/src/icu/source/i18n/chnsecal.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /* |
4 | | ****************************************************************************** |
5 | | * Copyright (C) 2007-2014, International Business Machines Corporation |
6 | | * and others. All Rights Reserved. |
7 | | ****************************************************************************** |
8 | | * |
9 | | * File CHNSECAL.CPP |
10 | | * |
11 | | * Modification History: |
12 | | * |
13 | | * Date Name Description |
14 | | * 9/18/2007 ajmacher ported from java ChineseCalendar |
15 | | ***************************************************************************** |
16 | | */ |
17 | | |
18 | | #include "chnsecal.h" |
19 | | |
20 | | #if !UCONFIG_NO_FORMATTING |
21 | | |
22 | | #include "umutex.h" |
23 | | #include <float.h> |
24 | | #include "gregoimp.h" // Math |
25 | | #include "astro.h" // CalendarAstronomer |
26 | | #include "unicode/simpletz.h" |
27 | | #include "uhash.h" |
28 | | #include "ucln_in.h" |
29 | | |
30 | | // Debugging |
31 | | #ifdef U_DEBUG_CHNSECAL |
32 | | # include <stdio.h> |
33 | | # include <stdarg.h> |
34 | | static void debug_chnsecal_loc(const char *f, int32_t l) |
35 | | { |
36 | | fprintf(stderr, "%s:%d: ", f, l); |
37 | | } |
38 | | |
39 | | static void debug_chnsecal_msg(const char *pat, ...) |
40 | | { |
41 | | va_list ap; |
42 | | va_start(ap, pat); |
43 | | vfprintf(stderr, pat, ap); |
44 | | fflush(stderr); |
45 | | } |
46 | | // must use double parens, i.e.: U_DEBUG_CHNSECAL_MSG(("four is: %d",4)); |
47 | | #define U_DEBUG_CHNSECAL_MSG(x) {debug_chnsecal_loc(__FILE__,__LINE__);debug_chnsecal_msg x;} |
48 | | #else |
49 | | #define U_DEBUG_CHNSECAL_MSG(x) |
50 | | #endif |
51 | | |
52 | | |
53 | | // --- The cache -- |
54 | | static icu::UMutex astroLock; |
55 | | static icu::CalendarAstronomer *gChineseCalendarAstro = NULL; |
56 | | |
57 | | // Lazy Creation & Access synchronized by class CalendarCache with a mutex. |
58 | | static icu::CalendarCache *gChineseCalendarWinterSolsticeCache = NULL; |
59 | | static icu::CalendarCache *gChineseCalendarNewYearCache = NULL; |
60 | | |
61 | | static icu::TimeZone *gChineseCalendarZoneAstroCalc = NULL; |
62 | | static icu::UInitOnce gChineseCalendarZoneAstroCalcInitOnce = U_INITONCE_INITIALIZER; |
63 | | |
64 | | /** |
65 | | * The start year of the Chinese calendar, the 61st year of the reign |
66 | | * of Huang Di. Some sources use the first year of his reign, |
67 | | * resulting in EXTENDED_YEAR values 60 years greater and ERA (cycle) |
68 | | * values one greater. |
69 | | */ |
70 | | static const int32_t CHINESE_EPOCH_YEAR = -2636; // Gregorian year |
71 | | |
72 | | /** |
73 | | * The offset from GMT in milliseconds at which we perform astronomical |
74 | | * computations. Some sources use a different historically accurate |
75 | | * offset of GMT+7:45:40 for years before 1929; we do not do this. |
76 | | */ |
77 | | static const int32_t CHINA_OFFSET = 8 * kOneHour; |
78 | | |
79 | | /** |
80 | | * Value to be added or subtracted from the local days of a new moon to |
81 | | * get close to the next or prior new moon, but not cross it. Must be |
82 | | * >= 1 and < CalendarAstronomer.SYNODIC_MONTH. |
83 | | */ |
84 | | static const int32_t SYNODIC_GAP = 25; |
85 | | |
86 | | |
87 | | U_CDECL_BEGIN |
88 | 0 | static UBool calendar_chinese_cleanup(void) { |
89 | 0 | if (gChineseCalendarAstro) { |
90 | 0 | delete gChineseCalendarAstro; |
91 | 0 | gChineseCalendarAstro = NULL; |
92 | 0 | } |
93 | 0 | if (gChineseCalendarWinterSolsticeCache) { |
94 | 0 | delete gChineseCalendarWinterSolsticeCache; |
