Coverage Report

Created: 2025-06-24 06:43

/src/icu/source/common/uhash.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2016 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
/*
4
******************************************************************************
5
*   Copyright (C) 1997-2016, International Business Machines
6
*   Corporation and others.  All Rights Reserved.
7
******************************************************************************
8
*   Date        Name        Description
9
*   03/22/00    aliu        Adapted from original C++ ICU Hashtable.
10
*   07/06/01    aliu        Modified to support int32_t keys on
11
*                           platforms with sizeof(void*) < 32.
12
******************************************************************************
13
*/
14
15
#include "uhash.h"
16
#include "unicode/ustring.h"
17
#include "cstring.h"
18
#include "cmemory.h"
19
#include "uassert.h"
20
#include "ustr_imp.h"
21
22
/* This hashtable is implemented as a double hash.  All elements are
23
 * stored in a single array with no secondary storage for collision
24
 * resolution (no linked list, etc.).  When there is a hash collision
25
 * (when two unequal keys have the same hashcode) we resolve this by
26
 * using a secondary hash.  The secondary hash is an increment
27
 * computed as a hash function (a different one) of the primary
28
 * hashcode.  This increment is added to the initial hash value to
29
 * obtain further slots assigned to the same hash code.  For this to
30
 * work, the length of the array and the increment must be relatively
31
 * prime.  The easiest way to achieve this is to have the length of
32
 * the array be prime, and the increment be any value from
33
 * 1..length-1.
34
 *
35
 * Hashcodes are 32-bit integers.  We make sure all hashcodes are
36
 * non-negative by masking off the top bit.  This has two effects: (1)
37
 * modulo arithmetic is simplified.  If we allowed negative hashcodes,
38
 * then when we computed hashcode % length, we could get a negative
39
 * result, which we would then have to adjust back into range.  It's
40
 * simpler to just make hashcodes non-negative. (2) It makes it easy
41
 * to check for empty vs. occupied slots in the table.  We just mark
42
 * empty or deleted slots with a negative hashcode.
43
 *
44
 * The central function is _uhash_find().  This function looks for a
45
 * slot matching the given key and hashcode.  If one is found, it
46
 * returns a pointer to that slot.  If the table is full, and no match
47
 * is found, it returns NULL -- in theory.  This would make the code
48
 * more complicated, since all callers of _uhash_find() would then
49
 * have to check for a NULL result.  To keep this from happening, we
50
 * don't allow the table to fill.  When there is only one
51
 * empty/deleted slot left, uhash_put() will refuse to increase the
52
 * count, and fail.  This simplifies the code.  In practice, one will
53
 * seldom encounter this using default UHashtables.  However, if a
54
 * hashtable is set to a U_FIXED resize policy, or if memory is
55
 * exhausted, then the table may fill.
56
 *
57
 * High and low water ratios control rehashing.  They establish levels
58
 * of fullness (from 0 to 1) outside of which the data array is
59
 * reallocated and repopulated.  Setting the low water ratio to zero
60
 * means the table will never shrink.  Setting the high water ratio to
61
 * one means the table will never grow.  The ratios should be
62
 * coordinated with the ratio between successive elements of the
63
 * PRIMES table, so that when the primeIndex is incremented or
64
 * decremented during rehashing, it brings the ratio of count / length
65
 * back into the desired range (between low and high water ratios).
66
 */
67
68
/********************************************************************
69
 * PRIVATE Constants, Macros
70
 ********************************************************************/
71
72
/* This is a list of non-consecutive primes chosen such that
73
 * PRIMES[i+1] ~ 2*PRIMES[i].  (Currently, the ratio ranges from 1.81
74
 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.)  If this
75
 * ratio is changed, the low and high water ratios should also be
76
 * adjusted to suit.
77
 *
78
 * These prime numbers were also chosen so that they are the largest
79
 * prime number while being less than a power of two.
80
 */
81
static const int32_t PRIMES[] = {
82
    7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
83
    65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
84
    16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
85
    1073741789, 2147483647 /*, 4294967291 */
86
};
87
88
0
#define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES)
89
0
#define DEFAULT_PRIME_INDEX 4
90
91
/* These ratios are tuned to the PRIMES array such that a resize
92
 * places the table back into the zone of non-resizing.  That is,
93
 * after a call to _uhash_rehash(), a subsequent call to
94
 * _uhash_rehash() should do nothing (should not churn).  This is only
95
 * a potential problem with U_GROW_AND_SHRINK.
96
 */
97
static const float RESIZE_POLICY_RATIO_TABLE[6] = {
98
    /* low, high water ratio */
99
    0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
100
    0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
101
    0.0F, 1.0F  /* U_FIXED: Never change size */
102
};
103
104
/*
105
  Invariants for hashcode values:
106
107
  * DELETED < 0
108
  * EMPTY < 0
109
  * Real hashes >= 0
110
111
  Hashcodes may not start out this way, but internally they are
112
  adjusted so that they are always positive.  We assume 32-bit
113
  hashcodes; adjust these constants for other hashcode sizes.
