251 | 0 | delete[] list; |
252 | 0 | return; |
253 | | // Common section to cleanup all local variables and reset object variables. |
254 | 0 | CleanPartialInitialization: |
255 | 0 | if (list != NULL) { |
256 | 0 | delete[] list; |
257 | 0 | } |
258 | 0 | cleanPieces(); |
259 | 0 | } |
260 | | |
261 | | /** |
262 | | * Dumb recursive implementation of permutation. |
263 | | * TODO: optimize |
264 | | * @param source the string to find permutations for |
265 | | * @return the results in a set. |
266 | | */ |
267 | 0 | void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) { |
268 | 0 | if(U_FAILURE(status)) { |
269 | 0 | return; |
270 | 0 | } |
271 | | //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source))); |
272 | 0 | int32_t i = 0; |
273 | | |
274 | | // optimization: |
275 | | // if zero or one character, just return a set with it |
276 | | // we check for length < 2 to keep from counting code points all the time |
277 | 0 | if (source.length() <= 2 && source.countChar32() <= 1) { |
278 | 0 | UnicodeString *toPut = new UnicodeString(source); |
279 | | /* test for NULL */ |
280 | 0 | if (toPut == 0) { |
281 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
282 | 0 | return; |
283 | 0 | } |
284 | 0 | result->put(source, toPut, status); |
285 | 0 | return; |
286 | 0 | } |
287 | | |
288 | | // otherwise iterate through the string, and recursively permute all the other characters |
289 | 0 | UChar32 cp; |
290 | 0 | Hashtable subpermute(status); |
291 | 0 | if(U_FAILURE(status)) { |
292 | 0 | return; |
293 | 0 | } |
294 | 0 | subpermute.setValueDeleter(uprv_deleteUObject); |
295 | |
|
296 | 0 | for (i = 0; i < source.length(); i += U16_LENGTH(cp)) { |
297 | 0 | cp = source.char32At(i); |
298 | 0 | const UHashElement *ne = NULL; |
299 | 0 | int32_t el = UHASH_FIRST; |
300 | 0 | UnicodeString subPermuteString = source; |
301 | | |
302 | | // optimization: |
303 | | // if the character is canonical combining class zero, |
304 | | // don't permute it |
305 | 0 | if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) { |
306 | | //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i))); |
307 | 0 | continue; |
308 | 0 | } |
309 | | |
310 | 0 | subpermute.removeAll(); |
311 | | |
312 | | // see what the permutations of the characters before and after this one are |
313 | | //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp))); |
314 | 0 | permute(subPermuteString.remove(i, U16_LENGTH(cp)), skipZeros, &subpermute, status); |
315 | | /* Test for buffer overflows */ |
316 | 0 | if(U_FAILURE(status)) { |
317 | 0 | return; |
318 | 0 | } |
319 | | // The upper remove is destructive. The question is do we have to make a copy, or we don't care about the contents |
320 | | // of source at this point. |
321 | | |
322 | | // prefix this character to all of them |
323 | 0 | ne = subpermute.nextElement(el); |
324 | 0 | while (ne != NULL) { |
325 | 0 | UnicodeString *permRes = (UnicodeString *)(ne->value.pointer); |
326 | 0 | UnicodeString *chStr = new UnicodeString(cp); |
327 | | //test for NULL |
328 | 0 | if (chStr == NULL) { |
329 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
330 | 0 | return; |
331 | 0 | } |
332 | 0 | chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer)); |
333 | | //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr)); |
334 | 0 | result->put(*chStr, chStr, status); |
335 | 0 | ne = subpermute.nextElement(el); |
336 | 0 | } |
337 | 0 | } |
338 | | //return result; |
339 | 0 | } |
340 | | |
341 | | // privates |
342 | | |
343 | | // we have a segment, in NFD. Find all the strings that are canonically equivalent to it. |
344 | 0 | UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) { |
345 | 0 | Hashtable result(status); |
346 | 0 | Hashtable permutations(status); |
347 | 0 | Hashtable basic(status); |
348 | 0 | if (U_FAILURE(status)) { |
349 | 0 | return 0; |
350 | 0 | } |
351 | 0 | result.setValueDeleter(uprv_deleteUObject); |
352 | 0 | permutations.setValueDeleter(uprv_deleteUObject); |
353 | 0 | basic.setValueDeleter(uprv_deleteUObject); |
354 | |
|
355 | 0 | UChar USeg[256]; |
356 | 0 | int32_t segLen = segment.extract(USeg, 256, status); |
357 | 0 | getEquivalents2(&basic, USeg, segLen, status); |
358 | | |