95 | 0 | gChineseCalendarWinterSolsticeCache = NULL; |
96 | 0 | } |
97 | 0 | if (gChineseCalendarNewYearCache) { |
98 | 0 | delete gChineseCalendarNewYearCache; |
99 | 0 | gChineseCalendarNewYearCache = NULL; |
100 | 0 | } |
101 | 0 | if (gChineseCalendarZoneAstroCalc) { |
102 | 0 | delete gChineseCalendarZoneAstroCalc; |
103 | 0 | gChineseCalendarZoneAstroCalc = NULL; |
104 | 0 | } |
105 | 0 | gChineseCalendarZoneAstroCalcInitOnce.reset(); |
106 | 0 | return TRUE; |
107 | 0 | } |
108 | | U_CDECL_END |
109 | | |
110 | | U_NAMESPACE_BEGIN |
111 | | |
112 | | |
113 | | // Implementation of the ChineseCalendar class |
114 | | |
115 | | |
116 | | //------------------------------------------------------------------------- |
117 | | // Constructors... |
118 | | //------------------------------------------------------------------------- |
119 | | |
120 | | |
121 | 0 | ChineseCalendar* ChineseCalendar::clone() const { |
122 | 0 | return new ChineseCalendar(*this); |
123 | 0 | } |
124 | | |
125 | | ChineseCalendar::ChineseCalendar(const Locale& aLocale, UErrorCode& success) |
126 | 0 | : Calendar(TimeZone::forLocaleOrDefault(aLocale), aLocale, success), |
127 | 0 | isLeapYear(FALSE), |
128 | 0 | fEpochYear(CHINESE_EPOCH_YEAR), |
129 | 0 | fZoneAstroCalc(getChineseCalZoneAstroCalc()) |
130 | 0 | { |
131 | 0 | setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly. |
132 | 0 | } |
133 | | |
134 | | ChineseCalendar::ChineseCalendar(const Locale& aLocale, int32_t epochYear, |
135 | | const TimeZone* zoneAstroCalc, UErrorCode &success) |
136 | 0 | : Calendar(TimeZone::forLocaleOrDefault(aLocale), aLocale, success), |
137 | 0 | isLeapYear(FALSE), |
138 | 0 | fEpochYear(epochYear), |
139 | 0 | fZoneAstroCalc(zoneAstroCalc) |
140 | 0 | { |
141 | 0 | setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly. |
142 | 0 | } |
143 | | |
144 | 0 | ChineseCalendar::ChineseCalendar(const ChineseCalendar& other) : Calendar(other) { |
145 | 0 | isLeapYear = other.isLeapYear; |
146 | 0 | fEpochYear = other.fEpochYear; |
147 | 0 | fZoneAstroCalc = other.fZoneAstroCalc; |
148 | 0 | } |
149 | | |
150 | | ChineseCalendar::~ChineseCalendar() |
151 | 0 | { |
152 | 0 | } |
153 | | |
154 | 0 | const char *ChineseCalendar::getType() const { |
155 | 0 | return "chinese"; |
156 | 0 | } |
157 | | |
158 | 0 | static void U_CALLCONV initChineseCalZoneAstroCalc() { |
159 | 0 | gChineseCalendarZoneAstroCalc = new SimpleTimeZone(CHINA_OFFSET, UNICODE_STRING_SIMPLE("CHINA_ZONE") ); |
160 | 0 | ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup); |
161 | 0 | } |
162 | | |
163 | 0 | const TimeZone* ChineseCalendar::getChineseCalZoneAstroCalc(void) const { |
164 | 0 | umtx_initOnce(gChineseCalendarZoneAstroCalcInitOnce, &initChineseCalZoneAstroCalc); |
165 | 0 | return gChineseCalendarZoneAstroCalc; |
166 | 0 | } |
167 | | |
168 | | //------------------------------------------------------------------------- |
169 | | // Minimum / Maximum access functions |
170 | | //------------------------------------------------------------------------- |
171 | | |
172 | | |
173 | | static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = { |
174 | | // Minimum Greatest Least Maximum |
175 | | // Minimum Maximum |
176 | | { 1, 1, 83333, 83333}, // ERA |
177 | | { 1, 1, 60, 60}, // YEAR |
178 | | { 0, 0, 11, 11}, // MONTH |
179 | | { 1, 1, 50, 55}, // WEEK_OF_YEAR |
180 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH |
181 | | { 1, 1, 29, 30}, // DAY_OF_MONTH |
182 | | { 1, 1, 353, 385}, // DAY_OF_YEAR |
183 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK |
184 | | { -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH |
