/src/icu/source/common/uvectr32.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /* |
4 | | ****************************************************************************** |
5 | | * Copyright (C) 1999-2015, International Business Machines Corporation and |
6 | | * others. All Rights Reserved. |
7 | | ****************************************************************************** |
8 | | * Date Name Description |
9 | | * 10/22/99 alan Creation. |
10 | | ********************************************************************** |
11 | | */ |
12 | | |
13 | | #include "uvectr32.h" |
14 | | #include "cmemory.h" |
15 | | #include "putilimp.h" |
16 | | |
17 | | U_NAMESPACE_BEGIN |
18 | | |
19 | 0 | #define DEFAULT_CAPACITY 8 |
20 | | |
21 | | /* |
22 | | * Constants for hinting whether a key is an integer |
23 | | * or a pointer. If a hint bit is zero, then the associated |
24 | | * token is assumed to be an integer. This is needed for iSeries |
25 | | */ |
26 | | |
27 | | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UVector32) |
28 | | |
29 | | UVector32::UVector32(UErrorCode &status) : |
30 | 0 | count(0), |
31 | 0 | capacity(0), |
32 | 0 | maxCapacity(0), |
33 | | elements(NULL) |
34 | 0 | { |
35 | 0 | _init(DEFAULT_CAPACITY, status); |
36 | 0 | } |
37 | | |
38 | | UVector32::UVector32(int32_t initialCapacity, UErrorCode &status) : |
39 | 0 | count(0), |
40 | 0 | capacity(0), |
41 | 0 | maxCapacity(0), |
42 | 0 | elements(0) |
43 | 0 | { |
44 | 0 | _init(initialCapacity, status); |
45 | 0 | } |
46 | | |
47 | | |
48 | | |
49 | 0 | void UVector32::_init(int32_t initialCapacity, UErrorCode &status) { |
50 | | // Fix bogus initialCapacity values; avoid malloc(0) |
51 | 0 | if (initialCapacity < 1) { |
52 | 0 | initialCapacity = DEFAULT_CAPACITY; |
53 | 0 | } |
54 | 0 | if (maxCapacity>0 && maxCapacity<initialCapacity) { |
55 | 0 | initialCapacity = maxCapacity; |
56 | 0 | } |
57 | 0 | if (initialCapacity > (int32_t)(INT32_MAX / sizeof(int32_t))) { |
58 | 0 | initialCapacity = uprv_min(DEFAULT_CAPACITY, maxCapacity); |
59 | 0 | } |
60 | 0 | elements = (int32_t *)uprv_malloc(sizeof(int32_t)*initialCapacity); |
61 | 0 | if (elements == 0) { |
62 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
63 | 0 | } else { |
64 | 0 | capacity = initialCapacity; |
65 | 0 | } |
66 | 0 | } |
67 | | |
68 | 0 | UVector32::~UVector32() { |
69 | 0 | uprv_free(elements); |
70 | 0 | elements = 0; |
71 | 0 | } |
72 | | |
73 | | /** |
74 | | * Assign this object to another (make this a copy of 'other'). |
75 | | */ |
76 | 0 | void UVector32::assign(const UVector32& other, UErrorCode &ec) { |
77 | 0 | if (ensureCapacity(other.count, ec)) { |
78 | 0 | setSize(other.count); |
79 | 0 | for (int32_t i=0; i<other.count; ++i) { |
80 | 0 | elements[i] = other.elements[i]; |
81 | 0 | } |
82 | 0 | } |
83 | 0 | } |
84 | | |
85 | | |
86 | 0 | bool UVector32::operator==(const UVector32& other) { |
87 | 0 | int32_t i; |
88 | 0 | if (count != other.count) return FALSE; |
89 | 0 | for (i=0; i<count; ++i) { |
90 | 0 | if (elements[i] != other.elements[i]) { |
91 | 0 | return FALSE; |
92 | 0 | } |
93 | 0 | } |
94 | 0 | return TRUE; |
95 | 0 | } |
96 | | |
97 | | |
98 | 0 | void UVector32::setElementAt(int32_t elem, int32_t index) { |
99 | 0 | if (0 <= index && index < count) { |
100 | 0 | elements[index] = elem; |
101 | 0 | } |
102 | | /* else index out of range */ |
103 | 0 | } |
104 | | |
105 | 0 | void UVector32::insertElementAt(int32_t elem, int32_t index, UErrorCode &status) { |
106 | | // must have 0 <= index <= count |
107 | 0 | if (0 <= index && index <= count && ensureCapacity(count + 1, status)) { |
108 | 0 | for (int32_t i=count; i>index; --i) { |