114
*/
115
0
#define HASH_DELETED    ((int32_t) 0x80000000)
116
0
#define HASH_EMPTY      ((int32_t) HASH_DELETED + 1)
117
118
0
#define IS_EMPTY_OR_DELETED(x) ((x) < 0)
119
120
/* This macro expects a UHashTok.pointer as its keypointer and
121
   valuepointer parameters */
122
0
#define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) UPRV_BLOCK_MACRO_BEGIN { \
123
0
    if (hash->keyDeleter != NULL && keypointer != NULL) { \
124
0
        (*hash->keyDeleter)(keypointer); \
125
0
    } \
126
0
    if (hash->valueDeleter != NULL && valuepointer != NULL) { \
127
0
        (*hash->valueDeleter)(valuepointer); \
128
0
    } \
129
0
} UPRV_BLOCK_MACRO_END
130
131
/*
132
 * Constants for hinting whether a key or value is an integer
133
 * or a pointer.  If a hint bit is zero, then the associated
134
 * token is assumed to be an integer.
135
 */
136
0
#define HINT_BOTH_INTEGERS (0)
137
0
#define HINT_KEY_POINTER   (1)
138
0
#define HINT_VALUE_POINTER (2)
139
0
#define HINT_ALLOW_ZERO    (4)
140
141
/********************************************************************
142
 * PRIVATE Implementation
143
 ********************************************************************/
144
145
static UHashTok
146
_uhash_setElement(UHashtable *hash, UHashElement* e,
147
                  int32_t hashcode,
148
0
                  UHashTok key, UHashTok value, int8_t hint) {
149
150
0
    UHashTok oldValue = e->value;
151
0
    if (hash->keyDeleter != NULL && e->key.pointer != NULL &&
152
0
        e->key.pointer != key.pointer) { /* Avoid double deletion */
153
0
        (*hash->keyDeleter)(e->key.pointer);
154
0
    }
155
0
    if (hash->valueDeleter != NULL) {
156
0
        if (oldValue.pointer != NULL &&
157
0
            oldValue.pointer != value.pointer) { /* Avoid double deletion */
158
0
            (*hash->valueDeleter)(oldValue.pointer);
159
0
        }
160
0
        oldValue.pointer = NULL;
161
0
    }
162
    /* Compilers should copy the UHashTok union correctly, but even if
163
     * they do, memory heap tools (e.g. BoundsChecker) can get
164
     * confused when a pointer is cloaked in a union and then copied.
165
     * TO ALLEVIATE THIS, we use hints (based on what API the user is
166
     * calling) to copy pointers when we know the user thinks
167
     * something is a pointer. */
168
0
    if (hint & HINT_KEY_POINTER) {
169
0
        e->key.pointer = key.pointer;
170
0
    } else {
171
0
        e->key = key;
172
0
    }
173
0
    if (hint & HINT_VALUE_POINTER) {
174
0
        e->value.pointer = value.pointer;
175
0
    } else {
176
0
        e->value = value;
177
0
    }
178
0
    e->hashcode = hashcode;
179
0
    return oldValue;
180
0
}
181
182
/**
183
 * Assumes that the given element is not empty or deleted.
184
 */
185
static UHashTok
186
0
_uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
187
0
    UHashTok empty;
188
0
    U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
189
0
    --hash->count;
190
0
    empty.pointer = NULL; empty.integer = 0;
191
0
    return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
192
0
}
193
194
static void
195
0
_uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
196
0
    U_ASSERT(hash != NULL);
197
0
    U_ASSERT(((int32_t)policy) >= 0);
198
0
    U_ASSERT(((int32_t)policy) < 3);
199
0
    hash->lowWaterRatio  = RESIZE_POLICY_RATIO_TABLE[policy * 2];
200
0
    hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
201
0
}
202
203
/**
204
 * Allocate internal data array of a size determined by the given
205
 * prime index.  If the index is out of range it is pinned into range.
206
 * If the allocation fails the status is set to
207
 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed.  In
208
 * either case the previous array pointer is overwritten.
