Coverage Report

Created: 2025-06-24 06:43

/src/icu/source/i18n/astro.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2016 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
/************************************************************************
4
 * Copyright (C) 1996-2012, International Business Machines Corporation
5
 * and others. All Rights Reserved.
6
 ************************************************************************
7
 *  2003-nov-07   srl       Port from Java
8
 */
9
10
#include "astro.h"
11
12
#if !UCONFIG_NO_FORMATTING
13
14
#include "unicode/calendar.h"
15
#include <math.h>
16
#include <float.h>
17
#include "unicode/putil.h"
18
#include "uhash.h"
19
#include "umutex.h"
20
#include "ucln_in.h"
21
#include "putilimp.h"
22
#include <stdio.h>  // for toString()
23
24
#if defined (PI) 
25
#undef PI
26
#endif
27
28
#ifdef U_DEBUG_ASTRO
29
# include "uresimp.h" // for debugging
30
31
static void debug_astro_loc(const char *f, int32_t l)
32
{
33
  fprintf(stderr, "%s:%d: ", f, l);
34
}
35
36
static void debug_astro_msg(const char *pat, ...)
37
{
38
  va_list ap;
39
  va_start(ap, pat);
40
  vfprintf(stderr, pat, ap);
41
  fflush(stderr);
42
}
43
#include "unicode/datefmt.h"
44
#include "unicode/ustring.h"
45
static const char * debug_astro_date(UDate d) {
46
  static char gStrBuf[1024];
47
  static DateFormat *df = NULL;
48
  if(df == NULL) {
49
    df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
50
    df->adoptTimeZone(TimeZone::getGMT()->clone());
51
  }
52
  UnicodeString str;
53
  df->format(d,str);
54
  u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);
55
  return gStrBuf;
56
}
57
58
// must use double parens, i.e.:  U_DEBUG_ASTRO_MSG(("four is: %d",4));
59
#define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
60
#else
61
#define U_DEBUG_ASTRO_MSG(x)
62
#endif
63
64
0
static inline UBool isINVALID(double d) {
65
0
  return(uprv_isNaN(d));
66
0
}
67
68
static icu::UMutex ccLock;
69
70
U_CDECL_BEGIN
71
0
static UBool calendar_astro_cleanup(void) {
72
0
  return TRUE;
73
0
}
74
U_CDECL_END
75
76
U_NAMESPACE_BEGIN
77
78
/**
79
 * The number of standard hours in one sidereal day.
80
 * Approximately 24.93.
81
 * @internal
82
 * @deprecated ICU 2.4. This class may be removed or modified.
83
 */
84
#define SIDEREAL_DAY (23.93446960027)
85
86
/**
87
 * The number of sidereal hours in one mean solar day.
88
 * Approximately 24.07.
89
 * @internal
90
 * @deprecated ICU 2.4. This class may be removed or modified.
91
 */
92
#define SOLAR_DAY  (24.065709816)
93
94
/**
95
 * The average number of solar days from one new moon to the next.  This is the time
96
 * it takes for the moon to return the same ecliptic longitude as the sun.
97
 * It is longer than the sidereal month because the sun's longitude increases
98
 * during the year due to the revolution of the earth around the sun.
99
 * Approximately 29.53.
100
 *
101
 * @see #SIDEREAL_MONTH
102
 * @internal
103
 * @deprecated ICU 2.4. This class may be removed or modified.
104
 */
105
const double CalendarAstronomer::SYNODIC_MONTH  = 29.530588853;
106
107
/**
108
 * The average number of days it takes
109
 * for the moon to return to the same ecliptic longitude relative to the
110
 * stellar background.  This is referred to as the sidereal month.
111
 * It is shorter than the synodic month due to
112
 * the revolution of the earth around the sun.
113
 * Approximately 27.32.
114
 *
115
 * @see #SYNODIC_MONTH
116
 * @internal
117
 * @deprecated ICU 2.4. This class may be removed or modified.
118
 */
119
#define SIDEREAL_MONTH  27.32166
120
121
/**
122
 * The average number number of days between successive vernal equinoxes.
123
 * Due to the precession of the earth's
124
 * axis, this is not precisely the same as the sidereal year.
125
 * Approximately 365.24
126
 *
127
 * @see #SIDEREAL_YEAR
128
 * @internal
129
 * @deprecated ICU 2.4. This class may be removed or modified.
130
 */
131
0
#define TROPICAL_YEAR  365.242191
132
133
/**
134
 * The average number of days it takes
135
 * for the sun to return to the same position against the fixed stellar
136
 * background.  This is the duration of one orbit of the earth about the sun
137
 * as it would appear to an outside observer.
138
 * Due to the precession of the earth's
139
 * axis, this is not precisely the same as the tropical year.
140
 * Approximately 365.25.
141
 *
142
 * @see #TROPICAL_YEAR
143
 * @internal
144
 * @deprecated ICU 2.4. This class may be removed or modified.
145
 */
146
#define SIDEREAL_YEAR  365.25636
147
148
//-------------------------------------------------------------------------
149
// Time-related constants
150
//-------------------------------------------------------------------------
151
152
/**
153
 * The number of milliseconds in one second.
154
 * @internal
155
 * @deprecated ICU 2.4. This class may be removed or modified.
156
 */
157
0
#define SECOND_MS  U_MILLIS_PER_SECOND
158
159
/**
160
 * The number of milliseconds in one minute.
161
 * @internal
162
 * @deprecated ICU 2.4. This class may be removed or modified.
163
 */
164
0
#define MINUTE_MS  U_MILLIS_PER_MINUTE
165
166
/**
167
 * The number of milliseconds in one hour.
168
 * @internal
169
 * @deprecated ICU 2.4. This class may be removed or modified.
170
 */
171
0
#define HOUR_MS   U_MILLIS_PER_HOUR
172
173
/**
174
 * The number of milliseconds in one day.
175
 * @internal
176
 * @deprecated ICU 2.4. This class may be removed or modified.
177
 */
178
0
#define DAY_MS U_MILLIS_PER_DAY
179
180
/**
181
 * The start of the julian day numbering scheme used by astronomers, which
182
 * is 1/1/4713 BC (Julian), 12:00 GMT.  This is given as the number of milliseconds
183
 * since 1/1/1970 AD (Gregorian), a negative number.
184
 * Note that julian day numbers and
185
 * the Julian calendar are <em>not</em> the same thing.  Also note that
186
 * julian days start at <em>noon</em>, not midnight.
187
 * @internal
188
 * @deprecated ICU 2.4. This class may be removed or modified.
189
 */
190
0
#define JULIAN_EPOCH_MS  -210866760000000.0
191
192
193
/**
194
 * Milliseconds value for 0.0 January 2000 AD.
195
 */
196
#define EPOCH_2000_MS  946598400000.0
197
198
//-------------------------------------------------------------------------
199
// Assorted private data used for conversions
200
//-------------------------------------------------------------------------
201
202
// My own copies of these so compilers are more likely to optimize them away
203
const double CalendarAstronomer::PI = 3.14159265358979323846;
204
205
0
#define CalendarAstronomer_PI2  (CalendarAstronomer::PI*2.0)
206
#define RAD_HOUR  ( 12 / CalendarAstronomer::PI )     // radians -> hours
207
0
#define DEG_RAD ( CalendarAstronomer::PI / 180 )      // degrees -> radians
208
0
#define RAD_DEG  ( 180 / CalendarAstronomer::PI )     // radians -> degrees
209
210
/***
211
 * Given 'value', add or subtract 'range' until 0 <= 'value' < range.
