Coverage Report

Created: 2025-06-24 06:43

/src/icu/source/common/rbbi.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2016 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
/*
4
***************************************************************************
5
*   Copyright (C) 1999-2016 International Business Machines Corporation
6
*   and others. All rights reserved.
7
***************************************************************************
8
*/
9
//
10
//  file:  rbbi.cpp  Contains the implementation of the rule based break iterator
11
//                   runtime engine and the API implementation for
12
//                   class RuleBasedBreakIterator
13
//
14
15
#include "utypeinfo.h"  // for 'typeid' to work
16
17
#include "unicode/utypes.h"
18
19
#if !UCONFIG_NO_BREAK_ITERATION
20
21
#include <cinttypes>
22
23
#include "unicode/rbbi.h"
24
#include "unicode/schriter.h"
25
#include "unicode/uchriter.h"
26
#include "unicode/uclean.h"
27
#include "unicode/udata.h"
28
29
#include "brkeng.h"
30
#include "ucln_cmn.h"
31
#include "cmemory.h"
32
#include "cstring.h"
33
#include "localsvc.h"
34
#include "rbbidata.h"
35
#include "rbbi_cache.h"
36
#include "rbbirb.h"
37
#include "uassert.h"
38
#include "umutex.h"
39
#include "uvectr32.h"
40
41
#ifdef RBBI_DEBUG
42
static UBool gTrace = FALSE;
43
#endif
44
45
U_NAMESPACE_BEGIN
46
47
// The state number of the starting state
48
constexpr int32_t START_STATE = 1;
49
50
// The state-transition value indicating "stop"
51
constexpr int32_t STOP_STATE = 0;
52
53
54
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator)
55
56
57
//=======================================================================
58
// constructors
59
//=======================================================================
60
61
/**
62
 * Constructs a RuleBasedBreakIterator that uses the already-created
63
 * tables object that is passed in as a parameter.
64
 */
65
RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status)
66
0
 : fSCharIter(UnicodeString())
67
0
{
68
0
    init(status);
69
0
    fData = new RBBIDataWrapper(data, status); // status checked in constructor
70
0
    if (U_FAILURE(status)) {return;}
71
0
    if(fData == nullptr) {
72
0
        status = U_MEMORY_ALLOCATION_ERROR;
73
0
        return;
74
0
    }
75
0
    if (fData->fForwardTable->fLookAheadResultsSize > 0) {
76
0
        fLookAheadMatches = static_cast<int32_t *>(
77
0
            uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t)));
78
0
        if (fLookAheadMatches == nullptr) {
79
0
            status = U_MEMORY_ALLOCATION_ERROR;
80
0
            return;
81
0
        }
82
0
    }
83
0
}
84
85
//
86
//  Construct from precompiled binary rules (tables).  This constructor is public API,
87
//  taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules().
88
//
89
RuleBasedBreakIterator::RuleBasedBreakIterator(const uint8_t *compiledRules,
90
                       uint32_t       ruleLength,
91
                       UErrorCode     &status)
92
0
 : fSCharIter(UnicodeString())
93
0
{
94
0
    init(status);
95
0
    if (U_FAILURE(status)) {
96
0
        return;
97
0
    }
98
0
    if (compiledRules == NULL || ruleLength < sizeof(RBBIDataHeader)) {
99
0
        status = U_ILLEGAL_ARGUMENT_ERROR;
100
0
        return;
101
0
    }
102
0
    const RBBIDataHeader *data = (const RBBIDataHeader *)compiledRules;
103
0
    if (data->fLength > ruleLength) {
104
0
        status = U_ILLEGAL_ARGUMENT_ERROR;
105
0
        return;
106
0
    }
107
0
    fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status);
108
0
    if (U_FAILURE(status)) {return;}
109
0
    if(fData == nullptr) {
110
0
        status = U_MEMORY_ALLOCATION_ERROR;
111
0
        return;
112
0
    }
113
0
    if (fData->fForwardTable->fLookAheadResultsSize > 0) {
114
0
        fLookAheadMatches = static_cast<int32_t *>(
115
0
            uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t)));
116
0
        if (fLookAheadMatches == nullptr) {
117
0
            status = U_MEMORY_ALLOCATION_ERROR;
118
0
            return;
119
0
        }
120
0
    }
121
0
}
122
123
124
//-------------------------------------------------------------------------------
125
//
126
//   Constructor   from a UDataMemory handle to precompiled break rules
127
//                 stored in an ICU data file.
128
//
129
//-------------------------------------------------------------------------------
130
RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status)
131
0
 : fSCharIter(UnicodeString())
132
0
{
133
0
    init(status);
134
0
    fData = new RBBIDataWrapper(udm, status); // status checked in constructor
135
0
    if (U_FAILURE(status)) {return;}
136
0
    if(fData == nullptr) {
137
0
        status = U_MEMORY_ALLOCATION_ERROR;
138
0
        return;
139
0
    }
140
0
    if (fData->fForwardTable->fLookAheadResultsSize > 0) {
141
0
        fLookAheadMatches = static_cast<int32_t *>(
142
0
            uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t)));
143
0
        if (fLookAheadMatches == nullptr) {
144
0
            status = U_MEMORY_ALLOCATION_ERROR;
145
0
            return;
146
0
        }
147
0
    }
148
0
}
149
150
151
152
//-------------------------------------------------------------------------------
153
//
154
//   Constructor       from a set of rules supplied as a string.
155
//
156
//-------------------------------------------------------------------------------
157
RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString  &rules,
158
                                                UParseError          &parseError,
159
                                                UErrorCode           &status)
160
0
 : fSCharIter(UnicodeString())
161
0
{
162
0
    init(status);
163
0
    if (U_FAILURE(status)) {return;}
164
0
    RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *)
165
0
        RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status);
166
    // Note:  This is a bit awkward.  The RBBI ruleBuilder has a factory method that
167
    //        creates and returns a complete RBBI.  From here, in a constructor, we
168
    //        can't just return the object created by the builder factory, hence
169
    //        the assignment of the factory created object to "this".
170
0
    if (U_SUCCESS(status)) {
171
0
        *this = *bi;
172
0
        delete bi;
173
0
    }
174
0
}
175
176
177
//-------------------------------------------------------------------------------
178
//
179
// Default Constructor.      Create an empty shell that can be set up later.
180
//                           Used when creating a RuleBasedBreakIterator from a set
181
//                           of rules.
182
//-------------------------------------------------------------------------------
183
RuleBasedBreakIterator::RuleBasedBreakIterator()
184
0
 : fSCharIter(UnicodeString())
185
0
{
186
0
    UErrorCode status = U_ZERO_ERROR;
187
0
    init(status);
188
0
}
189
190
191
//-------------------------------------------------------------------------------
192
//
193
//   Copy constructor.  Will produce a break iterator with the same behavior,
194
//                      and which iterates over the same text, as the one passed in.