209
 *
210
 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
211
 */
212
static void
213
_uhash_allocate(UHashtable *hash,
214
                int32_t primeIndex,
215
0
                UErrorCode *status) {
216
217
0
    UHashElement *p, *limit;
218
0
    UHashTok emptytok;
219
220
0
    if (U_FAILURE(*status)) return;
221
222
0
    U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
223
224
0
    hash->primeIndex = static_cast<int8_t>(primeIndex);
225
0
    hash->length = PRIMES[primeIndex];
226
227
0
    p = hash->elements = (UHashElement*)
228
0
        uprv_malloc(sizeof(UHashElement) * hash->length);
229
230
0
    if (hash->elements == NULL) {
231
0
        *status = U_MEMORY_ALLOCATION_ERROR;
232
0
        return;
233
0
    }
234
235
0
    emptytok.pointer = NULL; /* Only one of these two is needed */
236
0
    emptytok.integer = 0;    /* but we don't know which one. */
237
238
0
    limit = p + hash->length;
239
0
    while (p < limit) {
240
0
        p->key = emptytok;
241
0
        p->value = emptytok;
242
0
        p->hashcode = HASH_EMPTY;
243
0
        ++p;
244
0
    }
245
246
0
    hash->count = 0;
247
0
    hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
248
0
    hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
249
0
}
250
251
static UHashtable*
252
_uhash_init(UHashtable *result,
253
              UHashFunction *keyHash,
254
              UKeyComparator *keyComp,
255
              UValueComparator *valueComp,
256
              int32_t primeIndex,
257
              UErrorCode *status)
258
0
{
259
0
    if (U_FAILURE(*status)) return NULL;
260
0
    U_ASSERT(keyHash != NULL);
261
0
    U_ASSERT(keyComp != NULL);
262
263
0
    result->keyHasher       = keyHash;
264
0
    result->keyComparator   = keyComp;
265
0
    result->valueComparator = valueComp;
266
0
    result->keyDeleter      = NULL;
267
0
    result->valueDeleter    = NULL;
268
0
    result->allocated       = FALSE;
269
0
    _uhash_internalSetResizePolicy(result, U_GROW);
270
271
0
    _uhash_allocate(result, primeIndex, status);
272
273
0
    if (U_FAILURE(*status)) {
274
0
        return NULL;
275
0
    }
276
277
0
    return result;
278
0
}
279
280
static UHashtable*
281
_uhash_create(UHashFunction *keyHash,
282
              UKeyComparator *keyComp,
283
              UValueComparator *valueComp,
284
              int32_t primeIndex,
285
0
              UErrorCode *status) {
286
0
    UHashtable *result;
287
288
0
    if (U_FAILURE(*status)) return NULL;
289
290
0
    result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
291
0
    if (result == NULL) {
292
0
        *status = U_MEMORY_ALLOCATION_ERROR;
293
0
        return NULL;
294
0
    }
295
296
0
    _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status);
297
0
    result->allocated       = TRUE;
298
299
0
    if (U_FAILURE(*status)) {
300
0
        uprv_free(result);
301
0
        return NULL;
302
0
    }
303
304
0
    return result;
305
0
}
306
307
/**
308
 * Look for a key in the table, or if no such key exists, the first
309
 * empty slot matching the given hashcode.  Keys are compared using
310
 * the keyComparator function.
311
 *
312
 * First find the start position, which is the hashcode modulo
313
 * the length.  Test it to see if it is:
314
 *
315
 * a. identical:  First check the hash values for a quick check,
316
 *    then compare keys for equality using keyComparator.
317
 * b. deleted
318
 * c. empty
319
 *
320
 * Stop if it is identical or empty, otherwise continue by adding a
321
 * "jump" value (moduloing by the length again to keep it within
322
 * range) and retesting.  For efficiency, there need enough empty
323
 * values so that the searches stop within a reasonable amount of time.
324
 * This can be changed by changing the high/low water marks.
325
 *
326
 * In theory, this function can return NULL, if it is full (no empty
327
 * or deleted slots) and if no matching key is found.  In practice, we
328
 * prevent this elsewhere (in uhash_put) by making sure the last slot
329
 * in the table is never filled.
330
 *
331
 * The size of the table should be prime for this algorithm to work;
332
 * otherwise we are not guaranteed that the jump value (the secondary
333
 * hash) is relatively prime to the table length.
334
 */
335
static UHashElement*
336
_uhash_find(const UHashtable *hash, UHashTok key,
337
0
            int32_t hashcode) {
338
339
0
    int32_t firstDeleted = -1;  /* assume invalid index */
340
0
    int32_t theIndex, startIndex;
341
0
    int32_t jump = 0; /* lazy evaluate */
342
0
    int32_t tableHash;
343
0
    UHashElement *elements = hash->elements;
344
345
0
    hashcode &= 0x7FFFFFFF; /* must be positive */
346
0
    startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
347
348
0
    do {
349
0
        tableHash = elements[theIndex].hashcode;
350
0
        if (tableHash == hashcode) {          /* quick check */
351
0
            if ((*hash->keyComparator)(key, elements[theIndex].key)) {
352
0
                return &(elements[theIndex]);
353
0
            }
354
0
        } else if (!IS_EMPTY_OR_DELETED(tableHash)) {
355
            /* We have hit a slot which contains a key-value pair,
356
             * but for which the hash code does not match.  Keep
357
             * looking.
358
             */
359
0
        } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
360
0
            break;
361
0
        } else if (firstDeleted < 0) { /* remember first deleted */
362
0
            firstDeleted = theIndex;
363
0
        }
364
0
        if (jump == 0) { /* lazy compute jump */
365
            /* The jump value must be relatively prime to the table
366
             * length.  As long as the length is prime, then any value
367
             * 1..length-1 will be relatively prime to it.
368
             */
369
0
            jump = (hashcode % (hash->length - 1)) + 1;
370
0
        }
371
0
        theIndex = (theIndex + jump) % hash->length;
372
0
    } while (theIndex != startIndex);
373
374
0
    if (firstDeleted >= 0) {
375
0
        theIndex = firstDeleted; /* reset if had deleted slot */
376
0
    } else if (tableHash != HASH_EMPTY) {
377
        /* We get to this point if the hashtable is full (no empty or
378
         * deleted slots), and we've failed to find a match.  THIS
379
         * WILL NEVER HAPPEN as long as uhash_put() makes sure that
380
         * count is always < length.