212
 * The modulus operator.
213
 */
214
0
inline static double normalize(double value, double range)  {
215
0
    return value - range * ClockMath::floorDivide(value, range);
216
0
}
217
218
/**
219
 * Normalize an angle so that it's in the range 0 - 2pi.
220
 * For positive angles this is just (angle % 2pi), but the Java
221
 * mod operator doesn't work that way for negative numbers....
222
 */
223
0
inline static double norm2PI(double angle)  {
224
0
    return normalize(angle, CalendarAstronomer::PI * 2.0);
225
0
}
226
227
/**
228
 * Normalize an angle into the range -PI - PI
229
 */
230
0
inline static  double normPI(double angle)  {
231
0
    return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;
232
0
}
233
234
//-------------------------------------------------------------------------
235
// Constructors
236
//-------------------------------------------------------------------------
237
238
/**
239
 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
240
 * the current date and time.
241
 * @internal
242
 * @deprecated ICU 2.4. This class may be removed or modified.
243
 */
244
CalendarAstronomer::CalendarAstronomer():
245
0
  fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
246
0
  clearCache();
247
0
}
248
249
/**
250
 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
251
 * the specified date and time.
252
 * @internal
253
 * @deprecated ICU 2.4. This class may be removed or modified.
254
 */
255
0
CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
256
0
  clearCache();
257
0
}
258
259
/**
260
 * Construct a new <code>CalendarAstronomer</code> object with the given
261
 * latitude and longitude.  The object's time is set to the current
262
 * date and time.
263
 * <p>
264
 * @param longitude The desired longitude, in <em>degrees</em> east of
265
 *                  the Greenwich meridian.
266
 *
267
 * @param latitude  The desired latitude, in <em>degrees</em>.  Positive
268
 *                  values signify North, negative South.
269
 *
270
 * @see java.util.Date#getTime()
271
 * @internal
272
 * @deprecated ICU 2.4. This class may be removed or modified.
273
 */
274
CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) :
275
0
  fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) {
276
0
  fLongitude = normPI(longitude * (double)DEG_RAD);
277
0
  fLatitude  = normPI(latitude  * (double)DEG_RAD);
278
0
  fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2);
279
0
  clearCache();
280
0
}
281
282
CalendarAstronomer::~CalendarAstronomer()
283
0
{
284
0
}
285
286
//-------------------------------------------------------------------------
287
// Time and date getters and setters
288
//-------------------------------------------------------------------------
289
290
/**
291
 * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
292
 * astronomical calculations are performed based on this time setting.
293
 *
294
 * @param aTime the date and time, expressed as the number of milliseconds since
295
 *              1/1/1970 0:00 GMT (Gregorian).
296
 *
297
 * @see #setDate
298
 * @see #getTime
299
 * @internal
300
 * @deprecated ICU 2.4. This class may be removed or modified.
301
 */
302
0
void CalendarAstronomer::setTime(UDate aTime) {
303
0
    fTime = aTime;
304
0
    U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset)));
305
0
    clearCache();
306
0
}
307
308
/**
309
 * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
310
 * astronomical calculations are performed based on this time setting.
311
 *
312
 * @param jdn   the desired time, expressed as a "julian day number",
313
 *              which is the number of elapsed days since
314
 *              1/1/4713 BC (Julian), 12:00 GMT.  Note that julian day
315
 *              numbers start at <em>noon</em>.  To get the jdn for
316
 *              the corresponding midnight, subtract 0.5.
317
 *
318
 * @see #getJulianDay
319
 * @see #JULIAN_EPOCH_MS
320
 * @internal
321
 * @deprecated ICU 2.4. This class may be removed or modified.
322
 */
323
0
void CalendarAstronomer::setJulianDay(double jdn) {
324
0
    fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS;
325
0
    clearCache();
326
0
    julianDay = jdn;
327
0
}
328
329
/**
330
 * Get the current time of this <code>CalendarAstronomer</code> object,
331
 * represented as the number of milliseconds since
332
 * 1/1/1970 AD 0:00 GMT (Gregorian).
333
 *
334
 * @see #setTime
335
 * @see #getDate
336
 * @internal
337
 * @deprecated ICU 2.4. This class may be removed or modified.
338
 */
339
0
UDate CalendarAstronomer::getTime() {
340
0
    return fTime;
341
0
}
342
343
/**
344
 * Get the current time of this <code>CalendarAstronomer</code> object,
345
 * expressed as a "julian day number", which is the number of elapsed
346
 * days since 1/1/4713 BC (Julian), 12:00 GMT.
347
 *
348
 * @see #setJulianDay
349
 * @see #JULIAN_EPOCH_MS
350
 * @internal
351
 * @deprecated ICU 2.4. This class may be removed or modified.
352
 */
353
0
double CalendarAstronomer::getJulianDay() {
354
0
    if (isINVALID(julianDay)) {
355
0
        julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS;
356
0
    }
357
0
    return julianDay;
358
0
}
359
360
/**
361
 * Return this object's time expressed in julian centuries:
362
 * the number of centuries after 1/1/1900 AD, 12:00 GMT
363
 *
364
 * @see #getJulianDay
365
 * @internal
366
 * @deprecated ICU 2.4. This class may be removed or modified.
367
 */
368
0
double CalendarAstronomer::getJulianCentury() {
369
0
    if (isINVALID(julianCentury)) {
370
0
        julianCentury = (getJulianDay() - 2415020.0) / 36525.0;
371
0
    }
372
0
    return julianCentury;
373
0
}
374
375
/**
376
 * Returns the current Greenwich sidereal time, measured in hours
377
 * @internal
378
 * @deprecated ICU 2.4. This class may be removed or modified.
379
 */
380
0
double CalendarAstronomer::getGreenwichSidereal() {
381
0
    if (isINVALID(siderealTime)) {
382
        // See page 86 of "Practical Astronomy with your Calculator",
383
        // by Peter Duffet-Smith, for details on the algorithm.
384
385
0
        double UT = normalize(fTime/(double)HOUR_MS, 24.);
386
387
0
        siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.);
388
0
    }
389
0
    return siderealTime;
390
0
}
391
392
0
double CalendarAstronomer::getSiderealOffset() {
393
0
    if (isINVALID(siderealT0)) {
394
0
        double JD  = uprv_floor(getJulianDay() - 0.5) + 0.5;
395
0
        double S   = JD - 2451545.0;
396
0
        double T   = S / 36525.0;
397
0
        siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
398
0
    }
399
0
    return siderealT0;
400
0
}
401
402
/**
403
 * Returns the current local sidereal time, measured in hours
404
 * @internal
405
 * @deprecated ICU 2.4. This class may be removed or modified.
406
 */
407
0
double CalendarAstronomer::getLocalSidereal() {
408
0
    return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.);
409
0
}
410
411
/**
412
 * Converts local sidereal time to Universal Time.
413
 *
414
 * @param lst   The Local Sidereal Time, in hours since sidereal midnight
415
 *              on this object's current date.
416
 *
417
 * @return      The corresponding Universal Time, in milliseconds since
418
 *              1 Jan 1970, GMT.
