/src/icu/source/common/dictbe.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /** |
4 | | ******************************************************************************* |
5 | | * Copyright (C) 2006-2016, International Business Machines Corporation |
6 | | * and others. All Rights Reserved. |
7 | | ******************************************************************************* |
8 | | */ |
9 | | |
10 | | #include <utility> |
11 | | |
12 | | #include "unicode/utypes.h" |
13 | | |
14 | | #if !UCONFIG_NO_BREAK_ITERATION |
15 | | |
16 | | #include "brkeng.h" |
17 | | #include "dictbe.h" |
18 | | #include "unicode/uniset.h" |
19 | | #include "unicode/chariter.h" |
20 | | #include "unicode/ubrk.h" |
21 | | #include "utracimp.h" |
22 | | #include "uvectr32.h" |
23 | | #include "uvector.h" |
24 | | #include "uassert.h" |
25 | | #include "unicode/normlzr.h" |
26 | | #include "cmemory.h" |
27 | | #include "dictionarydata.h" |
28 | | |
29 | | U_NAMESPACE_BEGIN |
30 | | |
31 | | /* |
32 | | ****************************************************************** |
33 | | */ |
34 | | |
35 | 0 | DictionaryBreakEngine::DictionaryBreakEngine() { |
36 | 0 | } |
37 | | |
38 | 0 | DictionaryBreakEngine::~DictionaryBreakEngine() { |
39 | 0 | } |
40 | | |
41 | | UBool |
42 | 0 | DictionaryBreakEngine::handles(UChar32 c) const { |
43 | 0 | return fSet.contains(c); |
44 | 0 | } |
45 | | |
46 | | int32_t |
47 | | DictionaryBreakEngine::findBreaks( UText *text, |
48 | | int32_t startPos, |
49 | | int32_t endPos, |
50 | | UVector32 &foundBreaks, |
51 | 0 | UErrorCode& status) const { |
52 | 0 | if (U_FAILURE(status)) return 0; |
53 | 0 | (void)startPos; // TODO: remove this param? |
54 | 0 | int32_t result = 0; |
55 | | |
56 | | // Find the span of characters included in the set. |
57 | | // The span to break begins at the current position in the text, and |
58 | | // extends towards the start or end of the text, depending on 'reverse'. |
59 | |
|
60 | 0 | int32_t start = (int32_t)utext_getNativeIndex(text); |
61 | 0 | int32_t current; |
62 | 0 | int32_t rangeStart; |
63 | 0 | int32_t rangeEnd; |
64 | 0 | UChar32 c = utext_current32(text); |
65 | 0 | while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) { |
66 | 0 | utext_next32(text); // TODO: recast loop for postincrement |
67 | 0 | c = utext_current32(text); |
68 | 0 | } |
69 | 0 | rangeStart = start; |
70 | 0 | rangeEnd = current; |
71 | 0 | result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks, status); |
72 | 0 | utext_setNativeIndex(text, current); |
73 | | |
74 | 0 | return result; |
75 | 0 | } |
76 | | |
77 | | void |
78 | 0 | DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) { |
79 | 0 | fSet = set; |
80 | | // Compact for caching |
81 | 0 | fSet.compact(); |
82 | 0 | } |
83 | | |
84 | | /* |
85 | | ****************************************************************** |
86 | | * PossibleWord |
87 | | */ |
88 | | |
89 | | // Helper class for improving readability of the Thai/Lao/Khmer word break |
90 | | // algorithm. The implementation is completely inline. |
91 | | |
92 | | // List size, limited by the maximum number of words in the dictionary |
93 | | // that form a nested sequence. |
94 | | static const int32_t POSSIBLE_WORD_LIST_MAX = 20; |
95 | | |
96 | | class PossibleWord { |
97 | | private: |
98 | | // list of word candidate lengths, in increasing length order |
99 | | // TODO: bytes would be sufficient for word lengths. |
100 | | int32_t count; // Count of candidates |
101 | | int32_t prefix; // The longest match with a dictionary word |
102 | | int32_t offset; // Offset in the text of these candidates |
103 | | int32_t mark; // The preferred candidate's offset |
104 | | int32_t current; // The candidate we're currently looking at |
105 | | int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units. |
106 | | int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points. |
107 | | |
108 | | public: |
109 | 0 | PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {} |
110 | 0 | ~PossibleWord() {} |
111 | | |
112 | | // Fill the list of candidates if needed, select the longest, and return the number found |
113 | | int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ); |
114 | | |
115 | | // Select the currently marked candidate, point after it in the text, and invalidate self |
116 | | int32_t acceptMarked( UText *text ); |
117 | | |
118 | | // Back up from the current candidate to the next shorter one; return TRUE if that exists |
119 | | // and point the text after it |
120 | | UBool backUp( UText *text ); |
121 | | |
122 | | // Return the longest prefix this candidate location shares with a dictionary word |
123 | | // Return value is in code points. |
124 | 0 | int32_t longestPrefix() { return prefix; } |
125 | | |
126 | | // Mark the current candidate as the one we like |
127 | 0 | void markCurrent() { mark = current; } |
128 | | |
129 | | // Get length in code points of the marked word. |
130 | 0 | int32_t markedCPLength() { return cpLengths[mark]; } |
131 | | }; |
132 | | |
133 | | |
134 | 0 | int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) { |
135 | | // TODO: If getIndex is too slow, use offset < 0 and add discardAll() |
136 | 0 | int32_t start = (int32_t)utext_getNativeIndex(text); |
137 | 0 | if (start != offset) { |
138 | 0 | offset = start; |
139 | 0 | count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix); |
140 | | // Dictionary leaves text after longest prefix, not longest word. Back up. |
141 | 0 | if (count <= 0) { |
142 | 0 | utext_setNativeIndex(text, start); |
143 | 0 | } |
144 | 0 | } |
145 | 0 | if (count > 0) { |
146 | 0 | utext_setNativeIndex(text, start+cuLengths[count-1]); |
147 | 0 | } |
148 | 0 | current = count-1; |
149 | 0 | mark = current; |
150 | 0 | return count; |
151 | 0 | } |
152 | | |
153 | | int32_t |
154 | 0 | PossibleWord::acceptMarked( UText *text ) { |
155 | 0 | utext_setNativeIndex(text, offset + cuLengths[mark]); |
156 | 0 | return cuLengths[mark]; |
157 | 0 | } |
158 | | |
159 | | |
160 | | UBool |
161 | 0 | PossibleWord::backUp( UText *text ) { |
162 | 0 | if (current > 0) { |
163 | 0 | utext_setNativeIndex(text, offset + cuLengths[--current]); |
164 | 0 | return TRUE; |
165 | 0 | } |
166 | 0 | return FALSE; |
167 | 0 | } |
168 | | |
169 | | /* |
170 | | ****************************************************************** |
171 | | * ThaiBreakEngine |
172 | | */ |
173 | | |
174 | | // How many words in a row are "good enough"? |
175 | | static const int32_t THAI_LOOKAHEAD = 3; |
176 | | |
177 | | // Will not combine a non-word with a preceding dictionary word longer than this |
178 | | static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3; |
179 | | |
180 | | // Will not combine a non-word that shares at least this much prefix with a |
181 | | // dictionary word, with a preceding word |
182 | | static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3; |
183 | | |
184 | | // Elision character |
185 | | static const int32_t THAI_PAIYANNOI = 0x0E2F; |
186 | | |
187 | | // Repeat character |
188 | | static const int32_t THAI_MAIYAMOK = 0x0E46; |
189 | | |
190 | | // Minimum word size |
191 | | static const int32_t THAI_MIN_WORD = 2; |
192 | | |
193 | | // Minimum number of characters for two words |
194 | | static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2; |