195
//
196
//-------------------------------------------------------------------------------
197
RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other)
198
0
: BreakIterator(other),
199
0
  fSCharIter(UnicodeString())
200
0
{
201
0
    UErrorCode status = U_ZERO_ERROR;
202
0
    this->init(status);
203
0
    *this = other;
204
0
}
205
206
207
/**
208
 * Destructor
209
 */
210
0
RuleBasedBreakIterator::~RuleBasedBreakIterator() {
211
0
    if (fCharIter != &fSCharIter) {
212
        // fCharIter was adopted from the outside.
213
0
        delete fCharIter;
214
0
    }
215
0
    fCharIter = nullptr;
216
217
0
    utext_close(&fText);
218
219
0
    if (fData != nullptr) {
220
0
        fData->removeReference();
221
0
        fData = nullptr;
222
0
    }
223
0
    delete fBreakCache;
224
0
    fBreakCache = nullptr;
225
226
0
    delete fDictionaryCache;
227
0
    fDictionaryCache = nullptr;
228
229
0
    delete fLanguageBreakEngines;
230
0
    fLanguageBreakEngines = nullptr;
231
232
0
    delete fUnhandledBreakEngine;
233
0
    fUnhandledBreakEngine = nullptr;
234
235
0
    uprv_free(fLookAheadMatches);
236
0
    fLookAheadMatches = nullptr;
237
0
}
238
239
/**
240
 * Assignment operator.  Sets this iterator to have the same behavior,
241
 * and iterate over the same text, as the one passed in.
242
 * TODO: needs better handling of memory allocation errors.
243
 */
244
RuleBasedBreakIterator&
245
0
RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) {
246
0
    if (this == &that) {
247
0
        return *this;
248
0
    }
249
0
    BreakIterator::operator=(that);
250
251
0
    if (fLanguageBreakEngines != NULL) {
252
0
        delete fLanguageBreakEngines;
253
0
        fLanguageBreakEngines = NULL;   // Just rebuild for now
254
0
    }
255
    // TODO: clone fLanguageBreakEngines from "that"
256
0
    UErrorCode status = U_ZERO_ERROR;
257
0
    utext_clone(&fText, &that.fText, FALSE, TRUE, &status);
258
259
0
    if (fCharIter != &fSCharIter) {
260
0
        delete fCharIter;
261
0
    }
262
0
    fCharIter = &fSCharIter;
263
264
0
    if (that.fCharIter != NULL && that.fCharIter != &that.fSCharIter) {
265
        // This is a little bit tricky - it will initially appear that
266
        //  this->fCharIter is adopted, even if that->fCharIter was
267
        //  not adopted.  That's ok.
268
0
        fCharIter = that.fCharIter->clone();
269
0
    }
270
0
    fSCharIter = that.fSCharIter;
271
0
    if (fCharIter == NULL) {
272
0
        fCharIter = &fSCharIter;
273
0
    }
274
275
0
    if (fData != NULL) {
276
0
        fData->removeReference();
277
0
        fData = NULL;
278
0
    }
279
0
    if (that.fData != NULL) {
280
0
        fData = that.fData->addReference();
281
0
    }
282
283
0
    uprv_free(fLookAheadMatches);
284
0
    fLookAheadMatches = nullptr;
285
0
    if (fData && fData->fForwardTable->fLookAheadResultsSize > 0) {
286
0
        fLookAheadMatches = static_cast<int32_t *>(
287
0
            uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t)));
288
0
    }
289
290
291
0
    fPosition = that.fPosition;
292
0
    fRuleStatusIndex = that.fRuleStatusIndex;
293
0
    fDone = that.fDone;
294
295
    // TODO: both the dictionary and the main cache need to be copied.
296
    //       Current position could be within a dictionary range. Trying to continue
297
    //       the iteration without the caches present would go to the rules, with
298
    //       the assumption that the current position is on a rule boundary.
299
0
    fBreakCache->reset(fPosition, fRuleStatusIndex);
300
0
    fDictionaryCache->reset();
301
302
0
    return *this;
303
0
}
304
305
306
307
//-----------------------------------------------------------------------------
308
//
309
//    init()      Shared initialization routine.   Used by all the constructors.
310
//                Initializes all fields, leaving the object in a consistent state.
311
//
312
//-----------------------------------------------------------------------------
313
0
void RuleBasedBreakIterator::init(UErrorCode &status) {
314
0
    fCharIter             = nullptr;
315
0
    fData                 = nullptr;
316
0
    fPosition             = 0;
317
0
    fRuleStatusIndex      = 0;
318
0
    fDone                 = false;
319
0
    fDictionaryCharCount  = 0;
320
0
    fLanguageBreakEngines = nullptr;
321
0
    fUnhandledBreakEngine = nullptr;
322
0
    fBreakCache           = nullptr;
323
0
    fDictionaryCache      = nullptr;
324
0
    fLookAheadMatches     = nullptr;
325
326
    // Note: IBM xlC is unable to assign or initialize member fText from UTEXT_INITIALIZER.
327
    // fText                 = UTEXT_INITIALIZER;
328
0
    static const UText initializedUText = UTEXT_INITIALIZER;
329
0
    uprv_memcpy(&fText, &initializedUText, sizeof(UText));
330
331
0
   if (U_FAILURE(status)) {
332
0
        return;
333
0
    }
334
335
0
    utext_openUChars(&fText, NULL, 0, &status);
336
0
    fDictionaryCache = new DictionaryCache(this, status);
337
0
    fBreakCache      = new BreakCache(this, status);
338
0
    if (U_SUCCESS(status) && (fDictionaryCache == NULL || fBreakCache == NULL)) {
339
0
        status = U_MEMORY_ALLOCATION_ERROR;
340
0
    }
341
342
#ifdef RBBI_DEBUG
343
    static UBool debugInitDone = FALSE;
344
    if (debugInitDone == FALSE) {
345
        char *debugEnv = getenv("U_RBBIDEBUG");
346
        if (debugEnv && uprv_strstr(debugEnv, "trace")) {
347
            gTrace = TRUE;
348
        }
349
        debugInitDone = TRUE;
350
    }
351
#endif
352
0
}
353
354
355
356
//-----------------------------------------------------------------------------
357
//
358
//    clone - Returns a newly-constructed RuleBasedBreakIterator with the same
359
//            behavior, and iterating over the same text, as this one.
360
//            Virtual function: does the right thing with subclasses.