419
 */
420
0
double CalendarAstronomer::lstToUT(double lst) {
421
    // Convert to local mean time
422
0
    double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
423
424
    // Then find local midnight on this day
425
0
    double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset;
426
427
    //out("    lt  =" + lt + " hours");
428
    //out("    base=" + new Date(base));
429
430
0
    return base + (long)(lt * HOUR_MS);
431
0
}
432
433
434
//-------------------------------------------------------------------------
435
// Coordinate transformations, all based on the current time of this object
436
//-------------------------------------------------------------------------
437
438
/**
439
 * Convert from ecliptic to equatorial coordinates.
440
 *
441
 * @param ecliptic  A point in the sky in ecliptic coordinates.
442
 * @return          The corresponding point in equatorial coordinates.
443
 * @internal
444
 * @deprecated ICU 2.4. This class may be removed or modified.
445
 */
446
CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic)
447
0
{
448
0
    return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude);
449
0
}
450
451
/**
452
 * Convert from ecliptic to equatorial coordinates.
453
 *
454
 * @param eclipLong     The ecliptic longitude
455
 * @param eclipLat      The ecliptic latitude
456
 *
457
 * @return              The corresponding point in equatorial coordinates.
458
 * @internal
459
 * @deprecated ICU 2.4. This class may be removed or modified.
460
 */
461
CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)
462
0
{
463
    // See page 42 of "Practical Astronomy with your Calculator",
464
    // by Peter Duffet-Smith, for details on the algorithm.
465
466
0
    double obliq = eclipticObliquity();
467
0
    double sinE = ::sin(obliq);
468
0
    double cosE = cos(obliq);
469
470
0
    double sinL = ::sin(eclipLong);
471
0
    double cosL = cos(eclipLong);
472
473
0
    double sinB = ::sin(eclipLat);
474
0
    double cosB = cos(eclipLat);
475
0
    double tanB = tan(eclipLat);
476
477
0
    result.set(atan2(sinL*cosE - tanB*sinE, cosL),
478
0
        asin(sinB*cosE + cosB*sinE*sinL) );
479
0
    return result;
480
0
}
481
482
/**
483
 * Convert from ecliptic longitude to equatorial coordinates.
484
 *
485
 * @param eclipLong     The ecliptic longitude
486
 *
487
 * @return              The corresponding point in equatorial coordinates.
488
 * @internal
489
 * @deprecated ICU 2.4. This class may be removed or modified.
490
 */
491
CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong)
492
0
{
493
0
    return eclipticToEquatorial(result, eclipLong, 0);  // TODO: optimize
494
0
}
495
496
/**
497
 * @internal
498
 * @deprecated ICU 2.4. This class may be removed or modified.
499
 */
500
CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong)
501
0
{
502
0
    Equatorial equatorial;
503
0
    eclipticToEquatorial(equatorial, eclipLong);
504
505
0
    double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension;     // Hour-angle
506
507
0
    double sinH = ::sin(H);
508
0
    double cosH = cos(H);
509
0
    double sinD = ::sin(equatorial.declination);
510
0
    double cosD = cos(equatorial.declination);
511
0
    double sinL = ::sin(fLatitude);
512
0
    double cosL = cos(fLatitude);
513
514
0
    double altitude = asin(sinD*sinL + cosD*cosL*cosH);
515
0
    double azimuth  = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude));
516
517
0
    result.set(azimuth, altitude);
518
0
    return result;
519
0
}
520
521
522
//-------------------------------------------------------------------------
523
// The Sun
524
//-------------------------------------------------------------------------
525
526
//
527
// Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
528
// Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
529
//
530
0
#define JD_EPOCH  2447891.5 // Julian day of epoch
531
532
0
#define SUN_ETA_G    (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
533
0
#define SUN_OMEGA_G  (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
534
0
#define SUN_E         0.016713          // Eccentricity of orbit
535
//double sunR0        1.495585e8        // Semi-major axis in KM
536
//double sunTheta0    (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
537
538
// The following three methods, which compute the sun parameters
539
// given above for an arbitrary epoch (whatever time the object is
540
// set to), make only a small difference as compared to using the
541
// above constants.  E.g., Sunset times might differ by ~12
542
// seconds.  Furthermore, the eta-g computation is befuddled by
543
// Duffet-Smith's incorrect coefficients (p.86).  I've corrected
544
// the first-order coefficient but the others may be off too - no
545
// way of knowing without consulting another source.
546
547
//  /**
548
//   * Return the sun's ecliptic longitude at perigee for the current time.
549
//   * See Duffett-Smith, p. 86.
550
//   * @return radians
551
//   */
552
//  private double getSunOmegaG() {
553
//      double T = getJulianCentury();
554
//      return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
555
//  }
556
557
//  /**
558
//   * Return the sun's ecliptic longitude for the current time.
559
//   * See Duffett-Smith, p. 86.
560
//   * @return radians
561
//   */
562
//  private double getSunEtaG() {
563
//      double T = getJulianCentury();
564
//      //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
565
//      //
566
//      // The above line is from Duffett-Smith, and yields manifestly wrong
567
//      // results.  The below constant is derived empirically to match the
568
//      // constant he gives for the 1990 EPOCH.
569
//      //
570
//      return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
571
//  }
572
573
//  /**
574
//   * Return the sun's eccentricity of orbit for the current time.
575
//   * See Duffett-Smith, p. 86.
576
//   * @return double
577
//   */
578
//  private double getSunE() {
579
//      double T = getJulianCentury();
580
//      return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
581
//  }
582
583
/**
584
 * Find the "true anomaly" (longitude) of an object from
585
 * its mean anomaly and the eccentricity of its orbit.  This uses
586
 * an iterative solution to Kepler's equation.
587
 *
588
 * @param meanAnomaly   The object's longitude calculated as if it were in
589
 *                      a regular, circular orbit, measured in radians
590
 *                      from the point of perigee.
591
 *
592
 * @param eccentricity  The eccentricity of the orbit
593
 *
594
 * @return The true anomaly (longitude) measured in radians
595
 */
596
static double trueAnomaly(double meanAnomaly, double eccentricity)
597
0
{
598
    // First, solve Kepler's equation iteratively
599
    // Duffett-Smith, p.90
600
0
    double delta;
601
0
    double E = meanAnomaly;
602
0
    do {
603
0
        delta = E - eccentricity * ::sin(E) - meanAnomaly;
604
0
        E = E - delta / (1 - eccentricity * ::cos(E));
605
0
    }
606
0
    while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad
607
608
0
    return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)
609
0
                                             /(1-eccentricity) ) );
610
0
}
611
612
/**
613
 * The longitude of the sun at the time specified by this object.
614
 * The longitude is measured in radians along the ecliptic
615
 * from the "first point of Aries," the point at which the ecliptic
616
 * crosses the earth's equatorial plane at the vernal equinox.
617
 * <p>
618
 * Currently, this method uses an approximation of the two-body Kepler's
619
 * equation for the earth and the sun.  It does not take into account the
620
 * perturbations caused by the other planets, the moon, etc.
621
 * @internal
622
 * @deprecated ICU 2.4. This class may be removed or modified.
623
 */
624
double CalendarAstronomer::getSunLongitude()
625
0
{
626
    // See page 86 of "Practical Astronomy with your Calculator",
627
    // by Peter Duffet-Smith, for details on the algorithm.
628
629
0
    if (isINVALID(sunLongitude)) {
630
0
        getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);
631
0
    }
632
0
    return sunLongitude;
633
0
}
634
635
/**
636
 * TODO Make this public when the entire class is package-private.
