/src/icu/source/common/utrie.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /* |
4 | | ****************************************************************************** |
5 | | * |
6 | | * Copyright (C) 2001-2012, International Business Machines |
7 | | * Corporation and others. All Rights Reserved. |
8 | | * |
9 | | ****************************************************************************** |
10 | | * file name: utrie.cpp |
11 | | * encoding: UTF-8 |
12 | | * tab size: 8 (not used) |
13 | | * indentation:4 |
14 | | * |
15 | | * created on: 2001oct20 |
16 | | * created by: Markus W. Scherer |
17 | | * |
18 | | * This is a common implementation of a "folded" trie. |
19 | | * It is a kind of compressed, serializable table of 16- or 32-bit values associated with |
20 | | * Unicode code points (0..0x10ffff). |
21 | | */ |
22 | | |
23 | | #ifdef UTRIE_DEBUG |
24 | | # include <stdio.h> |
25 | | #endif |
26 | | |
27 | | #include "unicode/utypes.h" |
28 | | #include "cmemory.h" |
29 | | #include "utrie.h" |
30 | | |
31 | | /* miscellaneous ------------------------------------------------------------ */ |
32 | | |
33 | | #undef ABS |
34 | 0 | #define ABS(x) ((x)>=0 ? (x) : -(x)) |
35 | | |
36 | | static inline UBool |
37 | 0 | equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) { |
38 | 0 | while(length>0 && *s==*t) { |
39 | 0 | ++s; |
40 | 0 | ++t; |
41 | 0 | --length; |
42 | 0 | } |
43 | 0 | return (UBool)(length==0); |
44 | 0 | } |
45 | | |
46 | | /* Building a trie ----------------------------------------------------------*/ |
47 | | |
48 | | U_CAPI UNewTrie * U_EXPORT2 |
49 | | utrie_open(UNewTrie *fillIn, |
50 | | uint32_t *aliasData, int32_t maxDataLength, |
51 | | uint32_t initialValue, uint32_t leadUnitValue, |
52 | 0 | UBool latin1Linear) { |
53 | 0 | UNewTrie *trie; |
54 | 0 | int32_t i, j; |
55 | |
|
56 | 0 | if( maxDataLength<UTRIE_DATA_BLOCK_LENGTH || |
57 | 0 | (latin1Linear && maxDataLength<1024) |
58 | 0 | ) { |
59 | 0 | return NULL; |
60 | 0 | } |
61 | | |
62 | 0 | if(fillIn!=NULL) { |
63 | 0 | trie=fillIn; |
64 | 0 | } else { |
65 | 0 | trie=(UNewTrie *)uprv_malloc(sizeof(UNewTrie)); |
66 | 0 | if(trie==NULL) { |
67 | 0 | return NULL; |
68 | 0 | } |
69 | 0 | } |
70 | 0 | uprv_memset(trie, 0, sizeof(UNewTrie)); |
71 | 0 | trie->isAllocated= (UBool)(fillIn==NULL); |
72 | |
|
73 | 0 | if(aliasData!=NULL) { |
74 | 0 | trie->data=aliasData; |
75 | 0 | trie->isDataAllocated=FALSE; |
76 | 0 | } else { |
77 | 0 | trie->data=(uint32_t *)uprv_malloc(maxDataLength*4); |
78 | 0 | if(trie->data==NULL) { |
79 | 0 | uprv_free(trie); |
80 | 0 | return NULL; |
81 | 0 | } |
82 | 0 | trie->isDataAllocated=TRUE; |
83 | 0 | } |
84 | | |
85 | | /* preallocate and reset the first data block (block index 0) */ |
86 | 0 | j=UTRIE_DATA_BLOCK_LENGTH; |
87 | |
|
88 | 0 | if(latin1Linear) { |
89 | | /* preallocate and reset the first block (number 0) and Latin-1 (U+0000..U+00ff) after that */ |
90 | | /* made sure above that maxDataLength>=1024 */ |
91 | | |
92 | | /* set indexes to point to consecutive data blocks */ |
93 | 0 | i=0; |
94 | 0 | do { |
95 | | /* do this at least for trie->index[0] even if that block is only partly used for Latin-1 */ |
96 | 0 | trie->index[i++]=j; |
97 | 0 | j+=UTRIE_DATA_BLOCK_LENGTH; |
98 | 0 | } while(i<(256>>UTRIE_SHIFT)); |
99 | 0 | } |
100 | | |
101 | | /* reset the initially allocated blocks to the initial value */ |
102 | 0 | trie->dataLength=j; |
103 | 0 | while(j>0) { |
104 | 0 | trie->data[--j]=initialValue; |
105 | 0 | } |
106 | |
|
107 | 0 | trie->leadUnitValue=leadUnitValue; |
108 | 0 | trie->indexLength=UTRIE_MAX_INDEX_LENGTH; |
109 | 0 | trie->dataCapacity=maxDataLength; |
110 | 0 | trie->isLatin1Linear=latin1Linear; |
111 | 0 | trie->isCompacted=FALSE; |
112 | 0 | return trie; |
113 | 0 | } |
114 | | |
115 | | U_CAPI UNewTrie * U_EXPORT2 |
116 | 0 | utrie_clone(UNewTrie *fillIn, const UNewTrie *other, uint32_t *aliasData, int32_t aliasDataCapacity) { |
117 | 0 | UNewTrie *trie; |
118 | 0 | UBool isDataAllocated; |
119 | | |
120 | | /* do not clone if other is not valid or already compacted */ |
121 | 0 | if(other==NULL || other->data==NULL || other->isCompacted) { |
122 | 0 | return NULL; |
123 | 0 | } |
124 | | |
125 | | /* clone data */ |
126 | 0 | if(aliasData!=NULL && aliasDataCapacity>=other->dataCapacity) { |
127 | 0 | isDataAllocated=FALSE; |
128 | 0 | } else { |
129 | 0 | aliasDataCapacity=other->dataCapacity; |
130 | 0 | aliasData=(uint32_t *)uprv_malloc(other->dataCapacity*4); |
131 | 0 | if(aliasData==NULL) { |
132 | 0 | return NULL; |
133 | 0 | } |
134 | 0 | isDataAllocated=TRUE; |
135 | 0 | } |
136 | | |
137 | 0 | trie=utrie_open(fillIn, aliasData, aliasDataCapacity, |
138 | 0 | other->data[0], other->leadUnitValue, |
139 | 0 | other->isLatin1Linear); |
140 | 0 | if(trie==NULL) { |
141 | 0 | uprv_free(aliasData); |
142 | 0 | } else { |
143 | 0 | uprv_memcpy(trie->index, other->index, sizeof(trie->index)); |
144 | 0 | uprv_memcpy(trie->data, other->data, (size_t)other->dataLength*4); |
145 | 0 | trie->dataLength=other->dataLength; |
146 | 0 | trie->isDataAllocated=isDataAllocated; |
147 | 0 | } |
148 | |
|
149 | 0 | return trie; |
150 | 0 | } |
151 | | |
152 | | U_CAPI void U_EXPORT2 |
153 | 0 | utrie_close(UNewTrie *trie) { |
154 | 0 | if(trie!=NULL) { |
155 | 0 | if(trie->isDataAllocated) { |
156 | 0 | uprv_free(trie->data); |
157 | 0 | trie->data=NULL; |
158 | 0 | } |
159 | 0 | if(trie->isAllocated) { |
160 | 0 | uprv_free(trie); |
161 | 0 | } |
162 | 0 | } |
163 | 0 | } |
164 | | |
165 | | U_CAPI uint32_t * U_EXPORT2 |