185 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM |
186 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR |
187 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY |
188 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE |
189 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND |
190 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND |
191 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET |
192 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET |
193 | | { -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY |
194 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL |
195 | | { -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR |
196 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY |
197 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY |
198 | | { 0, 0, 1, 1}, // IS_LEAP_MONTH |
199 | | }; |
200 | | |
201 | | |
202 | | /** |
203 | | * @draft ICU 2.4 |
204 | | */ |
205 | 0 | int32_t ChineseCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const { |
206 | 0 | return LIMITS[field][limitType]; |
207 | 0 | } |
208 | | |
209 | | |
210 | | //---------------------------------------------------------------------- |
211 | | // Calendar framework |
212 | | //---------------------------------------------------------------------- |
213 | | |
214 | | /** |
215 | | * Implement abstract Calendar method to return the extended year |
216 | | * defined by the current fields. This will use either the ERA and |
217 | | * YEAR field as the cycle and year-of-cycle, or the EXTENDED_YEAR |
218 | | * field as the continuous year count, depending on which is newer. |
219 | | * @stable ICU 2.8 |
220 | | */ |
221 | 0 | int32_t ChineseCalendar::handleGetExtendedYear() { |
222 | 0 | int32_t year; |
223 | 0 | if (newestStamp(UCAL_ERA, UCAL_YEAR, kUnset) <= fStamp[UCAL_EXTENDED_YEAR]) { |
224 | 0 | year = internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1 |
225 | 0 | } else { |
226 | 0 | int32_t cycle = internalGet(UCAL_ERA, 1) - 1; // 0-based cycle |
227 | | // adjust to the instance specific epoch |
228 | 0 | year = cycle * 60 + internalGet(UCAL_YEAR, 1) - (fEpochYear - CHINESE_EPOCH_YEAR); |
229 | 0 | } |
230 | 0 | return year; |
231 | 0 | } |
232 | | |
233 | | /** |
234 | | * Override Calendar method to return the number of days in the given |
235 | | * extended year and month. |
236 | | * |
237 | | * <p>Note: This method also reads the IS_LEAP_MONTH field to determine |
238 | | * whether or not the given month is a leap month. |
239 | | * @stable ICU 2.8 |
240 | | */ |
241 | 0 | int32_t ChineseCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const { |
242 | 0 | int32_t thisStart = handleComputeMonthStart(extendedYear, month, TRUE) - |
243 | 0 | kEpochStartAsJulianDay + 1; // Julian day -> local days |
244 | 0 | int32_t nextStart = newMoonNear(thisStart + SYNODIC_GAP, TRUE); |
245 | 0 | return nextStart - thisStart; |
246 | 0 | } |
247 | | |
248 | | /** |
249 | | * Override Calendar to compute several fields specific to the Chinese |
250 | | * calendar system. These are: |
251 | | * |
252 | | * <ul><li>ERA |
253 | | * <li>YEAR |
254 | | * <li>MONTH |
255 | | * <li>DAY_OF_MONTH |
256 | | * <li>DAY_OF_YEAR |
257 | | * <li>EXTENDED_YEAR</ul> |
258 | | * |
259 | | * The DAY_OF_WEEK and DOW_LOCAL fields are already set when this |
260 | | * method is called. The getGregorianXxx() methods return Gregorian |
261 | | * calendar equivalents for the given Julian day. |
262 | | * |
263 | | * <p>Compute the ChineseCalendar-specific field IS_LEAP_MONTH. |
264 | | * @stable ICU 2.8 |
265 | | */ |
266 | 0 | void ChineseCalendar::handleComputeFields(int32_t julianDay, UErrorCode &/*status*/) { |