637
 */
638
/*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)
639
0
{
640
    // See page 86 of "Practical Astronomy with your Calculator",
641
    // by Peter Duffet-Smith, for details on the algorithm.
642
643
0
    double day = jDay - JD_EPOCH;       // Days since epoch
644
645
    // Find the angular distance the sun in a fictitious
646
    // circular orbit has travelled since the epoch.
647
0
    double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);
648
649
    // The epoch wasn't at the sun's perigee; find the angular distance
650
    // since perigee, which is called the "mean anomaly"
651
0
    meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);
652
653
    // Now find the "true anomaly", e.g. the real solar longitude
654
    // by solving Kepler's equation for an elliptical orbit
655
    // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
656
    // equations; omega_g is to be correct.
657
0
    longitude =  norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
658
0
}
659
660
/**
661
 * The position of the sun at this object's current date and time,
662
 * in equatorial coordinates.
663
 * @internal
664
 * @deprecated ICU 2.4. This class may be removed or modified.
665
 */
666
0
CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) {
667
0
    return eclipticToEquatorial(result, getSunLongitude(), 0);
668
0
}
669
670
671
/**
672
 * Constant representing the vernal equinox.
673
 * For use with {@link #getSunTime getSunTime}.
674
 * Note: In this case, "vernal" refers to the northern hemisphere's seasons.
675
 * @internal
676
 * @deprecated ICU 2.4. This class may be removed or modified.
677
 */
678
/*double CalendarAstronomer::VERNAL_EQUINOX() {
679
  return 0;
680
}*/
681
682
/**
683
 * Constant representing the summer solstice.
684
 * For use with {@link #getSunTime getSunTime}.
685
 * Note: In this case, "summer" refers to the northern hemisphere's seasons.
686
 * @internal
687
 * @deprecated ICU 2.4. This class may be removed or modified.
688
 */
689
0
double CalendarAstronomer::SUMMER_SOLSTICE() {
690
0
    return  (CalendarAstronomer::PI/2);
691
0
}
692
693
/**
694
 * Constant representing the autumnal equinox.
695
 * For use with {@link #getSunTime getSunTime}.
696
 * Note: In this case, "autumn" refers to the northern hemisphere's seasons.
697
 * @internal
698
 * @deprecated ICU 2.4. This class may be removed or modified.
699
 */
700
/*double CalendarAstronomer::AUTUMN_EQUINOX() {
701
  return  (CalendarAstronomer::PI);
702
}*/
703
704
/**
705
 * Constant representing the winter solstice.
706
 * For use with {@link #getSunTime getSunTime}.
707
 * Note: In this case, "winter" refers to the northern hemisphere's seasons.
708
 * @internal
709
 * @deprecated ICU 2.4. This class may be removed or modified.
710
 */
711
0
double CalendarAstronomer::WINTER_SOLSTICE() {
712
0
    return  ((CalendarAstronomer::PI*3)/2);
713
0
}
714
715
0
CalendarAstronomer::AngleFunc::~AngleFunc() {}
716
717
/**
718
 * Find the next time at which the sun's ecliptic longitude will have
719
 * the desired value.
720
 * @internal
721
 * @deprecated ICU 2.4. This class may be removed or modified.
722
 */
723
class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc {
724
public:
725
    virtual ~SunTimeAngleFunc();
726
0
    virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); }
727
};
728
729
SunTimeAngleFunc::~SunTimeAngleFunc() {}
730
731
UDate CalendarAstronomer::getSunTime(double desired, UBool next)
732
0
{
733
0
    SunTimeAngleFunc func;
734
0
    return timeOfAngle( func,
735
0
                        desired,
736
0
                        TROPICAL_YEAR,
737
0
                        MINUTE_MS,
738
0
                        next);
739
0
}
740
741
0
CalendarAstronomer::CoordFunc::~CoordFunc() {}
742
743
class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
744
public:
745
    virtual ~RiseSetCoordFunc();
746
0
    virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) {  a.getSunPosition(result); }
747
};
748
749
RiseSetCoordFunc::~RiseSetCoordFunc() {}
750
751
UDate CalendarAstronomer::getSunRiseSet(UBool rise)
752
0
{
753
0
    UDate t0 = fTime;
754
755
    // Make a rough guess: 6am or 6pm local time on the current day
756
0
    double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS);
757
758
0
    U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset));
759
0
    setTime(noon +  ((rise ? -6 : 6) * HOUR_MS));
760
0
    U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS)));
761
762
0
    RiseSetCoordFunc func;
763
0
    double t = riseOrSet(func,
764
0
                         rise,
765
0
                         .533 * DEG_RAD,        // Angular Diameter
766
0
                         34. /60.0 * DEG_RAD,    // Refraction correction
767
0
                         MINUTE_MS / 12.);       // Desired accuracy
768
769
0
    setTime(t0);
770
0
    return t;
771
0
}
772
773
// Commented out - currently unused. ICU 2.6, Alan
774
//    //-------------------------------------------------------------------------
775
//    // Alternate Sun Rise/Set
776
//    // See Duffett-Smith p.93
777
//    //-------------------------------------------------------------------------
778
//
779
//    // This yields worse results (as compared to USNO data) than getSunRiseSet().
780
//    /**
781
//     * TODO Make this when the entire class is package-private.
782
//     */
783
//    /*public*/ long getSunRiseSet2(boolean rise) {
784
//        // 1. Calculate coordinates of the sun's center for midnight
785
//        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
786
//        double[] sl = getSunLongitude(jd);//        double lambda1 = sl[0];
787
//        Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
788
//
789
//        // 2. Add ... to lambda to get position 24 hours later
790
//        double lambda2 = lambda1 + 0.985647*DEG_RAD;
791
//        Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
792
//
793
//        // 3. Calculate LSTs of rising and setting for these two positions
794
//        double tanL = ::tan(fLatitude);
795
//        double H = ::acos(-tanL * ::tan(pos1.declination));
796
//        double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;
797
//        double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;
798
//               H = ::acos(-tanL * ::tan(pos2.declination));
799
//        double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
800
//        double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
801
//        if (lst1r > 24) lst1r -= 24;
802
//        if (lst1s > 24) lst1s -= 24;
803
//        if (lst2r > 24) lst2r -= 24;
804
//        if (lst2s > 24) lst2s -= 24;
805
//
806
//        // 4. Convert LSTs to GSTs.  If GST1 > GST2, add 24 to GST2.
807
//        double gst1r = lstToGst(lst1r);
808
//        double gst1s = lstToGst(lst1s);
809
//        double gst2r = lstToGst(lst2r);
810
//        double gst2s = lstToGst(lst2s);
811
//        if (gst1r > gst2r) gst2r += 24;
812
//        if (gst1s > gst2s) gst2s += 24;
813
//
814
//        // 5. Calculate GST at 0h UT of this date
815
//        double t00 = utToGst(0);
816
//
817
//        // 6. Calculate GST at 0h on the observer's longitude
818
//        double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
819
//        double t00p = t00 - offset*1.002737909;
820
//        if (t00p < 0) t00p += 24; // do NOT normalize
821
//
822
//        // 7. Adjust
823
//        if (gst1r < t00p) {
824
//            gst1r += 24;
825
//            gst2r += 24;
826
//        }
827
//        if (gst1s < t00p) {
828
//            gst1s += 24;
829
//            gst2s += 24;
830
//        }
831
//
832
//        // 8.
