Coverage Report

Created: 2025-06-24 06:43

/src/icu/source/common/utrie.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2016 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
/*
4
******************************************************************************
5
*
6
*   Copyright (C) 2001-2012, International Business Machines
7
*   Corporation and others.  All Rights Reserved.
8
*
9
******************************************************************************
10
*   file name:  utrie.cpp
11
*   encoding:   UTF-8
12
*   tab size:   8 (not used)
13
*   indentation:4
14
*
15
*   created on: 2001oct20
16
*   created by: Markus W. Scherer
17
*
18
*   This is a common implementation of a "folded" trie.
19
*   It is a kind of compressed, serializable table of 16- or 32-bit values associated with
20
*   Unicode code points (0..0x10ffff).
21
*/
22
23
#ifdef UTRIE_DEBUG
24
#   include <stdio.h>
25
#endif
26
27
#include "unicode/utypes.h"
28
#include "cmemory.h"
29
#include "utrie.h"
30
31
/* miscellaneous ------------------------------------------------------------ */
32
33
#undef ABS
34
0
#define ABS(x) ((x)>=0 ? (x) : -(x))
35
36
static inline UBool
37
0
equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) {
38
0
    while(length>0 && *s==*t) {
39
0
        ++s;
40
0
        ++t;
41
0
        --length;
42
0
    }
43
0
    return (UBool)(length==0);
44
0
}
45
46
/* Building a trie ----------------------------------------------------------*/
47
48
U_CAPI UNewTrie * U_EXPORT2
49
utrie_open(UNewTrie *fillIn,
50
           uint32_t *aliasData, int32_t maxDataLength,
51
           uint32_t initialValue, uint32_t leadUnitValue,
52
0
           UBool latin1Linear) {
53
0
    UNewTrie *trie;
54
0
    int32_t i, j;
55
56
0
    if( maxDataLength<UTRIE_DATA_BLOCK_LENGTH ||
57
0
        (latin1Linear && maxDataLength<1024)
58
0
    ) {
59
0
        return NULL;
60
0
    }
61
62
0
    if(fillIn!=NULL) {
63
0
        trie=fillIn;
64
0
    } else {
65
0
        trie=(UNewTrie *)uprv_malloc(sizeof(UNewTrie));
66
0
        if(trie==NULL) {
67
0
            return NULL;
68
0
        }
69
0
    }
70
0
    uprv_memset(trie, 0, sizeof(UNewTrie));
71
0
    trie->isAllocated= (UBool)(fillIn==NULL);
72
73
0
    if(aliasData!=NULL) {
74
0
        trie->data=aliasData;
75
0
        trie->isDataAllocated=FALSE;
76
0
    } else {
77
0
        trie->data=(uint32_t *)uprv_malloc(maxDataLength*4);
78
0
        if(trie->data==NULL) {
79
0
            uprv_free(trie);
80
0
            return NULL;
81
0
        }
82
0
        trie->isDataAllocated=TRUE;
83
0
    }
84
85
    /* preallocate and reset the first data block (block index 0) */
86
0
    j=UTRIE_DATA_BLOCK_LENGTH;
87
88
0
    if(latin1Linear) {
89
        /* preallocate and reset the first block (number 0) and Latin-1 (U+0000..U+00ff) after that */
90
        /* made sure above that maxDataLength>=1024 */
91
92
        /* set indexes to point to consecutive data blocks */
93
0
        i=0;
94
0
        do {
95
            /* do this at least for trie->index[0] even if that block is only partly used for Latin-1 */
96
0
            trie->index[i++]=j;
97
0
            j+=UTRIE_DATA_BLOCK_LENGTH;
98
0
        } while(i<(256>>UTRIE_SHIFT));
99
0
    }
100
101
    /* reset the initially allocated blocks to the initial value */
102
0
    trie->dataLength=j;
103
0
    while(j>0) {
104
0
        trie->data[--j]=initialValue;
105
0
    }
106
107
0
    trie->leadUnitValue=leadUnitValue;
108
0
    trie->indexLength=UTRIE_MAX_INDEX_LENGTH;
109
0
    trie->dataCapacity=maxDataLength;
110
0
    trie->isLatin1Linear=latin1Linear;
111
0
    trie->isCompacted=FALSE;
112
0
    return trie;
113
0
}
114
115
U_CAPI UNewTrie * U_EXPORT2
116
0
utrie_clone(UNewTrie *fillIn, const UNewTrie *other, uint32_t *aliasData, int32_t aliasDataCapacity) {
117
0
    UNewTrie *trie;
118
0
    UBool isDataAllocated;
119
120
    /* do not clone if other is not valid or already compacted */
121
0
    if(other==NULL || other->data==NULL || other->isCompacted) {
122
0
        return NULL;
123
0
    }
124
125
    /* clone data */
126
0
    if(aliasData!=NULL && aliasDataCapacity>=other->dataCapacity) {
127
0
        isDataAllocated=FALSE;
128
0
    } else {
129
0
        aliasDataCapacity=other->dataCapacity;
130
0
        aliasData=(uint32_t *)uprv_malloc(other->dataCapacity*4);
131
0
        if(aliasData==NULL) {
132
0
            return NULL;
133
0
        }
134
0
        isDataAllocated=TRUE;
135
0
    }
136
137
0
    trie=utrie_open(fillIn, aliasData, aliasDataCapacity,
138
0
                    other->data[0], other->leadUnitValue,
139
0
                    other->isLatin1Linear);
140
0
    if(trie==NULL) {
141
0
        uprv_free(aliasData);
142
0
    } else {
143
0
        uprv_memcpy(trie->index, other->index, sizeof(trie->index));
144
0
        uprv_memcpy(trie->data, other->data, (size_t)other->dataLength*4);
145
0
        trie->dataLength=other->dataLength;
146
0
        trie->isDataAllocated=isDataAllocated;
147
0
    }
148
149
0
    return trie;
150
0
}
151
152
U_CAPI void U_EXPORT2
153
0
utrie_close(UNewTrie *trie) {
154
0
    if(trie!=NULL) {
155
0
        if(trie->isDataAllocated) {
156
0
            uprv_free(trie->data);
157
0
            trie->data=NULL;
158
0
        }
159
0
        if(trie->isAllocated) {
160
0
            uprv_free(trie);
161
0
        }
162
0
    }
163
0
}
164
165
U_CAPI uint32_t * U_EXPORT2
166
0
utrie_getData(UNewTrie *trie, int32_t *pLength) {
167
0
    if(trie==NULL || pLength==NULL) {
168
0
        return NULL;
169
0
    }
170
171
0
    *pLength=trie->dataLength;
172
0
    return trie->data;
173
0
}
174
175
static int32_t
176
0
utrie_allocDataBlock(UNewTrie *trie) {
177
0
    int32_t newBlock, newTop;
178
179
0
    newBlock=trie->dataLength;
180
0
    newTop=newBlock+UTRIE_DATA_BLOCK_LENGTH;
181
0
    if(newTop>trie->dataCapacity) {
182
        /* out of memory in the data array */
183
0
        return -1;
184
0
    }
185
0
    trie->dataLength=newTop;
186
0
    return newBlock;
187
0
}
188
189
/**
190
 * No error checking for illegal arguments.