166 | 0 | utrie_getData(UNewTrie *trie, int32_t *pLength) { |
167 | 0 | if(trie==NULL || pLength==NULL) { |
168 | 0 | return NULL; |
169 | 0 | } |
170 | | |
171 | 0 | *pLength=trie->dataLength; |
172 | 0 | return trie->data; |
173 | 0 | } |
174 | | |
175 | | static int32_t |
176 | 0 | utrie_allocDataBlock(UNewTrie *trie) { |
177 | 0 | int32_t newBlock, newTop; |
178 | |
|
179 | 0 | newBlock=trie->dataLength; |
180 | 0 | newTop=newBlock+UTRIE_DATA_BLOCK_LENGTH; |
181 | 0 | if(newTop>trie->dataCapacity) { |
182 | | /* out of memory in the data array */ |
183 | 0 | return -1; |
184 | 0 | } |
185 | 0 | trie->dataLength=newTop; |
186 | 0 | return newBlock; |
187 | 0 | } |
188 | | |
189 | | /** |
190 | | * No error checking for illegal arguments. |
191 | | * |
192 | | * @return -1 if no new data block available (out of memory in data array) |
193 | | * @internal |
194 | | */ |
195 | | static int32_t |
196 | 0 | utrie_getDataBlock(UNewTrie *trie, UChar32 c) { |
197 | 0 | int32_t indexValue, newBlock; |
198 | |
|
199 | 0 | c>>=UTRIE_SHIFT; |
200 | 0 | indexValue=trie->index[c]; |
201 | 0 | if(indexValue>0) { |
202 | 0 | return indexValue; |
203 | 0 | } |
204 | | |
205 | | /* allocate a new data block */ |
206 | 0 | newBlock=utrie_allocDataBlock(trie); |
207 | 0 | if(newBlock<0) { |
208 | | /* out of memory in the data array */ |
209 | 0 | return -1; |
210 | 0 | } |
211 | 0 | trie->index[c]=newBlock; |
212 | | |
213 | | /* copy-on-write for a block from a setRange() */ |
214 | 0 | uprv_memcpy(trie->data+newBlock, trie->data-indexValue, 4*UTRIE_DATA_BLOCK_LENGTH); |
215 | 0 | return newBlock; |
216 | 0 | } |
217 | | |
218 | | /** |
219 | | * @return TRUE if the value was successfully set |
220 | | */ |
221 | | U_CAPI UBool U_EXPORT2 |
222 | 0 | utrie_set32(UNewTrie *trie, UChar32 c, uint32_t value) { |
223 | 0 | int32_t block; |
224 | | |
225 | | /* valid, uncompacted trie and valid c? */ |
226 | 0 | if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { |
227 | 0 | return FALSE; |
228 | 0 | } |
229 | | |
230 | 0 | block=utrie_getDataBlock(trie, c); |
231 | 0 | if(block<0) { |
232 | 0 | return FALSE; |
233 | 0 | } |
234 | | |
235 | 0 | trie->data[block+(c&UTRIE_MASK)]=value; |
236 | 0 | return TRUE; |
237 | 0 | } |
238 | | |
239 | | U_CAPI uint32_t U_EXPORT2 |
240 | 0 | utrie_get32(UNewTrie *trie, UChar32 c, UBool *pInBlockZero) { |
241 | 0 | int32_t block; |
242 | | |
243 | | /* valid, uncompacted trie and valid c? */ |
244 | 0 | if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { |
245 | 0 | if(pInBlockZero!=NULL) { |
246 | 0 | *pInBlockZero=TRUE; |
247 | 0 | } |
248 | 0 | return 0; |
249 | 0 | } |
250 | | |
251 | 0 | block=trie->index[c>>UTRIE_SHIFT]; |
252 | 0 | if(pInBlockZero!=NULL) { |
253 | 0 | *pInBlockZero= (UBool)(block==0); |
254 | 0 | } |
255 | |
|
256 | 0 | return trie->data[ABS(block)+(c&UTRIE_MASK)]; |
257 | 0 | } |
258 | | |
259 | | /** |
260 | | * @internal |
261 | | */ |
262 | | static void |
263 | | utrie_fillBlock(uint32_t *block, UChar32 start, UChar32 limit, |
264 | 0 | uint32_t value, uint32_t initialValue, UBool overwrite) { |
265 | 0 | uint32_t *pLimit; |
266 | |
|
267 | 0 | pLimit=block+limit; |
268 | 0 | block+=start; |
269 | 0 | if(overwrite) { |
270 | 0 | while(block<pLimit) { |
271 | 0 | *block++=value; |
272 | 0 | } |
273 | 0 | } else { |
274 | 0 | while(block<pLimit) { |
275 | 0 | if(*block==initialValue) { |
276 | 0 | *block=value; |
277 | 0 | } |
278 | 0 | ++block; |
279 | 0 | } |
280 | 0 | } |
281 | 0 | } |
282 | | |
283 | | U_CAPI UBool U_EXPORT2 |
284 | 0 | utrie_setRange32(UNewTrie *trie, UChar32 start, UChar32 limit, uint32_t value, UBool overwrite) { |
285 | | /* |
286 | | * repeat value in [start..limit[ |
287 | | * mark index values for repeat-data blocks by setting bit 31 of the index values |
288 | | * fill around existing values if any, if(overwrite) |
289 | | */ |
290 | 0 | uint32_t initialValue; |
291 | 0 | int32_t block, rest, repeatBlock; |
292 | | |
293 | | /* valid, uncompacted trie and valid indexes? */ |
294 | 0 | if( trie==NULL || trie->isCompacted || |
295 | 0 | (uint32_t)start>0x10ffff || (uint32_t)limit>0x110000 || start>limit |
296 | 0 | ) { |
297 | 0 | return FALSE; |
298 | 0 | } |
299 | 0 | if(start==limit) { |
300 | 0 | return TRUE; /* nothing to do */ |
301 | 0 | } |
302 | | |
303 | 0 | initialValue=trie->data[0]; |
304 | 0 | if(start&UTRIE_MASK) { |
305 | 0 | UChar32 nextStart; |
306 | | |
307 | | /* set partial block at [start..following block boundary[ */ |
308 | 0 | block=utrie_getDataBlock(trie, start); |
309 | 0 | if(block<0) { |
310 | 0 | return FALSE; |
311 | 0 | } |
312 | | |
313 | 0 | nextStart=(start+UTRIE_DATA_BLOCK_LENGTH)&~UTRIE_MASK; |
314 | 0 | if(nextStart<=limit) { |
315 | 0 | utrie_fillBlock(trie->data+block, start&UTRIE_MASK, UTRIE_DATA_BLOCK_LENGTH, |
316 | 0 | value, initialValue, overwrite); |
317 | 0 | start=nextStart; |
318 | 0 | } else { |
319 | 0 | utrie_fillBlock(trie->data+block, start&UTRIE_MASK, limit&UTRIE_MASK, |
320 | 0 | value, initialValue, overwrite); |
321 | 0 | return TRUE; |
322 | 0 | } |
323 | 0 | } |
324 | | |
325 | | /* number of positions in the last, partial block */ |
326 | 0 | rest=limit&UTRIE_MASK; |
327 | | |
328 | | /* round down limit to a block boundary */ |
329 | 0 | limit&=~UTRIE_MASK; |
330 | | |
331 | | /* iterate over all-value blocks */ |
332 | 0 | if(value==initialValue) { |
333 | 0 | repeatBlock=0; |
334 | 0 | } else { |
335 | 0 | repeatBlock=-1; |
336 | 0 | } |
337 | 0 | while(start<limit) { |
338 | | /* get index value */ |
339 | 0 | block=trie->index[start>>UTRIE_SHIFT]; |