833
//        double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
834
//        double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
835
//
836
//        // 9. Correct for parallax, refraction, and sun's diameter
837
//        double dec = (pos1.declination + pos2.declination) / 2;
838
//        double psi = ::acos(sin(fLatitude) / cos(dec));
839
//        double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
840
//        double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;
841
//        double delta_t = 240 * y / cos(dec) / 3600; // hours
842
//
843
//        // 10. Add correction to GSTs, subtract from GSTr
844
//        gstr -= delta_t;
845
//        gsts += delta_t;
846
//
847
//        // 11. Convert GST to UT and then to local civil time
848
//        double ut = gstToUt(rise ? gstr : gsts);
849
//        //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
850
//        long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
851
//        return midnight + (long) (ut * 3600000);
852
//    }
853
854
// Commented out - currently unused. ICU 2.6, Alan
855
//    /**
856
//     * Convert local sidereal time to Greenwich sidereal time.
857
//     * Section 15.  Duffett-Smith p.21
858
//     * @param lst in hours (0..24)
859
//     * @return GST in hours (0..24)
860
//     */
861
//    double lstToGst(double lst) {
862
//        double delta = fLongitude * 24 / CalendarAstronomer_PI2;
863
//        return normalize(lst - delta, 24);
864
//    }
865
866
// Commented out - currently unused. ICU 2.6, Alan
867
//    /**
868
//     * Convert UT to GST on this date.
869
//     * Section 12.  Duffett-Smith p.17
870
//     * @param ut in hours
871
//     * @return GST in hours
872
//     */
873
//    double utToGst(double ut) {
874
//        return normalize(getT0() + ut*1.002737909, 24);
875
//    }
876
877
// Commented out - currently unused. ICU 2.6, Alan
878
//    /**
879
//     * Convert GST to UT on this date.
880
//     * Section 13.  Duffett-Smith p.18
881
//     * @param gst in hours
882
//     * @return UT in hours
883
//     */
884
//    double gstToUt(double gst) {
885
//        return normalize(gst - getT0(), 24) * 0.9972695663;
886
//    }
887
888
// Commented out - currently unused. ICU 2.6, Alan
889
//    double getT0() {
890
//        // Common computation for UT <=> GST
891
//
892
//        // Find JD for 0h UT
893
//        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
894
//
895
//        double s = jd - 2451545.0;
896
//        double t = s / 36525.0;
897
//        double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
898
//        return t0;
899
//    }
900
901
// Commented out - currently unused. ICU 2.6, Alan
902
//    //-------------------------------------------------------------------------
903
//    // Alternate Sun Rise/Set
904
//    // See sci.astro FAQ
905
//    // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
906
//    //-------------------------------------------------------------------------
907
//
908
//    // Note: This method appears to produce inferior accuracy as
909
//    // compared to getSunRiseSet().
910
//
911
//    /**
912
//     * TODO Make this when the entire class is package-private.
913
//     */
914
//    /*public*/ long getSunRiseSet3(boolean rise) {
915
//
916
//        // Compute day number for 0.0 Jan 2000 epoch
917
//        double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
918
//
919
//        // Now compute the Local Sidereal Time, LST:
920
//        //
921
//        double LST  =  98.9818  +  0.985647352 * d  +  /*UT*15  +  long*/
922
//            fLongitude*RAD_DEG;
923
//        //
924
//        // (east long. positive).  Note that LST is here expressed in degrees,
925
//        // where 15 degrees corresponds to one hour.  Since LST really is an angle,
926
//        // it's convenient to use one unit---degrees---throughout.
927
//
928
//        //    COMPUTING THE SUN'S POSITION
929
//        //    ----------------------------
930
//        //
931
//        // To be able to compute the Sun's rise/set times, you need to be able to
932
//        // compute the Sun's position at any time.  First compute the "day
933
//        // number" d as outlined above, for the desired moment.  Next compute:
934
//        //
935
//        double oblecl = 23.4393 - 3.563E-7 * d;
936
//        //
937
//        double w  =  282.9404  +  4.70935E-5   * d;
938
//        double M  =  356.0470  +  0.9856002585 * d;
939
//        double e  =  0.016709  -  1.151E-9     * d;
940
//        //
941
//        // This is the obliquity of the ecliptic, plus some of the elements of
942
//        // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
943
//        // argument of perihelion, M = mean anomaly, e = eccentricity.
944
//        // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
945
//        // true, this is still an accurate approximation).  Next compute E, the
946
//        // eccentric anomaly:
947
//        //
948
//        double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
949
//        //
950
//        // where E and M are in degrees.  This is it---no further iterations are
951
//        // needed because we know e has a sufficiently small value.  Next compute
952
//        // the true anomaly, v, and the distance, r:
953
//        //
954
//        /*      r * cos(v)  =  */ double A  =  cos(E*DEG_RAD) - e;
955
//        /*      r * ::sin(v)  =  */ double B  =  ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);
956
//        //
957
//        // and
958
//        //
959
//        //      r  =  sqrt( A*A + B*B )
960
//        double v  =  ::atan2( B, A )*RAD_DEG;
961
//        //
962
//        // The Sun's true longitude, slon, can now be computed:
963
//        //
964
//        double slon  =  v + w;
965
//        //
966
//        // Since the Sun is always at the ecliptic (or at least very very close to
967
//        // it), we can use simplified formulae to convert slon (the Sun's ecliptic
968
//        // longitude) to sRA and sDec (the Sun's RA and Dec):
969
//        //
970
//        //                   ::sin(slon) * cos(oblecl)
971
//        //     tan(sRA)  =  -------------------------
972
//        //            cos(slon)
973
//        //
974
//        //     ::sin(sDec) =  ::sin(oblecl) * ::sin(slon)
975
//        //
976
//        // As was the case when computing az, the Azimuth, if possible use an
977
//        // atan2() function to compute sRA.
978
//
979
//        double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;
980
//
981
//        double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);
982
//        double sDec = ::asin(sin_sDec)*RAD_DEG;
983
//
984
//        //    COMPUTING RISE AND SET TIMES
985
//        //    ----------------------------
986
//        //
987
//        // To compute when an object rises or sets, you must compute when it
988
//        // passes the meridian and the HA of rise/set.  Then the rise time is
989
//        // the meridian time minus HA for rise/set, and the set time is the
990
//        // meridian time plus the HA for rise/set.
991
//        //
992
//        // To find the meridian time, compute the Local Sidereal Time at 0h local
993
//        // time (or 0h UT if you prefer to work in UT) as outlined above---name
994
//        // that quantity LST0.  The Meridian Time, MT, will now be:
995
//        //
996
//        //     MT  =  RA - LST0
997
//        double MT = normalize(sRA - LST, 360);
998
//        //
999
//        // where "RA" is the object's Right Ascension (in degrees!).  If negative,
1000
//        // add 360 deg to MT.  If the object is the Sun, leave the time as it is,
1001
//        // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
1002
//        // sidereal to solar time.  Now, compute HA for rise/set, name that
1003
//        // quantity HA0:
1004
//        //
1005
//        //                 ::sin(h0)  -  ::sin(lat) * ::sin(Dec)
1006
//        // cos(HA0)  =  ---------------------------------
1007
//        //                      cos(lat) * cos(Dec)
1008
//        //
1009
//        // where h0 is the altitude selected to represent rise/set.  For a purely
1010
//        // mathematical horizon, set h0 = 0 and simplify to:
1011
//        //
1012
//        //    cos(HA0)  =  - tan(lat) * tan(Dec)
1013
//        //
1014
//        // If you want to account for refraction on the atmosphere, set h0 = -35/60
1015
//        // degrees (-35 arc minutes), and if you want to compute the rise/set times
1016
//        // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
1017
//        //
1018
//        double h0 = -50/60 * DEG_RAD;
1019
//
1020
//        double HA0 = ::acos(
1021
//          (sin(h0) - ::sin(fLatitude) * sin_sDec) /
1022
//          (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;
1023
//
1024
//        // When HA0 has been computed, leave it as it is for the Sun but multiply
1025
//        // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
1026
//        // solar time.  Finally compute:
1027
//        //
1028
//        //    Rise time  =  MT - HA0
1029
//        //    Set  time  =  MT + HA0
1030
//        //
1031
//        // convert the times from degrees to hours by dividing by 15.