381
         */
382
0
        UPRV_UNREACHABLE;
383
0
    }
384
0
    return &(elements[theIndex]);
385
0
}
386
387
/**
388
 * Attempt to grow or shrink the data arrays in order to make the
389
 * count fit between the high and low water marks.  hash_put() and
390
 * hash_remove() call this method when the count exceeds the high or
391
 * low water marks.  This method may do nothing, if memory allocation
392
 * fails, or if the count is already in range, or if the length is
393
 * already at the low or high limit.  In any case, upon return the
394
 * arrays will be valid.
395
 */
396
static void
397
0
_uhash_rehash(UHashtable *hash, UErrorCode *status) {
398
399
0
    UHashElement *old = hash->elements;
400
0
    int32_t oldLength = hash->length;
401
0
    int32_t newPrimeIndex = hash->primeIndex;
402
0
    int32_t i;
403
404
0
    if (hash->count > hash->highWaterMark) {
405
0
        if (++newPrimeIndex >= PRIMES_LENGTH) {
406
0
            return;
407
0
        }
408
0
    } else if (hash->count < hash->lowWaterMark) {
409
0
        if (--newPrimeIndex < 0) {
410
0
            return;
411
0
        }
412
0
    } else {
413
0
        return;
414
0
    }
415
416
0
    _uhash_allocate(hash, newPrimeIndex, status);
417
418
0
    if (U_FAILURE(*status)) {
419
0
        hash->elements = old;
420
0
        hash->length = oldLength;
421
0
        return;
422
0
    }
423
424
0
    for (i = oldLength - 1; i >= 0; --i) {
425
0
        if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
426
0
            UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
427
0
            U_ASSERT(e != NULL);
428
0
            U_ASSERT(e->hashcode == HASH_EMPTY);
429
0
            e->key = old[i].key;
430
0
            e->value = old[i].value;
431
0
            e->hashcode = old[i].hashcode;
432
0
            ++hash->count;
433
0
        }
434
0
    }
435
436
0
    uprv_free(old);
437
0
}
438
439
static UHashTok
440
_uhash_remove(UHashtable *hash,
441
0
              UHashTok key) {
442
    /* First find the position of the key in the table.  If the object
443
     * has not been removed already, remove it.  If the user wanted
444
     * keys deleted, then delete it also.  We have to put a special
445
     * hashcode in that position that means that something has been
446
     * deleted, since when we do a find, we have to continue PAST any
447
     * deleted values.
448
     */
449
0
    UHashTok result;
450
0
    UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
451
0
    U_ASSERT(e != NULL);
452
0
    result.pointer = NULL;
453
0
    result.integer = 0;
454
0
    if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
455
0
        result = _uhash_internalRemoveElement(hash, e);
456
0
        if (hash->count < hash->lowWaterMark) {
457
0
            UErrorCode status = U_ZERO_ERROR;
458
0
            _uhash_rehash(hash, &status);
459
0
        }
460
0
    }
461
0
    return result;
462
0
}
463
464
static UHashTok
465
_uhash_put(UHashtable *hash,
466
           UHashTok key,
467
           UHashTok value,
468
           int8_t hint,
469
0
           UErrorCode *status) {
470
471
    /* Put finds the position in the table for the new value.  If the
472
     * key is already in the table, it is deleted, if there is a
473
     * non-NULL keyDeleter.  Then the key, the hash and the value are
474
     * all put at the position in their respective arrays.
475
     */
476
0
    int32_t hashcode;
477
0
    UHashElement* e;
478
0
    UHashTok emptytok;
479
480
0
    if (U_FAILURE(*status)) {
481
0
        goto err;
482
0
    }
483
0
    U_ASSERT(hash != NULL);
484
0
    if ((hint & HINT_VALUE_POINTER) ?
485
0
            value.pointer == NULL :
486
0
            value.integer == 0 && (hint & HINT_ALLOW_ZERO) == 0) {
487
        /* Disallow storage of NULL values, since NULL is returned by
488
         * get() to indicate an absent key.  Storing NULL == removing.
489
         */
490
0
        return _uhash_remove(hash, key);
491
0
    }
492
0
    if (hash->count > hash->highWaterMark) {
493
0
        _uhash_rehash(hash, status);
494
0
        if (U_FAILURE(*status)) {
495
0
            goto err;
496
0
        }
497
0
    }
498
499
0
    hashcode = (*hash->keyHasher)(key);
500
0
    e = _uhash_find(hash, key, hashcode);
501
0
    U_ASSERT(e != NULL);
502
503
0
    if (IS_EMPTY_OR_DELETED(e->hashcode)) {
504
        /* Important: We must never actually fill the table up.  If we
505
         * do so, then _uhash_find() will return NULL, and we'll have
506
         * to check for NULL after every call to _uhash_find().  To
507
         * avoid this we make sure there is always at least one empty
508
         * or deleted slot in the table.  This only is a problem if we
509
         * are out of memory and rehash isn't working.