267 | |
|
268 | 0 | computeChineseFields(julianDay - kEpochStartAsJulianDay, // local days |
269 | 0 | getGregorianYear(), getGregorianMonth(), |
270 | 0 | TRUE); // set all fields |
271 | 0 | } |
272 | | |
273 | | /** |
274 | | * Field resolution table that incorporates IS_LEAP_MONTH. |
275 | | */ |
276 | | const UFieldResolutionTable ChineseCalendar::CHINESE_DATE_PRECEDENCE[] = |
277 | | { |
278 | | { |
279 | | { UCAL_DAY_OF_MONTH, kResolveSTOP }, |
280 | | { UCAL_WEEK_OF_YEAR, UCAL_DAY_OF_WEEK, kResolveSTOP }, |
281 | | { UCAL_WEEK_OF_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP }, |
282 | | { UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP }, |
283 | | { UCAL_WEEK_OF_YEAR, UCAL_DOW_LOCAL, kResolveSTOP }, |
284 | | { UCAL_WEEK_OF_MONTH, UCAL_DOW_LOCAL, kResolveSTOP }, |
285 | | { UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DOW_LOCAL, kResolveSTOP }, |
286 | | { UCAL_DAY_OF_YEAR, kResolveSTOP }, |
287 | | { kResolveRemap | UCAL_DAY_OF_MONTH, UCAL_IS_LEAP_MONTH, kResolveSTOP }, |
288 | | { kResolveSTOP } |
289 | | }, |
290 | | { |
291 | | { UCAL_WEEK_OF_YEAR, kResolveSTOP }, |
292 | | { UCAL_WEEK_OF_MONTH, kResolveSTOP }, |
293 | | { UCAL_DAY_OF_WEEK_IN_MONTH, kResolveSTOP }, |
294 | | { kResolveRemap | UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP }, |
295 | | { kResolveRemap | UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DOW_LOCAL, kResolveSTOP }, |
296 | | { kResolveSTOP } |
297 | | }, |
298 | | {{kResolveSTOP}} |
299 | | }; |
300 | | |
301 | | /** |
302 | | * Override Calendar to add IS_LEAP_MONTH to the field resolution |
303 | | * table. |
304 | | * @stable ICU 2.8 |
305 | | */ |
306 | 0 | const UFieldResolutionTable* ChineseCalendar::getFieldResolutionTable() const { |
307 | 0 | return CHINESE_DATE_PRECEDENCE; |
308 | 0 | } |
309 | | |
310 | | /** |
311 | | * Return the Julian day number of day before the first day of the |
312 | | * given month in the given extended year. |
313 | | * |
314 | | * <p>Note: This method reads the IS_LEAP_MONTH field to determine |
315 | | * whether the given month is a leap month. |
316 | | * @param eyear the extended year |
317 | | * @param month the zero-based month. The month is also determined |
318 | | * by reading the IS_LEAP_MONTH field. |
319 | | * @return the Julian day number of the day before the first |
320 | | * day of the given month and year |
321 | | * @stable ICU 2.8 |
322 | | */ |
323 | 0 | int32_t ChineseCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool useMonth) const { |
324 | |
|
325 | 0 | ChineseCalendar *nonConstThis = (ChineseCalendar*)this; // cast away const |
326 | | |
327 | | // If the month is out of range, adjust it into range, and |
328 | | // modify the extended year value accordingly. |
329 | 0 | if (month < 0 || month > 11) { |
330 | 0 | double m = month; |
331 | 0 | eyear += (int32_t)ClockMath::floorDivide(m, 12.0, m); |
332 | 0 | month = (int32_t)m; |
333 | 0 | } |
334 | |
|
335 | 0 | int32_t gyear = eyear + fEpochYear - 1; // Gregorian year |
336 | 0 | int32_t theNewYear = newYear(gyear); |
337 | 0 | int32_t newMoon = newMoonNear(theNewYear + month * 29, TRUE); |
338 | | |
339 | 0 | int32_t julianDay = newMoon + kEpochStartAsJulianDay; |
340 | | |
341 | | // Save fields for later restoration |
342 | 0 | int32_t saveMonth = internalGet(UCAL_MONTH); |
343 | 0 | int32_t saveIsLeapMonth = internalGet(UCAL_IS_LEAP_MONTH); |
344 | | |
345 | | // Ignore IS_LEAP_MONTH field if useMonth is false |
346 | 0 | int32_t isLeapMonth = useMonth ? saveIsLeapMonth : 0; |
347 | |
|
348 | 0 | UErrorCode status = U_ZERO_ERROR; |