109 | 0 | elements[i] = elements[i-1]; |
110 | 0 | } |
111 | 0 | elements[index] = elem; |
112 | 0 | ++count; |
113 | 0 | } |
114 | | /* else index out of range */ |
115 | 0 | } |
116 | | |
117 | 0 | UBool UVector32::containsAll(const UVector32& other) const { |
118 | 0 | for (int32_t i=0; i<other.size(); ++i) { |
119 | 0 | if (indexOf(other.elements[i]) < 0) { |
120 | 0 | return FALSE; |
121 | 0 | } |
122 | 0 | } |
123 | 0 | return TRUE; |
124 | 0 | } |
125 | | |
126 | 0 | UBool UVector32::containsNone(const UVector32& other) const { |
127 | 0 | for (int32_t i=0; i<other.size(); ++i) { |
128 | 0 | if (indexOf(other.elements[i]) >= 0) { |
129 | 0 | return FALSE; |
130 | 0 | } |
131 | 0 | } |
132 | 0 | return TRUE; |
133 | 0 | } |
134 | | |
135 | 0 | UBool UVector32::removeAll(const UVector32& other) { |
136 | 0 | UBool changed = FALSE; |
137 | 0 | for (int32_t i=0; i<other.size(); ++i) { |
138 | 0 | int32_t j = indexOf(other.elements[i]); |
139 | 0 | if (j >= 0) { |
140 | 0 | removeElementAt(j); |
141 | 0 | changed = TRUE; |
142 | 0 | } |
143 | 0 | } |
144 | 0 | return changed; |
145 | 0 | } |
146 | | |
147 | 0 | UBool UVector32::retainAll(const UVector32& other) { |
148 | 0 | UBool changed = FALSE; |
149 | 0 | for (int32_t j=size()-1; j>=0; --j) { |
150 | 0 | int32_t i = other.indexOf(elements[j]); |
151 | 0 | if (i < 0) { |
152 | 0 | removeElementAt(j); |
153 | 0 | changed = TRUE; |
154 | 0 | } |
155 | 0 | } |
156 | 0 | return changed; |
157 | 0 | } |
158 | | |
159 | 0 | void UVector32::removeElementAt(int32_t index) { |
160 | 0 | if (index >= 0) { |
161 | 0 | for (int32_t i=index; i<count-1; ++i) { |
162 | 0 | elements[i] = elements[i+1]; |
163 | 0 | } |
164 | 0 | --count; |
165 | 0 | } |
166 | 0 | } |
167 | | |
168 | 0 | void UVector32::removeAllElements(void) { |
169 | 0 | count = 0; |
170 | 0 | } |
171 | | |
172 | 0 | UBool UVector32::equals(const UVector32 &other) const { |
173 | 0 | int i; |
174 | |
|
175 | 0 | if (this->count != other.count) { |
176 | 0 | return FALSE; |
177 | 0 | } |
178 | 0 | for (i=0; i<count; i++) { |
179 | 0 | if (elements[i] != other.elements[i]) { |
180 | 0 | return FALSE; |
181 | 0 | } |
182 | 0 | } |
183 | 0 | return TRUE; |
184 | 0 | } |
185 | | |
186 | | |
187 | | |
188 | | |
189 | 0 | int32_t UVector32::indexOf(int32_t key, int32_t startIndex) const { |
190 | 0 | int32_t i; |
191 | 0 | for (i=startIndex; i<count; ++i) { |
192 | 0 | if (key == elements[i]) { |
193 | 0 | return i; |
194 | 0 | } |
195 | 0 | } |
196 | 0 | return -1; |
197 | 0 | } |
198 | | |
199 | | |
200 | 0 | UBool UVector32::expandCapacity(int32_t minimumCapacity, UErrorCode &status) { |
201 | 0 | if (U_FAILURE(status)) { |
202 | 0 | return FALSE; |
203 | 0 | } |
204 | 0 | if (minimumCapacity < 0) { |
205 | 0 | status = U_ILLEGAL_ARGUMENT_ERROR; |
206 | 0 | return FALSE; |
207 | 0 | } |
208 | 0 | if (capacity >= minimumCapacity) { |
209 | 0 | return TRUE; |
210 | 0 | } |
211 | 0 | if (maxCapacity>0 && minimumCapacity>maxCapacity) { |
212 | 0 | status = U_BUFFER_OVERFLOW_ERROR; |
213 | 0 | return FALSE; |
214 | 0 | } |
215 | 0 | if (capacity > (INT32_MAX - 1) / 2) { // integer overflow check |
216 | 0 | status = U_ILLEGAL_ARGUMENT_ERROR; |
217 | 0 | return FALSE; |
218 | 0 | } |
219 | 0 | int32_t newCap = capacity * 2; |
220 | 0 | if (newCap < minimumCapacity) { |
221 | 0 | newCap = minimumCapacity; |
222 | 0 | } |
223 | 0 | if (maxCapacity > 0 && newCap > maxCapacity) { |
224 | 0 | newCap = maxCapacity; |
225 | 0 | } |
226 | 0 | if (newCap > (int32_t)(INT32_MAX / sizeof(int32_t))) { // integer overflow check |
227 | | // We keep the original memory contents on bad minimumCapacity/maxCapacity. |
228 | 0 | status = U_ILLEGAL_ARGUMENT_ERROR; |