510
         */
511
0
        ++hash->count;
512
0
        if (hash->count == hash->length) {
513
            /* Don't allow count to reach length */
514
0
            --hash->count;
515
0
            *status = U_MEMORY_ALLOCATION_ERROR;
516
0
            goto err;
517
0
        }
518
0
    }
519
520
    /* We must in all cases handle storage properly.  If there was an
521
     * old key, then it must be deleted (if the deleter != NULL).
522
     * Make hashcodes stored in table positive.
523
     */
524
0
    return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
525
526
0
 err:
527
    /* If the deleters are non-NULL, this method adopts its key and/or
528
     * value arguments, and we must be sure to delete the key and/or
529
     * value in all cases, even upon failure.
530
     */
531
0
    HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
532
0
    emptytok.pointer = NULL; emptytok.integer = 0;
533
0
    return emptytok;
534
0
}
535
536
537
/********************************************************************
538
 * PUBLIC API
539
 ********************************************************************/
540
541
U_CAPI UHashtable* U_EXPORT2
542
uhash_open(UHashFunction *keyHash,
543
           UKeyComparator *keyComp,
544
           UValueComparator *valueComp,
545
0
           UErrorCode *status) {
546
547
0
    return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
548
0
}
549
550
U_CAPI UHashtable* U_EXPORT2
551
uhash_openSize(UHashFunction *keyHash,
552
               UKeyComparator *keyComp,
553
               UValueComparator *valueComp,
554
               int32_t size,
555
0
               UErrorCode *status) {
556
557
    /* Find the smallest index i for which PRIMES[i] >= size. */
558
0
    int32_t i = 0;
559
0
    while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
560
0
        ++i;
561
0
    }
562
563
0
    return _uhash_create(keyHash, keyComp, valueComp, i, status);
564
0
}
565
566
U_CAPI UHashtable* U_EXPORT2
567
uhash_init(UHashtable *fillinResult,
568
           UHashFunction *keyHash,
569
           UKeyComparator *keyComp,
570
           UValueComparator *valueComp,
571
0
           UErrorCode *status) {
572
573
0
    return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
574
0
}
575
576
U_CAPI UHashtable* U_EXPORT2
577
uhash_initSize(UHashtable *fillinResult,
578
               UHashFunction *keyHash,
579
               UKeyComparator *keyComp,
580
               UValueComparator *valueComp,
581
               int32_t size,
582
0
               UErrorCode *status) {
583
584
    // Find the smallest index i for which PRIMES[i] >= size.
585
0
    int32_t i = 0;
586
0
    while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
587
0
        ++i;
588
0
    }
589
0
    return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status);
590
0
}
591
592
U_CAPI void U_EXPORT2
593
0
uhash_close(UHashtable *hash) {
594
0
    if (hash == NULL) {
595
0
        return;
596
0
    }
597
0
    if (hash->elements != NULL) {
598
0
        if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
599
0
            int32_t pos=UHASH_FIRST;
600
0
            UHashElement *e;
601
0
            while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
602
0
                HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
603
0
            }
604
0
        }
605
0
        uprv_free(hash->elements);
606
0
        hash->elements = NULL;
607
0
    }
608
0
    if (hash->allocated) {
609
0
        uprv_free(hash);
610
0
    }
611
0
}
612
613
U_CAPI UHashFunction *U_EXPORT2
614
0
uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
615
0
    UHashFunction *result = hash->keyHasher;
616
0
    hash->keyHasher = fn;
617
0
    return result;
618
0
}
619
620
U_CAPI UKeyComparator *U_EXPORT2
621
0
uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
622
0
    UKeyComparator *result = hash->keyComparator;
623
0
    hash->keyComparator = fn;
624
0
    return result;
625
0
}
626
U_CAPI UValueComparator *U_EXPORT2
627
0
uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){
628
0
    UValueComparator *result = hash->valueComparator;
629
0
    hash->valueComparator = fn;
630
0
    return result;
631
0
}
632
633
U_CAPI UObjectDeleter *U_EXPORT2
634
0
uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
635
0
    UObjectDeleter *result = hash->keyDeleter;
636
0
    hash->keyDeleter = fn;
637
0
    return result;
638
0
}
639
640
U_CAPI UObjectDeleter *U_EXPORT2
641
0
uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
642
0