349 | 0 | nonConstThis->computeGregorianFields(julianDay, status); |
350 | 0 | if (U_FAILURE(status)) |
351 | 0 | return 0; |
352 | | |
353 | | // This will modify the MONTH and IS_LEAP_MONTH fields (only) |
354 | 0 | nonConstThis->computeChineseFields(newMoon, getGregorianYear(), |
355 | 0 | getGregorianMonth(), FALSE); |
356 | |
|
357 | 0 | if (month != internalGet(UCAL_MONTH) || |
358 | 0 | isLeapMonth != internalGet(UCAL_IS_LEAP_MONTH)) { |
359 | 0 | newMoon = newMoonNear(newMoon + SYNODIC_GAP, TRUE); |
360 | 0 | julianDay = newMoon + kEpochStartAsJulianDay; |
361 | 0 | } |
362 | |
|
363 | 0 | nonConstThis->internalSet(UCAL_MONTH, saveMonth); |
364 | 0 | nonConstThis->internalSet(UCAL_IS_LEAP_MONTH, saveIsLeapMonth); |
365 | |
|
366 | 0 | return julianDay - 1; |
367 | 0 | } |
368 | | |
369 | | |
370 | | /** |
371 | | * Override Calendar to handle leap months properly. |
372 | | * @stable ICU 2.8 |
373 | | */ |
374 | 0 | void ChineseCalendar::add(UCalendarDateFields field, int32_t amount, UErrorCode& status) { |
375 | 0 | switch (field) { |
376 | 0 | case UCAL_MONTH: |
377 | 0 | if (amount != 0) { |
378 | 0 | int32_t dom = get(UCAL_DAY_OF_MONTH, status); |
379 | 0 | if (U_FAILURE(status)) break; |
380 | 0 | int32_t day = get(UCAL_JULIAN_DAY, status) - kEpochStartAsJulianDay; // Get local day |
381 | 0 | if (U_FAILURE(status)) break; |
382 | 0 | int32_t moon = day - dom + 1; // New moon |
383 | 0 | offsetMonth(moon, dom, amount); |
384 | 0 | } |
385 | 0 | break; |
386 | 0 | default: |
387 | 0 | Calendar::add(field, amount, status); |
388 | 0 | break; |
389 | 0 | } |
390 | 0 | } |
391 | | |
392 | | /** |
393 | | * Override Calendar to handle leap months properly. |
394 | | * @stable ICU 2.8 |
395 | | */ |
396 | 0 | void ChineseCalendar::add(EDateFields field, int32_t amount, UErrorCode& status) { |
397 | 0 | add((UCalendarDateFields)field, amount, status); |
398 | 0 | } |
399 | | |
400 | | /** |
401 | | * Override Calendar to handle leap months properly. |
402 | | * @stable ICU 2.8 |
403 | | */ |
404 | 0 | void ChineseCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) { |
405 | 0 | switch (field) { |
406 | 0 | case UCAL_MONTH: |
407 | 0 | if (amount != 0) { |
408 | 0 | int32_t dom = get(UCAL_DAY_OF_MONTH, status); |
409 | 0 | if (U_FAILURE(status)) break; |
410 | 0 | int32_t day = get(UCAL_JULIAN_DAY, status) - kEpochStartAsJulianDay; // Get local day |
411 | 0 | if (U_FAILURE(status)) break; |
412 | 0 | int32_t moon = day - dom + 1; // New moon (start of this month) |
413 | | |
414 | | // Note throughout the following: Months 12 and 1 are never |
415 | | // followed by a leap month (D&R p. 185). |
416 | | |
417 | | // Compute the adjusted month number m. This is zero-based |
418 | | // value from 0..11 in a non-leap year, and from 0..12 in a |
419 | | // leap year. |
420 | 0 | int32_t m = get(UCAL_MONTH, status); // 0-based month |
421 | 0 | if (U_FAILURE(status)) break; |
422 | 0 | if (isLeapYear) { // (member variable) |
423 | 0 | if (get(UCAL_IS_LEAP_MONTH, status) == 1) { |
424 | 0 | ++m; |
425 | 0 | } else { |
426 | | // Check for a prior leap month. (In the |
427 | | // following, month 0 is the first month of the |
428 | | // year.) Month 0 is never followed by a leap |
429 | | // month, and we know month m is not a leap month. |
430 | | // moon1 will be the start of month 0 if there is |
431 | | // no leap month between month 0 and month m; |
432 | | // otherwise it will be the start of month 1. |
433 | 0 | int moon1 = moon - |
434 | 0 | (int) (CalendarAstronomer::SYNODIC_MONTH * (m - 0.5)); |
435 | 0 | moon1 = newMoonNear(moon1, TRUE); |
436 | 0 | if (isLeapMonthBetween(moon1, moon)) { |