340 | 0 | if(block>0) { |
341 | | /* already allocated, fill in value */ |
342 | 0 | utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, overwrite); |
343 | 0 | } else if(trie->data[-block]!=value && (block==0 || overwrite)) { |
344 | | /* set the repeatBlock instead of the current block 0 or range block */ |
345 | 0 | if(repeatBlock>=0) { |
346 | 0 | trie->index[start>>UTRIE_SHIFT]=-repeatBlock; |
347 | 0 | } else { |
348 | | /* create and set and fill the repeatBlock */ |
349 | 0 | repeatBlock=utrie_getDataBlock(trie, start); |
350 | 0 | if(repeatBlock<0) { |
351 | 0 | return FALSE; |
352 | 0 | } |
353 | | |
354 | | /* set the negative block number to indicate that it is a repeat block */ |
355 | 0 | trie->index[start>>UTRIE_SHIFT]=-repeatBlock; |
356 | 0 | utrie_fillBlock(trie->data+repeatBlock, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, TRUE); |
357 | 0 | } |
358 | 0 | } |
359 | | |
360 | 0 | start+=UTRIE_DATA_BLOCK_LENGTH; |
361 | 0 | } |
362 | | |
363 | 0 | if(rest>0) { |
364 | | /* set partial block at [last block boundary..limit[ */ |
365 | 0 | block=utrie_getDataBlock(trie, start); |
366 | 0 | if(block<0) { |
367 | 0 | return FALSE; |
368 | 0 | } |
369 | | |
370 | 0 | utrie_fillBlock(trie->data+block, 0, rest, value, initialValue, overwrite); |
371 | 0 | } |
372 | | |
373 | 0 | return TRUE; |
374 | 0 | } |
375 | | |
376 | | static int32_t |
377 | | _findSameIndexBlock(const int32_t *idx, int32_t indexLength, |
378 | 0 | int32_t otherBlock) { |
379 | 0 | int32_t block, i; |
380 | |
|
381 | 0 | for(block=UTRIE_BMP_INDEX_LENGTH; block<indexLength; block+=UTRIE_SURROGATE_BLOCK_COUNT) { |
382 | 0 | for(i=0; i<UTRIE_SURROGATE_BLOCK_COUNT; ++i) { |
383 | 0 | if(idx[block+i]!=idx[otherBlock+i]) { |
384 | 0 | break; |
385 | 0 | } |
386 | 0 | } |
387 | 0 | if(i==UTRIE_SURROGATE_BLOCK_COUNT) { |
388 | 0 | return block; |
389 | 0 | } |
390 | 0 | } |
391 | 0 | return indexLength; |
392 | 0 | } |
393 | | |
394 | | /* |
395 | | * Fold the normalization data for supplementary code points into |
396 | | * a compact area on top of the BMP-part of the trie index, |
397 | | * with the lead surrogates indexing this compact area. |
398 | | * |
399 | | * Duplicate the index values for lead surrogates: |
400 | | * From inside the BMP area, where some may be overridden with folded values, |
401 | | * to just after the BMP area, where they can be retrieved for |
402 | | * code point lookups. |
403 | | */ |
404 | | static void |
405 | 0 | utrie_fold(UNewTrie *trie, UNewTrieGetFoldedValue *getFoldedValue, UErrorCode *pErrorCode) { |
406 | 0 | int32_t leadIndexes[UTRIE_SURROGATE_BLOCK_COUNT]; |
407 | 0 | int32_t *idx; |
408 | 0 | uint32_t value; |
409 | 0 | UChar32 c; |
410 | 0 | int32_t indexLength, block; |
411 | | #ifdef UTRIE_DEBUG |
412 | | int countLeadCUWithData=0; |
413 | | #endif |
414 | |
|
415 | 0 | idx=trie->index; |
416 | | |
417 | | /* copy the lead surrogate indexes into a temporary array */ |
418 | 0 | uprv_memcpy(leadIndexes, idx+(0xd800>>UTRIE_SHIFT), 4*UTRIE_SURROGATE_BLOCK_COUNT); |
419 | | |
420 | | /* |
421 | | * set all values for lead surrogate code *units* to leadUnitValue |
422 | | * so that, by default, runtime lookups will find no data for associated |
423 | | * supplementary code points, unless there is data for such code points |
424 | | * which will result in a non-zero folding value below that is set for |
425 | | * the respective lead units |
426 | | * |
427 | | * the above saved the indexes for surrogate code *points* |
428 | | * fill the indexes with simplified code from utrie_setRange32() |
429 | | */ |
430 | 0 | if(trie->leadUnitValue==trie->data[0]) { |
431 | 0 | block=0; /* leadUnitValue==initialValue, use all-initial-value block */ |
432 | 0 | } else { |
433 | | /* create and fill the repeatBlock */ |
434 | 0 | block=utrie_allocDataBlock(trie); |
435 | 0 | if(block<0) { |
436 | | /* data table overflow */ |
437 | 0 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
438 | 0 | return; |
439 | 0 | } |
440 | 0 | utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, trie->leadUnitValue, trie->data[0], TRUE); |
441 | 0 | block=-block; /* negative block number to indicate that it is a repeat block */ |
442 | 0 | } |
443 | 0 | for(c=(0xd800>>UTRIE_SHIFT); c<(0xdc00>>UTRIE_SHIFT); ++c) { |
444 | 0 | trie->index[c]=block; |
445 | 0 | } |
446 | | |
447 | | /* |
448 | | * Fold significant index values into the area just after the BMP indexes. |
449 | | * In case the first lead surrogate has significant data, |
450 | | * its index block must be used first (in which case the folding is a no-op). |
451 | | * Later all folded index blocks are moved up one to insert the copied |
452 | | * lead surrogate indexes. |
453 | | */ |
454 | 0 | indexLength=UTRIE_BMP_INDEX_LENGTH; |
455 | | |
456 | | /* search for any index (stage 1) entries for supplementary code points */ |
457 | 0 | for(c=0x10000; c<0x110000;) { |
458 | 0 | if(idx[c>>UTRIE_SHIFT]!=0) { |
459 | | /* there is data, treat the full block for a lead surrogate */ |
460 | 0 | c&=~0x3ff; |
461 | |
|
462 | | #ifdef UTRIE_DEBUG |
463 | | ++countLeadCUWithData; |
464 | | /* printf("supplementary data for lead surrogate U+%04lx\n", (long)(0xd7c0+(c>>10))); */ |
465 | | #endif |
466 | | |
467 | | /* is there an identical index block? */ |
468 | 0 | block=_findSameIndexBlock(idx, indexLength, c>>UTRIE_SHIFT); |
469 | | |
470 | | /* |
471 | | * get a folded value for [c..c+0x400[ and, |
472 | | * if different from the value for the lead surrogate code point, |
473 | | * set it for the lead surrogate code unit |