361
//
362
//-----------------------------------------------------------------------------
363
RuleBasedBreakIterator*
364
0
RuleBasedBreakIterator::clone() const {
365
0
    return new RuleBasedBreakIterator(*this);
366
0
}
367
368
/**
369
 * Equality operator.  Returns true if both BreakIterators are of the
370
 * same class, have the same behavior, and iterate over the same text.
371
 */
372
bool
373
0
RuleBasedBreakIterator::operator==(const BreakIterator& that) const {
374
0
    if (typeid(*this) != typeid(that)) {
375
0
        return FALSE;
376
0
    }
377
0
    if (this == &that) {
378
0
        return TRUE;
379
0
    }
380
381
    // The base class BreakIterator carries no state that participates in equality,
382
    // and does not implement an equality function that would otherwise be
383
    // checked at this point.
384
385
0
    const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that;
386
387
0
    if (!utext_equals(&fText, &that2.fText)) {
388
        // The two break iterators are operating on different text,
389
        //   or have a different iteration position.
390
        //   Note that fText's position is always the same as the break iterator's position.
391
0
        return FALSE;
392
0
    }
393
394
0
    if (!(fPosition == that2.fPosition &&
395
0
            fRuleStatusIndex == that2.fRuleStatusIndex &&
396
0
            fDone == that2.fDone)) {
397
0
        return FALSE;
398
0
    }
399
400
0
    if (that2.fData == fData ||
401
0
        (fData != NULL && that2.fData != NULL && *that2.fData == *fData)) {
402
            // The two break iterators are using the same rules.
403
0
            return TRUE;
404
0
        }
405
0
    return FALSE;
406
0
}
407
408
/**
409
 * Compute a hash code for this BreakIterator
410
 * @return A hash code
411
 */
412
int32_t
413
0
RuleBasedBreakIterator::hashCode(void) const {
414
0
    int32_t   hash = 0;
415
0
    if (fData != NULL) {
416
0
        hash = fData->hashCode();
417
0
    }
418
0
    return hash;
419
0
}
420
421
422
0
void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) {
423
0
    if (U_FAILURE(status)) {
424
0
        return;
425
0
    }
426
0
    fBreakCache->reset();
427
0
    fDictionaryCache->reset();
428
0
    utext_clone(&fText, ut, FALSE, TRUE, &status);
429
430
    // Set up a dummy CharacterIterator to be returned if anyone
431
    //   calls getText().  With input from UText, there is no reasonable
432
    //   way to return a characterIterator over the actual input text.
433
    //   Return one over an empty string instead - this is the closest
434
    //   we can come to signaling a failure.
435
    //   (GetText() is obsolete, this failure is sort of OK)
436
0
    fSCharIter.setText(UnicodeString());
437
438
0
    if (fCharIter != &fSCharIter) {
439
        // existing fCharIter was adopted from the outside.  Delete it now.
440
0
        delete fCharIter;
441
0
    }
442
0
    fCharIter = &fSCharIter;
443
444
0
    this->first();
445
0
}
446
447
448
0
UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const {
449
0
    UText *result = utext_clone(fillIn, &fText, FALSE, TRUE, &status);
450
0
    return result;
451
0
}
452
453
454
//=======================================================================
455
// BreakIterator overrides
456
//=======================================================================
457
458
/**
459
 * Return a CharacterIterator over the text being analyzed.
460
 */
461
CharacterIterator&
462
0
RuleBasedBreakIterator::getText() const {
463
0
    return *fCharIter;
464
0
}
465
466
/**
467
 * Set the iterator to analyze a new piece of text.  This function resets
468
 * the current iteration position to the beginning of the text.
469
 * @param newText An iterator over the text to analyze.
470
 */
471
void
472
0
RuleBasedBreakIterator::adoptText(CharacterIterator* newText) {
473
    // If we are holding a CharacterIterator adopted from a
474
    //   previous call to this function, delete it now.
475
0
    if (fCharIter != &fSCharIter) {
476
0
        delete fCharIter;
477
0
    }
478
479
0
    fCharIter = newText;
480
0
    UErrorCode status = U_ZERO_ERROR;
481
0
    fBreakCache->reset();
482
0
    fDictionaryCache->reset();
483
0
    if (newText==NULL || newText->startIndex() != 0) {
484
        // startIndex !=0 wants to be an error, but there's no way to report it.
485
        // Make the iterator text be an empty string.
486
0
        utext_openUChars(&fText, NULL, 0, &status);
487
0
    } else {
488
0
        utext_openCharacterIterator(&fText, newText, &status);
489
0
    }
490
0
    this->first();
491
0
}
492
493
/**
494
 * Set the iterator to analyze a new piece of text.  This function resets
495
 * the current iteration position to the beginning of the text.
496
 * @param newText An iterator over the text to analyze.
497
 */
498
void
499
0
RuleBasedBreakIterator::setText(const UnicodeString& newText) {
500
0
    UErrorCode status = U_ZERO_ERROR;
501
0
    fBreakCache->reset();
502
0
    fDictionaryCache->reset();
503
0
    utext_openConstUnicodeString(&fText, &newText, &status);
504
505
    // Set up a character iterator on the string.
506
    //   Needed in case someone calls getText().
507
    //  Can not, unfortunately, do this lazily on the (probably never)
508
    //  call to getText(), because getText is const.
509
0
    fSCharIter.setText(newText);
510
511
0
    if (fCharIter != &fSCharIter) {
512
        // old fCharIter was adopted from the outside.  Delete it.
513
0
        delete fCharIter;
514
0
    }
515
0
    fCharIter = &fSCharIter;
516
517
0
    this->first();
518
0
}
519
520
521
/**
522
 *  Provide a new UText for the input text.  Must reference text with contents identical
523
 *  to the original.
524
 *  Intended for use with text data originating in Java (garbage collected) environments
525
 *  where the data may be moved in memory at arbitrary times.
526
 */
527
0
RuleBasedBreakIterator &RuleBasedBreakIterator::refreshInputText(UText *input, UErrorCode &status) {
528
0
    if (U_FAILURE(status)) {
529
0
        return *this;
530
0
    }
531
0
    if (input == NULL) {
532
0
        status = U_ILLEGAL_ARGUMENT_ERROR;
533
0
        return *this;
534
0
    }
535
0
    int64_t pos = utext_getNativeIndex(&fText);
536
    //  Shallow read-only clone of the new UText into the existing input UText
537
0
    utext_clone(&fText, input, FALSE, TRUE, &status);
538
0
    if (U_FAILURE(status)) {
539
0
        return *this;
540
0
    }
541
0
    utext_setNativeIndex(&fText, pos);
542
0
    if (utext_getNativeIndex(&fText) != pos) {
543
        // Sanity check.  The new input utext is supposed to have the exact same
544
        // contents as the old.  If we can't set to the same position, it doesn't.