359 | | // now get all the permutations |
360 | | // add only the ones that are canonically equivalent |
361 | | // TODO: optimize by not permuting any class zero. |
362 | |
|
363 | 0 | const UHashElement *ne = NULL; |
364 | 0 | int32_t el = UHASH_FIRST; |
365 | | //Iterator it = basic.iterator(); |
366 | 0 | ne = basic.nextElement(el); |
367 | | //while (it.hasNext()) |
368 | 0 | while (ne != NULL) { |
369 | | //String item = (String) it.next(); |
370 | 0 | UnicodeString item = *((UnicodeString *)(ne->value.pointer)); |
371 | |
|
372 | 0 | permutations.removeAll(); |
373 | 0 | permute(item, CANITER_SKIP_ZEROES, &permutations, status); |
374 | 0 | const UHashElement *ne2 = NULL; |
375 | 0 | int32_t el2 = UHASH_FIRST; |
376 | | //Iterator it2 = permutations.iterator(); |
377 | 0 | ne2 = permutations.nextElement(el2); |
378 | | //while (it2.hasNext()) |
379 | 0 | while (ne2 != NULL) { |
380 | | //String possible = (String) it2.next(); |
381 | | //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer))); |
382 | 0 | UnicodeString possible(*((UnicodeString *)(ne2->value.pointer))); |
383 | 0 | UnicodeString attempt; |
384 | 0 | nfd.normalize(possible, attempt, status); |
385 | | |
386 | | // TODO: check if operator == is semanticaly the same as attempt.equals(segment) |
387 | 0 | if (attempt==segment) { |
388 | | //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible))); |
389 | | // TODO: use the hashtable just to catch duplicates - store strings directly (somehow). |
390 | 0 | result.put(possible, new UnicodeString(possible), status); //add(possible); |
391 | 0 | } else { |
392 | | //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible))); |
393 | 0 | } |
394 | |
|
395 | 0 | ne2 = permutations.nextElement(el2); |
396 | 0 | } |
397 | 0 | ne = basic.nextElement(el); |
398 | 0 | } |
399 | | |
400 | | /* Test for buffer overflows */ |
401 | 0 | if(U_FAILURE(status)) { |
402 | 0 | return 0; |
403 | 0 | } |
404 | | // convert into a String[] to clean up storage |
405 | | //String[] finalResult = new String[result.size()]; |
406 | 0 | UnicodeString *finalResult = NULL; |
407 | 0 | int32_t resultCount; |
408 | 0 | if((resultCount = result.count()) != 0) { |
409 | 0 | finalResult = new UnicodeString[resultCount]; |
410 | 0 | if (finalResult == 0) { |
411 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
412 | 0 | return NULL; |
413 | 0 | } |
414 | 0 | } |
415 | 0 | else { |
416 | 0 | status = U_ILLEGAL_ARGUMENT_ERROR; |
417 | 0 | return NULL; |
418 | 0 | } |
419 | | //result.toArray(finalResult); |
420 | 0 | result_len = 0; |
421 | 0 | el = UHASH_FIRST; |
422 | 0 | ne = result.nextElement(el); |
423 | 0 | while(ne != NULL) { |
424 | 0 | finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer)); |
425 | 0 | ne = result.nextElement(el); |
426 | 0 | } |
427 | | |
428 | |
|
429 | 0 | return finalResult; |
430 | 0 | } |
431 | | |
432 | 0 | Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) { |
433 | |
|
434 | 0 | if (U_FAILURE(status)) { |
435 | 0 | return NULL; |
436 | 0 | } |
437 | | |
438 | | //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment))); |
439 | | |
440 | 0 | UnicodeString toPut(segment, segLen); |
441 | |
|
442 | 0 | fillinResult->put(toPut, new UnicodeString(toPut), status); |
443 | |
|
444 | 0 | UnicodeSet starts; |
445 | | |
446 | | // cycle through all the characters |
447 | 0 | UChar32 cp; |
448 | 0 | for (int32_t i = 0; i < segLen; i += U16_LENGTH(cp)) { |
449 | | // see if any character is at the start of some decomposition |
450 | 0 | U16_GET(segment, 0, i, segLen, cp); |
451 | 0 | if (!nfcImpl.getCanonStartSet(cp, starts)) { |
452 | 0 | continue; |
453 | 0 | } |
454 | | // if so, see which decompositions match |
455 | 0 | UnicodeSetIterator iter(starts); |
456 | 0 | while (iter.next()) { |
457 | 0 | UChar32 cp2 = iter.getCodepoint(); |
458 | 0 | Hashtable remainder(status); |
459 | 0 | remainder.setValueDeleter(uprv_deleteUObject); |
460 | 0 | if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) { |
461 | 0 | continue; |
462 | 0 | } |
463 | | |
464 | | // there were some matches, so add all the possibilities to the set. |
465 | 0 | UnicodeString prefix(segment, i); |
466 | 0 | prefix += cp2; |
467 | |
|
468 | 0 | int32_t el = UHASH_FIRST; |