474 | | */ |
475 | 0 | value=getFoldedValue(trie, c, block+UTRIE_SURROGATE_BLOCK_COUNT); |
476 | 0 | if(value!=utrie_get32(trie, U16_LEAD(c), NULL)) { |
477 | 0 | if(!utrie_set32(trie, U16_LEAD(c), value)) { |
478 | | /* data table overflow */ |
479 | 0 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
480 | 0 | return; |
481 | 0 | } |
482 | | |
483 | | /* if we did not find an identical index block... */ |
484 | 0 | if(block==indexLength) { |
485 | | /* move the actual index (stage 1) entries from the supplementary position to the new one */ |
486 | 0 | uprv_memmove(idx+indexLength, |
487 | 0 | idx+(c>>UTRIE_SHIFT), |
488 | 0 | 4*UTRIE_SURROGATE_BLOCK_COUNT); |
489 | 0 | indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; |
490 | 0 | } |
491 | 0 | } |
492 | 0 | c+=0x400; |
493 | 0 | } else { |
494 | 0 | c+=UTRIE_DATA_BLOCK_LENGTH; |
495 | 0 | } |
496 | 0 | } |
497 | | #ifdef UTRIE_DEBUG |
498 | | if(countLeadCUWithData>0) { |
499 | | printf("supplementary data for %d lead surrogates\n", countLeadCUWithData); |
500 | | } |
501 | | #endif |
502 | | |
503 | | /* |
504 | | * index array overflow? |
505 | | * This is to guarantee that a folding offset is of the form |
506 | | * UTRIE_BMP_INDEX_LENGTH+n*UTRIE_SURROGATE_BLOCK_COUNT with n=0..1023. |
507 | | * If the index is too large, then n>=1024 and more than 10 bits are necessary. |
508 | | * |
509 | | * In fact, it can only ever become n==1024 with completely unfoldable data and |
510 | | * the additional block of duplicated values for lead surrogates. |
511 | | */ |
512 | 0 | if(indexLength>=UTRIE_MAX_INDEX_LENGTH) { |
513 | 0 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
514 | 0 | return; |
515 | 0 | } |
516 | | |
517 | | /* |
518 | | * make space for the lead surrogate index block and |
519 | | * insert it between the BMP indexes and the folded ones |
520 | | */ |
521 | 0 | uprv_memmove(idx+UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT, |
522 | 0 | idx+UTRIE_BMP_INDEX_LENGTH, |
523 | 0 | 4*(indexLength-UTRIE_BMP_INDEX_LENGTH)); |
524 | 0 | uprv_memcpy(idx+UTRIE_BMP_INDEX_LENGTH, |
525 | 0 | leadIndexes, |
526 | 0 | 4*UTRIE_SURROGATE_BLOCK_COUNT); |
527 | 0 | indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; |
528 | |
|
529 | | #ifdef UTRIE_DEBUG |
530 | | printf("trie index count: BMP %ld all Unicode %ld folded %ld\n", |
531 | | UTRIE_BMP_INDEX_LENGTH, (long)UTRIE_MAX_INDEX_LENGTH, indexLength); |
532 | | #endif |
533 | |
|
534 | 0 | trie->indexLength=indexLength; |
535 | 0 | } |
536 | | |
537 | | /* |
538 | | * Set a value in the trie index map to indicate which data block |
539 | | * is referenced and which one is not. |
540 | | * utrie_compact() will remove data blocks that are not used at all. |
541 | | * Set |
542 | | * - 0 if it is used |
543 | | * - -1 if it is not used |
544 | | */ |
545 | | static void |
546 | 0 | _findUnusedBlocks(UNewTrie *trie) { |
547 | 0 | int32_t i; |
548 | | |
549 | | /* fill the entire map with "not used" */ |
550 | 0 | uprv_memset(trie->map, 0xff, (UTRIE_MAX_BUILD_TIME_DATA_LENGTH>>UTRIE_SHIFT)*4); |
551 | | |
552 | | /* mark each block that _is_ used with 0 */ |
553 | 0 | for(i=0; i<trie->indexLength; ++i) { |
554 | 0 | trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]=0; |
555 | 0 | } |
556 | | |
557 | | /* never move the all-initial-value block 0 */ |
558 | 0 | trie->map[0]=0; |
559 | 0 | } |
560 | | |
561 | | static int32_t |
562 | | _findSameDataBlock(const uint32_t *data, int32_t dataLength, |
563 | 0 | int32_t otherBlock, int32_t step) { |
564 | 0 | int32_t block; |
565 | | |
566 | | /* ensure that we do not even partially get past dataLength */ |
567 | 0 | dataLength-=UTRIE_DATA_BLOCK_LENGTH; |
568 | |
|
569 | 0 | for(block=0; block<=dataLength; block+=step) { |
570 | 0 | if(equal_uint32(data+block, data+otherBlock, UTRIE_DATA_BLOCK_LENGTH)) { |
571 | 0 | return block; |
572 | 0 | } |
573 | 0 | } |
574 | 0 | return -1; |
575 | 0 | } |
576 | | |
577 | | /* |
578 | | * Compact a folded build-time trie. |
579 | | * |
580 | | * The compaction |
581 | | * - removes blocks that are identical with earlier ones |
582 | | * - overlaps adjacent blocks as much as possible (if overlap==TRUE) |
583 | | * - moves blocks in steps of the data granularity |
584 | | * - moves and overlaps blocks that overlap with multiple values in the overlap region |
585 | | * |
586 | | * It does not |
587 | | * - try to move and overlap blocks that are not already adjacent |
588 | | */ |
589 | | static void |
590 | 0 | utrie_compact(UNewTrie *trie, UBool overlap, UErrorCode *pErrorCode) { |
591 | 0 | int32_t i, start, newStart, overlapStart; |
592 | |
|
593 | 0 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
594 | 0 | return; |
595 | 0 | } |
596 | | |
597 | | /* valid, uncompacted trie? */ |
598 | 0 | if(trie==NULL) { |
599 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
600 | 0 | return; |
601 | 0 | } |
602 | 0 | if(trie->isCompacted) { |
603 | 0 | return; /* nothing left to do */ |
604 | 0 | } |
605 | | |
606 | | /* compaction */ |
607 | | |
608 | | /* initialize the index map with "block is used/unused" flags */ |
609 | 0 | _findUnusedBlocks(trie); |
610 | | |
611 | | /* if Latin-1 is preallocated and linear, then do not compact Latin-1 data */ |
612 | 0 | if(trie->isLatin1Linear && UTRIE_SHIFT<=8) { |
613 | 0 | overlapStart=UTRIE_DATA_BLOCK_LENGTH+256; |
614 | 0 | } else { |
615 | 0 | overlapStart=UTRIE_DATA_BLOCK_LENGTH; |
616 | 0 | } |
617 | |
|
618 | 0 | newStart=UTRIE_DATA_BLOCK_LENGTH; |
619 | 0 | for(start=newStart; start<trie->dataLength;) { |
620 | | /* |