    UObjectDeleter *result = hash->valueDeleter;
643
0
    hash->valueDeleter = fn;
644
0
    return result;
645
0
}
646
647
U_CAPI void U_EXPORT2
648
0
uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
649
0
    UErrorCode status = U_ZERO_ERROR;
650
0
    _uhash_internalSetResizePolicy(hash, policy);
651
0
    hash->lowWaterMark  = (int32_t)(hash->length * hash->lowWaterRatio);
652
0
    hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
653
0
    _uhash_rehash(hash, &status);
654
0
}
655
656
U_CAPI int32_t U_EXPORT2
657
0
uhash_count(const UHashtable *hash) {
658
0
    return hash->count;
659
0
}
660
661
U_CAPI void* U_EXPORT2
662
uhash_get(const UHashtable *hash,
663
0
          const void* key) {
664
0
    UHashTok keyholder;
665
0
    keyholder.pointer = (void*) key;
666
0
    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
667
0
}
668
669
U_CAPI void* U_EXPORT2
670
uhash_iget(const UHashtable *hash,
671
0
           int32_t key) {
672
0
    UHashTok keyholder;
673
0
    keyholder.integer = key;
674
0
    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
675
0
}
676
677
U_CAPI int32_t U_EXPORT2
678
uhash_geti(const UHashtable *hash,
679
0
           const void* key) {
680
0
    UHashTok keyholder;
681
0
    keyholder.pointer = (void*) key;
682
0
    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
683
0
}
684
685
U_CAPI int32_t U_EXPORT2
686
uhash_igeti(const UHashtable *hash,
687
0
           int32_t key) {
688
0
    UHashTok keyholder;
689
0
    keyholder.integer = key;
690
0
    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
691
0
}
692
693
U_CAPI int32_t U_EXPORT2
694
uhash_getiAndFound(const UHashtable *hash,
695
                   const void *key,
696
0
                   UBool *found) {
697
0
    UHashTok keyholder;
698
0
    keyholder.pointer = (void *)key;
699
0
    const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
700
0
    *found = !IS_EMPTY_OR_DELETED(e->hashcode);
701
0
    return e->value.integer;
702
0
}
703
704
U_CAPI int32_t U_EXPORT2
705
uhash_igetiAndFound(const UHashtable *hash,
706
                    int32_t key,
707
0
                    UBool *found) {
708
0
    UHashTok keyholder;
709
0
    keyholder.integer = key;
710
0
    const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
711
0
    *found = !IS_EMPTY_OR_DELETED(e->hashcode);
712
0
    return e->value.integer;
713
0
}
714
715
U_CAPI void* U_EXPORT2
716
uhash_put(UHashtable *hash,
717
          void* key,
718
          void* value,
719
0
          UErrorCode *status) {
720
0
    UHashTok keyholder, valueholder;
721
0
    keyholder.pointer = key;
722
0
    valueholder.pointer = value;
723
0
    return _uhash_put(hash, keyholder, valueholder,
724
0
                      HINT_KEY_POINTER | HINT_VALUE_POINTER,
725
0
                      status).pointer;
726
0
}
727
728
U_CAPI void* U_EXPORT2
729
uhash_iput(UHashtable *hash,
730
           int32_t key,
731
           void* value,
732
0
           UErrorCode *status) {
733
0
    UHashTok keyholder, valueholder;
734
0
    keyholder.integer = key;
735
0
    valueholder.pointer = value;
736
0
    return _uhash_put(hash, keyholder, valueholder,
737
0
                      HINT_VALUE_POINTER,
738
0
                      status).pointer;
739
0
}
740
741
U_CAPI int32_t U_EXPORT2
742
uhash_puti(UHashtable *hash,
743
           void* key,
744
           int32_t value,
745
0
           UErrorCode *status) {
746
0
    UHashTok keyholder, valueholder;
747
0
    keyholder.pointer = key;
748
0
    valueholder.integer = value;
749
0
    return _uhash_put(hash, keyholder, valueholder,
750
0
                      HINT_KEY_POINTER,
751
0
                      status).integer;
752
0
}
753
754
755
U_CAPI int32_t U_EXPORT2
756
uhash_iputi(UHashtable *hash,
757
           int32_t key,
758
           int32_t value,
759
0
           UErrorCode *status) {
760
0
    UHashTok keyholder, valueholder;
761
0
    keyholder.integer = key;
762
0
    valueholder.integer = value;
763
0
    return _uhash_put(hash, keyholder, valueholder,
764
0
                      HINT_BOTH_INTEGERS,
765
0
                      status).integer;
766
0
}
767
768
U_CAPI int32_t U_EXPORT2
769
uhash_putiAllowZero(UHashtable *hash,
770
                    void *key,
771
                    int32_t value,
772
0
                    UErrorCode *status) {
773
0
    UHashTok keyholder, valueholder;
774
0
    keyholder.pointer = key;
775
0
    valueholder.integer = value;
776
0
    return _uhash_put(hash, keyholder, valueholder,
777
0