545
        // The contents underlying the old utext might be invalid at this point,
546
        // so it's not safe to check directly.
547
0
        status = U_ILLEGAL_ARGUMENT_ERROR;
548
0
    }
549
0
    return *this;
550
0
}
551
552
553
/**
554
 * Sets the current iteration position to the beginning of the text, position zero.
555
 * @return The new iterator position, which is zero.
556
 */
557
0
int32_t RuleBasedBreakIterator::first(void) {
558
0
    UErrorCode status = U_ZERO_ERROR;
559
0
    if (!fBreakCache->seek(0)) {
560
0
        fBreakCache->populateNear(0, status);
561
0
    }
562
0
    fBreakCache->current();
563
0
    U_ASSERT(fPosition == 0);
564
0
    return 0;
565
0
}
566
567
/**
568
 * Sets the current iteration position to the end of the text.
569
 * @return The text's past-the-end offset.
570
 */
571
0
int32_t RuleBasedBreakIterator::last(void) {
572
0
    int32_t endPos = (int32_t)utext_nativeLength(&fText);
573
0
    UBool endShouldBeBoundary = isBoundary(endPos);      // Has side effect of setting iterator position.
574
0
    (void)endShouldBeBoundary;
575
0
    U_ASSERT(endShouldBeBoundary);
576
0
    U_ASSERT(fPosition == endPos);
577
0
    return endPos;
578
0
}
579
580
/**
581
 * Advances the iterator either forward or backward the specified number of steps.
582
 * Negative values move backward, and positive values move forward.  This is
583
 * equivalent to repeatedly calling next() or previous().
584
 * @param n The number of steps to move.  The sign indicates the direction
585
 * (negative is backwards, and positive is forwards).
586
 * @return The character offset of the boundary position n boundaries away from
587
 * the current one.
588
 */
589
0
int32_t RuleBasedBreakIterator::next(int32_t n) {
590
0
    int32_t result = 0;
591
0
    if (n > 0) {
592
0
        for (; n > 0 && result != UBRK_DONE; --n) {
593
0
            result = next();
594
0
        }
595
0
    } else if (n < 0) {
596
0
        for (; n < 0 && result != UBRK_DONE; ++n) {
597
0
            result = previous();
598
0
        }
599
0
    } else {
600
0
        result = current();
601
0
    }
602
0
    return result;
603
0
}
604
605
/**
606
 * Advances the iterator to the next boundary position.
607
 * @return The position of the first boundary after this one.
608
 */
609
0
int32_t RuleBasedBreakIterator::next(void) {
610
0
    fBreakCache->next();
611
0
    return fDone ? UBRK_DONE : fPosition;
612
0
}
613
614
/**
615
 * Move the iterator backwards, to the boundary preceding the current one.
616
 *
617
 *         Starts from the current position within fText.
618
 *         Starting position need not be on a boundary.
619
 *
620
 * @return The position of the boundary position immediately preceding the starting position.
621
 */
622
0
int32_t RuleBasedBreakIterator::previous(void) {
623
0
    UErrorCode status = U_ZERO_ERROR;
624
0
    fBreakCache->previous(status);
625
0
    return fDone ? UBRK_DONE : fPosition;
626
0
}
627
628
/**
629
 * Sets the iterator to refer to the first boundary position following
630
 * the specified position.
631
 * @param startPos The position from which to begin searching for a break position.
632
 * @return The position of the first break after the current position.
633
 */
634
0
int32_t RuleBasedBreakIterator::following(int32_t startPos) {
635
    // if the supplied position is before the beginning, return the
636
    // text's starting offset
637
0
    if (startPos < 0) {
638
0
        return first();
639
0
    }
640
641
    // Move requested offset to a code point start. It might be on a trail surrogate,
642
    // or on a trail byte if the input is UTF-8. Or it may be beyond the end of the text.
643
0
    utext_setNativeIndex(&fText, startPos);
644
0
    startPos = (int32_t)utext_getNativeIndex(&fText);
645
646
0
    UErrorCode status = U_ZERO_ERROR;
647
0
    fBreakCache->following(startPos, status);
648
0
    return fDone ? UBRK_DONE : fPosition;
649
0
}
650
651
/**
652
 * Sets the iterator to refer to the last boundary position before the
653
 * specified position.
654
 * @param offset The position to begin searching for a break from.
655
 * @return The position of the last boundary before the starting position.
656
 */
657
0
int32_t RuleBasedBreakIterator::preceding(int32_t offset) {
658
0
    if (offset > utext_nativeLength(&fText)) {
659
0
        return last();
660
0
    }
661
662
    // Move requested offset to a code point start. It might be on a trail surrogate,
663
    // or on a trail byte if the input is UTF-8.
664
665
0
    utext_setNativeIndex(&fText, offset);
666
0
    int32_t adjustedOffset = static_cast<int32_t>(utext_getNativeIndex(&fText));
667
668
0
    UErrorCode status = U_ZERO_ERROR;
669
0
    fBreakCache->preceding(adjustedOffset, status);
670
0
    return fDone ? UBRK_DONE : fPosition;
671
0
}
672
673
/**
674
 * Returns true if the specified position is a boundary position.  As a side
675
 * effect, leaves the iterator pointing to the first boundary position at
676
 * or after "offset".
677
 *
678
 * @param offset the offset to check.
679
 * @return True if "offset" is a boundary position.
680
 */
681
0
UBool RuleBasedBreakIterator::isBoundary(int32_t offset) {
682
    // out-of-range indexes are never boundary positions
683
0
    if (offset < 0) {
684
0
        first();       // For side effects on current position, tag values.
685
0
        return FALSE;
686
0
    }
687
688
    // Adjust offset to be on a code point boundary and not beyond the end of the text.
689
    // Note that isBoundary() is always false for offsets that are not on code point boundaries.
690
    // But we still need the side effect of leaving iteration at the following boundary.
691
692
0
    utext_setNativeIndex(&fText, offset);
693
0
    int32_t adjustedOffset = static_cast<int32_t>(utext_getNativeIndex(&fText));
694
695
0
    bool result = false;
696
0
    UErrorCode status = U_ZERO_ERROR;
697
0
    if (fBreakCache->seek(adjustedOffset) || fBreakCache->populateNear(adjustedOffset, status)) {
698
0
        result = (fBreakCache->current() == offset);
699
0
    }
700
701
0
    if (result && adjustedOffset < offset && utext_char32At(&fText, offset) == U_SENTINEL) {
702
        // Original offset is beyond the end of the text. Return FALSE, it's not a boundary,
703
        // but the iteration position remains set to the end of the text, which is a boundary.