195 | | |
196 | | ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
197 | 0 | : DictionaryBreakEngine(), |
198 | 0 | fDictionary(adoptDictionary) |
199 | 0 | { |
200 | 0 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
201 | 0 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Thai"); |
202 | 0 | fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status); |
203 | 0 | if (U_SUCCESS(status)) { |
204 | 0 | setCharacters(fThaiWordSet); |
205 | 0 | } |
206 | 0 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status); |
207 | 0 | fMarkSet.add(0x0020); |
208 | 0 | fEndWordSet = fThaiWordSet; |
209 | 0 | fEndWordSet.remove(0x0E31); // MAI HAN-AKAT |
210 | 0 | fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
211 | 0 | fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK |
212 | 0 | fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
213 | 0 | fSuffixSet.add(THAI_PAIYANNOI); |
214 | 0 | fSuffixSet.add(THAI_MAIYAMOK); |
215 | | |
216 | | // Compact for caching. |
217 | 0 | fMarkSet.compact(); |
218 | 0 | fEndWordSet.compact(); |
219 | 0 | fBeginWordSet.compact(); |
220 | 0 | fSuffixSet.compact(); |
221 | 0 | UTRACE_EXIT_STATUS(status); |
222 | 0 | } |
223 | | |
224 | 0 | ThaiBreakEngine::~ThaiBreakEngine() { |
225 | 0 | delete fDictionary; |
226 | 0 | } |
227 | | |
228 | | int32_t |
229 | | ThaiBreakEngine::divideUpDictionaryRange( UText *text, |
230 | | int32_t rangeStart, |
231 | | int32_t rangeEnd, |
232 | | UVector32 &foundBreaks, |
233 | 0 | UErrorCode& status) const { |
234 | 0 | if (U_FAILURE(status)) return 0; |
235 | 0 | utext_setNativeIndex(text, rangeStart); |
236 | 0 | utext_moveIndex32(text, THAI_MIN_WORD_SPAN); |
237 | 0 | if (utext_getNativeIndex(text) >= rangeEnd) { |
238 | 0 | return 0; // Not enough characters for two words |
239 | 0 | } |
240 | 0 | utext_setNativeIndex(text, rangeStart); |
241 | | |
242 | |
|
243 | 0 | uint32_t wordsFound = 0; |
244 | 0 | int32_t cpWordLength = 0; // Word Length in Code Points. |
245 | 0 | int32_t cuWordLength = 0; // Word length in code units (UText native indexing) |
246 | 0 | int32_t current; |
247 | 0 | PossibleWord words[THAI_LOOKAHEAD]; |
248 | | |
249 | 0 | utext_setNativeIndex(text, rangeStart); |
250 | | |
251 | 0 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
252 | 0 | cpWordLength = 0; |
253 | 0 | cuWordLength = 0; |
254 | | |
255 | | // Look for candidate words at the current position |
256 | 0 | int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
257 | | |
258 | | // If we found exactly one, use that |
259 | 0 | if (candidates == 1) { |
260 | 0 | cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); |
261 | 0 | cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); |
262 | 0 | wordsFound += 1; |
263 | 0 | } |
264 | | // If there was more than one, see which one can take us forward the most words |
265 | 0 | else if (candidates > 1) { |
266 | | // If we're already at the end of the range, we're done |
267 | 0 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
268 | 0 | goto foundBest; |
269 | 0 | } |
270 | 0 | do { |
271 | 0 | if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
272 | | // Followed by another dictionary word; mark first word as a good candidate |
273 | 0 | words[wordsFound%THAI_LOOKAHEAD].markCurrent(); |
274 | | |
275 | | // If we're already at the end of the range, we're done |
276 | 0 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
277 | 0 | goto foundBest; |
278 | 0 | } |
279 | | |
280 | | // See if any of the possible second words is followed by a third word |
281 | 0 | do { |
282 | | // If we find a third word, stop right away |
283 | 0 | if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
284 | 0 | words[wordsFound % THAI_LOOKAHEAD].markCurrent(); |
285 | 0 | goto foundBest; |
286 | 0 | } |
287 | 0 | } |
288 | 0 | while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text)); |
289 | 0 | } |
290 | 0 | } |
291 | 0 | while (words[wordsFound % THAI_LOOKAHEAD].backUp(text)); |
292 | 0 | foundBest: |
293 | | // Set UText position to after the accepted word. |
294 | 0 | cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); |
295 | 0 | cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); |
296 | 0 | wordsFound += 1; |
297 | 0 | } |
298 | | |
299 | | // We come here after having either found a word or not. We look ahead to the |
300 | | // next word. If it's not a dictionary word, we will combine it with the word we |
301 | | // just found (if there is one), but only if the preceding word does not exceed |
302 | | // the threshold. |
303 | | // The text iterator should now be positioned at the end of the word we found. |
304 | | |
305 | 0 | UChar32 uc = 0; |
306 | 0 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) { |
307 | | // if it is a dictionary word, do nothing. If it isn't, then if there is |
308 | | // no preceding word, or the non-word shares less than the minimum threshold |
309 | | // of characters with a dictionary word, then scan to resynchronize |
310 | 0 | if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
311 | 0 | && (cuWordLength == 0 |
312 | 0 | || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) { |
313 | | // Look for a plausible word boundary |
314 | 0 | int32_t remaining = rangeEnd - (current+cuWordLength); |
315 | 0 | UChar32 pc; |
316 | 0 | int32_t chars = 0; |
317 | 0 | for (;;) { |
318 | 0 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
319 | 0 | pc = utext_next32(text); |
320 | 0 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
321 | 0 | chars += pcSize; |
322 | 0 | remaining -= pcSize; |
323 | 0 | if (remaining <= 0) { |
324 | 0 | break; |
325 | 0 | } |
326 | 0 | uc = utext_current32(text); |
327 | 0 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
328 | | // Maybe. See if it's in the dictionary. |
329 | | // NOTE: In the original Apple code, checked that the next |
330 | | // two characters after uc were not 0x0E4C THANTHAKHAT before |
331 | | // checking the dictionary. That is just a performance filter, |
332 | | // but it's not clear it's faster than checking the trie. |
333 | 0 | int32_t num_candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
334 | 0 | utext_setNativeIndex(text, current + cuWordLength + chars); |
335 | 0 | if (num_candidates > 0) { |
336 | 0 | break; |
337 | 0 | } |
338 | 0 | } |
339 | 0 | } |
340 | | |
341 | | // Bump the word count if there wasn't already one |
342 | 0 | if (cuWordLength <= 0) { |
343 | 0 | wordsFound += 1; |
344 | 0 | } |
345 | | |
346 | | // Update the length with the passed-over characters |
347 | 0 | cuWordLength += chars; |
348 | 0 | } |
349 | 0 | else { |
350 | | // Back up to where we were for next iteration |
351 | 0 | utext_setNativeIndex(text, current+cuWordLength); |
352 | 0 | } |
353 | 0 | } |
354 | | |
355 | | // Never stop before a combining mark. |
356 | 0 | int32_t currPos; |
357 | 0 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
358 | 0 | utext_next32(text); |
359 | 0 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
360 | 0 | } |
361 | | |
362 | | // Look ahead for possible suffixes if a dictionary word does not follow. |
363 | | // We do this in code rather than using a rule so that the heuristic |
364 | | // resynch continues to function. For example, one of the suffix characters |
365 | | // could be a typo in the middle of a word. |