                      HINT_KEY_POINTER | HINT_ALLOW_ZERO,
778
0
                      status).integer;
779
0
}
780
781
782
U_CAPI int32_t U_EXPORT2
783
uhash_iputiAllowZero(UHashtable *hash,
784
                     int32_t key,
785
                     int32_t value,
786
0
                     UErrorCode *status) {
787
0
    UHashTok keyholder, valueholder;
788
0
    keyholder.integer = key;
789
0
    valueholder.integer = value;
790
0
    return _uhash_put(hash, keyholder, valueholder,
791
0
                      HINT_BOTH_INTEGERS | HINT_ALLOW_ZERO,
792
0
                      status).integer;
793
0
}
794
795
U_CAPI void* U_EXPORT2
796
uhash_remove(UHashtable *hash,
797
0
             const void* key) {
798
0
    UHashTok keyholder;
799
0
    keyholder.pointer = (void*) key;
800
0
    return _uhash_remove(hash, keyholder).pointer;
801
0
}
802
803
U_CAPI void* U_EXPORT2
804
uhash_iremove(UHashtable *hash,
805
0
              int32_t key) {
806
0
    UHashTok keyholder;
807
0
    keyholder.integer = key;
808
0
    return _uhash_remove(hash, keyholder).pointer;
809
0
}
810
811
U_CAPI int32_t U_EXPORT2
812
uhash_removei(UHashtable *hash,
813
0
              const void* key) {
814
0
    UHashTok keyholder;
815
0
    keyholder.pointer = (void*) key;
816
0
    return _uhash_remove(hash, keyholder).integer;
817
0
}
818
819
U_CAPI int32_t U_EXPORT2
820
uhash_iremovei(UHashtable *hash,
821
0
               int32_t key) {
822
0
    UHashTok keyholder;
823
0
    keyholder.integer = key;
824
0
    return _uhash_remove(hash, keyholder).integer;
825
0
}
826
827
U_CAPI void U_EXPORT2
828
0
uhash_removeAll(UHashtable *hash) {
829
0
    int32_t pos = UHASH_FIRST;
830
0
    const UHashElement *e;
831
0
    U_ASSERT(hash != NULL);
832
0
    if (hash->count != 0) {
833
0
        while ((e = uhash_nextElement(hash, &pos)) != NULL) {
834
0
            uhash_removeElement(hash, e);
835
0
        }
836
0
    }
837
0
    U_ASSERT(hash->count == 0);
838
0
}
839
840
U_CAPI UBool U_EXPORT2
841
0
uhash_containsKey(const UHashtable *hash, const void *key) {
842
0
    UHashTok keyholder;
843
0
    keyholder.pointer = (void *)key;
844
0
    const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
845
0
    return !IS_EMPTY_OR_DELETED(e->hashcode);
846
0
}
847
848
/**
849
 * Returns true if the UHashtable contains an item with this integer key.
850
 *
851
 * @param hash The target UHashtable.
852
 * @param key An integer key stored in a hashtable
853
 * @return true if the key is found.
854
 */
855
U_CAPI UBool U_EXPORT2
856
0
uhash_icontainsKey(const UHashtable *hash, int32_t key) {
857
0
    UHashTok keyholder;
858
0
    keyholder.integer = key;
859
0
    const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
860
0
    return !IS_EMPTY_OR_DELETED(e->hashcode);
861
0
}
862
863
U_CAPI const UHashElement* U_EXPORT2
864
0
uhash_find(const UHashtable *hash, const void* key) {
865
0
    UHashTok keyholder;
866
0
    const UHashElement *e;
867
0
    keyholder.pointer = (void*) key;
868
0
    e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
869
0
    return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e;
870
0
}
871
872
U_CAPI const UHashElement* U_EXPORT2
873
0
uhash_nextElement(const UHashtable *hash, int32_t *pos) {
874
    /* Walk through the array until we find an element that is not
875
     * EMPTY and not DELETED.
876
     */
877
0
    int32_t i;
878
0
    U_ASSERT(hash != NULL);
879
0
    for (i = *pos + 1; i < hash->length; ++i) {
880
0
        if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
881
0
            *pos = i;
882
0
            return &(hash->elements[i]);
883
0
        }
884
0
    }
885
886
    /* No more elements */
887
0
    return NULL;
888
0
}
889
890
U_CAPI void* U_EXPORT2
891
0
uhash_removeElement(UHashtable *hash, const UHashElement* e) {
892
0
    U_ASSERT(hash != NULL);
893
0
    U_ASSERT(e != NULL);
894
0
    if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
895
0
        UHashElement *nce = (UHashElement *)e;
896
0
        return _uhash_internalRemoveElement(hash, nce).pointer;
897
0
    }
898
0
    return NULL;
899
0
}
900
901
/********************************************************************
902
 * UHashTok convenience
903
 ********************************************************************/
904
905
/**
906
 * Return a UHashTok for an integer.
907
 */
908
/*U_CAPI UHashTok U_EXPORT2
909
uhash_toki(int32_t i) {
910
    UHashTok tok;
911
    tok.integer = i;
912
    return tok;
913
}*/
914
915
/**
916
 * Return a UHashTok for a pointer.