704
0
        return FALSE;
705
0
    }
706
0
    if (!result) {
707
        // Not on a boundary. isBoundary() must leave iterator on the following boundary.
708
        // Cache->seek(), above, left us on the preceding boundary, so advance one.
709
0
        next();
710
0
    }
711
0
    return result;
712
0
}
713
714
715
/**
716
 * Returns the current iteration position.
717
 * @return The current iteration position.
718
 */
719
0
int32_t RuleBasedBreakIterator::current(void) const {
720
0
    return fPosition;
721
0
}
722
723
724
//=======================================================================
725
// implementation
726
//=======================================================================
727
728
//
729
// RBBIRunMode  -  the state machine runs an extra iteration at the beginning and end
730
//                 of user text.  A variable with this enum type keeps track of where we
731
//                 are.  The state machine only fetches user input while in the RUN mode.
732
//
733
enum RBBIRunMode {
734
    RBBI_START,     // state machine processing is before first char of input
735
    RBBI_RUN,       // state machine processing is in the user text
736
    RBBI_END        // state machine processing is after end of user text.
737
};
738
739
740
// Wrapper functions to select the appropriate handleNext() or handleSafePrevious()
741
// instantiation, based on whether an 8 or 16 bit table is required.
742
//
743
// These Trie access functions will be inlined within the handleNext()/Previous() instantions.
744
0
static inline uint16_t TrieFunc8(const UCPTrie *trie, UChar32 c) {
745
0
    return UCPTRIE_FAST_GET(trie, UCPTRIE_8, c);
746
0
}
747
748
0
static inline uint16_t TrieFunc16(const UCPTrie *trie, UChar32 c) {
749
0
    return UCPTRIE_FAST_GET(trie, UCPTRIE_16, c);
750
0
}
751
752
0
int32_t RuleBasedBreakIterator::handleNext() {
753
0
    const RBBIStateTable *statetable = fData->fForwardTable;
754
0
    bool use8BitsTrie = ucptrie_getValueWidth(fData->fTrie) == UCPTRIE_VALUE_BITS_8;
755
0
    if (statetable->fFlags & RBBI_8BITS_ROWS) {
756
0
        if (use8BitsTrie) {
757
0
            return handleNext<RBBIStateTableRow8, TrieFunc8>();
758
0
        } else {
759
0
            return handleNext<RBBIStateTableRow8, TrieFunc16>();
760
0
        }
761
0
    } else {
762
0
        if (use8BitsTrie) {
763
0
            return handleNext<RBBIStateTableRow16, TrieFunc8>();
764
0
        } else {
765
0
            return handleNext<RBBIStateTableRow16, TrieFunc16>();
766
0
        }
767
0
    }
768
0
}
769
770
0
int32_t RuleBasedBreakIterator::handleSafePrevious(int32_t fromPosition) {
771
0
    const RBBIStateTable *statetable = fData->fReverseTable;
772
0
    bool use8BitsTrie = ucptrie_getValueWidth(fData->fTrie) == UCPTRIE_VALUE_BITS_8;
773
0
    if (statetable->fFlags & RBBI_8BITS_ROWS) {
774
0
        if (use8BitsTrie) {
775
0
            return handleSafePrevious<RBBIStateTableRow8, TrieFunc8>(fromPosition);
776
0
        } else {
777
0
            return handleSafePrevious<RBBIStateTableRow8, TrieFunc16>(fromPosition);
778
0
        }
779
0
    } else {
780
0
        if (use8BitsTrie) {
781
0
            return handleSafePrevious<RBBIStateTableRow16, TrieFunc8>(fromPosition);
782
0
        } else {
783
0
            return handleSafePrevious<RBBIStateTableRow16, TrieFunc16>(fromPosition);
784
0
        }
785
0
    }
786
0
}
787
788
789
//-----------------------------------------------------------------------------------
790
//
791
//  handleNext()
792
//     Run the state machine to find a boundary
793
//
794
//-----------------------------------------------------------------------------------
795
template <typename RowType, RuleBasedBreakIterator::PTrieFunc trieFunc>
796
0
int32_t RuleBasedBreakIterator::handleNext() {
797
0
    int32_t             state;
798
0
    uint16_t            category        = 0;
799
0
    RBBIRunMode         mode;
800
801
0
    RowType             *row;
802
0
    UChar32             c;
803
0
    int32_t             result             = 0;
804
0
    int32_t             initialPosition    = 0;
805
0
    const RBBIStateTable *statetable       = fData->fForwardTable;
806
0
    const char         *tableData          = statetable->fTableData;
807
0
    uint32_t            tableRowLen        = statetable->fRowLen;
808
0
    uint32_t            dictStart          = statetable->fDictCategoriesStart;
809
    #ifdef RBBI_DEBUG
810
        if (gTrace) {
811
            RBBIDebugPuts("Handle Next   pos   char  state category");
812
        }
813
    #endif
814
815
    // handleNext always sets the break tag value.
816
    // Set the default for it.
817
0
    fRuleStatusIndex = 0;
818
819
0
    fDictionaryCharCount = 0;
820
821
    // if we're already at the end of the text, return DONE.
822
0
    initialPosition = fPosition;
823
0
    UTEXT_SETNATIVEINDEX(&fText, initialPosition);
824
0
    result          = initialPosition;
825
0
    c               = UTEXT_NEXT32(&fText);
826
0
    if (c==U_SENTINEL) {
827
0
        fDone = TRUE;
828
0
        return UBRK_DONE;
829
0
    }
830
831
    //  Set the initial state for the state machine
832
0
    state = START_STATE;
833
0
    row = (RowType *)
834
            //(statetable->fTableData + (statetable->fRowLen * state));
835
0
            (tableData + tableRowLen * state);
836
837
838
0
    mode     = RBBI_RUN;
839
0
    if (statetable->fFlags & RBBI_BOF_REQUIRED) {
840
0
        category = 2;
841
0
        mode     = RBBI_START;
842
0
    }
843
844
845
    // loop until we reach the end of the text or transition to state 0
846
    //
847
0
    for (;;) {
848
0
        if (c == U_SENTINEL) {
849
            // Reached end of input string.
850
0
            if (mode == RBBI_END) {
851
                // We have already run the loop one last time with the
852
                //   character set to the psueudo {eof} value.  Now it is time
853
                //   to unconditionally bail out.
854
0
                break;
855
0
            }
856
            // Run the loop one last time with the fake end-of-input character category.
857
0
            mode = RBBI_END;
858
0
            category = 1;
859
0
        }
860
861
        //
862
        // Get the char category.  An incoming category of 1 or 2 means that
863
        //      we are preset for doing the beginning or end of input, and
864
        //      that we shouldn't get a category from an actual text input character.