191
 *
192
 * @return -1 if no new data block available (out of memory in data array)
193
 * @internal
194
 */
195
static int32_t
196
0
utrie_getDataBlock(UNewTrie *trie, UChar32 c) {
197
0
    int32_t indexValue, newBlock;
198
199
0
    c>>=UTRIE_SHIFT;
200
0
    indexValue=trie->index[c];
201
0
    if(indexValue>0) {
202
0
        return indexValue;
203
0
    }
204
205
    /* allocate a new data block */
206
0
    newBlock=utrie_allocDataBlock(trie);
207
0
    if(newBlock<0) {
208
        /* out of memory in the data array */
209
0
        return -1;
210
0
    }
211
0
    trie->index[c]=newBlock;
212
213
    /* copy-on-write for a block from a setRange() */
214
0
    uprv_memcpy(trie->data+newBlock, trie->data-indexValue, 4*UTRIE_DATA_BLOCK_LENGTH);
215
0
    return newBlock;
216
0
}
217
218
/**
219
 * @return TRUE if the value was successfully set
220
 */
221
U_CAPI UBool U_EXPORT2
222
0
utrie_set32(UNewTrie *trie, UChar32 c, uint32_t value) {
223
0
    int32_t block;
224
225
    /* valid, uncompacted trie and valid c? */
226
0
    if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) {
227
0
        return FALSE;
228
0
    }
229
230
0
    block=utrie_getDataBlock(trie, c);
231
0
    if(block<0) {
232
0
        return FALSE;
233
0
    }
234
235
0
    trie->data[block+(c&UTRIE_MASK)]=value;
236
0
    return TRUE;
237
0
}
238
239
U_CAPI uint32_t U_EXPORT2
240
0
utrie_get32(UNewTrie *trie, UChar32 c, UBool *pInBlockZero) {
241
0
    int32_t block;
242
243
    /* valid, uncompacted trie and valid c? */
244
0
    if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) {
245
0
        if(pInBlockZero!=NULL) {
246
0
            *pInBlockZero=TRUE;
247
0
        }
248
0
        return 0;
249
0
    }
250
251
0
    block=trie->index[c>>UTRIE_SHIFT];
252
0
    if(pInBlockZero!=NULL) {
253
0
        *pInBlockZero= (UBool)(block==0);
254
0
    }
255
256
0
    return trie->data[ABS(block)+(c&UTRIE_MASK)];
257
0
}
258
259
/**
260
 * @internal
261
 */
262
static void
263
utrie_fillBlock(uint32_t *block, UChar32 start, UChar32 limit,
264
0
                uint32_t value, uint32_t initialValue, UBool overwrite) {
265
0
    uint32_t *pLimit;
266
267
0
    pLimit=block+limit;
268
0
    block+=start;
269
0
    if(overwrite) {
270
0
        while(block<pLimit) {
271
0
            *block++=value;
272
0
        }
273
0
    } else {
274
0
        while(block<pLimit) {
275
0
            if(*block==initialValue) {
276
0
                *block=value;
277
0
            }
278
0
            ++block;
279
0
        }
280
0
    }
281
0
}
282
283
U_CAPI UBool U_EXPORT2
284
0
utrie_setRange32(UNewTrie *trie, UChar32 start, UChar32 limit, uint32_t value, UBool overwrite) {
285
    /*
286
     * repeat value in [start..limit[
287
     * mark index values for repeat-data blocks by setting bit 31 of the index values
288
     * fill around existing values if any, if(overwrite)
289
     */
290
0
    uint32_t initialValue;
291
0
    int32_t block, rest, repeatBlock;
292
293
    /* valid, uncompacted trie and valid indexes? */
294
0
    if( trie==NULL || trie->isCompacted ||
295
0
        (uint32_t)start>0x10ffff || (uint32_t)limit>0x110000 || start>limit
296
0
    ) {
297
0
        return FALSE;
298
0
    }
299
0
    if(start==limit) {
300
0
        return TRUE; /* nothing to do */
301
0
    }
302
303
0
    initialValue=trie->data[0];
304
0
    if(start&UTRIE_MASK) {
305
0
        UChar32 nextStart;
306
307
        /* set partial block at [start..following block boundary[ */
308
0
        block=utrie_getDataBlock(trie, start);
309
0
        if(block<0) {
310
0
            return FALSE;
311
0
        }
312
313
0
        nextStart=(start+UTRIE_DATA_BLOCK_LENGTH)&~UTRIE_MASK;
314
0
        if(nextStart<=limit) {
315
0
            utrie_fillBlock(trie->data+block, start&UTRIE_MASK, UTRIE_DATA_BLOCK_LENGTH,
316
0
                            value, initialValue, overwrite);
317
0
            start=nextStart;
318
0
        } else {
319
0
            utrie_fillBlock(trie->data+block, start&UTRIE_MASK, limit&UTRIE_MASK,
320
0
                            value, initialValue, overwrite);
321
0
            return TRUE;
322
0
        }
323
0
    }
324
325
    /* number of positions in the last, partial block */
326
0
    rest=limit&UTRIE_MASK;
327
328
    /* round down limit to a block boundary */
329
0
    limit&=~UTRIE_MASK;
330
331
    /* iterate over all-value blocks */
332
0
    if(value==initialValue) {
333
0
        repeatBlock=0;
334
0
    } else {
335
0
        repeatBlock=-1;
336
0
    }
337
0
    while(start<limit) {
338
        /* get index value */
339
0
        block=trie->index[start>>UTRIE_SHIFT];
340
0
        if(block>0) {
341