437 | 0 | ++m; |
438 | 0 | } |
439 | 0 | } |
440 | 0 | if (U_FAILURE(status)) break; |
441 | 0 | } |
442 | | |
443 | | // Now do the standard roll computation on m, with the |
444 | | // allowed range of 0..n-1, where n is 12 or 13. |
445 | 0 | int32_t n = isLeapYear ? 13 : 12; // Months in this year |
446 | 0 | int32_t newM = (m + amount) % n; |
447 | 0 | if (newM < 0) { |
448 | 0 | newM += n; |
449 | 0 | } |
450 | |
|
451 | 0 | if (newM != m) { |
452 | 0 | offsetMonth(moon, dom, newM - m); |
453 | 0 | } |
454 | 0 | } |
455 | 0 | break; |
456 | 0 | default: |
457 | 0 | Calendar::roll(field, amount, status); |
458 | 0 | break; |
459 | 0 | } |
460 | 0 | } |
461 | | |
462 | 0 | void ChineseCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) { |
463 | 0 | roll((UCalendarDateFields)field, amount, status); |
464 | 0 | } |
465 | | |
466 | | |
467 | | //------------------------------------------------------------------ |
468 | | // Support methods and constants |
469 | | //------------------------------------------------------------------ |
470 | | |
471 | | /** |
472 | | * Convert local days to UTC epoch milliseconds. |
473 | | * This is not an accurate conversion in that getTimezoneOffset |
474 | | * takes the milliseconds in GMT (not local time). In theory, more |
475 | | * accurate algorithm can be implemented but practically we do not need |
476 | | * to go through that complication as long as the historical timezone |
477 | | * changes did not happen around the 'tricky' new moon (new moon around |
478 | | * midnight). |
479 | | * |
480 | | * @param days days after January 1, 1970 0:00 in the astronomical base zone |
481 | | * @return milliseconds after January 1, 1970 0:00 GMT |
482 | | */ |
483 | 0 | double ChineseCalendar::daysToMillis(double days) const { |
484 | 0 | double millis = days * (double)kOneDay; |
485 | 0 | if (fZoneAstroCalc != NULL) { |
486 | 0 | int32_t rawOffset, dstOffset; |
487 | 0 | UErrorCode status = U_ZERO_ERROR; |
488 | 0 | fZoneAstroCalc->getOffset(millis, FALSE, rawOffset, dstOffset, status); |
489 | 0 | if (U_SUCCESS(status)) { |
490 | 0 | return millis - (double)(rawOffset + dstOffset); |
491 | 0 | } |
492 | 0 | } |
493 | 0 | return millis - (double)CHINA_OFFSET; |
494 | 0 | } |
495 | | |
496 | | /** |
497 | | * Convert UTC epoch milliseconds to local days. |
498 | | * @param millis milliseconds after January 1, 1970 0:00 GMT |
499 | | * @return days after January 1, 1970 0:00 in the astronomical base zone |
500 | | */ |
501 | 0 | double ChineseCalendar::millisToDays(double millis) const { |
502 | 0 | if (fZoneAstroCalc != NULL) { |
503 | 0 | int32_t rawOffset, dstOffset; |
504 | 0 | UErrorCode status = U_ZERO_ERROR; |
505 | 0 | fZoneAstroCalc->getOffset(millis, FALSE, rawOffset, dstOffset, status); |
506 | 0 | if (U_SUCCESS(status)) { |
507 | 0 | return ClockMath::floorDivide(millis + (double)(rawOffset + dstOffset), kOneDay); |
508 | 0 | } |
509 | 0 | } |
510 | 0 | return ClockMath::floorDivide(millis + (double)CHINA_OFFSET, kOneDay); |
511 | 0 | } |
512 | | |
513 | | //------------------------------------------------------------------ |
514 | | // Astronomical computations |
515 | | //------------------------------------------------------------------ |
516 | | |
517 | | |
518 | | /** |
519 | | * Return the major solar term on or after December 15 of the given |
520 | | * Gregorian year, that is, the winter solstice of the given year. |
521 | | * Computations are relative to Asia/Shanghai time zone. |
522 | | * @param gyear a Gregorian year |
523 | | * @return days after January 1, 1970 0:00 Asia/Shanghai of the |
524 | | * winter solstice of the given year |