621 | | * start: index of first entry of current block |
622 | | * newStart: index where the current block is to be moved |
623 | | * (right after current end of already-compacted data) |
624 | | */ |
625 | | |
626 | | /* skip blocks that are not used */ |
627 | 0 | if(trie->map[start>>UTRIE_SHIFT]<0) { |
628 | | /* advance start to the next block */ |
629 | 0 | start+=UTRIE_DATA_BLOCK_LENGTH; |
630 | | |
631 | | /* leave newStart with the previous block! */ |
632 | 0 | continue; |
633 | 0 | } |
634 | | |
635 | | /* search for an identical block */ |
636 | 0 | if( start>=overlapStart && |
637 | 0 | (i=_findSameDataBlock(trie->data, newStart, start, |
638 | 0 | overlap ? UTRIE_DATA_GRANULARITY : UTRIE_DATA_BLOCK_LENGTH)) |
639 | 0 | >=0 |
640 | 0 | ) { |
641 | | /* found an identical block, set the other block's index value for the current block */ |
642 | 0 | trie->map[start>>UTRIE_SHIFT]=i; |
643 | | |
644 | | /* advance start to the next block */ |
645 | 0 | start+=UTRIE_DATA_BLOCK_LENGTH; |
646 | | |
647 | | /* leave newStart with the previous block! */ |
648 | 0 | continue; |
649 | 0 | } |
650 | | |
651 | | /* see if the beginning of this block can be overlapped with the end of the previous block */ |
652 | 0 | if(overlap && start>=overlapStart) { |
653 | | /* look for maximum overlap (modulo granularity) with the previous, adjacent block */ |
654 | 0 | for(i=UTRIE_DATA_BLOCK_LENGTH-UTRIE_DATA_GRANULARITY; |
655 | 0 | i>0 && !equal_uint32(trie->data+(newStart-i), trie->data+start, i); |
656 | 0 | i-=UTRIE_DATA_GRANULARITY) {} |
657 | 0 | } else { |
658 | 0 | i=0; |
659 | 0 | } |
660 | |
|
661 | 0 | if(i>0) { |
662 | | /* some overlap */ |
663 | 0 | trie->map[start>>UTRIE_SHIFT]=newStart-i; |
664 | | |
665 | | /* move the non-overlapping indexes to their new positions */ |
666 | 0 | start+=i; |
667 | 0 | for(i=UTRIE_DATA_BLOCK_LENGTH-i; i>0; --i) { |
668 | 0 | trie->data[newStart++]=trie->data[start++]; |
669 | 0 | } |
670 | 0 | } else if(newStart<start) { |
671 | | /* no overlap, just move the indexes to their new positions */ |
672 | 0 | trie->map[start>>UTRIE_SHIFT]=newStart; |
673 | 0 | for(i=UTRIE_DATA_BLOCK_LENGTH; i>0; --i) { |
674 | 0 | trie->data[newStart++]=trie->data[start++]; |
675 | 0 | } |
676 | 0 | } else /* no overlap && newStart==start */ { |
677 | 0 | trie->map[start>>UTRIE_SHIFT]=start; |
678 | 0 | newStart+=UTRIE_DATA_BLOCK_LENGTH; |
679 | 0 | start=newStart; |
680 | 0 | } |
681 | 0 | } |
682 | | |
683 | | /* now adjust the index (stage 1) table */ |
684 | 0 | for(i=0; i<trie->indexLength; ++i) { |
685 | 0 | trie->index[i]=trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]; |
686 | 0 | } |
687 | |
|
688 | | #ifdef UTRIE_DEBUG |
689 | | /* we saved some space */ |
690 | | printf("compacting trie: count of 32-bit words %lu->%lu\n", |
691 | | (long)trie->dataLength, (long)newStart); |
692 | | #endif |
693 | |
|
694 | 0 | trie->dataLength=newStart; |
695 | 0 | } |
696 | | |
697 | | /* serialization ------------------------------------------------------------ */ |
698 | | |
699 | | /* |
700 | | * Default function for the folding value: |
701 | | * Just store the offset (16 bits) if there is any non-initial-value entry. |
702 | | * |
703 | | * The offset parameter is never 0. |
704 | | * Returning the offset itself is safe for UTRIE_SHIFT>=5 because |
705 | | * for UTRIE_SHIFT==5 the maximum index length is UTRIE_MAX_INDEX_LENGTH==0x8800 |
706 | | * which fits into 16-bit trie values; |
707 | | * for higher UTRIE_SHIFT, UTRIE_MAX_INDEX_LENGTH decreases. |
708 | | * |
709 | | * Theoretically, it would be safer for all possible UTRIE_SHIFT including |
710 | | * those of 4 and lower to return offset>>UTRIE_SURROGATE_BLOCK_BITS |
711 | | * which would always result in a value of 0x40..0x43f |
712 | | * (start/end 1k blocks of supplementary Unicode code points). |
713 | | * However, this would be uglier, and would not work for some existing |
714 | | * binary data file formats. |
715 | | * |
716 | | * Also, we do not plan to change UTRIE_SHIFT because it would change binary |
717 | | * data file formats, and we would probably not make it smaller because of |
718 | | * the then even larger BMP index length even for empty tries. |
719 | | */ |
720 | | static uint32_t U_CALLCONV |
721 | 0 | defaultGetFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset) { |
722 | 0 | uint32_t value, initialValue; |
723 | 0 | UChar32 limit; |
724 | 0 | UBool inBlockZero; |
725 | |
|
726 | 0 | initialValue=trie->data[0]; |
727 | 0 | limit=start+0x400; |
728 | 0 | while(start<limit) { |
729 | 0 | value=utrie_get32(trie, start, &inBlockZero); |
730 | 0 | if(inBlockZero) { |
731 | 0 | start+=UTRIE_DATA_BLOCK_LENGTH; |
732 | 0 | } else if(value!=initialValue) { |
733 | 0 | return (uint32_t)offset; |
734 | 0 | } else { |
735 | 0 | ++start; |
736 | 0 | } |
737 | 0 | } |
738 | 0 | return 0; |
739 | 0 | } |
740 | | |
741 | | U_CAPI int32_t U_EXPORT2 |
742 | | utrie_serialize(UNewTrie *trie, void *dt, int32_t capacity, |
743 | | UNewTrieGetFoldedValue *getFoldedValue, |
744 | | UBool reduceTo16Bits, |
745 | 0 | UErrorCode *pErrorCode) { |
746 | 0 | UTrieHeader *header; |
747 | 0 | uint32_t *p; |
748 | 0 | uint16_t *dest16; |
749 | 0 | int32_t i, length; |
750 | 0 | uint8_t* data = NULL; |
751 | | |
752 | | /* argument check */ |
753 | 0 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
754 | 0 | return 0; |
755 | 0 | } |
756 | | |
757 | 0 | if(trie==NULL || capacity<0 || (capacity>0 && dt==NULL)) { |
758 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
759 | 0 | return 0; |
760 | 0 | } |