865
        //
866
0
        if (mode == RBBI_RUN) {
867
            // look up the current character's character category, which tells us
868
            // which column in the state table to look at.
869
0
            category = trieFunc(fData->fTrie, c);
870
0
            fDictionaryCharCount += (category >= dictStart);
871
0
        }
872
873
       #ifdef RBBI_DEBUG
874
            if (gTrace) {
875
                RBBIDebugPrintf("             %4" PRId64 "   ", utext_getNativeIndex(&fText));
876
                if (0x20<=c && c<0x7f) {
877
                    RBBIDebugPrintf("\"%c\"  ", c);
878
                } else {
879
                    RBBIDebugPrintf("%5x  ", c);
880
                }
881
                RBBIDebugPrintf("%3d  %3d\n", state, category);
882
            }
883
        #endif
884
885
        // State Transition - move machine to its next state
886
        //
887
888
        // fNextState is a variable-length array.
889
0
        U_ASSERT(category<fData->fHeader->fCatCount);
890
0
        state = row->fNextState[category];  /*Not accessing beyond memory*/
891
0
        row = (RowType *)
892
            // (statetable->fTableData + (statetable->fRowLen * state));
893
0
            (tableData + tableRowLen * state);
894
895
896
0
        uint16_t accepting = row->fAccepting;
897
0
        if (accepting == ACCEPTING_UNCONDITIONAL) {
898
            // Match found, common case.
899
0
            if (mode != RBBI_START) {
900
0
                result = (int32_t)UTEXT_GETNATIVEINDEX(&fText);
901
0
            }
902
0
            fRuleStatusIndex = row->fTagsIdx;   // Remember the break status (tag) values.
903
0
        } else if (accepting > ACCEPTING_UNCONDITIONAL) {
904
            // Lookahead match is completed.
905
0
            U_ASSERT(accepting < fData->fForwardTable->fLookAheadResultsSize);
906
0
            int32_t lookaheadResult = fLookAheadMatches[accepting];
907
0
            if (lookaheadResult >= 0) {
908
0
                fRuleStatusIndex = row->fTagsIdx;
909
0
                fPosition = lookaheadResult;
910
0
                return lookaheadResult;
911
0
            }
912
0
        }
913
914
        // If we are at the position of the '/' in a look-ahead (hard break) rule;
915
        // record the current position, to be returned later, if the full rule matches.
916
        // TODO: Move this check before the previous check of fAccepting.
917
        //       This would enable hard-break rules with no following context.
918
        //       But there are line break test failures when trying this. Investigate.
919
        //       Issue ICU-20837
920
0
        uint16_t rule = row->fLookAhead;
921
0
        U_ASSERT(rule == 0 || rule > ACCEPTING_UNCONDITIONAL);
922
0
        U_ASSERT(rule == 0 || rule < fData->fForwardTable->fLookAheadResultsSize);
923
0
        if (rule > ACCEPTING_UNCONDITIONAL) {
924
0
            int32_t  pos = (int32_t)UTEXT_GETNATIVEINDEX(&fText);
925
0
            fLookAheadMatches[rule] = pos;
926
0
        }
927
928
0
        if (state == STOP_STATE) {
929
            // This is the normal exit from the lookup state machine.
930
            // We have advanced through the string until it is certain that no
931
            //   longer match is possible, no matter what characters follow.
932
0
            break;
933
0
        }
934
935
        // Advance to the next character.
936
        // If this is a beginning-of-input loop iteration, don't advance
937
        //    the input position.  The next iteration will be processing the
938
        //    first real input character.
939
0
        if (mode == RBBI_RUN) {
940
0
            c = UTEXT_NEXT32(&fText);
941
0
        } else {
942
0
            if (mode == RBBI_START) {
943
0
                mode = RBBI_RUN;
944
0
            }
945
0
        }
946
0
    }
947
948
    // The state machine is done.  Check whether it found a match...
949
950
    // If the iterator failed to advance in the match engine, force it ahead by one.
951
    //   (This really indicates a defect in the break rules.  They should always match
952
    //    at least one character.)
953
0
    if (result == initialPosition) {
954
0
        utext_setNativeIndex(&fText, initialPosition);
955
0
        utext_next32(&fText);
956
0
        result = (int32_t)utext_getNativeIndex(&fText);
957
0
        fRuleStatusIndex = 0;
958
0
    }
959
960
    // Leave the iterator at our result position.
961
0
    fPosition = result;
962
    #ifdef RBBI_DEBUG
963
        if (gTrace) {
964
            RBBIDebugPrintf("result = %d\n\n", result);
965
        }
966
    #endif
967
0
    return result;
968
0
}
Unexecuted instantiation: rbbi.cpp:int icu_70::RuleBasedBreakIterator::handleNext<icu_70::RBBIStateTableRowT<unsigned char>, &icu_70::TrieFunc8>()
Unexecuted instantiation: rbbi.cpp:int icu_70::RuleBasedBreakIterator::handleNext<icu_70::RBBIStateTableRowT<unsigned char>, &icu_70::TrieFunc16>()
Unexecuted instantiation: rbbi.cpp:int icu_70::RuleBasedBreakIterator::handleNext<icu_70::RBBIStateTableRowT<unsigned short>, &icu_70::TrieFunc8>()
Unexecuted instantiation: rbbi.cpp:int icu_70::RuleBasedBreakIterator::handleNext<icu_70::RBBIStateTableRowT<unsigned short>, &icu_70::TrieFunc16>()
969
970
971
//-----------------------------------------------------------------------------------
972
//
973
//  handleSafePrevious()
974
//
975
//      Iterate backwards using the safe reverse rules.
976
//      The logic of this function is similar to handleNext(), but simpler
977
//      because the safe table does not require as many options.
978
//
979
//-----------------------------------------------------------------------------------
980
template <typename RowType, RuleBasedBreakIterator::PTrieFunc trieFunc>
981
0
int32_t RuleBasedBreakIterator::handleSafePrevious(int32_t fromPosition) {
982
983
0
    int32_t             state;
984
0
    uint16_t            category        = 0;
985
0
    RowType            *row;
986
0
    UChar32             c;
987
0
    int32_t             result          = 0;
988
989
0
    const RBBIStateTable *stateTable = fData->fReverseTable;
990
0
    UTEXT_SETNATIVEINDEX(&fText, fromPosition);
991
    #ifdef RBBI_DEBUG
992
        if (gTrace) {
993
            RBBIDebugPuts("Handle Previous   pos   char  state category");
994
        }
995
    #endif
996
997
    // if we're already at the start of the text, return DONE.