469 | 0 | const UHashElement *ne = remainder.nextElement(el); |
470 | 0 | while (ne != NULL) { |
471 | 0 | UnicodeString item = *((UnicodeString *)(ne->value.pointer)); |
472 | 0 | UnicodeString *toAdd = new UnicodeString(prefix); |
473 | | /* test for NULL */ |
474 | 0 | if (toAdd == 0) { |
475 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
476 | 0 | return NULL; |
477 | 0 | } |
478 | 0 | *toAdd += item; |
479 | 0 | fillinResult->put(*toAdd, toAdd, status); |
480 | | |
481 | | //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd))); |
482 | |
|
483 | 0 | ne = remainder.nextElement(el); |
484 | 0 | } |
485 | 0 | } |
486 | 0 | } |
487 | | |
488 | | /* Test for buffer overflows */ |
489 | 0 | if(U_FAILURE(status)) { |
490 | 0 | return NULL; |
491 | 0 | } |
492 | 0 | return fillinResult; |
493 | 0 | } |
494 | | |
495 | | /** |
496 | | * See if the decomposition of cp2 is at segment starting at segmentPos |
497 | | * (with canonical rearrangement!) |
498 | | * If so, take the remainder, and return the equivalents |
499 | | */ |
500 | 0 | Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { |
501 | | //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { |
502 | | //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp)))); |
503 | | //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos); |
504 | |
|
505 | 0 | if (U_FAILURE(status)) { |
506 | 0 | return NULL; |
507 | 0 | } |
508 | | |
509 | 0 | UnicodeString temp(comp); |
510 | 0 | int32_t inputLen=temp.length(); |
511 | 0 | UnicodeString decompString; |
512 | 0 | nfd.normalize(temp, decompString, status); |
513 | 0 | if (U_FAILURE(status)) { |
514 | 0 | return NULL; |
515 | 0 | } |
516 | 0 | if (decompString.isBogus()) { |
517 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
518 | 0 | return NULL; |
519 | 0 | } |
520 | 0 | const UChar *decomp=decompString.getBuffer(); |
521 | 0 | int32_t decompLen=decompString.length(); |
522 | | |
523 | | // See if it matches the start of segment (at segmentPos) |
524 | 0 | UBool ok = FALSE; |
525 | 0 | UChar32 cp; |
526 | 0 | int32_t decompPos = 0; |
527 | 0 | UChar32 decompCp; |
528 | 0 | U16_NEXT(decomp, decompPos, decompLen, decompCp); |
529 | |
|
530 | 0 | int32_t i = segmentPos; |
531 | 0 | while(i < segLen) { |
532 | 0 | U16_NEXT(segment, i, segLen, cp); |
533 | |
|
534 | 0 | if (cp == decompCp) { // if equal, eat another cp from decomp |
535 | | |
536 | | //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp)))); |
537 | |
|
538 | 0 | if (decompPos == decompLen) { // done, have all decomp characters! |
539 | 0 | temp.append(segment+i, segLen-i); |
540 | 0 | ok = TRUE; |
541 | 0 | break; |
542 | 0 | } |
543 | 0 | U16_NEXT(decomp, decompPos, decompLen, decompCp); |
544 | 0 | } else { |
545 | | //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp)))); |
546 | | |
547 | | // brute force approach |
548 | 0 | temp.append(cp); |
549 | | |
550 | | /* TODO: optimize |
551 | | // since we know that the classes are monotonically increasing, after zero |
552 | | // e.g. 0 5 7 9 0 3 |
553 | | // we can do an optimization |
554 | | // there are only a few cases that work: zero, less, same, greater |
555 | | // if both classes are the same, we fail |
556 | | // if the decomp class < the segment class, we fail |
557 | | |
558 | | segClass = getClass(cp); |
559 | | if (decompClass <= segClass) return null; |
560 | | */ |
561 | 0 | } |
562 | 0 | } |
563 | 0 | if (!ok) |
564 | 0 | return NULL; // we failed, characters left over |
565 | | |
566 | | //if (PROGRESS) printf("Matches\n"); |
567 | | |
568 | 0 | if (inputLen == temp.length()) { |
569 | 0 | fillinResult->put(UnicodeString(), new UnicodeString(), status); |
570 | 0 | return fillinResult; // succeed, but no remainder |
571 | 0 | } |
572 | | |
573 | | // brute force approach |
574 | | // check to make sure result is canonically equivalent |
575 | 0 | UnicodeString trial; |
576 | 0 | nfd.normalize(temp, trial, status); |
577 | 0 | if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) { |
578 | 0 | return NULL; |
579 | 0 | } |
580 | | |
581 | 0 | return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status); |
582 | 0 | } |
583 | | |
584 | | U_NAMESPACE_END |
585 | | |
586 | | #endif /* #if !UCONFIG_NO_NORMALIZATION */ |