            /* already allocated, fill in value */
342
0
            utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, overwrite);
343
0
        } else if(trie->data[-block]!=value && (block==0 || overwrite)) {
344
            /* set the repeatBlock instead of the current block 0 or range block */
345
0
            if(repeatBlock>=0) {
346
0
                trie->index[start>>UTRIE_SHIFT]=-repeatBlock;
347
0
            } else {
348
                /* create and set and fill the repeatBlock */
349
0
                repeatBlock=utrie_getDataBlock(trie, start);
350
0
                if(repeatBlock<0) {
351
0
                    return FALSE;
352
0
                }
353
354
                /* set the negative block number to indicate that it is a repeat block */
355
0
                trie->index[start>>UTRIE_SHIFT]=-repeatBlock;
356
0
                utrie_fillBlock(trie->data+repeatBlock, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, TRUE);
357
0
            }
358
0
        }
359
360
0
        start+=UTRIE_DATA_BLOCK_LENGTH;
361
0
    }
362
363
0
    if(rest>0) {
364
        /* set partial block at [last block boundary..limit[ */
365
0
        block=utrie_getDataBlock(trie, start);
366
0
        if(block<0) {
367
0
            return FALSE;
368
0
        }
369
370
0
        utrie_fillBlock(trie->data+block, 0, rest, value, initialValue, overwrite);
371
0
    }
372
373
0
    return TRUE;
374
0
}
375
376
static int32_t
377
_findSameIndexBlock(const int32_t *idx, int32_t indexLength,
378
0
                    int32_t otherBlock) {
379
0
    int32_t block, i;
380
381
0
    for(block=UTRIE_BMP_INDEX_LENGTH; block<indexLength; block+=UTRIE_SURROGATE_BLOCK_COUNT) {
382
0
        for(i=0; i<UTRIE_SURROGATE_BLOCK_COUNT; ++i) {
383
0
            if(idx[block+i]!=idx[otherBlock+i]) {
384
0
                break;
385
0
            }
386
0
        }
387
0
        if(i==UTRIE_SURROGATE_BLOCK_COUNT) {
388
0
            return block;
389
0
        }
390
0
    }
391
0
    return indexLength;
392
0
}
393
394
/*
395
 * Fold the normalization data for supplementary code points into
396
 * a compact area on top of the BMP-part of the trie index,
397
 * with the lead surrogates indexing this compact area.
398
 *
399
 * Duplicate the index values for lead surrogates:
400
 * From inside the BMP area, where some may be overridden with folded values,
401
 * to just after the BMP area, where they can be retrieved for
402
 * code point lookups.
403
 */
404
static void
405
0
utrie_fold(UNewTrie *trie, UNewTrieGetFoldedValue *getFoldedValue, UErrorCode *pErrorCode) {
406
0
    int32_t leadIndexes[UTRIE_SURROGATE_BLOCK_COUNT];
407
0
    int32_t *idx;
408
0
    uint32_t value;
409
0
    UChar32 c;
410
0
    int32_t indexLength, block;
411
#ifdef UTRIE_DEBUG
412
    int countLeadCUWithData=0;
413
#endif
414
415
0
    idx=trie->index;
416
417
    /* copy the lead surrogate indexes into a temporary array */
418
0
    uprv_memcpy(leadIndexes, idx+(0xd800>>UTRIE_SHIFT), 4*UTRIE_SURROGATE_BLOCK_COUNT);
419
420
    /*
421
     * set all values for lead surrogate code *units* to leadUnitValue
422
     * so that, by default, runtime lookups will find no data for associated
423
     * supplementary code points, unless there is data for such code points
424
     * which will result in a non-zero folding value below that is set for
425
     * the respective lead units
426
     *
427
     * the above saved the indexes for surrogate code *points*
428
     * fill the indexes with simplified code from utrie_setRange32()
429
     */
430
0
    if(trie->leadUnitValue==trie->data[0]) {
431
0
        block=0; /* leadUnitValue==initialValue, use all-initial-value block */
432
0
    } else {
433
        /* create and fill the repeatBlock */
434
0
        block=utrie_allocDataBlock(trie);
435
0
        if(block<0) {
436
            /* data table overflow */
437
0
            *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
438
0
            return;
439
0
        }
440
0
        utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, trie->leadUnitValue, trie->data[0], TRUE);
441
0
        block=-block; /* negative block number to indicate that it is a repeat block */
442
0
    }
443
0
    for(c=(0xd800>>UTRIE_SHIFT); c<(0xdc00>>UTRIE_SHIFT); ++c) {
444
0
        trie->index[c]=block;
445
0
    }
446
447
    /*
448
     * Fold significant index values into the area just after the BMP indexes.
449
     * In case the first lead surrogate has significant data,
450
     * its index block must be used first (in which case the folding is a no-op).
451
     * Later all folded index blocks are moved up one to insert the copied
452
     * lead surrogate indexes.