998
0
    if (fData == NULL || UTEXT_GETNATIVEINDEX(&fText)==0) {
999
0
        return BreakIterator::DONE;
1000
0
    }
1001
1002
    //  Set the initial state for the state machine
1003
0
    c = UTEXT_PREVIOUS32(&fText);
1004
0
    state = START_STATE;
1005
0
    row = (RowType *)
1006
0
            (stateTable->fTableData + (stateTable->fRowLen * state));
1007
1008
    // loop until we reach the start of the text or transition to state 0
1009
    //
1010
0
    for (; c != U_SENTINEL; c = UTEXT_PREVIOUS32(&fText)) {
1011
1012
        // look up the current character's character category, which tells us
1013
        // which column in the state table to look at.
1014
        //
1015
        //  Off the dictionary flag bit. For reverse iteration it is not used.
1016
0
        category = trieFunc(fData->fTrie, c);
1017
1018
        #ifdef RBBI_DEBUG
1019
            if (gTrace) {
1020
                RBBIDebugPrintf("             %4d   ", (int32_t)utext_getNativeIndex(&fText));
1021
                if (0x20<=c && c<0x7f) {
1022
                    RBBIDebugPrintf("\"%c\"  ", c);
1023
                } else {
1024
                    RBBIDebugPrintf("%5x  ", c);
1025
                }
1026
                RBBIDebugPrintf("%3d  %3d\n", state, category);
1027
            }
1028
        #endif
1029
1030
        // State Transition - move machine to its next state
1031
        //
1032
        // fNextState is a variable-length array.
1033
0
        U_ASSERT(category<fData->fHeader->fCatCount);
1034
0
        state = row->fNextState[category];  /*Not accessing beyond memory*/
1035
0
        row = (RowType *)
1036
0
            (stateTable->fTableData + (stateTable->fRowLen * state));
1037
1038
0
        if (state == STOP_STATE) {
1039
            // This is the normal exit from the lookup state machine.
1040
            // Transition to state zero means we have found a safe point.
1041
0
            break;
1042
0
        }
1043
0
    }
1044
1045
    // The state machine is done.  Check whether it found a match...
1046
0
    result = (int32_t)UTEXT_GETNATIVEINDEX(&fText);
1047
    #ifdef RBBI_DEBUG
1048
        if (gTrace) {
1049
            RBBIDebugPrintf("result = %d\n\n", result);
1050
        }
1051
    #endif
1052
0
    return result;
1053
0
}
Unexecuted instantiation: rbbi.cpp:int icu_70::RuleBasedBreakIterator::handleSafePrevious<icu_70::RBBIStateTableRowT<unsigned char>, &icu_70::TrieFunc8>(int)
Unexecuted instantiation: rbbi.cpp:int icu_70::RuleBasedBreakIterator::handleSafePrevious<icu_70::RBBIStateTableRowT<unsigned char>, &icu_70::TrieFunc16>(int)
Unexecuted instantiation: rbbi.cpp:int icu_70::RuleBasedBreakIterator::handleSafePrevious<icu_70::RBBIStateTableRowT<unsigned short>, &icu_70::TrieFunc8>(int)
Unexecuted instantiation: rbbi.cpp:int icu_70::RuleBasedBreakIterator::handleSafePrevious<icu_70::RBBIStateTableRowT<unsigned short>, &icu_70::TrieFunc16>(int)
1054
1055
1056
//-------------------------------------------------------------------------------
1057
//
1058
//   getRuleStatus()   Return the break rule tag associated with the current
1059
//                     iterator position.  If the iterator arrived at its current
1060
//                     position by iterating forwards, the value will have been
1061
//                     cached by the handleNext() function.
1062
//
1063
//-------------------------------------------------------------------------------
1064
1065
0
int32_t  RuleBasedBreakIterator::getRuleStatus() const {
1066
1067
    // fLastRuleStatusIndex indexes to the start of the appropriate status record
1068
    //                                                 (the number of status values.)
1069
    //   This function returns the last (largest) of the array of status values.
1070
0
    int32_t  idx = fRuleStatusIndex + fData->fRuleStatusTable[fRuleStatusIndex];
1071
0
    int32_t  tagVal = fData->fRuleStatusTable[idx];
1072
1073
0
    return tagVal;
1074
0
}
1075
1076
1077
int32_t RuleBasedBreakIterator::getRuleStatusVec(
1078
0
             int32_t *fillInVec, int32_t capacity, UErrorCode &status) {
1079
0
    if (U_FAILURE(status)) {
1080
0
        return 0;
1081
0
    }
1082
1083
0
    int32_t  numVals = fData->fRuleStatusTable[fRuleStatusIndex];
1084
0
    int32_t  numValsToCopy = numVals;
1085
0
    if (numVals > capacity) {
1086
0
        status = U_BUFFER_OVERFLOW_ERROR;
1087
0
        numValsToCopy = capacity;
1088
0
    }
1089
0
    int i;
1090
0
    for (i=0; i<numValsToCopy; i++) {
1091
0
        fillInVec[i] = fData->fRuleStatusTable[fRuleStatusIndex + i + 1];
1092
0
    }
1093
0
    return numVals;
1094
0
}
1095
1096
1097
1098
//-------------------------------------------------------------------------------
1099
//
1100
//   getBinaryRules        Access to the compiled form of the rules,
1101
//                         for use by build system tools that save the data
1102
//                         for standard iterator types.
1103
//
1104
//-------------------------------------------------------------------------------
1105
0
const uint8_t  *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) {
1106
0
    const uint8_t  *retPtr = NULL;
1107
0
    length = 0;
1108
1109
0
    if (fData != NULL) {
1110
0
        retPtr = (const uint8_t *)fData->fHeader;
1111
0
        length = fData->fHeader->fLength;
1112
0
    }
1113
0
    return retPtr;
1114
0
}
1115
1116
1117
RuleBasedBreakIterator *RuleBasedBreakIterator::createBufferClone(
1118
0
        void * /*stackBuffer*/, int32_t &bufferSize, UErrorCode &status) {
1119
0
    if (U_FAILURE(status)){
1120
0
        return NULL;
1121
0
    }
1122
1123
0
    if (bufferSize == 0) {
1124
0
        bufferSize = 1;  // preflighting for deprecated functionality
1125
0
        return NULL;
1126
0
    }
1127
1128
0
    BreakIterator *clonedBI = clone();
1129
0
    if (clonedBI == NULL) {
1130
0
        status = U_MEMORY_ALLOCATION_ERROR;
1131
0
    } else {
1132
0
        status = U_SAFECLONE_ALLOCATED_WARNING;
1133
0
    }
1134
0
    return (RuleBasedBreakIterator *)clonedBI;
1135
0
}
1136
1137
U_NAMESPACE_END
1138
1139
1140
static icu::UStack *gLanguageBreakFactories = nullptr;
1141
static const icu::UnicodeString *gEmptyString = nullptr;
1142
static icu::UInitOnce gLanguageBreakFactoriesInitOnce = U_INITONCE_INITIALIZER;
1143
static icu::UInitOnce gRBBIInitOnce = U_INITONCE_INITIALIZER;
1144
1145
/**
1146
 * Release all static memory held by breakiterator.