1032
//        //
1033
//        // If you'd like to check that your calculations are accurate or just
1034
//        // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
1035
//        // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
1036
//
1037
//        double result = MT + (rise ? -HA0 : HA0); // in degrees
1038
//
1039
//        // Find UT midnight on this day
1040
//        long midnight = DAY_MS * (time / DAY_MS);
1041
//
1042
//        return midnight + (long) (result * 3600000 / 15);
1043
//    }
1044
1045
//-------------------------------------------------------------------------
1046
// The Moon
1047
//-------------------------------------------------------------------------
1048
1049
0
#define moonL0  (318.351648 * CalendarAstronomer::PI/180 )   // Mean long. at epoch
1050
0
#define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 )   // Mean long. of perigee
1051
0
#define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 )   // Mean long. of node
1052
0
#define moonI  (   5.145366 * CalendarAstronomer::PI/180 )   // Inclination of orbit
1053
#define moonE  (   0.054900 )            // Eccentricity of orbit
1054
1055
// These aren't used right now
1056
#define moonA  (   3.84401e5 )           // semi-major axis (km)
1057
#define moonT0 (   0.5181 * CalendarAstronomer::PI/180 )     // Angular size at distance A
1058
#define moonPi (   0.9507 * CalendarAstronomer::PI/180 )     // Parallax at distance A
1059
1060
/**
1061
 * The position of the moon at the time set on this
1062
 * object, in equatorial coordinates.
1063
 * @internal
1064
 * @deprecated ICU 2.4. This class may be removed or modified.
1065
 */
1066
const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
1067
0
{
1068
    //
1069
    // See page 142 of "Practical Astronomy with your Calculator",
1070
    // by Peter Duffet-Smith, for details on the algorithm.
1071
    //
1072
0
    if (moonPositionSet == FALSE) {
1073
        // Calculate the solar longitude.  Has the side effect of
1074
        // filling in "meanAnomalySun" as well.
1075
0
        getSunLongitude();
1076
1077
        //
1078
        // Find the # of days since the epoch of our orbital parameters.
1079
        // TODO: Convert the time of day portion into ephemeris time
1080
        //
1081
0
        double day = getJulianDay() - JD_EPOCH;       // Days since epoch
1082
1083
        // Calculate the mean longitude and anomaly of the moon, based on
1084
        // a circular orbit.  Similar to the corresponding solar calculation.
1085
0
        double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
1086
0
        meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
1087
1088
        //
1089
        // Calculate the following corrections:
1090
        //  Evection:   the sun's gravity affects the moon's eccentricity
1091
        //  Annual Eqn: variation in the effect due to earth-sun distance
1092
        //  A3:         correction factor (for ???)
1093
        //
1094
0
        double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
1095
0
            - meanAnomalyMoon);
1096
0
        double annual   = 0.1858*PI/180 * ::sin(meanAnomalySun);
1097
0
        double a3       = 0.3700*PI/180 * ::sin(meanAnomalySun);
1098
1099
0
        meanAnomalyMoon += evection - annual - a3;
1100
1101
        //
1102
        // More correction factors:
1103
        //  center  equation of the center correction
1104
        //  a4      yet another error correction (???)
1105
        //
1106
        // TODO: Skip the equation of the center correction and solve Kepler's eqn?
1107
        //
1108
0
        double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
1109
0
        double a4 =     0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
1110
1111
        // Now find the moon's corrected longitude
1112
0
        moonLongitude = meanLongitude + evection + center - annual + a4;
1113
1114
        //
1115
        // And finally, find the variation, caused by the fact that the sun's
1116
        // gravitational pull on the moon varies depending on which side of
1117
        // the earth the moon is on
1118
        //
1119
0
        double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));
1120
1121
0
        moonLongitude += variation;
1122
1123
        //
1124
        // What we've calculated so far is the moon's longitude in the plane
1125
        // of its own orbit.  Now map to the ecliptic to get the latitude
1126
        // and longitude.  First we need to find the longitude of the ascending
1127
        // node, the position on the ecliptic where it is crossed by the moon's
1128
        // orbit as it crosses from the southern to the northern hemisphere.
1129
        //
1130
0
        double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
1131
1132
0
        nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);
1133
1134
0
        double y = ::sin(moonLongitude - nodeLongitude);
1135
0
        double x = cos(moonLongitude - nodeLongitude);
1136
1137
0
        moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;
1138
0
        double moonEclipLat = ::asin(y * ::sin(moonI));
1139
1140
0
        eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);
1141
0
        moonPositionSet = TRUE;
1142
0
    }
1143
0
    return moonPosition;
1144
0
}
1145
1146
/**
1147
 * The "age" of the moon at the time specified in this object.
1148
 * This is really the angle between the
1149
 * current ecliptic longitudes of the sun and the moon,
1150
 * measured in radians.
1151
 *
1152
 * @see #getMoonPhase
1153
 * @internal
1154
 * @deprecated ICU 2.4. This class may be removed or modified.
1155
 */
1156
0
double CalendarAstronomer::getMoonAge() {
1157
    // See page 147 of "Practical Astronomy with your Calculator",
1158
    // by Peter Duffet-Smith, for details on the algorithm.
1159
    //
1160
    // Force the moon's position to be calculated.  We're going to use
1161
    // some the intermediate results cached during that calculation.
1162
    //
1163
0
    getMoonPosition();
1164
1165
0
    return norm2PI(moonEclipLong - sunLongitude);
1166
0
}
1167
1168
/**
1169
 * Calculate the phase of the moon at the time set in this object.
1170
 * The returned phase is a <code>double</code> in the range
1171
 * <code>0 <= phase < 1</code>, interpreted as follows:
1172
 * <ul>
1173
 * <li>0.00: New moon
1174
 * <li>0.25: First quarter
1175
 * <li>0.50: Full moon
1176
 * <li>0.75: Last quarter
1177
 * </ul>
1178
 *
1179
 * @see #getMoonAge
1180
 * @internal
1181
 * @deprecated ICU 2.4. This class may be removed or modified.
1182
 */
1183
0
double CalendarAstronomer::getMoonPhase() {
1184
    // See page 147 of "Practical Astronomy with your Calculator",
1185
    // by Peter Duffet-Smith, for details on the algorithm.
1186
0
    return 0.5 * (1 - cos(getMoonAge()));
1187
0
}
1188
1189
/**
1190
 * Constant representing a new moon.
1191
 * For use with {@link #getMoonTime getMoonTime}
1192
 * @internal
1193
 * @deprecated ICU 2.4. This class may be removed or modified.