453
     */
454
0
    indexLength=UTRIE_BMP_INDEX_LENGTH;
455
456
    /* search for any index (stage 1) entries for supplementary code points */
457
0
    for(c=0x10000; c<0x110000;) {
458
0
        if(idx[c>>UTRIE_SHIFT]!=0) {
459
            /* there is data, treat the full block for a lead surrogate */
460
0
            c&=~0x3ff;
461
462
#ifdef UTRIE_DEBUG
463
            ++countLeadCUWithData;
464
            /* printf("supplementary data for lead surrogate U+%04lx\n", (long)(0xd7c0+(c>>10))); */
465
#endif
466
467
            /* is there an identical index block? */
468
0
            block=_findSameIndexBlock(idx, indexLength, c>>UTRIE_SHIFT);
469
470
            /*
471
             * get a folded value for [c..c+0x400[ and,
472
             * if different from the value for the lead surrogate code point,
473
             * set it for the lead surrogate code unit
474
             */
475
0
            value=getFoldedValue(trie, c, block+UTRIE_SURROGATE_BLOCK_COUNT);
476
0
            if(value!=utrie_get32(trie, U16_LEAD(c), NULL)) {
477
0
                if(!utrie_set32(trie, U16_LEAD(c), value)) {
478
                    /* data table overflow */
479
0
                    *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
480
0
                    return;
481
0
                }
482
483
                /* if we did not find an identical index block... */
484
0
                if(block==indexLength) {
485
                    /* move the actual index (stage 1) entries from the supplementary position to the new one */
486
0
                    uprv_memmove(idx+indexLength,
487
0
                                 idx+(c>>UTRIE_SHIFT),
488
0
                                 4*UTRIE_SURROGATE_BLOCK_COUNT);
489
0
                    indexLength+=UTRIE_SURROGATE_BLOCK_COUNT;
490
0
                }
491
0
            }
492
0
            c+=0x400;
493
0
        } else {
494
0
            c+=UTRIE_DATA_BLOCK_LENGTH;
495
0
        }
496
0
    }
497
#ifdef UTRIE_DEBUG
498
    if(countLeadCUWithData>0) {
499
        printf("supplementary data for %d lead surrogates\n", countLeadCUWithData);
500
    }
501
#endif
502
503
    /*
504
     * index array overflow?
505
     * This is to guarantee that a folding offset is of the form
506
     * UTRIE_BMP_INDEX_LENGTH+n*UTRIE_SURROGATE_BLOCK_COUNT with n=0..1023.
507
     * If the index is too large, then n>=1024 and more than 10 bits are necessary.
508
     *
509
     * In fact, it can only ever become n==1024 with completely unfoldable data and
510
     * the additional block of duplicated values for lead surrogates.
511
     */
512
0
    if(indexLength>=UTRIE_MAX_INDEX_LENGTH) {
513
0
        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
514
0
        return;
515
0
    }
516
517
    /*
518
     * make space for the lead surrogate index block and
519
     * insert it between the BMP indexes and the folded ones
520
     */
521
0
    uprv_memmove(idx+UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT,
522
0
                 idx+UTRIE_BMP_INDEX_LENGTH,
523
0
                 4*(indexLength-UTRIE_BMP_INDEX_LENGTH));
524
0
    uprv_memcpy(idx+UTRIE_BMP_INDEX_LENGTH,
525
0
                leadIndexes,
526
0
                4*UTRIE_SURROGATE_BLOCK_COUNT);
527
0
    indexLength+=UTRIE_SURROGATE_BLOCK_COUNT;
528
529
#ifdef UTRIE_DEBUG
530
    printf("trie index count: BMP %ld  all Unicode %ld  folded %ld\n",
531
           UTRIE_BMP_INDEX_LENGTH, (long)UTRIE_MAX_INDEX_LENGTH, indexLength);
532
#endif
533
534
0
    trie->indexLength=indexLength;
535
0
}
536
537
/*
538
 * Set a value in the trie index map to indicate which data block
539
 * is referenced and which one is not.
540
 * utrie_compact() will remove data blocks that are not used at all.
541
 * Set
542
 * - 0 if it is used
543
 * - -1 if it is not used
544
 */
545
static void
546
0
_findUnusedBlocks(UNewTrie *trie) {
547
0
    int32_t i;
548
549
    /* fill the entire map with "not used" */
550
0
    uprv_memset(trie->map, 0xff, (UTRIE_MAX_BUILD_TIME_DATA_LENGTH>>UTRIE_SHIFT)*4);
551
552
    /* mark each block that _is_ used with 0 */
553
0
    for(i=0; i<trie->indexLength; ++i) {
554
0
        trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]=0;
555
0
    }
556
557
    /* never move the all-initial-value block 0 */
558
0
    trie->map[0]=0;
559
0
}
560
561
static int32_t
562
_findSameDataBlock(const uint32_t *data, int32_t dataLength,
563
0
                   int32_t otherBlock, int32_t step) {
564
0
    int32_t block;
565
566
    /* ensure that we do not even partially get past dataLength */
567
0
    dataLength-=UTRIE_DATA_BLOCK_LENGTH;
568
569
0
    for(block=0; block<=dataLength; block+=step) {
570
0
        if(equal_uint32(data+block, data+otherBlock, UTRIE_DATA_BLOCK_LENGTH)) {
571
0
            return block;
572
0
        }
573
0
    }
574
0
    return -1;
575
0
}
576
577
/*
578
 * Compact a folded build-time trie.