917
 */
918
/*U_CAPI UHashTok U_EXPORT2
919
uhash_tokp(void* p) {
920
    UHashTok tok;
921
    tok.pointer = p;
922
    return tok;
923
}*/
924
925
/********************************************************************
926
 * PUBLIC Key Hash Functions
927
 ********************************************************************/
928
929
U_CAPI int32_t U_EXPORT2
930
0
uhash_hashUChars(const UHashTok key) {
931
0
    const UChar *s = (const UChar *)key.pointer;
932
0
    return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s));
933
0
}
934
935
U_CAPI int32_t U_EXPORT2
936
0
uhash_hashChars(const UHashTok key) {
937
0
    const char *s = (const char *)key.pointer;
938
0
    return s == NULL ? 0 : static_cast<int32_t>(ustr_hashCharsN(s, static_cast<int32_t>(uprv_strlen(s))));
939
0
}
940
941
U_CAPI int32_t U_EXPORT2
942
0
uhash_hashIChars(const UHashTok key) {
943
0
    const char *s = (const char *)key.pointer;
944
0
    return s == NULL ? 0 : ustr_hashICharsN(s, static_cast<int32_t>(uprv_strlen(s)));
945
0
}
946
947
U_CAPI UBool U_EXPORT2
948
0
uhash_equals(const UHashtable* hash1, const UHashtable* hash2){
949
0
    int32_t count1, count2, pos, i;
950
951
0
    if(hash1==hash2){
952
0
        return TRUE;
953
0
    }
954
955
    /*
956
     * Make sure that we are comparing 2 valid hashes of the same type
957
     * with valid comparison functions.
958
     * Without valid comparison functions, a binary comparison
959
     * of the hash values will yield random results on machines
960
     * with 64-bit pointers and 32-bit integer hashes.
961
     * A valueComparator is normally optional.
962
     */
963
0
    if (hash1==NULL || hash2==NULL ||
964
0
        hash1->keyComparator != hash2->keyComparator ||
965
0
        hash1->valueComparator != hash2->valueComparator ||
966
0
        hash1->valueComparator == NULL)
967
0
    {
968
        /*
969
        Normally we would return an error here about incompatible hash tables,
970
        but we return FALSE instead.
971
        */
972
0
        return FALSE;
973
0
    }
974
975
0
    count1 = uhash_count(hash1);
976
0
    count2 = uhash_count(hash2);
977
0
    if(count1!=count2){
978
0
        return FALSE;
979
0
    }
980
981
0
    pos=UHASH_FIRST;
982
0
    for(i=0; i<count1; i++){
983
0
        const UHashElement* elem1 = uhash_nextElement(hash1, &pos);
984
0
        const UHashTok key1 = elem1->key;
985
0
        const UHashTok val1 = elem1->value;
986
        /* here the keys are not compared, instead the key form hash1 is used to fetch
987
         * value from hash2. If the hashes are equal then then both hashes should
988
         * contain equal values for the same key!
989
         */
990
0
        const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1));
991
0
        const UHashTok val2 = elem2->value;
992
0
        if(hash1->valueComparator(val1, val2)==FALSE){
993
0
            return FALSE;
994
0
        }
995
0
    }
996
0
    return TRUE;
997
0
}
998
999
/********************************************************************
1000
 * PUBLIC Comparator Functions
1001
 ********************************************************************/
1002
1003
U_CAPI UBool U_EXPORT2
1004
0
uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
1005
0
    const UChar *p1 = (const UChar*) key1.pointer;
1006
0
    const UChar *p2 = (const UChar*) key2.pointer;
1007
0
    if (p1 == p2) {
1008
0
        return TRUE;
1009
0
    }
1010
0
    if (p1 == NULL || p2 == NULL) {
1011
0
        return FALSE;
1012
0
    }
1013
0
    while (*p1 != 0 && *p1 == *p2) {
1014
0
        ++p1;
1015
0
        ++p2;
1016
0
    }
1017
0
    return (UBool)(*p1 == *p2);
1018
0
}
1019
1020
U_CAPI UBool U_EXPORT2
1021
0
uhash_compareChars(const UHashTok key1, const UHashTok key2) {
1022
0
    const char *p1 = (const char*) key1.pointer;
1023
0
    const char *p2 = (const char*) key2.pointer;
1024
0
    if (p1 == p2) {
1025
0
        return TRUE;
1026
0
    }
1027
0
    if (p1 == NULL || p2 == NULL) {
1028
0
        return FALSE;
1029
0
    }
1030
0
    while (*p1 != 0 && *p1 == *p2) {
1031
0
        ++p1;
1032
0
        ++p2;
1033
0
    }
1034
0
    return (UBool)(*p1 == *p2);
1035
0
}
1036
1037
U_CAPI UBool U_EXPORT2
1038
0
uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
1039
0
    const char *p1 = (const char*) key1.pointer;
1040
0
    const char *p2 = (const char*) key2.pointer;
1041
0
    if (p1 == p2) {
1042
0
        return TRUE;
1043
0
    }
1044
0
    if (p1 == NULL || p2 == NULL) {
1045
0
        return FALSE;
1046
0
    }
1047
0
    while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
1048
0
        ++p1;
1049
0
        ++p2;
1050
0
    }
1051
0
    return (UBool)(*p1 == *p2);
1052
0
}
1053
1054
/********************************************************************
1055
 * PUBLIC int32_t Support Functions
1056
 ********************************************************************/
1057
1058
U_CAPI int32_t U_EXPORT2
1059
0
uhash_hashLong(const UHashTok key) {
1060
0
    return key.integer;
1061
0
}
1062
1063
U_CAPI UBool U_EXPORT2
1064
0
uhash_compareLong(const UHashTok key1, const UHashTok key2) {
1065
0
    return (UBool)(key1.integer == key2.integer);
1066
0
}