1194
 */
1195
0
const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
1196
0
    return  CalendarAstronomer::MoonAge(0);
1197
0
}
1198
1199
/**
1200
 * Constant representing the moon's first quarter.
1201
 * For use with {@link #getMoonTime getMoonTime}
1202
 * @internal
1203
 * @deprecated ICU 2.4. This class may be removed or modified.
1204
 */
1205
/*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() {
1206
  return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
1207
}*/
1208
1209
/**
1210
 * Constant representing a full moon.
1211
 * For use with {@link #getMoonTime getMoonTime}
1212
 * @internal
1213
 * @deprecated ICU 2.4. This class may be removed or modified.
1214
 */
1215
0
const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() {
1216
0
    return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI);
1217
0
}
1218
/**
1219
 * Constant representing the moon's last quarter.
1220
 * For use with {@link #getMoonTime getMoonTime}
1221
 * @internal
1222
 * @deprecated ICU 2.4. This class may be removed or modified.
1223
 */
1224
1225
class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc {
1226
public:
1227
    virtual ~MoonTimeAngleFunc();
1228
0
    virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); }
1229
};
1230
1231
MoonTimeAngleFunc::~MoonTimeAngleFunc() {}
1232
1233
/*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
1234
  return  CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
1235
}*/
1236
1237
/**
1238
 * Find the next or previous time at which the Moon's ecliptic
1239
 * longitude will have the desired value.
1240
 * <p>
1241
 * @param desired   The desired longitude.
1242
 * @param next      <tt>true</tt> if the next occurrence of the phase
1243
 *                  is desired, <tt>false</tt> for the previous occurrence.
1244
 * @internal
1245
 * @deprecated ICU 2.4. This class may be removed or modified.
1246
 */
1247
UDate CalendarAstronomer::getMoonTime(double desired, UBool next)
1248
0
{
1249
0
    MoonTimeAngleFunc func;
1250
0
    return timeOfAngle( func,
1251
0
                        desired,
1252
0
                        SYNODIC_MONTH,
1253
0
                        MINUTE_MS,
1254
0
                        next);
1255
0
}
1256
1257
/**
1258
 * Find the next or previous time at which the moon will be in the
1259
 * desired phase.
1260
 * <p>
1261
 * @param desired   The desired phase of the moon.
1262
 * @param next      <tt>true</tt> if the next occurrence of the phase
1263
 *                  is desired, <tt>false</tt> for the previous occurrence.
1264
 * @internal
1265
 * @deprecated ICU 2.4. This class may be removed or modified.
1266
 */
1267
0
UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
1268
0
    return getMoonTime(desired.value, next);
1269
0
}
1270
1271
class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
1272
public:
1273
    virtual ~MoonRiseSetCoordFunc();
1274
0
    virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); }
1275
};
1276
1277
MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {}
1278
1279
/**
1280
 * Returns the time (GMT) of sunrise or sunset on the local date to which
1281
 * this calendar is currently set.
1282
 * @internal
1283
 * @deprecated ICU 2.4. This class may be removed or modified.
1284
 */
1285
UDate CalendarAstronomer::getMoonRiseSet(UBool rise)
1286
0
{
1287
0
    MoonRiseSetCoordFunc func;
1288
0
    return riseOrSet(func,
1289
0
                     rise,
1290
0
                     .533 * DEG_RAD,        // Angular Diameter
1291
0
                     34 /60.0 * DEG_RAD,    // Refraction correction
1292
0
                     MINUTE_MS);            // Desired accuracy
1293
0
}
1294
1295
//-------------------------------------------------------------------------
1296
// Interpolation methods for finding the time at which a given event occurs
1297
//-------------------------------------------------------------------------
1298
1299
UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
1300
                                      double periodDays, double epsilon, UBool next)
1301
0
{
1302
    // Find the value of the function at the current time
1303
0
    double lastAngle = func.eval(*this);
1304
1305
    // Find out how far we are from the desired angle
1306
0
    double deltaAngle = norm2PI(desired - lastAngle) ;
1307
1308
    // Using the average period, estimate the next (or previous) time at
1309
    // which the desired angle occurs.
1310
0
    double deltaT =  (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;
1311
1312
0
    double lastDeltaT = deltaT; // Liu
1313
0
    UDate startTime = fTime; // Liu
1314
1315
0
    setTime(fTime + uprv_ceil(deltaT));
1316
1317
    // Now iterate until we get the error below epsilon.  Throughout
1318
    // this loop we use normPI to get values in the range -Pi to Pi,
1319
    // since we're using them as correction factors rather than absolute angles.
1320
0
    do {
1321
        // Evaluate the function at the time we've estimated
1322
0
        double angle = func.eval(*this);
1323
1324
        // Find the # of milliseconds per radian at this point on the curve
1325
0
        double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));
1326
1327
        // Correct the time estimate based on how far off the angle is
1328
0
        deltaT = normPI(desired - angle) * factor;
1329
1330
        // HACK:
1331
        //
1332
        // If abs(deltaT) begins to diverge we need to quit this loop.
1333
        // This only appears to happen when attempting to locate, for
1334
        // example, a new moon on the day of the new moon.  E.g.:
1335
        //
1336
        // This result is correct:
1337
        // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
1338
        //   Sun Jul 22 10:57:41 CST 1990
1339
        //
1340
        // But attempting to make the same call a day earlier causes deltaT
1341
        // to diverge:
1342
        // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
1343
        //   1.3649828540224032E9
1344
        // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
1345
        //   Sun Jul 08 13:56:15 CST 1990
1346
        //
1347
        // As a temporary solution, we catch this specific condition and
1348
        // adjust our start time by one eighth period days (either forward
1349
        // or backward) and try again.
1350
        // Liu 11/9/00
1351
0
        if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) {
1352
0
            double delta = uprv_ceil (periodDays * DAY_MS / 8.0);
1353
0
            setTime(startTime + (next ? delta : -delta));
1354
0
            return timeOfAngle(func, desired, periodDays, epsilon, next);
1355
0
        }
1356
1357
0
        lastDeltaT = deltaT;
1358
0
        lastAngle = angle;
1359
1360
0
        setTime(fTime + uprv_ceil(deltaT));
1361
0
    }
1362
0
    while (uprv_fabs(deltaT) > epsilon);
1363
1364
0
    return fTime;
1365
0
}
1366
1367
UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
1368
                                    double diameter, double refraction,
1369
                                    double epsilon)
1370
0
{
1371
0
    Equatorial pos;
1372
0
    double      tanL   = ::tan(fLatitude);
1373
0
    double     deltaT = 0;
1374
0
    int32_t         count = 0;
1375
1376
    //
1377
    // Calculate the object's position at the current time, then use that
1378
    // position to calculate the time of rising or setting.  The position
1379
    // will be different at that time, so iterate until the error is allowable.
1380
    //
1381
0
    U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n",
1382
0
        rise?"T":"F", diameter, refraction, epsilon));
1383
0
    do {
1384
        // See "Practical Astronomy With Your Calculator, section 33.
1385
0
        func.eval(pos, *this);
1386
0
        double angle = ::acos(-tanL * ::tan(pos.declination));
1387
0
        double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2;
1388
1389
        // Convert from LST to Universal Time.