579
 *
580
 * The compaction
581
 * - removes blocks that are identical with earlier ones
582
 * - overlaps adjacent blocks as much as possible (if overlap==TRUE)
583
 * - moves blocks in steps of the data granularity
584
 * - moves and overlaps blocks that overlap with multiple values in the overlap region
585
 *
586
 * It does not
587
 * - try to move and overlap blocks that are not already adjacent
588
 */
589
static void
590
0
utrie_compact(UNewTrie *trie, UBool overlap, UErrorCode *pErrorCode) {
591
0
    int32_t i, start, newStart, overlapStart;
592
593
0
    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
594
0
        return;
595
0
    }
596
597
    /* valid, uncompacted trie? */
598
0
    if(trie==NULL) {
599
0
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
600
0
        return;
601
0
    }
602
0
    if(trie->isCompacted) {
603
0
        return; /* nothing left to do */
604
0
    }
605
606
    /* compaction */
607
608
    /* initialize the index map with "block is used/unused" flags */
609
0
    _findUnusedBlocks(trie);
610
611
    /* if Latin-1 is preallocated and linear, then do not compact Latin-1 data */
612
0
    if(trie->isLatin1Linear && UTRIE_SHIFT<=8) {
613
0
        overlapStart=UTRIE_DATA_BLOCK_LENGTH+256;
614
0
    } else {
615
0
        overlapStart=UTRIE_DATA_BLOCK_LENGTH;
616
0
    }
617
618
0
    newStart=UTRIE_DATA_BLOCK_LENGTH;
619
0
    for(start=newStart; start<trie->dataLength;) {
620
        /*
621
         * start: index of first entry of current block
622
         * newStart: index where the current block is to be moved
623
         *           (right after current end of already-compacted data)
624
         */
625
626
        /* skip blocks that are not used */
627
0
        if(trie->map[start>>UTRIE_SHIFT]<0) {
628
            /* advance start to the next block */
629
0
            start+=UTRIE_DATA_BLOCK_LENGTH;
630
631
            /* leave newStart with the previous block! */
632
0
            continue;
633
0
        }
634
635
        /* search for an identical block */
636
0
        if( start>=overlapStart &&
637
0
            (i=_findSameDataBlock(trie->data, newStart, start,
638
0
                            overlap ? UTRIE_DATA_GRANULARITY : UTRIE_DATA_BLOCK_LENGTH))
639
0
             >=0
640
0
        ) {
641
            /* found an identical block, set the other block's index value for the current block */
642
0
            trie->map[start>>UTRIE_SHIFT]=i;
643
644
            /* advance start to the next block */
645
0
            start+=UTRIE_DATA_BLOCK_LENGTH;
646
647
            /* leave newStart with the previous block! */
648
0
            continue;
649
0
        }
650
651
        /* see if the beginning of this block can be overlapped with the end of the previous block */
652
0
        if(overlap && start>=overlapStart) {
653
            /* look for maximum overlap (modulo granularity) with the previous, adjacent block */
654
0
            for(i=UTRIE_DATA_BLOCK_LENGTH-UTRIE_DATA_GRANULARITY;
655
0
                i>0 && !equal_uint32(trie->data+(newStart-i), trie->data+start, i);
656
0
                i-=UTRIE_DATA_GRANULARITY) {}
657
0
        } else {
658
0
            i=0;
659
0
        }
660
661
0
        if(i>0) {
662
            /* some overlap */
663
0
            trie->map[start>>UTRIE_SHIFT]=newStart-i;
664
665
            /* move the non-overlapping indexes to their new positions */
666
0
            start+=i;
667
0
            for(i=UTRIE_DATA_BLOCK_LENGTH-i; i>0; --i) {
668
0
                trie->data[newStart++]=trie->data[start++];
669
0
            }
670
0
        } else if(newStart<start) {
671
            /* no overlap, just move the indexes to their new positions */
672
0
            trie->map[start>>UTRIE_SHIFT]=newStart;
673
0
            for(i=UTRIE_DATA_BLOCK_LENGTH; i>0; --i) {
674
0
                trie->data[newStart++]=trie->data[start++];
675
0
            }
676
0
        } else /* no overlap && newStart==start */ {
677
0
            trie->map[start>>UTRIE_SHIFT]=start;
678
0
            newStart+=UTRIE_DATA_BLOCK_LENGTH;
679
0
            start=newStart;
680
0
        }
681
0
    }
682
683
    /* now adjust the index (stage 1) table */
684
0
    for(i=0; i<trie->indexLength; ++i) {
685
0
        trie->index[i]=trie->map[ABS(trie->index[i])>>UTRIE_SHIFT];
686
0
    }
687
688
#ifdef UTRIE_DEBUG
689
    /* we saved some space */
690
    printf("compacting trie: count of 32-bit words %lu->%lu\n",
691
            (long)trie->dataLength, (long)newStart);
692
#endif
693
694
0
    trie->dataLength=newStart;
695
0
}
696
697
/* serialization ------------------------------------------------------------ */
698
699
/*
700
 * Default function for the folding value:
701
 * Just store the offset (16 bits) if there is any non-initial-value entry.
702
 *
703
 * The offset parameter is never 0.
704
 * Returning the offset itself is safe for UTRIE_SHIFT>=5 because
705
 * for UTRIE_SHIFT==5 the maximum index length is UTRIE_MAX_INDEX_LENGTH==0x8800
706
 * which fits into 16-bit trie values;
707
 * for higher UTRIE_SHIFT, UTRIE_MAX_INDEX_LENGTH decreases.
708
 *
709
 * Theoretically, it would be safer for all possible UTRIE_SHIFT including
710
 * those of 4 and lower to return offset>>UTRIE_SURROGATE_BLOCK_BITS
711
 * which would always result in a value of 0x40..0x43f
712
 * (start/end 1k blocks of supplementary Unicode code points).
713
 * However, this would be uglier, and would not work for some existing
714
 * binary data file formats.
715
 *
716
 * Also, we do not plan to change UTRIE_SHIFT because it would change binary
717
 * data file formats, and we would probably not make it smaller because of
718
 * the then even larger BMP index length even for empty tries.
719
 */
720
static uint32_t U_CALLCONV
721
0
defaultGetFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset) {
722
0
    uint32_t value, initialValue;