366 | 0 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) { |
367 | 0 | if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
368 | 0 | && fSuffixSet.contains(uc = utext_current32(text))) { |
369 | 0 | if (uc == THAI_PAIYANNOI) { |
370 | 0 | if (!fSuffixSet.contains(utext_previous32(text))) { |
371 | | // Skip over previous end and PAIYANNOI |
372 | 0 | utext_next32(text); |
373 | 0 | int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text); |
374 | 0 | utext_next32(text); |
375 | 0 | cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex; // Add PAIYANNOI to word |
376 | 0 | uc = utext_current32(text); // Fetch next character |
377 | 0 | } |
378 | 0 | else { |
379 | | // Restore prior position |
380 | 0 | utext_next32(text); |
381 | 0 | } |
382 | 0 | } |
383 | 0 | if (uc == THAI_MAIYAMOK) { |
384 | 0 | if (utext_previous32(text) != THAI_MAIYAMOK) { |
385 | | // Skip over previous end and MAIYAMOK |
386 | 0 | utext_next32(text); |
387 | 0 | int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text); |
388 | 0 | utext_next32(text); |
389 | 0 | cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex; // Add MAIYAMOK to word |
390 | 0 | } |
391 | 0 | else { |
392 | | // Restore prior position |
393 | 0 | utext_next32(text); |
394 | 0 | } |
395 | 0 | } |
396 | 0 | } |
397 | 0 | else { |
398 | 0 | utext_setNativeIndex(text, current+cuWordLength); |
399 | 0 | } |
400 | 0 | } |
401 | | |
402 | | // Did we find a word on this iteration? If so, push it on the break stack |
403 | 0 | if (cuWordLength > 0) { |
404 | 0 | foundBreaks.push((current+cuWordLength), status); |
405 | 0 | } |
406 | 0 | } |
407 | | |
408 | | // Don't return a break for the end of the dictionary range if there is one there. |
409 | 0 | if (foundBreaks.peeki() >= rangeEnd) { |
410 | 0 | (void) foundBreaks.popi(); |
411 | 0 | wordsFound -= 1; |
412 | 0 | } |
413 | |
|
414 | 0 | return wordsFound; |
415 | 0 | } |
416 | | |
417 | | /* |
418 | | ****************************************************************** |
419 | | * LaoBreakEngine |
420 | | */ |
421 | | |
422 | | // How many words in a row are "good enough"? |
423 | | static const int32_t LAO_LOOKAHEAD = 3; |
424 | | |
425 | | // Will not combine a non-word with a preceding dictionary word longer than this |
426 | | static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3; |
427 | | |
428 | | // Will not combine a non-word that shares at least this much prefix with a |
429 | | // dictionary word, with a preceding word |
430 | | static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3; |
431 | | |
432 | | // Minimum word size |
433 | | static const int32_t LAO_MIN_WORD = 2; |
434 | | |
435 | | // Minimum number of characters for two words |
436 | | static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2; |
437 | | |
438 | | LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
439 | 0 | : DictionaryBreakEngine(), |
440 | 0 | fDictionary(adoptDictionary) |
441 | 0 | { |
442 | 0 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
443 | 0 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Laoo"); |
444 | 0 | fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]"), status); |
445 | 0 | if (U_SUCCESS(status)) { |
446 | 0 | setCharacters(fLaoWordSet); |
447 | 0 | } |
448 | 0 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status); |
449 | 0 | fMarkSet.add(0x0020); |
450 | 0 | fEndWordSet = fLaoWordSet; |
451 | 0 | fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels |
452 | 0 | fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters) |
453 | 0 | fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent) |
454 | 0 | fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels |
455 | | |
456 | | // Compact for caching. |
457 | 0 | fMarkSet.compact(); |
458 | 0 | fEndWordSet.compact(); |
459 | 0 | fBeginWordSet.compact(); |
460 | 0 | UTRACE_EXIT_STATUS(status); |
461 | 0 | } |
462 | | |
463 | 0 | LaoBreakEngine::~LaoBreakEngine() { |
464 | 0 | delete fDictionary; |
465 | 0 | } |
466 | | |
467 | | int32_t |
468 | | LaoBreakEngine::divideUpDictionaryRange( UText *text, |
469 | | int32_t rangeStart, |
470 | | int32_t rangeEnd, |
471 | | UVector32 &foundBreaks, |
472 | 0 | UErrorCode& status) const { |
473 | 0 | if (U_FAILURE(status)) return 0; |
474 | 0 | if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) { |
475 | 0 | return 0; // Not enough characters for two words |
476 | 0 | } |
477 | | |
478 | 0 | uint32_t wordsFound = 0; |
479 | 0 | int32_t cpWordLength = 0; |
480 | 0 | int32_t cuWordLength = 0; |
481 | 0 | int32_t current; |
482 | 0 | PossibleWord words[LAO_LOOKAHEAD]; |
483 | |
|
484 | 0 | utext_setNativeIndex(text, rangeStart); |
485 | |
|
486 | 0 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
487 | 0 | cuWordLength = 0; |
488 | 0 | cpWordLength = 0; |
489 | | |
490 | | // Look for candidate words at the current position |
491 | 0 | int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
492 | | |
493 | | // If we found exactly one, use that |
494 | 0 | if (candidates == 1) { |
495 | 0 | cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
496 | 0 | cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); |
497 | 0 | wordsFound += 1; |
498 | 0 | } |
499 | | // If there was more than one, see which one can take us forward the most words |
500 | 0 | else if (candidates > 1) { |
501 | | // If we're already at the end of the range, we're done |
502 | 0 | if (utext_getNativeIndex(text) >= rangeEnd) { |
503 | 0 | goto foundBest; |
504 | 0 | } |
505 | 0 | do { |
506 | 0 | if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
507 | | // Followed by another dictionary word; mark first word as a good candidate |
508 | 0 | words[wordsFound%LAO_LOOKAHEAD].markCurrent(); |
509 | | |
510 | | // If we're already at the end of the range, we're done |
511 | 0 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
512 | 0 | goto foundBest; |
513 | 0 | } |
514 | | |
515 | | // See if any of the possible second words is followed by a third word |
516 | 0 | do { |
517 | | // If we find a third word, stop right away |
518 | 0 | if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
519 | 0 | words[wordsFound % LAO_LOOKAHEAD].markCurrent(); |
520 | 0 | goto foundBest; |
521 | 0 | } |
522 | 0 | } |
523 | 0 | while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text)); |
524 | 0 | } |
525 | 0 | } |
526 | 0 | while (words[wordsFound % LAO_LOOKAHEAD].backUp(text)); |
527 | 0 | foundBest: |
528 | 0 | cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
529 | 0 | cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); |
530 | 0 | wordsFound += 1; |
531 | 0 | } |
532 | | |
533 | | // We come here after having either found a word or not. We look ahead to the |
534 | | // next word. If it's not a dictionary word, we will combine it with the word we |
535 | | // just found (if there is one), but only if the preceding word does not exceed |
536 | | // the threshold. |
537 | | // The text iterator should now be positioned at the end of the word we found. |
538 | 0 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) { |
539 | | // if it is a dictionary word, do nothing. If it isn't, then if there is |
540 | | // no preceding word, or the non-word shares less than the minimum threshold |
541 | | // of characters with a dictionary word, then scan to resynchronize |