1390
0
        UDate newTime = lstToUT( lst );
1391
1392
0
        deltaT = newTime - fTime;
1393
0
        setTime(newTime);
1394
0
        U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf,   A=%.3lf/D=%.3lf\n",
1395
0
            count, deltaT, angle, lst, pos.ascension, pos.declination));
1396
0
    }
1397
0
    while (++ count < 5 && uprv_fabs(deltaT) > epsilon);
1398
1399
    // Calculate the correction due to refraction and the object's angular diameter
1400
0
    double cosD  = ::cos(pos.declination);
1401
0
    double psi   = ::acos(sin(fLatitude) / cosD);
1402
0
    double x     = diameter / 2 + refraction;
1403
0
    double y     = ::asin(sin(x) / ::sin(psi));
1404
0
    long  delta  = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
1405
1406
0
    return fTime + (rise ? -delta : delta);
1407
0
}
1408
                         /**
1409
 * Return the obliquity of the ecliptic (the angle between the ecliptic
1410
 * and the earth's equator) at the current time.  This varies due to
1411
 * the precession of the earth's axis.
1412
 *
1413
 * @return  the obliquity of the ecliptic relative to the equator,
1414
 *          measured in radians.
1415
 */
1416
0
double CalendarAstronomer::eclipticObliquity() {
1417
0
    if (isINVALID(eclipObliquity)) {
1418
0
        const double epoch = 2451545.0;     // 2000 AD, January 1.5
1419
1420
0
        double T = (getJulianDay() - epoch) / 36525;
1421
1422
0
        eclipObliquity = 23.439292
1423
0
            - 46.815/3600 * T
1424
0
            - 0.0006/3600 * T*T
1425
0
            + 0.00181/3600 * T*T*T;
1426
1427
0
        eclipObliquity *= DEG_RAD;
1428
0
    }
1429
0
    return eclipObliquity;
1430
0
}
1431
1432
1433
//-------------------------------------------------------------------------
1434
// Private data
1435
//-------------------------------------------------------------------------
1436
0
void CalendarAstronomer::clearCache() {
1437
0
    const double INVALID = uprv_getNaN();
1438
1439
0
    julianDay       = INVALID;
1440
0
    julianCentury   = INVALID;
1441
0
    sunLongitude    = INVALID;
1442
0
    meanAnomalySun  = INVALID;
1443
0
    moonLongitude   = INVALID;
1444
0
    moonEclipLong   = INVALID;
1445
0
    meanAnomalyMoon = INVALID;
1446
0
    eclipObliquity  = INVALID;
1447
0
    siderealTime    = INVALID;
1448
0
    siderealT0      = INVALID;
1449
0
    moonPositionSet = FALSE;
1450
0
}
1451
1452
//private static void out(String s) {
1453
//    System.out.println(s);
1454
//}
1455
1456
//private static String deg(double rad) {
1457
//    return Double.toString(rad * RAD_DEG);
1458
//}
1459
1460
//private static String hours(long ms) {
1461
//    return Double.toString((double)ms / HOUR_MS) + " hours";
1462
//}
1463
1464
/**
1465
 * @internal
1466
 * @deprecated ICU 2.4. This class may be removed or modified.
1467
 */
1468
/*UDate CalendarAstronomer::local(UDate localMillis) {
1469
  // TODO - srl ?
1470
  TimeZone *tz = TimeZone::createDefault();
1471
  int32_t rawOffset;
1472
  int32_t dstOffset;
1473
  UErrorCode status = U_ZERO_ERROR;
1474
  tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status);
1475
  delete tz;
1476
  return localMillis - rawOffset;
1477
}*/
1478
1479
// Debugging functions
1480
UnicodeString CalendarAstronomer::Ecliptic::toString() const
1481
0
{
1482
#ifdef U_DEBUG_ASTRO
1483
    char tmp[800];
1484
    sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
1485
    return UnicodeString(tmp, "");
1486
#else
1487
0
    return UnicodeString();
1488
0
#endif
1489
0
}
1490
1491
UnicodeString CalendarAstronomer::Equatorial::toString() const
1492
0
{
1493
#ifdef U_DEBUG_ASTRO
1494
    char tmp[400];
1495
    sprintf(tmp, "%f,%f",
1496
        (ascension*RAD_DEG), (declination*RAD_DEG));
1497
    return UnicodeString(tmp, "");
1498
#else
1499
0
    return UnicodeString();
1500
0
#endif
1501
0
}
1502
1503
UnicodeString CalendarAstronomer::Horizon::toString() const
1504
0
{
1505
#ifdef U_DEBUG_ASTRO
1506
    char tmp[800];
1507
    sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG);
1508
    return UnicodeString(tmp, "");
1509
#else
1510
0
    return UnicodeString();
1511
0
#endif
1512
0
}
1513
1514
1515
//  static private String radToHms(double angle) {
1516
//    int hrs = (int) (angle*RAD_HOUR);
1517
//    int min = (int)((angle*RAD_HOUR - hrs) * 60);
1518
//    int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
1519
1520
//    return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
1521
//  }
1522
1523
//  static private String radToDms(double angle) {
1524
//    int deg = (int) (angle*RAD_DEG);
1525
//    int min = (int)((angle*RAD_DEG - deg) * 60);
1526
//    int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
1527
1528
//    return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
1529
//  }
1530
1531
// =============== Calendar Cache ================
1532
1533
0
void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
1534
0
    ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);
1535
0
    if(cache == NULL) {
1536
0
        status = U_MEMORY_ALLOCATION_ERROR;
1537
0
    } else {
1538
0
        *cache = new CalendarCache(32, status);
1539
0
        if(U_FAILURE(status)) {
1540
0
            delete *cache;
1541
0
            *cache = NULL;
1542
0
        }
1543
0
    }
1544
0
}
1545
1546
0
int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) {
1547
0
    int32_t res;
1548
1549
0
    if(U_FAILURE(status)) {
1550
0
        return 0;
1551
0
    }
1552
0
    umtx_lock(&ccLock);
1553
1554
0
    if(*cache == NULL) {
1555
0
        createCache(cache, status);
1556
0
        if(U_FAILURE(status)) {
1557
0
            umtx_unlock(&ccLock);
1558
0
            return 0;
1559
0
        }
1560
0
    }
1561
1562
0
    res = uhash_igeti((*cache)->fTable, key);
1563
0
    U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res));
1564
1565
0
    umtx_unlock(&ccLock);
1566
0
    return res;
1567
0
}
1568
1569
0
void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) {
1570
0
    if(U_FAILURE(status)) {
1571
0
        return;
1572
0
    }
1573
0
    umtx_lock(&ccLock);
1574
1575
0
    if(*cache == NULL) {
1576
0
        createCache(cache, status);
1577
0
        if(U_FAILURE(status)) {
1578
0
            umtx_unlock(&ccLock);
1579
0
            return;
1580
0
        }
1581
0
    }
1582
1583
0
    uhash_iputi((*cache)->fTable, key, value, &status);
1584
0
    U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value));
1585
1586
0
    umtx_unlock(&ccLock);
1587
0
}
1588
1589
0
CalendarCache::CalendarCache(int32_t size, UErrorCode &status) {
1590
0
    fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status);
1591
0
    U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable));
1592
0
}
1593
1594
0
CalendarCache::~CalendarCache() {
1595
0
    if(fTable != NULL) {
1596
0
        U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable));
1597
0
        uhash_close(fTable);
1598
0
    }
1599
0
}
1600
1601
U_NAMESPACE_END
1602
1603
#endif //  !UCONFIG_NO_FORMATTING