723
0
    UChar32 limit;
724
0
    UBool inBlockZero;
725
726
0
    initialValue=trie->data[0];
727
0
    limit=start+0x400;
728
0
    while(start<limit) {
729
0
        value=utrie_get32(trie, start, &inBlockZero);
730
0
        if(inBlockZero) {
731
0
            start+=UTRIE_DATA_BLOCK_LENGTH;
732
0
        } else if(value!=initialValue) {
733
0
            return (uint32_t)offset;
734
0
        } else {
735
0
            ++start;
736
0
        }
737
0
    }
738
0
    return 0;
739
0
}
740
741
U_CAPI int32_t U_EXPORT2
742
utrie_serialize(UNewTrie *trie, void *dt, int32_t capacity,
743
                UNewTrieGetFoldedValue *getFoldedValue,
744
                UBool reduceTo16Bits,
745
0
                UErrorCode *pErrorCode) {
746
0
    UTrieHeader *header;
747
0
    uint32_t *p;
748
0
    uint16_t *dest16;
749
0
    int32_t i, length;
750
0
    uint8_t* data = NULL;
751
752
    /* argument check */
753
0
    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
754
0
        return 0;
755
0
    }
756
757
0
    if(trie==NULL || capacity<0 || (capacity>0 && dt==NULL)) {
758
0
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
759
0
        return 0;
760
0
    }
761
0
    if(getFoldedValue==NULL) {
762
0
        getFoldedValue=defaultGetFoldedValue;
763
0
    }
764
765
0
    data = (uint8_t*)dt;
766
    /* fold and compact if necessary, also checks that indexLength is within limits */
767
0
    if(!trie->isCompacted) {
768
        /* compact once without overlap to improve folding */
769
0
        utrie_compact(trie, FALSE, pErrorCode);
770
771
        /* fold the supplementary part of the index array */
772
0
        utrie_fold(trie, getFoldedValue, pErrorCode);
773
774
        /* compact again with overlap for minimum data array length */
775
0
        utrie_compact(trie, TRUE, pErrorCode);
776
777
0
        trie->isCompacted=TRUE;
778
0
        if(U_FAILURE(*pErrorCode)) {
779
0
            return 0;
780
0
        }
781
0
    }
782
783
    /* is dataLength within limits? */
784
0
    if( (reduceTo16Bits ? (trie->dataLength+trie->indexLength) : trie->dataLength) >= UTRIE_MAX_DATA_LENGTH) {
785
0
        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
786
0
    }
787
788
0
    length=sizeof(UTrieHeader)+2*trie->indexLength;
789
0
    if(reduceTo16Bits) {
790
0
        length+=2*trie->dataLength;
791
0
    } else {
792
0
        length+=4*trie->dataLength;
793
0
    }
794
795
0
    if(length>capacity) {
796
0
        return length; /* preflighting */
797
0
    }
798
799
#ifdef UTRIE_DEBUG
800
    printf("**UTrieLengths(serialize)** index:%6ld  data:%6ld  serialized:%6ld\n",
801
           (long)trie->indexLength, (long)trie->dataLength, (long)length);
802
#endif
803
804
    /* set the header fields */
805
0
    header=(UTrieHeader *)data;
806
0
    data+=sizeof(UTrieHeader);
807
808
0
    header->signature=0x54726965; /* "Trie" */
809
0
    header->options=UTRIE_SHIFT | (UTRIE_INDEX_SHIFT<<UTRIE_OPTIONS_INDEX_SHIFT);
810
811
0
    if(!reduceTo16Bits) {
812
0
        header->options|=UTRIE_OPTIONS_DATA_IS_32_BIT;
813
0
    }
814
0
    if(trie->isLatin1Linear) {
815
0
        header->options|=UTRIE_OPTIONS_LATIN1_IS_LINEAR;
816
0
    }
817
818
0
    header->indexLength=trie->indexLength;
819
0
    header->dataLength=trie->dataLength;
820
821
    /* write the index (stage 1) array and the 16/32-bit data (stage 2) array */
822
0
    if(reduceTo16Bits) {
823
        /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT, after adding indexLength */
824
0
        p=(uint32_t *)trie->index;
825
0
        dest16=(uint16_t *)data;
826
0
        for(i=trie->indexLength; i>0; --i) {
827
0
            *dest16++=(uint16_t)((*p++ + trie->indexLength)>>UTRIE_INDEX_SHIFT);
828
0
        }
829
830
        /* write 16-bit data values */
831
0
        p=trie->data;
832
0
        for(i=trie->dataLength; i>0; --i) {
833
0
            *dest16++=(uint16_t)*p++;
834
0
        }
835
0
    } else {
836
        /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT */
837
0
        p=(uint32_t *)trie->index;
838
0
        dest16=(uint16_t *)data;
839
0
        for(i=trie->indexLength; i>0; --i) {
840
0
            *dest16++=(uint16_t)(*p++ >> UTRIE_INDEX_SHIFT);
841
0
        }
842
843
        /* write 32-bit data values */
844
0
        uprv_memcpy(dest16, trie->data, 4*(size_t)trie->dataLength);
845
0
    }
846
847
0
    return length;
848
0
}
849
850
/* inverse to defaultGetFoldedValue() */
851
U_CAPI int32_t U_EXPORT2
852
0
utrie_defaultGetFoldingOffset(uint32_t data) {
853
0
    return (int32_t)data;
854
0
}
855
856
U_CAPI int32_t U_EXPORT2
857
0
utrie_unserialize(UTrie *trie, const void *data, int32_t length, UErrorCode *pErrorCode) {
858
0
    const UTrieHeader *header;
859
0
    const uint16_t *p16;
860
0
    uint32_t options;
861
862
0
    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
863
0
        return -1;
864
0
    }
865
866
    /* enough data for a trie header? */
867
0
    if(length<(int32_t)sizeof(UTrieHeader)) {
868
0
        *pErrorCode=U_INVALID_FORMAT_ERROR;
869
0
        return -1;
870
0
    }
871
872
    /* check the signature */
873
0
    header=(const UTrieHeader *)data;
874
0
    if(header->signature!=0x54726965) {
875
0
        *pErrorCode=U_INVALID_FORMAT_ERROR;
876
0
        return -1;
877
0
    }
878
879
    /* get the options and check the shift values */
880
0
    options=header->options;
881
0
    if( (options&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_SHIFT ||
882
0
        ((options>>UTRIE_OPTIONS_INDEX_SHIFT)&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_INDEX_SHIFT
883
0
    ) {
884
0
        *pErrorCode=U_INVALID_FORMAT_ERROR;
885
0
        return -1;
886
0
    }
887
0
    trie->isLatin1Linear= (UBool)((options&UTRIE_OPTIONS_LATIN1_IS_LINEAR)!=0);
888
889
    /* get the length values */
890
0
    trie->indexLength=header->indexLength;
891