542 | 0 | if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
543 | 0 | && (cuWordLength == 0 |
544 | 0 | || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) { |
545 | | // Look for a plausible word boundary |
546 | 0 | int32_t remaining = rangeEnd - (current + cuWordLength); |
547 | 0 | UChar32 pc; |
548 | 0 | UChar32 uc; |
549 | 0 | int32_t chars = 0; |
550 | 0 | for (;;) { |
551 | 0 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
552 | 0 | pc = utext_next32(text); |
553 | 0 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
554 | 0 | chars += pcSize; |
555 | 0 | remaining -= pcSize; |
556 | 0 | if (remaining <= 0) { |
557 | 0 | break; |
558 | 0 | } |
559 | 0 | uc = utext_current32(text); |
560 | 0 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
561 | | // Maybe. See if it's in the dictionary. |
562 | | // TODO: this looks iffy; compare with old code. |
563 | 0 | int32_t num_candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
564 | 0 | utext_setNativeIndex(text, current + cuWordLength + chars); |
565 | 0 | if (num_candidates > 0) { |
566 | 0 | break; |
567 | 0 | } |
568 | 0 | } |
569 | 0 | } |
570 | | |
571 | | // Bump the word count if there wasn't already one |
572 | 0 | if (cuWordLength <= 0) { |
573 | 0 | wordsFound += 1; |
574 | 0 | } |
575 | | |
576 | | // Update the length with the passed-over characters |
577 | 0 | cuWordLength += chars; |
578 | 0 | } |
579 | 0 | else { |
580 | | // Back up to where we were for next iteration |
581 | 0 | utext_setNativeIndex(text, current + cuWordLength); |
582 | 0 | } |
583 | 0 | } |
584 | | |
585 | | // Never stop before a combining mark. |
586 | 0 | int32_t currPos; |
587 | 0 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
588 | 0 | utext_next32(text); |
589 | 0 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
590 | 0 | } |
591 | | |
592 | | // Look ahead for possible suffixes if a dictionary word does not follow. |
593 | | // We do this in code rather than using a rule so that the heuristic |
594 | | // resynch continues to function. For example, one of the suffix characters |
595 | | // could be a typo in the middle of a word. |
596 | | // NOT CURRENTLY APPLICABLE TO LAO |
597 | | |
598 | | // Did we find a word on this iteration? If so, push it on the break stack |
599 | 0 | if (cuWordLength > 0) { |
600 | 0 | foundBreaks.push((current+cuWordLength), status); |
601 | 0 | } |
602 | 0 | } |
603 | | |
604 | | // Don't return a break for the end of the dictionary range if there is one there. |
605 | 0 | if (foundBreaks.peeki() >= rangeEnd) { |
606 | 0 | (void) foundBreaks.popi(); |
607 | 0 | wordsFound -= 1; |
608 | 0 | } |
609 | |
|
610 | 0 | return wordsFound; |
611 | 0 | } |
612 | | |
613 | | /* |
614 | | ****************************************************************** |
615 | | * BurmeseBreakEngine |
616 | | */ |
617 | | |
618 | | // How many words in a row are "good enough"? |
619 | | static const int32_t BURMESE_LOOKAHEAD = 3; |
620 | | |
621 | | // Will not combine a non-word with a preceding dictionary word longer than this |
622 | | static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3; |
623 | | |
624 | | // Will not combine a non-word that shares at least this much prefix with a |
625 | | // dictionary word, with a preceding word |
626 | | static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3; |
627 | | |
628 | | // Minimum word size |
629 | | static const int32_t BURMESE_MIN_WORD = 2; |
630 | | |
631 | | // Minimum number of characters for two words |
632 | | static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2; |
633 | | |
634 | | BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
635 | 0 | : DictionaryBreakEngine(), |
636 | 0 | fDictionary(adoptDictionary) |
637 | 0 | { |
638 | 0 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
639 | 0 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Mymr"); |
640 | 0 | fBurmeseWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]]"), status); |
641 | 0 | if (U_SUCCESS(status)) { |
642 | 0 | setCharacters(fBurmeseWordSet); |
643 | 0 | } |
644 | 0 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]&[:M:]]"), status); |
645 | 0 | fMarkSet.add(0x0020); |
646 | 0 | fEndWordSet = fBurmeseWordSet; |
647 | 0 | fBeginWordSet.add(0x1000, 0x102A); // basic consonants and independent vowels |
648 | | |
649 | | // Compact for caching. |
650 | 0 | fMarkSet.compact(); |
651 | 0 | fEndWordSet.compact(); |
652 | 0 | fBeginWordSet.compact(); |
653 | 0 | UTRACE_EXIT_STATUS(status); |
654 | 0 | } |
655 | | |
656 | 0 | BurmeseBreakEngine::~BurmeseBreakEngine() { |
657 | 0 | delete fDictionary; |
658 | 0 | } |
659 | | |
660 | | int32_t |
661 | | BurmeseBreakEngine::divideUpDictionaryRange( UText *text, |
662 | | int32_t rangeStart, |
663 | | int32_t rangeEnd, |
664 | | UVector32 &foundBreaks, |
665 | 0 | UErrorCode& status ) const { |
666 | 0 | if (U_FAILURE(status)) return 0; |
667 | 0 | if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) { |
668 | 0 | return 0; // Not enough characters for two words |
669 | 0 | } |
670 | | |
671 | 0 | uint32_t wordsFound = 0; |
672 | 0 | int32_t cpWordLength = 0; |
673 | 0 | int32_t cuWordLength = 0; |
674 | 0 | int32_t current; |
675 | 0 | PossibleWord words[BURMESE_LOOKAHEAD]; |
676 | |
|
677 | 0 | utext_setNativeIndex(text, rangeStart); |
678 | |
|
679 | 0 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
680 | 0 | cuWordLength = 0; |
681 | 0 | cpWordLength = 0; |
682 | | |
683 | | // Look for candidate words at the current position |
684 | 0 | int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
685 | | |
686 | | // If we found exactly one, use that |
687 | 0 | if (candidates == 1) { |
688 | 0 | cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); |
689 | 0 | cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); |
690 | 0 | wordsFound += 1; |
691 | 0 | } |
692 | | // If there was more than one, see which one can take us forward the most words |
693 | 0 | else if (candidates > 1) { |
694 | | // If we're already at the end of the range, we're done |
695 | 0 | if (utext_getNativeIndex(text) >= rangeEnd) { |
696 | 0 | goto foundBest; |
697 | 0 | } |
698 | 0 | do { |
699 | 0 | if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
700 | | // Followed by another dictionary word; mark first word as a good candidate |
701 | 0 | words[wordsFound%BURMESE_LOOKAHEAD].markCurrent(); |
702 | | |
703 | | // If we're already at the end of the range, we're done |
704 | 0 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
705 | 0 | goto foundBest; |
706 | 0 | } |
707 | | |
708 | | // See if any of the possible second words is followed by a third word |
709 | 0 | do { |
710 | | // If we find a third word, stop right away |
711 | 0 | if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
712 | 0 | words[wordsFound % BURMESE_LOOKAHEAD].markCurrent(); |
713 | 0 | goto foundBest; |
714 | 0 | } |
715 | 0 | } |
716 | 0 | while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text)); |
717 | 0 | } |
718 | 0 | } |
719 | 0 | while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text)); |
720 | 0 | foundBest: |
721 | 0 | cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); |
722 | 0 | cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); |
723 | 0 | wordsFound += 1; |
724 | 0 | } |