229 | 0 | return FALSE; |
230 | 0 | } |
231 | 0 | int32_t* newElems = (int32_t *)uprv_realloc(elements, sizeof(int32_t)*newCap); |
232 | 0 | if (newElems == NULL) { |
233 | | // We keep the original contents on the memory failure on realloc. |
234 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
235 | 0 | return FALSE; |
236 | 0 | } |
237 | 0 | elements = newElems; |
238 | 0 | capacity = newCap; |
239 | 0 | return TRUE; |
240 | 0 | } |
241 | | |
242 | 0 | void UVector32::setMaxCapacity(int32_t limit) { |
243 | 0 | U_ASSERT(limit >= 0); |
244 | 0 | if (limit < 0) { |
245 | 0 | limit = 0; |
246 | 0 | } |
247 | 0 | if (limit > (int32_t)(INT32_MAX / sizeof(int32_t))) { // integer overflow check for realloc |
248 | | // Something is very wrong, don't realloc, leave capacity and maxCapacity unchanged |
249 | 0 | return; |
250 | 0 | } |
251 | 0 | maxCapacity = limit; |
252 | 0 | if (capacity <= maxCapacity || maxCapacity == 0) { |
253 | | // Current capacity is within the new limit. |
254 | 0 | return; |
255 | 0 | } |
256 | | |
257 | | // New maximum capacity is smaller than the current size. |
258 | | // Realloc the storage to the new, smaller size. |
259 | 0 | int32_t* newElems = (int32_t *)uprv_realloc(elements, sizeof(int32_t)*maxCapacity); |
260 | 0 | if (newElems == NULL) { |
261 | | // Realloc to smaller failed. |
262 | | // Just keep what we had. No need to call it a failure. |
263 | 0 | return; |
264 | 0 | } |
265 | 0 | elements = newElems; |
266 | 0 | capacity = maxCapacity; |
267 | 0 | if (count > capacity) { |
268 | 0 | count = capacity; |
269 | 0 | } |
270 | 0 | } |
271 | | |
272 | | /** |
273 | | * Change the size of this vector as follows: If newSize is smaller, |
274 | | * then truncate the array, possibly deleting held elements for i >= |
275 | | * newSize. If newSize is larger, grow the array, filling in new |
276 | | * slots with NULL. |
277 | | */ |
278 | 0 | void UVector32::setSize(int32_t newSize) { |
279 | 0 | int32_t i; |
280 | 0 | if (newSize < 0) { |
281 | 0 | return; |
282 | 0 | } |
283 | 0 | if (newSize > count) { |
284 | 0 | UErrorCode ec = U_ZERO_ERROR; |
285 | 0 | if (!ensureCapacity(newSize, ec)) { |
286 | 0 | return; |
287 | 0 | } |
288 | 0 | for (i=count; i<newSize; ++i) { |
289 | 0 | elements[i] = 0; |
290 | 0 | } |
291 | 0 | } |
292 | 0 | count = newSize; |
293 | 0 | } |
294 | | |
295 | | |
296 | | |
297 | | |
298 | | /** |
299 | | * Insert the given integer into this vector at its sorted position |
300 | | * as defined by 'compare'. The current elements are assumed to |
301 | | * be sorted already. |
302 | | */ |
303 | 0 | void UVector32::sortedInsert(int32_t tok, UErrorCode& ec) { |
304 | | // Perform a binary search for the location to insert tok at. Tok |
305 | | // will be inserted between two elements a and b such that a <= |
306 | | // tok && tok < b, where there is a 'virtual' elements[-1] always |
307 | | // less than tok and a 'virtual' elements[count] always greater |
308 | | // than tok. |
309 | 0 | int32_t min = 0, max = count; |
310 | 0 | while (min != max) { |
311 | 0 | int32_t probe = (min + max) / 2; |
312 | | //int8_t c = (*compare)(elements[probe], tok); |
313 | | //if (c > 0) { |
314 | 0 | if (elements[probe] > tok) { |
315 | 0 | max = probe; |
316 | 0 | } else { |
317 | | // assert(c <= 0); |
318 | 0 | min = probe + 1; |
319 | 0 | } |
320 | 0 | } |
321 | 0 | if (ensureCapacity(count + 1, ec)) { |
322 | 0 | for (int32_t i=count; i>min; --i) { |
323 | 0 | elements[i] = elements[i-1]; |
324 | 0 | } |
325 | 0 | elements[min] = tok; |
326 | 0 | ++count; |
327 | 0 | } |
328 | 0 | } |
329 | | |
330 | | |
331 | | |
332 | | |
333 | | |
334 | | U_NAMESPACE_END |
335 | | |