0
    trie->dataLength=header->dataLength;
892
893
0
    length-=(int32_t)sizeof(UTrieHeader);
894
895
    /* enough data for the index? */
896
0
    if(length<2*trie->indexLength) {
897
0
        *pErrorCode=U_INVALID_FORMAT_ERROR;
898
0
        return -1;
899
0
    }
900
0
    p16=(const uint16_t *)(header+1);
901
0
    trie->index=p16;
902
0
    p16+=trie->indexLength;
903
0
    length-=2*trie->indexLength;
904
905
    /* get the data */
906
0
    if(options&UTRIE_OPTIONS_DATA_IS_32_BIT) {
907
0
        if(length<4*trie->dataLength) {
908
0
            *pErrorCode=U_INVALID_FORMAT_ERROR;
909
0
            return -1;
910
0
        }
911
0
        trie->data32=(const uint32_t *)p16;
912
0
        trie->initialValue=trie->data32[0];
913
0
        length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+4*trie->dataLength;
914
0
    } else {
915
0
        if(length<2*trie->dataLength) {
916
0
            *pErrorCode=U_INVALID_FORMAT_ERROR;
917
0
            return -1;
918
0
        }
919
920
        /* the "data16" data is used via the index pointer */
921
0
        trie->data32=NULL;
922
0
        trie->initialValue=trie->index[trie->indexLength];
923
0
        length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+2*trie->dataLength;
924
0
    }
925
926
0
    trie->getFoldingOffset=utrie_defaultGetFoldingOffset;
927
928
0
    return length;
929
0
}
930
931
U_CAPI int32_t U_EXPORT2
932
utrie_unserializeDummy(UTrie *trie,
933
                       void *data, int32_t length,
934
                       uint32_t initialValue, uint32_t leadUnitValue,
935
                       UBool make16BitTrie,
936
0
                       UErrorCode *pErrorCode) {
937
0
    uint16_t *p16;
938
0
    int32_t actualLength, latin1Length, i, limit;
939
0
    uint16_t block;
940
941
0
    if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
942
0
        return -1;
943
0
    }
944
945
    /* calculate the actual size of the dummy trie data */
946
947
    /* max(Latin-1, block 0) */
948
0
    latin1Length= 256; /*UTRIE_SHIFT<=8 ? 256 : UTRIE_DATA_BLOCK_LENGTH;*/
949
950
0
    trie->indexLength=UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT;
951
0
    trie->dataLength=latin1Length;
952
0
    if(leadUnitValue!=initialValue) {
953
0
        trie->dataLength+=UTRIE_DATA_BLOCK_LENGTH;
954
0
    }
955
956
0
    actualLength=trie->indexLength*2;
957
0
    if(make16BitTrie) {
958
0
        actualLength+=trie->dataLength*2;
959
0
    } else {
960
0
        actualLength+=trie->dataLength*4;
961
0
    }
962
963
    /* enough space for the dummy trie? */
964
0
    if(length<actualLength) {
965
0
        *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
966
0
        return actualLength;
967
0
    }
968
969
0
    trie->isLatin1Linear=TRUE;
970
0
    trie->initialValue=initialValue;
971
972
    /* fill the index and data arrays */
973
0
    p16=(uint16_t *)data;
974
0
    trie->index=p16;
975
976
0
    if(make16BitTrie) {
977
        /* indexes to block 0 */
978
0
        block=(uint16_t)(trie->indexLength>>UTRIE_INDEX_SHIFT);
979
0
        limit=trie->indexLength;
980
0
        for(i=0; i<limit; ++i) {
981
0
            p16[i]=block;
982
0
        }
983
984
0
        if(leadUnitValue!=initialValue) {
985
            /* indexes for lead surrogate code units to the block after Latin-1 */
986
0
            block+=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT);
987
0
            i=0xd800>>UTRIE_SHIFT;
988
0
            limit=0xdc00>>UTRIE_SHIFT;
989
0
            for(; i<limit; ++i) {
990
0
                p16[i]=block;
991
0
            }
992
0
        }
993
994
0
        trie->data32=NULL;
995
996
        /* Latin-1 data */
997
0
        p16+=trie->indexLength;
998
0
        for(i=0; i<latin1Length; ++i) {
999
0
            p16[i]=(uint16_t)initialValue;
1000
0
        }
1001
1002
        /* data for lead surrogate code units */
1003
0
        if(leadUnitValue!=initialValue) {
1004
0
            limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH;
1005
0
            for(/* i=latin1Length */; i<limit; ++i) {
1006
0
                p16[i]=(uint16_t)leadUnitValue;
1007
0
            }
1008
0
        }
1009
0
    } else {
1010
0
        uint32_t *p32;
1011
1012
        /* indexes to block 0 */
1013
0
        uprv_memset(p16, 0, trie->indexLength*2);
1014
1015
0
        if(leadUnitValue!=initialValue) {
1016
            /* indexes for lead surrogate code units to the block after Latin-1 */
1017
0
            block=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT);
1018
0
            i=0xd800>>UTRIE_SHIFT;
1019
0
            limit=0xdc00>>UTRIE_SHIFT;
1020
0
            for(; i<limit; ++i) {
1021
0
                p16[i]=block;
1022
0
            }
1023
0
        }
1024
1025
0
        trie->data32=p32=(uint32_t *)(p16+trie->indexLength);
1026
1027
        /* Latin-1 data */
1028
0
        for(i=0; i<latin1Length; ++i) {
1029
0
            p32[i]=initialValue;
1030
0
        }
1031
1032
        /* data for lead surrogate code units */
1033
0
        if(leadUnitValue!=initialValue) {
1034
0
            limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH;
1035
0
            for(/* i=latin1Length */; i<limit; ++i) {
1036
0
                p32[i]=leadUnitValue;
1037
0
            }
1038
0
        }
1039
0
    }
1040
1041
0
    trie->getFoldingOffset=utrie_defaultGetFoldingOffset;
1042
1043
0
    return actualLength;
1044
0
}
1045
1046
/* enumeration -------------------------------------------------------------- */
1047
1048
/* default UTrieEnumValue() returns the input value itself */
1049
static uint32_t U_CALLCONV
1050
0
enumSameValue(const void * /*context*/, uint32_t value) {
1051
0
    return value;
1052
0
}
1053
1054
/**
1055
 * Enumerate all ranges of code points with the same relevant values.
1056
 * The values are transformed from the raw trie entries by the enumValue function.