725 | | |
726 | | // We come here after having either found a word or not. We look ahead to the |
727 | | // next word. If it's not a dictionary word, we will combine it with the word we |
728 | | // just found (if there is one), but only if the preceding word does not exceed |
729 | | // the threshold. |
730 | | // The text iterator should now be positioned at the end of the word we found. |
731 | 0 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) { |
732 | | // if it is a dictionary word, do nothing. If it isn't, then if there is |
733 | | // no preceding word, or the non-word shares less than the minimum threshold |
734 | | // of characters with a dictionary word, then scan to resynchronize |
735 | 0 | if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
736 | 0 | && (cuWordLength == 0 |
737 | 0 | || words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) { |
738 | | // Look for a plausible word boundary |
739 | 0 | int32_t remaining = rangeEnd - (current + cuWordLength); |
740 | 0 | UChar32 pc; |
741 | 0 | UChar32 uc; |
742 | 0 | int32_t chars = 0; |
743 | 0 | for (;;) { |
744 | 0 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
745 | 0 | pc = utext_next32(text); |
746 | 0 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
747 | 0 | chars += pcSize; |
748 | 0 | remaining -= pcSize; |
749 | 0 | if (remaining <= 0) { |
750 | 0 | break; |
751 | 0 | } |
752 | 0 | uc = utext_current32(text); |
753 | 0 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
754 | | // Maybe. See if it's in the dictionary. |
755 | | // TODO: this looks iffy; compare with old code. |
756 | 0 | int32_t num_candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
757 | 0 | utext_setNativeIndex(text, current + cuWordLength + chars); |
758 | 0 | if (num_candidates > 0) { |
759 | 0 | break; |
760 | 0 | } |
761 | 0 | } |
762 | 0 | } |
763 | | |
764 | | // Bump the word count if there wasn't already one |
765 | 0 | if (cuWordLength <= 0) { |
766 | 0 | wordsFound += 1; |
767 | 0 | } |
768 | | |
769 | | // Update the length with the passed-over characters |
770 | 0 | cuWordLength += chars; |
771 | 0 | } |
772 | 0 | else { |
773 | | // Back up to where we were for next iteration |
774 | 0 | utext_setNativeIndex(text, current + cuWordLength); |
775 | 0 | } |
776 | 0 | } |
777 | | |
778 | | // Never stop before a combining mark. |
779 | 0 | int32_t currPos; |
780 | 0 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
781 | 0 | utext_next32(text); |
782 | 0 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
783 | 0 | } |
784 | | |
785 | | // Look ahead for possible suffixes if a dictionary word does not follow. |
786 | | // We do this in code rather than using a rule so that the heuristic |
787 | | // resynch continues to function. For example, one of the suffix characters |
788 | | // could be a typo in the middle of a word. |
789 | | // NOT CURRENTLY APPLICABLE TO BURMESE |
790 | | |
791 | | // Did we find a word on this iteration? If so, push it on the break stack |
792 | 0 | if (cuWordLength > 0) { |
793 | 0 | foundBreaks.push((current+cuWordLength), status); |
794 | 0 | } |
795 | 0 | } |
796 | | |
797 | | // Don't return a break for the end of the dictionary range if there is one there. |
798 | 0 | if (foundBreaks.peeki() >= rangeEnd) { |
799 | 0 | (void) foundBreaks.popi(); |
800 | 0 | wordsFound -= 1; |
801 | 0 | } |
802 | |
|
803 | 0 | return wordsFound; |
804 | 0 | } |
805 | | |
806 | | /* |
807 | | ****************************************************************** |
808 | | * KhmerBreakEngine |
809 | | */ |
810 | | |
811 | | // How many words in a row are "good enough"? |
812 | | static const int32_t KHMER_LOOKAHEAD = 3; |
813 | | |
814 | | // Will not combine a non-word with a preceding dictionary word longer than this |
815 | | static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3; |
816 | | |
817 | | // Will not combine a non-word that shares at least this much prefix with a |
818 | | // dictionary word, with a preceding word |
819 | | static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3; |
820 | | |
821 | | // Minimum word size |
822 | | static const int32_t KHMER_MIN_WORD = 2; |
823 | | |
824 | | // Minimum number of characters for two words |
825 | | static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2; |
826 | | |
827 | | KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
828 | 0 | : DictionaryBreakEngine(), |
829 | 0 | fDictionary(adoptDictionary) |
830 | 0 | { |
831 | 0 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
832 | 0 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Khmr"); |
833 | 0 | fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status); |
834 | 0 | if (U_SUCCESS(status)) { |
835 | 0 | setCharacters(fKhmerWordSet); |
836 | 0 | } |
837 | 0 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status); |
838 | 0 | fMarkSet.add(0x0020); |
839 | 0 | fEndWordSet = fKhmerWordSet; |
840 | 0 | fBeginWordSet.add(0x1780, 0x17B3); |
841 | | //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels |
842 | | //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word |
843 | | //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word |
844 | 0 | fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters |
845 | | //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels |
846 | | // fEndWordSet.remove(0x0E31); // MAI HAN-AKAT |
847 | | // fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
848 | | // fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK |
849 | | // fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
850 | | // fSuffixSet.add(THAI_PAIYANNOI); |
851 | | // fSuffixSet.add(THAI_MAIYAMOK); |
852 | | |
853 | | // Compact for caching. |
854 | 0 | fMarkSet.compact(); |
855 | 0 | fEndWordSet.compact(); |
856 | 0 | fBeginWordSet.compact(); |
857 | | // fSuffixSet.compact(); |
858 | 0 | UTRACE_EXIT_STATUS(status); |
859 | 0 | } |
860 | | |
861 | 0 | KhmerBreakEngine::~KhmerBreakEngine() { |
862 | 0 | delete fDictionary; |
863 | 0 | } |
864 | | |
865 | | int32_t |
866 | | KhmerBreakEngine::divideUpDictionaryRange( UText *text, |
867 | | int32_t rangeStart, |
868 | | int32_t rangeEnd, |
869 | | UVector32 &foundBreaks, |
870 | 0 | UErrorCode& status ) const { |
871 | 0 | if (U_FAILURE(status)) return 0; |
872 | 0 | if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) { |
873 | 0 | return 0; // Not enough characters for two words |
874 | 0 | } |
875 | | |
876 | 0 | uint32_t wordsFound = 0; |
877 | 0 | int32_t cpWordLength = 0; |
878 | 0 | int32_t cuWordLength = 0; |
879 | 0 | int32_t current; |
880 | 0 | PossibleWord words[KHMER_LOOKAHEAD]; |
881 | |
|
882 | 0 | utext_setNativeIndex(text, rangeStart); |
883 | |
|
884 | 0 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
885 | 0 | cuWordLength = 0; |
886 | 0 | cpWordLength = 0; |
887 | | |
888 | | // Look for candidate words at the current position |
889 | 0 | int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
890 | | |
891 | | // If we found exactly one, use that |
892 | 0 | if (candidates == 1) { |
893 | 0 | cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); |
894 | 0 | cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); |
895 | 0 | wordsFound += 1; |
896 | 0 | } |
897 | | |
898 | | // If there was more than one, see which one can take us forward the most words |