761 | 0 | if(getFoldedValue==NULL) { |
762 | 0 | getFoldedValue=defaultGetFoldedValue; |
763 | 0 | } |
764 | |
|
765 | 0 | data = (uint8_t*)dt; |
766 | | /* fold and compact if necessary, also checks that indexLength is within limits */ |
767 | 0 | if(!trie->isCompacted) { |
768 | | /* compact once without overlap to improve folding */ |
769 | 0 | utrie_compact(trie, FALSE, pErrorCode); |
770 | | |
771 | | /* fold the supplementary part of the index array */ |
772 | 0 | utrie_fold(trie, getFoldedValue, pErrorCode); |
773 | | |
774 | | /* compact again with overlap for minimum data array length */ |
775 | 0 | utrie_compact(trie, TRUE, pErrorCode); |
776 | |
|
777 | 0 | trie->isCompacted=TRUE; |
778 | 0 | if(U_FAILURE(*pErrorCode)) { |
779 | 0 | return 0; |
780 | 0 | } |
781 | 0 | } |
782 | | |
783 | | /* is dataLength within limits? */ |
784 | 0 | if( (reduceTo16Bits ? (trie->dataLength+trie->indexLength) : trie->dataLength) >= UTRIE_MAX_DATA_LENGTH) { |
785 | 0 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
786 | 0 | } |
787 | |
|
788 | 0 | length=sizeof(UTrieHeader)+2*trie->indexLength; |
789 | 0 | if(reduceTo16Bits) { |
790 | 0 | length+=2*trie->dataLength; |
791 | 0 | } else { |
792 | 0 | length+=4*trie->dataLength; |
793 | 0 | } |
794 | |
|
795 | 0 | if(length>capacity) { |
796 | 0 | return length; /* preflighting */ |
797 | 0 | } |
798 | | |
799 | | #ifdef UTRIE_DEBUG |
800 | | printf("**UTrieLengths(serialize)** index:%6ld data:%6ld serialized:%6ld\n", |
801 | | (long)trie->indexLength, (long)trie->dataLength, (long)length); |
802 | | #endif |
803 | | |
804 | | /* set the header fields */ |
805 | 0 | header=(UTrieHeader *)data; |
806 | 0 | data+=sizeof(UTrieHeader); |
807 | |
|
808 | 0 | header->signature=0x54726965; /* "Trie" */ |
809 | 0 | header->options=UTRIE_SHIFT | (UTRIE_INDEX_SHIFT<<UTRIE_OPTIONS_INDEX_SHIFT); |
810 | |
|
811 | 0 | if(!reduceTo16Bits) { |
812 | 0 | header->options|=UTRIE_OPTIONS_DATA_IS_32_BIT; |
813 | 0 | } |
814 | 0 | if(trie->isLatin1Linear) { |
815 | 0 | header->options|=UTRIE_OPTIONS_LATIN1_IS_LINEAR; |
816 | 0 | } |
817 | |
|
818 | 0 | header->indexLength=trie->indexLength; |
819 | 0 | header->dataLength=trie->dataLength; |
820 | | |
821 | | /* write the index (stage 1) array and the 16/32-bit data (stage 2) array */ |
822 | 0 | if(reduceTo16Bits) { |
823 | | /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT, after adding indexLength */ |
824 | 0 | p=(uint32_t *)trie->index; |
825 | 0 | dest16=(uint16_t *)data; |
826 | 0 | for(i=trie->indexLength; i>0; --i) { |
827 | 0 | *dest16++=(uint16_t)((*p++ + trie->indexLength)>>UTRIE_INDEX_SHIFT); |
828 | 0 | } |
829 | | |
830 | | /* write 16-bit data values */ |
831 | 0 | p=trie->data; |
832 | 0 | for(i=trie->dataLength; i>0; --i) { |
833 | 0 | *dest16++=(uint16_t)*p++; |
834 | 0 | } |
835 | 0 | } else { |
836 | | /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT */ |
837 | 0 | p=(uint32_t *)trie->index; |
838 | 0 | dest16=(uint16_t *)data; |
839 | 0 | for(i=trie->indexLength; i>0; --i) { |
840 | 0 | *dest16++=(uint16_t)(*p++ >> UTRIE_INDEX_SHIFT); |
841 | 0 | } |
842 | | |
843 | | /* write 32-bit data values */ |
844 | 0 | uprv_memcpy(dest16, trie->data, 4*(size_t)trie->dataLength); |
845 | 0 | } |
846 | |
|
847 | 0 | return length; |
848 | 0 | } |
849 | | |
850 | | /* inverse to defaultGetFoldedValue() */ |
851 | | U_CAPI int32_t U_EXPORT2 |
852 | 0 | utrie_defaultGetFoldingOffset(uint32_t data) { |
853 | 0 | return (int32_t)data; |
854 | 0 | } |
855 | | |
856 | | U_CAPI int32_t U_EXPORT2 |
857 | 0 | utrie_unserialize(UTrie *trie, const void *data, int32_t length, UErrorCode *pErrorCode) { |
858 | 0 | const UTrieHeader *header; |
859 | 0 | const uint16_t *p16; |
860 | 0 | uint32_t options; |
861 | |
|
862 | 0 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
863 | 0 | return -1; |
864 | 0 | } |
865 | | |
866 | | /* enough data for a trie header? */ |
867 | 0 | if(length<(int32_t)sizeof(UTrieHeader)) { |
868 | 0 | *pErrorCode=U_INVALID_FORMAT_ERROR; |
869 | 0 | return -1; |
870 | 0 | } |
871 | | |
872 | | /* check the signature */ |
873 | 0 | header=(const UTrieHeader *)data; |
874 | 0 | if(header->signature!=0x54726965) { |
875 | 0 | *pErrorCode=U_INVALID_FORMAT_ERROR; |
876 | 0 | return -1; |
877 | 0 | } |
878 | | |
879 | | /* get the options and check the shift values */ |
880 | 0 | options=header->options; |
881 | 0 | if( (options&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_SHIFT || |
882 | 0 | ((options>>UTRIE_OPTIONS_INDEX_SHIFT)&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_INDEX_SHIFT |
883 | 0 | ) { |
884 | 0 | *pErrorCode=U_INVALID_FORMAT_ERROR; |
885 | 0 | return -1; |
886 | 0 | } |
887 | 0 | trie->isLatin1Linear= (UBool)((options&UTRIE_OPTIONS_LATIN1_IS_LINEAR)!=0); |
888 | | |
889 | | /* get the length values */ |
890 | 0 | trie->indexLength=header->indexLength; |
891 | 0 | trie->dataLength=header->dataLength; |
892 | |
|
893 | 0 | length-=(int32_t)sizeof(UTrieHeader); |
894 | | |
895 | | /* enough data for the index? */ |
896 | 0 | if(length<2*trie->indexLength) { |
897 | 0 | *pErrorCode=U_INVALID_FORMAT_ERROR; |
898 | 0 | return -1; |
899 | 0 | } |
900 | 0 | p16=(const uint16_t *)(header+1); |
901 | 0 | trie->index=p16; |
902 | 0 | p16+=trie->indexLength; |
903 | 0 | length-=2*trie->indexLength; |
904 | | |
905 | | /* get the data */ |
906 | 0 | if(options&UTRIE_OPTIONS_DATA_IS_32_BIT) { |
907 | 0 | if(length<4*trie->dataLength) { |
908 | 0 | *pErrorCode=U_INVALID_FORMAT_ERROR; |
909 | 0 | return -1; |
910 | 0 | } |
911 | 0 | trie->data32=(const uint32_t *)p16; |