1147
 */
1148
U_CDECL_BEGIN
1149
0
UBool U_CALLCONV rbbi_cleanup(void) {
1150
0
    delete gLanguageBreakFactories;
1151
0
    gLanguageBreakFactories = nullptr;
1152
0
    delete gEmptyString;
1153
0
    gEmptyString = nullptr;
1154
0
    gLanguageBreakFactoriesInitOnce.reset();
1155
0
    gRBBIInitOnce.reset();
1156
0
    return TRUE;
1157
0
}
1158
U_CDECL_END
1159
1160
U_CDECL_BEGIN
1161
0
static void U_CALLCONV _deleteFactory(void *obj) {
1162
0
    delete (icu::LanguageBreakFactory *) obj;
1163
0
}
1164
U_CDECL_END
1165
U_NAMESPACE_BEGIN
1166
1167
0
static void U_CALLCONV rbbiInit() {
1168
0
    gEmptyString = new UnicodeString();
1169
0
    ucln_common_registerCleanup(UCLN_COMMON_RBBI, rbbi_cleanup);
1170
0
}
1171
1172
0
static void U_CALLCONV initLanguageFactories() {
1173
0
    UErrorCode status = U_ZERO_ERROR;
1174
0
    U_ASSERT(gLanguageBreakFactories == NULL);
1175
0
    gLanguageBreakFactories = new UStack(_deleteFactory, NULL, status);
1176
0
    if (gLanguageBreakFactories != NULL && U_SUCCESS(status)) {
1177
0
        ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status);
1178
0
        gLanguageBreakFactories->push(builtIn, status);
1179
#ifdef U_LOCAL_SERVICE_HOOK
1180
        LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory", &status);
1181
        if (extra != NULL) {
1182
            gLanguageBreakFactories->push(extra, status);
1183
        }
1184
#endif
1185
0
    }
1186
0
    ucln_common_registerCleanup(UCLN_COMMON_RBBI, rbbi_cleanup);
1187
0
}
1188
1189
1190
static const LanguageBreakEngine*
1191
getLanguageBreakEngineFromFactory(UChar32 c)
1192
0
{
1193
0
    umtx_initOnce(gLanguageBreakFactoriesInitOnce, &initLanguageFactories);
1194
0
    if (gLanguageBreakFactories == NULL) {
1195
0
        return NULL;
1196
0
    }
1197
1198
0
    int32_t i = gLanguageBreakFactories->size();
1199
0
    const LanguageBreakEngine *lbe = NULL;
1200
0
    while (--i >= 0) {
1201
0
        LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i));
1202
0
        lbe = factory->getEngineFor(c);
1203
0
        if (lbe != NULL) {
1204
0
            break;
1205
0
        }
1206
0
    }
1207
0
    return lbe;
1208
0
}
1209
1210
1211
//-------------------------------------------------------------------------------
1212
//
1213
//  getLanguageBreakEngine  Find an appropriate LanguageBreakEngine for the
1214
//                          the character c.
1215
//
1216
//-------------------------------------------------------------------------------
1217
const LanguageBreakEngine *
1218
0
RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) {
1219
0
    const LanguageBreakEngine *lbe = NULL;
1220
0
    UErrorCode status = U_ZERO_ERROR;
1221
1222
0
    if (fLanguageBreakEngines == NULL) {
1223
0
        fLanguageBreakEngines = new UStack(status);
1224
0
        if (fLanguageBreakEngines == NULL || U_FAILURE(status)) {
1225
0
            delete fLanguageBreakEngines;
1226
0
            fLanguageBreakEngines = 0;
1227
0
            return NULL;
1228
0
        }
1229
0
    }
1230
1231
0
    int32_t i = fLanguageBreakEngines->size();
1232
0
    while (--i >= 0) {
1233
0
        lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i));
1234
0
        if (lbe->handles(c)) {
1235
0
            return lbe;
1236
0
        }
1237
0
    }
1238
1239
    // No existing dictionary took the character. See if a factory wants to
1240
    // give us a new LanguageBreakEngine for this character.
1241
0
    lbe = getLanguageBreakEngineFromFactory(c);
1242
1243
    // If we got one, use it and push it on our stack.
1244
0
    if (lbe != NULL) {
1245
0
        fLanguageBreakEngines->push((void *)lbe, status);
1246
        // Even if we can't remember it, we can keep looking it up, so
1247
        // return it even if the push fails.
1248
0
        return lbe;
1249
0
    }
1250
1251
    // No engine is forthcoming for this character. Add it to the
1252
    // reject set. Create the reject break engine if needed.
1253
0
    if (fUnhandledBreakEngine == NULL) {
1254
0
        fUnhandledBreakEngine = new UnhandledEngine(status);
1255
0
        if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) {
1256
0
            status = U_MEMORY_ALLOCATION_ERROR;
1257
0
            return nullptr;
1258
0
        }
1259
        // Put it last so that scripts for which we have an engine get tried
1260
        // first.
1261
0
        fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status);
1262
        // If we can't insert it, or creation failed, get rid of it
1263
0
        if (U_FAILURE(status)) {
1264
0
            delete fUnhandledBreakEngine;
1265
0
            fUnhandledBreakEngine = 0;
1266
0
            return NULL;
1267
0
        }
1268
0
    }
1269
1270
    // Tell the reject engine about the character; at its discretion, it may
1271
    // add more than just the one character.
1272
0
    fUnhandledBreakEngine->handleCharacter(c);
1273
1274
0
    return fUnhandledBreakEngine;
1275
0
}
1276
1277
0
void RuleBasedBreakIterator::dumpCache() {
1278
0
    fBreakCache->dumpCache();
1279
0
}
1280
1281
0
void RuleBasedBreakIterator::dumpTables() {
1282
0
    fData->printData();
1283
0
}
1284
1285
/**
1286
 * Returns the description used to create this iterator
1287
 */
1288
1289
const UnicodeString&
1290
0
RuleBasedBreakIterator::getRules() const {
1291
0
    if (fData != NULL) {
1292
0
        return fData->getRuleSourceString();
1293
0
    } else {
1294
0
        umtx_initOnce(gRBBIInitOnce, &rbbiInit);
1295
0
        return *gEmptyString;
1296
0
    }
1297
0
}
1298
1299
U_NAMESPACE_END
1300
1301
#endif /* #if !UCONFIG_NO_BREAK_ITERATION */