899 | 0 | else if (candidates > 1) { |
900 | | // If we're already at the end of the range, we're done |
901 | 0 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
902 | 0 | goto foundBest; |
903 | 0 | } |
904 | 0 | do { |
905 | 0 | if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
906 | | // Followed by another dictionary word; mark first word as a good candidate |
907 | 0 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); |
908 | | |
909 | | // If we're already at the end of the range, we're done |
910 | 0 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
911 | 0 | goto foundBest; |
912 | 0 | } |
913 | | |
914 | | // See if any of the possible second words is followed by a third word |
915 | 0 | do { |
916 | | // If we find a third word, stop right away |
917 | 0 | if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
918 | 0 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); |
919 | 0 | goto foundBest; |
920 | 0 | } |
921 | 0 | } |
922 | 0 | while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text)); |
923 | 0 | } |
924 | 0 | } |
925 | 0 | while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text)); |
926 | 0 | foundBest: |
927 | 0 | cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); |
928 | 0 | cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); |
929 | 0 | wordsFound += 1; |
930 | 0 | } |
931 | | |
932 | | // We come here after having either found a word or not. We look ahead to the |
933 | | // next word. If it's not a dictionary word, we will combine it with the word we |
934 | | // just found (if there is one), but only if the preceding word does not exceed |
935 | | // the threshold. |
936 | | // The text iterator should now be positioned at the end of the word we found. |
937 | 0 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) { |
938 | | // if it is a dictionary word, do nothing. If it isn't, then if there is |
939 | | // no preceding word, or the non-word shares less than the minimum threshold |
940 | | // of characters with a dictionary word, then scan to resynchronize |
941 | 0 | if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
942 | 0 | && (cuWordLength == 0 |
943 | 0 | || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) { |
944 | | // Look for a plausible word boundary |
945 | 0 | int32_t remaining = rangeEnd - (current+cuWordLength); |
946 | 0 | UChar32 pc; |
947 | 0 | UChar32 uc; |
948 | 0 | int32_t chars = 0; |
949 | 0 | for (;;) { |
950 | 0 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
951 | 0 | pc = utext_next32(text); |
952 | 0 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
953 | 0 | chars += pcSize; |
954 | 0 | remaining -= pcSize; |
955 | 0 | if (remaining <= 0) { |
956 | 0 | break; |
957 | 0 | } |
958 | 0 | uc = utext_current32(text); |
959 | 0 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
960 | | // Maybe. See if it's in the dictionary. |
961 | 0 | int32_t num_candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
962 | 0 | utext_setNativeIndex(text, current+cuWordLength+chars); |
963 | 0 | if (num_candidates > 0) { |
964 | 0 | break; |
965 | 0 | } |
966 | 0 | } |
967 | 0 | } |
968 | | |
969 | | // Bump the word count if there wasn't already one |
970 | 0 | if (cuWordLength <= 0) { |
971 | 0 | wordsFound += 1; |
972 | 0 | } |
973 | | |
974 | | // Update the length with the passed-over characters |
975 | 0 | cuWordLength += chars; |
976 | 0 | } |
977 | 0 | else { |
978 | | // Back up to where we were for next iteration |
979 | 0 | utext_setNativeIndex(text, current+cuWordLength); |
980 | 0 | } |
981 | 0 | } |
982 | | |
983 | | // Never stop before a combining mark. |
984 | 0 | int32_t currPos; |
985 | 0 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
986 | 0 | utext_next32(text); |
987 | 0 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
988 | 0 | } |
989 | | |
990 | | // Look ahead for possible suffixes if a dictionary word does not follow. |
991 | | // We do this in code rather than using a rule so that the heuristic |
992 | | // resynch continues to function. For example, one of the suffix characters |
993 | | // could be a typo in the middle of a word. |
994 | | // if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { |
995 | | // if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
996 | | // && fSuffixSet.contains(uc = utext_current32(text))) { |
997 | | // if (uc == KHMER_PAIYANNOI) { |
998 | | // if (!fSuffixSet.contains(utext_previous32(text))) { |
999 | | // // Skip over previous end and PAIYANNOI |
1000 | | // utext_next32(text); |
1001 | | // utext_next32(text); |
1002 | | // wordLength += 1; // Add PAIYANNOI to word |
1003 | | // uc = utext_current32(text); // Fetch next character |
1004 | | // } |
1005 | | // else { |
1006 | | // // Restore prior position |
1007 | | // utext_next32(text); |
1008 | | // } |
1009 | | // } |
1010 | | // if (uc == KHMER_MAIYAMOK) { |
1011 | | // if (utext_previous32(text) != KHMER_MAIYAMOK) { |
1012 | | // // Skip over previous end and MAIYAMOK |
1013 | | // utext_next32(text); |
1014 | | // utext_next32(text); |
1015 | | // wordLength += 1; // Add MAIYAMOK to word |
1016 | | // } |
1017 | | // else { |
1018 | | // // Restore prior position |
1019 | | // utext_next32(text); |
1020 | | // } |
1021 | | // } |
1022 | | // } |
1023 | | // else { |
1024 | | // utext_setNativeIndex(text, current+wordLength); |
1025 | | // } |
1026 | | // } |
1027 | | |
1028 | | // Did we find a word on this iteration? If so, push it on the break stack |
1029 | 0 | if (cuWordLength > 0) { |
1030 | 0 | foundBreaks.push((current+cuWordLength), status); |
1031 | 0 | } |
1032 | 0 | } |
1033 | | |
1034 | | // Don't return a break for the end of the dictionary range if there is one there. |
1035 | 0 | if (foundBreaks.peeki() >= rangeEnd) { |
1036 | 0 | (void) foundBreaks.popi(); |
1037 | 0 | wordsFound -= 1; |
1038 | 0 | } |
1039 | |
|
1040 | 0 | return wordsFound; |
1041 | 0 | } |
1042 | | |
1043 | | #if !UCONFIG_NO_NORMALIZATION |
1044 | | /* |
1045 | | ****************************************************************** |
1046 | | * CjkBreakEngine |
1047 | | */ |
1048 | | static const uint32_t kuint32max = 0xFFFFFFFF; |
1049 | | CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status) |
1050 | 0 | : DictionaryBreakEngine(), fDictionary(adoptDictionary) { |
1051 | 0 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
1052 | 0 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s", "Hani"); |
1053 | | // Korean dictionary only includes Hangul syllables |
1054 | 0 | fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status); |
1055 | 0 | fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status); |
1056 | 0 | fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status); |
1057 | 0 | fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status); |
1058 | 0 | nfkcNorm2 = Normalizer2::getNFKCInstance(status); |
1059 | |
|
1060 | 0 | if (U_SUCCESS(status)) { |
1061 | | // handle Korean and Japanese/Chinese using different dictionaries |
1062 | 0 | if (type == kKorean) { |
1063 | 0 | setCharacters(fHangulWordSet); |
1064 | 0 | } else { //Chinese and Japanese |
1065 | 0 | UnicodeSet cjSet; |
1066 | 0 | cjSet.addAll(fHanWordSet); |
1067 | 0 | cjSet.addAll(fKatakanaWordSet); |
1068 | 0 | cjSet.addAll(fHiraganaWordSet); |