912 | 0 | trie->initialValue=trie->data32[0]; |
913 | 0 | length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+4*trie->dataLength; |
914 | 0 | } else { |
915 | 0 | if(length<2*trie->dataLength) { |
916 | 0 | *pErrorCode=U_INVALID_FORMAT_ERROR; |
917 | 0 | return -1; |
918 | 0 | } |
919 | | |
920 | | /* the "data16" data is used via the index pointer */ |
921 | 0 | trie->data32=NULL; |
922 | 0 | trie->initialValue=trie->index[trie->indexLength]; |
923 | 0 | length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+2*trie->dataLength; |
924 | 0 | } |
925 | | |
926 | 0 | trie->getFoldingOffset=utrie_defaultGetFoldingOffset; |
927 | |
|
928 | 0 | return length; |
929 | 0 | } |
930 | | |
931 | | U_CAPI int32_t U_EXPORT2 |
932 | | utrie_unserializeDummy(UTrie *trie, |
933 | | void *data, int32_t length, |
934 | | uint32_t initialValue, uint32_t leadUnitValue, |
935 | | UBool make16BitTrie, |
936 | 0 | UErrorCode *pErrorCode) { |
937 | 0 | uint16_t *p16; |
938 | 0 | int32_t actualLength, latin1Length, i, limit; |
939 | 0 | uint16_t block; |
940 | |
|
941 | 0 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
942 | 0 | return -1; |
943 | 0 | } |
944 | | |
945 | | /* calculate the actual size of the dummy trie data */ |
946 | | |
947 | | /* max(Latin-1, block 0) */ |
948 | 0 | latin1Length= 256; /*UTRIE_SHIFT<=8 ? 256 : UTRIE_DATA_BLOCK_LENGTH;*/ |
949 | |
|
950 | 0 | trie->indexLength=UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT; |
951 | 0 | trie->dataLength=latin1Length; |
952 | 0 | if(leadUnitValue!=initialValue) { |
953 | 0 | trie->dataLength+=UTRIE_DATA_BLOCK_LENGTH; |
954 | 0 | } |
955 | |
|
956 | 0 | actualLength=trie->indexLength*2; |
957 | 0 | if(make16BitTrie) { |
958 | 0 | actualLength+=trie->dataLength*2; |
959 | 0 | } else { |
960 | 0 | actualLength+=trie->dataLength*4; |
961 | 0 | } |
962 | | |
963 | | /* enough space for the dummy trie? */ |
964 | 0 | if(length<actualLength) { |
965 | 0 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
966 | 0 | return actualLength; |
967 | 0 | } |
968 | | |
969 | 0 | trie->isLatin1Linear=TRUE; |
970 | 0 | trie->initialValue=initialValue; |
971 | | |
972 | | /* fill the index and data arrays */ |
973 | 0 | p16=(uint16_t *)data; |
974 | 0 | trie->index=p16; |
975 | |
|
976 | 0 | if(make16BitTrie) { |
977 | | /* indexes to block 0 */ |
978 | 0 | block=(uint16_t)(trie->indexLength>>UTRIE_INDEX_SHIFT); |
979 | 0 | limit=trie->indexLength; |
980 | 0 | for(i=0; i<limit; ++i) { |
981 | 0 | p16[i]=block; |
982 | 0 | } |
983 | |
|
984 | 0 | if(leadUnitValue!=initialValue) { |
985 | | /* indexes for lead surrogate code units to the block after Latin-1 */ |
986 | 0 | block+=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); |
987 | 0 | i=0xd800>>UTRIE_SHIFT; |
988 | 0 | limit=0xdc00>>UTRIE_SHIFT; |
989 | 0 | for(; i<limit; ++i) { |
990 | 0 | p16[i]=block; |
991 | 0 | } |
992 | 0 | } |
993 | |
|
994 | 0 | trie->data32=NULL; |
995 | | |
996 | | /* Latin-1 data */ |
997 | 0 | p16+=trie->indexLength; |
998 | 0 | for(i=0; i<latin1Length; ++i) { |
999 | 0 | p16[i]=(uint16_t)initialValue; |
1000 | 0 | } |
1001 | | |
1002 | | /* data for lead surrogate code units */ |
1003 | 0 | if(leadUnitValue!=initialValue) { |
1004 | 0 | limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; |
1005 | 0 | for(/* i=latin1Length */; i<limit; ++i) { |
1006 | 0 | p16[i]=(uint16_t)leadUnitValue; |
1007 | 0 | } |
1008 | 0 | } |
1009 | 0 | } else { |
1010 | 0 | uint32_t *p32; |
1011 | | |
1012 | | /* indexes to block 0 */ |
1013 | 0 | uprv_memset(p16, 0, trie->indexLength*2); |
1014 | |
|
1015 | 0 | if(leadUnitValue!=initialValue) { |
1016 | | /* indexes for lead surrogate code units to the block after Latin-1 */ |
1017 | 0 | block=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); |
1018 | 0 | i=0xd800>>UTRIE_SHIFT; |
1019 | 0 | limit=0xdc00>>UTRIE_SHIFT; |
1020 | 0 | for(; i<limit; ++i) { |
1021 | 0 | p16[i]=block; |
1022 | 0 | } |
1023 | 0 | } |
1024 | |
|
1025 | 0 | trie->data32=p32=(uint32_t *)(p16+trie->indexLength); |
1026 | | |
1027 | | /* Latin-1 data */ |
1028 | 0 | for(i=0; i<latin1Length; ++i) { |
1029 | 0 | p32[i]=initialValue; |
1030 | 0 | } |
1031 | | |
1032 | | /* data for lead surrogate code units */ |
1033 | 0 | if(leadUnitValue!=initialValue) { |
1034 | 0 | limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; |
1035 | 0 | for(/* i=latin1Length */; i<limit; ++i) { |
1036 | 0 | p32[i]=leadUnitValue; |
1037 | 0 | } |
1038 | 0 | } |
1039 | 0 | } |
1040 | |
|
1041 | 0 | trie->getFoldingOffset=utrie_defaultGetFoldingOffset; |
1042 | |
|
1043 | 0 | return actualLength; |
1044 | 0 | } |
1045 | | |
1046 | | /* enumeration -------------------------------------------------------------- */ |
1047 | | |
1048 | | /* default UTrieEnumValue() returns the input value itself */ |
1049 | | static uint32_t U_CALLCONV |
1050 | 0 | enumSameValue(const void * /*context*/, uint32_t value) { |
1051 | 0 | return value; |
1052 | 0 | } |
1053 | | |
1054 | | /** |
1055 | | * Enumerate all ranges of code points with the same relevant values. |
1056 | | * The values are transformed from the raw trie entries by the enumValue function. |
1057 | | */ |
1058 | | U_CAPI void U_EXPORT2 |
1059 | | utrie_enum(const UTrie *trie, |
1060 | 0 | UTrieEnumValue *enumValue, UTrieEnumRange *enumRange, const void *context) { |
1061 | 0 | const uint32_t *data32; |
1062 | 0 | const uint16_t *idx; |
1063 | |
|
1064 | 0 | uint32_t value, prevValue, initialValue; |
1065 | 0 | UChar32 c, prev; |
1066 | 0 | int32_t l, i, j, block, prevBlock, nullBlock, offset; |
1067 | | |