1057
 */
1058
U_CAPI void U_EXPORT2
1059
utrie_enum(const UTrie *trie,
1060
0
           UTrieEnumValue *enumValue, UTrieEnumRange *enumRange, const void *context) {
1061
0
    const uint32_t *data32;
1062
0
    const uint16_t *idx;
1063
1064
0
    uint32_t value, prevValue, initialValue;
1065
0
    UChar32 c, prev;
1066
0
    int32_t l, i, j, block, prevBlock, nullBlock, offset;
1067
1068
    /* check arguments */
1069
0
    if(trie==NULL || trie->index==NULL || enumRange==NULL) {
1070
0
        return;
1071
0
    }
1072
0
    if(enumValue==NULL) {
1073
0
        enumValue=enumSameValue;
1074
0
    }
1075
1076
0
    idx=trie->index;
1077
0
    data32=trie->data32;
1078
1079
    /* get the enumeration value that corresponds to an initial-value trie data entry */
1080
0
    initialValue=enumValue(context, trie->initialValue);
1081
1082
0
    if(data32==NULL) {
1083
0
        nullBlock=trie->indexLength;
1084
0
    } else {
1085
0
        nullBlock=0;
1086
0
    }
1087
1088
    /* set variables for previous range */
1089
0
    prevBlock=nullBlock;
1090
0
    prev=0;
1091
0
    prevValue=initialValue;
1092
1093
    /* enumerate BMP - the main loop enumerates data blocks */
1094
0
    for(i=0, c=0; c<=0xffff; ++i) {
1095
0
        if(c==0xd800) {
1096
            /* skip lead surrogate code _units_, go to lead surr. code _points_ */
1097
0
            i=UTRIE_BMP_INDEX_LENGTH;
1098
0
        } else if(c==0xdc00) {
1099
            /* go back to regular BMP code points */
1100
0
            i=c>>UTRIE_SHIFT;
1101
0
        }
1102
1103
0
        block=idx[i]<<UTRIE_INDEX_SHIFT;
1104
0
        if(block==prevBlock) {
1105
            /* the block is the same as the previous one, and filled with value */
1106
0
            c+=UTRIE_DATA_BLOCK_LENGTH;
1107
0
        } else if(block==nullBlock) {
1108
            /* this is the all-initial-value block */
1109
0
            if(prevValue!=initialValue) {
1110
0
                if(prev<c) {
1111
0
                    if(!enumRange(context, prev, c, prevValue)) {
1112
0
                        return;
1113
0
                    }
1114
0
                }
1115
0
                prevBlock=nullBlock;
1116
0
                prev=c;
1117
0
                prevValue=initialValue;
1118
0
            }
1119
0
            c+=UTRIE_DATA_BLOCK_LENGTH;
1120
0
        } else {
1121
0
            prevBlock=block;
1122
0
            for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) {
1123
0
                value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]);
1124
0
                if(value!=prevValue) {
1125
0
                    if(prev<c) {
1126
0
                        if(!enumRange(context, prev, c, prevValue)) {
1127
0
                            return;
1128
0
                        }
1129
0
                    }
1130
0
                    if(j>0) {
1131
                        /* the block is not filled with all the same value */
1132
0
                        prevBlock=-1;
1133
0
                    }
1134
0
                    prev=c;
1135
0
                    prevValue=value;
1136
0
                }
1137
0
                ++c;
1138
0
            }
1139
0
        }
1140
0
    }
1141
1142
    /* enumerate supplementary code points */
1143
0
    for(l=0xd800; l<0xdc00;) {
1144
        /* lead surrogate access */
1145
0
        offset=idx[l>>UTRIE_SHIFT]<<UTRIE_INDEX_SHIFT;
1146
0
        if(offset==nullBlock) {
1147
            /* no entries for a whole block of lead surrogates */
1148
0
            if(prevValue!=initialValue) {
1149
0
                if(prev<c) {
1150
0
                    if(!enumRange(context, prev, c, prevValue)) {
1151
0
                        return;
1152
0
                    }
1153
0
                }
1154
0
                prevBlock=nullBlock;
1155
0
                prev=c;
1156
0
                prevValue=initialValue;
1157
0
            }
1158
1159
0
            l+=UTRIE_DATA_BLOCK_LENGTH;
1160
0
            c+=UTRIE_DATA_BLOCK_LENGTH<<10;
1161
0
            continue;
1162
0
        }
1163
1164
0
        value= data32!=NULL ? data32[offset+(l&UTRIE_MASK)] : idx[offset+(l&UTRIE_MASK)];
1165
1166
        /* enumerate trail surrogates for this lead surrogate */
1167
0
        offset=trie->getFoldingOffset(value);
1168
0
        if(offset<=0) {
1169
            /* no data for this lead surrogate */
1170
0
            if(prevValue!=initialValue) {
1171
0
                if(prev<c) {
1172
0
                    if(!enumRange(context, prev, c, prevValue)) {
1173
0
                        return;
1174
0
                    }
1175
0
                }
1176
0
                prevBlock=nullBlock;
1177
0
                prev=c;
1178
0
                prevValue=initialValue;
1179
0
            }
1180
1181
            /* nothing else to do for the supplementary code points for this lead surrogate */
1182
0
            c+=0x400;
1183
0
        } else {
1184
            /* enumerate code points for this lead surrogate */
1185
0
            i=offset;
1186
0
            offset+=UTRIE_SURROGATE_BLOCK_COUNT;
1187
0
            do {
1188
                /* copy of most of the body of the BMP loop */
1189
0
                block=idx[i]<<UTRIE_INDEX_SHIFT;
1190
0
                if(block==prevBlock) {
1191
                    /* the block is the same as the previous one, and filled with value */
1192
0
                    c+=UTRIE_DATA_BLOCK_LENGTH;
1193
0
                } else if(block==nullBlock) {
1194
                    /* this is the all-initial-value block */
1195
0
                    if(prevValue!=initialValue) {
1196
0
                        if(prev<c) {
1197
0
                            if(!enumRange(context, prev, c, prevValue)) {
1198
0
                                return;
1199
0
                            }
1200
0
                        }
1201
0
                        prevBlock=nullBlock;
1202
0
                        prev=c;
1203
0
                        prevValue=initialValue;
1204
0
                    }
1205
0
                    c+=UTRIE_DATA_BLOCK_LENGTH;
1206
0
                } else {
1207
0
                    prevBlock=block;
1208
0
                    for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) {
1209
0
                        value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]);
1210
0
                        if(value!=prevValue) {
1211
0
                            if(prev<c) {
1212
0
                                if(!enumRange(context, prev, c, prevValue)) {
1213
0
                                    return;
1214
0
                                }
1215
0
                            }
1216
0
                            if(j>0) {
1217
                                /* the block is not filled with all the same value */
1218
0
                                prevBlock=-1;
1219
0
                            }
1220
0
                            prev=c;
1221
0
                            prevValue=value;
1222
0
                        }
1223
0
                        ++c;
1224
0
                    }
1225
0
                }
1226
0
            } while(++i<offset);
1227
0
        }
1228
1229
0
        ++l;
1230
0
    }
1231
1232
    /* deliver last range */
1233
0
    enumRange(context, prev, c, prevValue);
1234
0
}