1069 | 0 | cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK |
1070 | 0 | cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK |
1071 | 0 | setCharacters(cjSet); |
1072 | 0 | } |
1073 | 0 | } |
1074 | 0 | UTRACE_EXIT_STATUS(status); |
1075 | 0 | } |
1076 | | |
1077 | 0 | CjkBreakEngine::~CjkBreakEngine(){ |
1078 | 0 | delete fDictionary; |
1079 | 0 | } |
1080 | | |
1081 | | // The katakanaCost values below are based on the length frequencies of all |
1082 | | // katakana phrases in the dictionary |
1083 | | static const int32_t kMaxKatakanaLength = 8; |
1084 | | static const int32_t kMaxKatakanaGroupLength = 20; |
1085 | | static const uint32_t maxSnlp = 255; |
1086 | | |
1087 | 0 | static inline uint32_t getKatakanaCost(int32_t wordLength){ |
1088 | | //TODO: fill array with actual values from dictionary! |
1089 | 0 | static const uint32_t katakanaCost[kMaxKatakanaLength + 1] |
1090 | 0 | = {8192, 984, 408, 240, 204, 252, 300, 372, 480}; |
1091 | 0 | return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength]; |
1092 | 0 | } |
1093 | | |
1094 | 0 | static inline bool isKatakana(UChar32 value) { |
1095 | 0 | return (value >= 0x30A1 && value <= 0x30FE && value != 0x30FB) || |
1096 | 0 | (value >= 0xFF66 && value <= 0xFF9f); |
1097 | 0 | } |
1098 | | |
1099 | | |
1100 | | // Function for accessing internal utext flags. |
1101 | | // Replicates an internal UText function. |
1102 | | |
1103 | 0 | static inline int32_t utext_i32_flag(int32_t bitIndex) { |
1104 | 0 | return (int32_t)1 << bitIndex; |
1105 | 0 | } |
1106 | | |
1107 | | |
1108 | | /* |
1109 | | * @param text A UText representing the text |
1110 | | * @param rangeStart The start of the range of dictionary characters |
1111 | | * @param rangeEnd The end of the range of dictionary characters |
1112 | | * @param foundBreaks vector<int32> to receive the break positions |
1113 | | * @return The number of breaks found |
1114 | | */ |
1115 | | int32_t |
1116 | | CjkBreakEngine::divideUpDictionaryRange( UText *inText, |
1117 | | int32_t rangeStart, |
1118 | | int32_t rangeEnd, |
1119 | | UVector32 &foundBreaks, |
1120 | 0 | UErrorCode& status) const { |
1121 | 0 | if (U_FAILURE(status)) return 0; |
1122 | 0 | if (rangeStart >= rangeEnd) { |
1123 | 0 | return 0; |
1124 | 0 | } |
1125 | | |
1126 | | // UnicodeString version of input UText, NFKC normalized if necessary. |
1127 | 0 | UnicodeString inString; |
1128 | | |
1129 | | // inputMap[inStringIndex] = corresponding native index from UText inText. |
1130 | | // If NULL then mapping is 1:1 |
1131 | 0 | LocalPointer<UVector32> inputMap; |
1132 | | |
1133 | | // if UText has the input string as one contiguous UTF-16 chunk |
1134 | 0 | if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) && |
1135 | 0 | inText->chunkNativeStart <= rangeStart && |
1136 | 0 | inText->chunkNativeLimit >= rangeEnd && |
1137 | 0 | inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) { |
1138 | | |
1139 | | // Input UText is in one contiguous UTF-16 chunk. |
1140 | | // Use Read-only aliasing UnicodeString. |
1141 | 0 | inString.setTo(FALSE, |
1142 | 0 | inText->chunkContents + rangeStart - inText->chunkNativeStart, |
1143 | 0 | rangeEnd - rangeStart); |
1144 | 0 | } else { |
1145 | | // Copy the text from the original inText (UText) to inString (UnicodeString). |
1146 | | // Create a map from UnicodeString indices -> UText offsets. |
1147 | 0 | utext_setNativeIndex(inText, rangeStart); |
1148 | 0 | int32_t limit = rangeEnd; |
1149 | 0 | U_ASSERT(limit <= utext_nativeLength(inText)); |
1150 | 0 | if (limit > utext_nativeLength(inText)) { |
1151 | 0 | limit = (int32_t)utext_nativeLength(inText); |
1152 | 0 | } |
1153 | 0 | inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); |
1154 | 0 | if (U_FAILURE(status)) { |
1155 | 0 | return 0; |
1156 | 0 | } |
1157 | 0 | while (utext_getNativeIndex(inText) < limit) { |
1158 | 0 | int32_t nativePosition = (int32_t)utext_getNativeIndex(inText); |
1159 | 0 | UChar32 c = utext_next32(inText); |
1160 | 0 | U_ASSERT(c != U_SENTINEL); |
1161 | 0 | inString.append(c); |
1162 | 0 | while (inputMap->size() < inString.length()) { |
1163 | 0 | inputMap->addElement(nativePosition, status); |
1164 | 0 | } |
1165 | 0 | } |
1166 | 0 | inputMap->addElement(limit, status); |
1167 | 0 | } |
1168 | | |
1169 | | |
1170 | 0 | if (!nfkcNorm2->isNormalized(inString, status)) { |
1171 | 0 | UnicodeString normalizedInput; |
1172 | | // normalizedMap[normalizedInput position] == original UText position. |
1173 | 0 | LocalPointer<UVector32> normalizedMap(new UVector32(status), status); |
1174 | 0 | if (U_FAILURE(status)) { |
1175 | 0 | return 0; |
1176 | 0 | } |
1177 | | |
1178 | 0 | UnicodeString fragment; |
1179 | 0 | UnicodeString normalizedFragment; |
1180 | 0 | for (int32_t srcI = 0; srcI < inString.length();) { // Once per normalization chunk |
1181 | 0 | fragment.remove(); |
1182 | 0 | int32_t fragmentStartI = srcI; |
1183 | 0 | UChar32 c = inString.char32At(srcI); |
1184 | 0 | for (;;) { |
1185 | 0 | fragment.append(c); |
1186 | 0 | srcI = inString.moveIndex32(srcI, 1); |
1187 | 0 | if (srcI == inString.length()) { |
1188 | 0 | break; |
1189 | 0 | } |
1190 | 0 | c = inString.char32At(srcI); |
1191 | 0 | if (nfkcNorm2->hasBoundaryBefore(c)) { |
1192 | 0 | break; |
1193 | 0 | } |
1194 | 0 | } |
1195 | 0 | nfkcNorm2->normalize(fragment, normalizedFragment, status); |
1196 | 0 | normalizedInput.append(normalizedFragment); |
1197 | | |
1198 | | // Map every position in the normalized chunk to the start of the chunk |
1199 | | // in the original input. |
1200 | 0 | int32_t fragmentOriginalStart = inputMap.isValid() ? |
1201 | 0 | inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart; |
1202 | 0 | while (normalizedMap->size() < normalizedInput.length()) { |
1203 | 0 | normalizedMap->addElement(fragmentOriginalStart, status); |
1204 | 0 | if (U_FAILURE(status)) { |
1205 | 0 | break; |
1206 | 0 | } |
1207 | 0 | } |
1208 | 0 | } |
1209 | 0 | U_ASSERT(normalizedMap->size() == normalizedInput.length()); |
1210 | 0 | int32_t nativeEnd = inputMap.isValid() ? |
1211 | 0 | inputMap->elementAti(inString.length()) : inString.length()+rangeStart; |
1212 | 0 | normalizedMap->addElement(nativeEnd, status); |
1213 | |
|
1214 | 0 | inputMap = std::move(normalizedMap); |
1215 | 0 | inString = std::move(normalizedInput); |
1216 | 0 | } |
1217 | | |
1218 | 0 | int32_t numCodePts = inString.countChar32(); |
1219 | 0 | if (numCodePts != inString.length()) { |
1220 | | // There are supplementary characters in the input. |
1221 | | // The dictionary will produce boundary positions in terms of code point indexes, |
1222 | | // not in terms of code unit string indexes. |
1223 | | // Use the inputMap mechanism to take care of this in addition to indexing differences |
1224 | | // from normalization and/or UTF-8 input. |
1225 | 0 | UBool hadExistingMap = inputMap.isValid(); |
1226 | 0 | if (!hadExistingMap) { |
1227 | 0 | inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); |
1228 | 0 | if (U_FAILURE(status)) { |
1229 | 0 | return 0; |
1230 | 0 | } |
1231 | 0 | } |
1232 | 0 | int32_t cpIdx = 0; |
1233 | 0 | for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) { |
1234 | 0 | U_ASSERT(cuIdx >= cpIdx); |
1235 | 0 | if (hadExistingMap) { |
1236 | 0 | inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx); |
1237 | 0 | } else { |