1068 | | /* check arguments */ |
1069 | 0 | if(trie==NULL || trie->index==NULL || enumRange==NULL) { |
1070 | 0 | return; |
1071 | 0 | } |
1072 | 0 | if(enumValue==NULL) { |
1073 | 0 | enumValue=enumSameValue; |
1074 | 0 | } |
1075 | |
|
1076 | 0 | idx=trie->index; |
1077 | 0 | data32=trie->data32; |
1078 | | |
1079 | | /* get the enumeration value that corresponds to an initial-value trie data entry */ |
1080 | 0 | initialValue=enumValue(context, trie->initialValue); |
1081 | |
|
1082 | 0 | if(data32==NULL) { |
1083 | 0 | nullBlock=trie->indexLength; |
1084 | 0 | } else { |
1085 | 0 | nullBlock=0; |
1086 | 0 | } |
1087 | | |
1088 | | /* set variables for previous range */ |
1089 | 0 | prevBlock=nullBlock; |
1090 | 0 | prev=0; |
1091 | 0 | prevValue=initialValue; |
1092 | | |
1093 | | /* enumerate BMP - the main loop enumerates data blocks */ |
1094 | 0 | for(i=0, c=0; c<=0xffff; ++i) { |
1095 | 0 | if(c==0xd800) { |
1096 | | /* skip lead surrogate code _units_, go to lead surr. code _points_ */ |
1097 | 0 | i=UTRIE_BMP_INDEX_LENGTH; |
1098 | 0 | } else if(c==0xdc00) { |
1099 | | /* go back to regular BMP code points */ |
1100 | 0 | i=c>>UTRIE_SHIFT; |
1101 | 0 | } |
1102 | |
|
1103 | 0 | block=idx[i]<<UTRIE_INDEX_SHIFT; |
1104 | 0 | if(block==prevBlock) { |
1105 | | /* the block is the same as the previous one, and filled with value */ |
1106 | 0 | c+=UTRIE_DATA_BLOCK_LENGTH; |
1107 | 0 | } else if(block==nullBlock) { |
1108 | | /* this is the all-initial-value block */ |
1109 | 0 | if(prevValue!=initialValue) { |
1110 | 0 | if(prev<c) { |
1111 | 0 | if(!enumRange(context, prev, c, prevValue)) { |
1112 | 0 | return; |
1113 | 0 | } |
1114 | 0 | } |
1115 | 0 | prevBlock=nullBlock; |
1116 | 0 | prev=c; |
1117 | 0 | prevValue=initialValue; |
1118 | 0 | } |
1119 | 0 | c+=UTRIE_DATA_BLOCK_LENGTH; |
1120 | 0 | } else { |
1121 | 0 | prevBlock=block; |
1122 | 0 | for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { |
1123 | 0 | value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]); |
1124 | 0 | if(value!=prevValue) { |
1125 | 0 | if(prev<c) { |
1126 | 0 | if(!enumRange(context, prev, c, prevValue)) { |
1127 | 0 | return; |
1128 | 0 | } |
1129 | 0 | } |
1130 | 0 | if(j>0) { |
1131 | | /* the block is not filled with all the same value */ |
1132 | 0 | prevBlock=-1; |
1133 | 0 | } |
1134 | 0 | prev=c; |
1135 | 0 | prevValue=value; |
1136 | 0 | } |
1137 | 0 | ++c; |
1138 | 0 | } |
1139 | 0 | } |
1140 | 0 | } |
1141 | | |
1142 | | /* enumerate supplementary code points */ |
1143 | 0 | for(l=0xd800; l<0xdc00;) { |
1144 | | /* lead surrogate access */ |
1145 | 0 | offset=idx[l>>UTRIE_SHIFT]<<UTRIE_INDEX_SHIFT; |
1146 | 0 | if(offset==nullBlock) { |
1147 | | /* no entries for a whole block of lead surrogates */ |
1148 | 0 | if(prevValue!=initialValue) { |
1149 | 0 | if(prev<c) { |
1150 | 0 | if(!enumRange(context, prev, c, prevValue)) { |
1151 | 0 | return; |
1152 | 0 | } |
1153 | 0 | } |
1154 | 0 | prevBlock=nullBlock; |
1155 | 0 | prev=c; |
1156 | 0 | prevValue=initialValue; |
1157 | 0 | } |
1158 | | |
1159 | 0 | l+=UTRIE_DATA_BLOCK_LENGTH; |
1160 | 0 | c+=UTRIE_DATA_BLOCK_LENGTH<<10; |
1161 | 0 | continue; |
1162 | 0 | } |
1163 | | |
1164 | 0 | value= data32!=NULL ? data32[offset+(l&UTRIE_MASK)] : idx[offset+(l&UTRIE_MASK)]; |
1165 | | |
1166 | | /* enumerate trail surrogates for this lead surrogate */ |
1167 | 0 | offset=trie->getFoldingOffset(value); |
1168 | 0 | if(offset<=0) { |
1169 | | /* no data for this lead surrogate */ |
1170 | 0 | if(prevValue!=initialValue) { |
1171 | 0 | if(prev<c) { |
1172 | 0 | if(!enumRange(context, prev, c, prevValue)) { |
1173 | 0 | return; |
1174 | 0 | } |
1175 | 0 | } |
1176 | 0 | prevBlock=nullBlock; |
1177 | 0 | prev=c; |
1178 | 0 | prevValue=initialValue; |
1179 | 0 | } |
1180 | | |
1181 | | /* nothing else to do for the supplementary code points for this lead surrogate */ |
1182 | 0 | c+=0x400; |
1183 | 0 | } else { |
1184 | | /* enumerate code points for this lead surrogate */ |
1185 | 0 | i=offset; |
1186 | 0 | offset+=UTRIE_SURROGATE_BLOCK_COUNT; |
1187 | 0 | do { |
1188 | | /* copy of most of the body of the BMP loop */ |
1189 | 0 | block=idx[i]<<UTRIE_INDEX_SHIFT; |
1190 | 0 | if(block==prevBlock) { |
1191 | | /* the block is the same as the previous one, and filled with value */ |
1192 | 0 | c+=UTRIE_DATA_BLOCK_LENGTH; |
1193 | 0 | } else if(block==nullBlock) { |
1194 | | /* this is the all-initial-value block */ |
1195 | 0 | if(prevValue!=initialValue) { |
1196 | 0 | if(prev<c) { |
1197 | 0 | if(!enumRange(context, prev, c, prevValue)) { |
1198 | 0 | return; |
1199 | 0 | } |
1200 | 0 | } |
1201 | 0 | prevBlock=nullBlock; |
1202 | 0 | prev=c; |
1203 | 0 | prevValue=initialValue; |
1204 | 0 | } |
1205 | 0 | c+=UTRIE_DATA_BLOCK_LENGTH; |
1206 | 0 | } else { |
1207 | 0 | prevBlock=block; |
1208 | 0 | for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { |
1209 | 0 | value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]); |
1210 | 0 | if(value!=prevValue) { |
1211 | 0 | if(prev<c) { |
1212 | 0 | if(!enumRange(context, prev, c, prevValue)) { |
1213 | 0 | return; |
1214 | 0 | } |
1215 | 0 | } |
1216 | 0 | if(j>0) { |
1217 | | /* the block is not filled with all the same value */ |
1218 | 0 | prevBlock=-1; |
1219 | 0 | } |
1220 | 0 | prev=c; |
1221 | 0 | prevValue=value; |
1222 | 0 | } |
1223 | 0 | ++c; |
1224 | 0 | } |
1225 | 0 | } |
1226 | 0 | } while(++i<offset); |
1227 | 0 | } |
1228 | | |
1229 | 0 | ++l; |
1230 | 0 | } |
1231 | | |
1232 | | /* deliver last range */ |
1233 | 0 | enumRange(context, prev, c, prevValue); |
1234 | 0 | } |