1238 | 0 | inputMap->addElement(cuIdx+rangeStart, status); |
1239 | 0 | } |
1240 | 0 | cpIdx++; |
1241 | 0 | if (cuIdx == inString.length()) { |
1242 | 0 | break; |
1243 | 0 | } |
1244 | 0 | } |
1245 | 0 | } |
1246 | | |
1247 | | // bestSnlp[i] is the snlp of the best segmentation of the first i |
1248 | | // code points in the range to be matched. |
1249 | 0 | UVector32 bestSnlp(numCodePts + 1, status); |
1250 | 0 | bestSnlp.addElement(0, status); |
1251 | 0 | for(int32_t i = 1; i <= numCodePts; i++) { |
1252 | 0 | bestSnlp.addElement(kuint32max, status); |
1253 | 0 | } |
1254 | | |
1255 | | |
1256 | | // prev[i] is the index of the last CJK code point in the previous word in |
1257 | | // the best segmentation of the first i characters. |
1258 | 0 | UVector32 prev(numCodePts + 1, status); |
1259 | 0 | for(int32_t i = 0; i <= numCodePts; i++){ |
1260 | 0 | prev.addElement(-1, status); |
1261 | 0 | } |
1262 | |
|
1263 | 0 | const int32_t maxWordSize = 20; |
1264 | 0 | UVector32 values(numCodePts, status); |
1265 | 0 | values.setSize(numCodePts); |
1266 | 0 | UVector32 lengths(numCodePts, status); |
1267 | 0 | lengths.setSize(numCodePts); |
1268 | |
|
1269 | 0 | UText fu = UTEXT_INITIALIZER; |
1270 | 0 | utext_openUnicodeString(&fu, &inString, &status); |
1271 | | |
1272 | | // Dynamic programming to find the best segmentation. |
1273 | | |
1274 | | // In outer loop, i is the code point index, |
1275 | | // ix is the corresponding string (code unit) index. |
1276 | | // They differ when the string contains supplementary characters. |
1277 | 0 | int32_t ix = 0; |
1278 | 0 | bool is_prev_katakana = false; |
1279 | 0 | for (int32_t i = 0; i < numCodePts; ++i, ix = inString.moveIndex32(ix, 1)) { |
1280 | 0 | if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) { |
1281 | 0 | continue; |
1282 | 0 | } |
1283 | | |
1284 | 0 | int32_t count; |
1285 | 0 | utext_setNativeIndex(&fu, ix); |
1286 | 0 | count = fDictionary->matches(&fu, maxWordSize, numCodePts, |
1287 | 0 | NULL, lengths.getBuffer(), values.getBuffer(), NULL); |
1288 | | // Note: lengths is filled with code point lengths |
1289 | | // The NULL parameter is the ignored code unit lengths. |
1290 | | |
1291 | | // if there are no single character matches found in the dictionary |
1292 | | // starting with this character, treat character as a 1-character word |
1293 | | // with the highest value possible, i.e. the least likely to occur. |
1294 | | // Exclude Korean characters from this treatment, as they should be left |
1295 | | // together by default. |
1296 | 0 | if ((count == 0 || lengths.elementAti(0) != 1) && |
1297 | 0 | !fHangulWordSet.contains(inString.char32At(ix))) { |
1298 | 0 | values.setElementAt(maxSnlp, count); // 255 |
1299 | 0 | lengths.setElementAt(1, count++); |
1300 | 0 | } |
1301 | |
|
1302 | 0 | for (int32_t j = 0; j < count; j++) { |
1303 | 0 | uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j); |
1304 | 0 | int32_t ln_j_i = lengths.elementAti(j) + i; |
1305 | 0 | if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) { |
1306 | 0 | bestSnlp.setElementAt(newSnlp, ln_j_i); |
1307 | 0 | prev.setElementAt(i, ln_j_i); |
1308 | 0 | } |
1309 | 0 | } |
1310 | | |
1311 | | // In Japanese, |
1312 | | // Katakana word in single character is pretty rare. So we apply |
1313 | | // the following heuristic to Katakana: any continuous run of Katakana |
1314 | | // characters is considered a candidate word with a default cost |
1315 | | // specified in the katakanaCost table according to its length. |
1316 | |
|
1317 | 0 | bool is_katakana = isKatakana(inString.char32At(ix)); |
1318 | 0 | int32_t katakanaRunLength = 1; |
1319 | 0 | if (!is_prev_katakana && is_katakana) { |
1320 | 0 | int32_t j = inString.moveIndex32(ix, 1); |
1321 | | // Find the end of the continuous run of Katakana characters |
1322 | 0 | while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength && |
1323 | 0 | isKatakana(inString.char32At(j))) { |
1324 | 0 | j = inString.moveIndex32(j, 1); |
1325 | 0 | katakanaRunLength++; |
1326 | 0 | } |
1327 | 0 | if (katakanaRunLength < kMaxKatakanaGroupLength) { |
1328 | 0 | uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength); |
1329 | 0 | if (newSnlp < (uint32_t)bestSnlp.elementAti(i+katakanaRunLength)) { |
1330 | 0 | bestSnlp.setElementAt(newSnlp, i+katakanaRunLength); |
1331 | 0 | prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i; |
1332 | 0 | } |
1333 | 0 | } |
1334 | 0 | } |
1335 | 0 | is_prev_katakana = is_katakana; |
1336 | 0 | } |
1337 | 0 | utext_close(&fu); |
1338 | | |
1339 | | // Start pushing the optimal offset index into t_boundary (t for tentative). |
1340 | | // prev[numCodePts] is guaranteed to be meaningful. |
1341 | | // We'll first push in the reverse order, i.e., |
1342 | | // t_boundary[0] = numCodePts, and afterwards do a swap. |
1343 | 0 | UVector32 t_boundary(numCodePts+1, status); |
1344 | |
|
1345 | 0 | int32_t numBreaks = 0; |
1346 | | // No segmentation found, set boundary to end of range |
1347 | 0 | if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) { |
1348 | 0 | t_boundary.addElement(numCodePts, status); |
1349 | 0 | numBreaks++; |
1350 | 0 | } else { |
1351 | 0 | for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) { |
1352 | 0 | t_boundary.addElement(i, status); |
1353 | 0 | numBreaks++; |
1354 | 0 | } |
1355 | 0 | U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0); |
1356 | 0 | } |
1357 | | |
1358 | | // Add a break for the start of the dictionary range if there is not one |
1359 | | // there already. |
1360 | 0 | if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) { |
1361 | 0 | t_boundary.addElement(0, status); |
1362 | 0 | numBreaks++; |
1363 | 0 | } |
1364 | | |
1365 | | // Now that we're done, convert positions in t_boundary[] (indices in |
1366 | | // the normalized input string) back to indices in the original input UText |
1367 | | // while reversing t_boundary and pushing values to foundBreaks. |
1368 | 0 | int32_t prevCPPos = -1; |
1369 | 0 | int32_t prevUTextPos = -1; |
1370 | 0 | for (int32_t i = numBreaks-1; i >= 0; i--) { |
1371 | 0 | int32_t cpPos = t_boundary.elementAti(i); |
1372 | 0 | U_ASSERT(cpPos > prevCPPos); |
1373 | 0 | int32_t utextPos = inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart; |
1374 | 0 | U_ASSERT(utextPos >= prevUTextPos); |
1375 | 0 | if (utextPos > prevUTextPos) { |
1376 | | // Boundaries are added to foundBreaks output in ascending order. |
1377 | 0 | U_ASSERT(foundBreaks.size() == 0 || foundBreaks.peeki() < utextPos); |
1378 | 0 | foundBreaks.push(utextPos, status); |
1379 | 0 | } else { |
1380 | | // Normalization expanded the input text, the dictionary found a boundary |
1381 | | // within the expansion, giving two boundaries with the same index in the |
1382 | | // original text. Ignore the second. See ticket #12918. |
1383 | 0 | --numBreaks; |
1384 | 0 | } |
1385 | 0 | prevCPPos = cpPos; |
1386 | 0 | prevUTextPos = utextPos; |
1387 | 0 | } |
1388 | 0 | (void)prevCPPos; // suppress compiler warnings about unused variable |
1389 | | |
1390 | | // inString goes out of scope |
1391 | | // inputMap goes out of scope |
1392 | 0 | return numBreaks; |
1393 | 0 | } |
1394 | | #endif |
1395 | | |
1396 | | U_NAMESPACE_END |
1397 | | |
1398 | | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |
1399 | | |