525 | | */ |
526 | 0 | int32_t ChineseCalendar::winterSolstice(int32_t gyear) const { |
527 | |
|
528 | 0 | UErrorCode status = U_ZERO_ERROR; |
529 | 0 | int32_t cacheValue = CalendarCache::get(&gChineseCalendarWinterSolsticeCache, gyear, status); |
530 | |
|
531 | 0 | if (cacheValue == 0) { |
532 | | // In books December 15 is used, but it fails for some years |
533 | | // using our algorithms, e.g.: 1298 1391 1492 1553 1560. That |
534 | | // is, winterSolstice(1298) starts search at Dec 14 08:00:00 |
535 | | // PST 1298 with a final result of Dec 14 10:31:59 PST 1299. |
536 | 0 | double ms = daysToMillis(Grego::fieldsToDay(gyear, UCAL_DECEMBER, 1)); |
537 | |
|
538 | 0 | umtx_lock(&astroLock); |
539 | 0 | if(gChineseCalendarAstro == NULL) { |
540 | 0 | gChineseCalendarAstro = new CalendarAstronomer(); |
541 | 0 | ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup); |
542 | 0 | } |
543 | 0 | gChineseCalendarAstro->setTime(ms); |
544 | 0 | UDate solarLong = gChineseCalendarAstro->getSunTime(CalendarAstronomer::WINTER_SOLSTICE(), TRUE); |
545 | 0 | umtx_unlock(&astroLock); |
546 | | |
547 | | // Winter solstice is 270 degrees solar longitude aka Dongzhi |
548 | 0 | cacheValue = (int32_t)millisToDays(solarLong); |
549 | 0 | CalendarCache::put(&gChineseCalendarWinterSolsticeCache, gyear, cacheValue, status); |
550 | 0 | } |
551 | 0 | if(U_FAILURE(status)) { |
552 | 0 | cacheValue = 0; |
553 | 0 | } |
554 | 0 | return cacheValue; |
555 | 0 | } |
556 | | |
557 | | /** |
558 | | * Return the closest new moon to the given date, searching either |
559 | | * forward or backward in time. |
560 | | * @param days days after January 1, 1970 0:00 Asia/Shanghai |
561 | | * @param after if true, search for a new moon on or after the given |
562 | | * date; otherwise, search for a new moon before it |
563 | | * @return days after January 1, 1970 0:00 Asia/Shanghai of the nearest |
564 | | * new moon after or before <code>days</code> |
565 | | */ |
566 | 0 | int32_t ChineseCalendar::newMoonNear(double days, UBool after) const { |
567 | | |
568 | 0 | umtx_lock(&astroLock); |
569 | 0 | if(gChineseCalendarAstro == NULL) { |
570 | 0 | gChineseCalendarAstro = new CalendarAstronomer(); |
571 | 0 | ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup); |
572 | 0 | } |
573 | 0 | gChineseCalendarAstro->setTime(daysToMillis(days)); |
574 | 0 | UDate newMoon = gChineseCalendarAstro->getMoonTime(CalendarAstronomer::NEW_MOON(), after); |
575 | 0 | umtx_unlock(&astroLock); |
576 | | |
577 | 0 | return (int32_t) millisToDays(newMoon); |
578 | 0 | } |
579 | | |
580 | | /** |
581 | | * Return the nearest integer number of synodic months between |
582 | | * two dates. |
583 | | * @param day1 days after January 1, 1970 0:00 Asia/Shanghai |
584 | | * @param day2 days after January 1, 1970 0:00 Asia/Shanghai |
585 | | * @return the nearest integer number of months between day1 and day2 |
586 | | */ |
587 | 0 | int32_t ChineseCalendar::synodicMonthsBetween(int32_t day1, int32_t day2) const { |
588 | 0 | double roundme = ((day2 - day1) / CalendarAstronomer::SYNODIC_MONTH); |
589 | 0 | return (int32_t) (roundme + (roundme >= 0 ? .5 : -.5)); |
590 | 0 | } |
591 | | |
592 | | /** |
593 | | * Return the major solar term on or before a given date. This |
594 | | * will be an integer from 1..12, with 1 corresponding to 330 degrees, |
595 | | * 2 to 0 degrees, 3 to 30 degrees,..., and 12 to 300 degrees. |
596 | | * @param days days after January 1, 1970 0:00 Asia/Shanghai |
597 | | */ |
598 | 0 | int32_t ChineseCalendar::majorSolarTerm(int32_t days) const { |
599 | | |
600 | 0 | umtx_lock(&astroLock); |
601 | 0 | if(gChineseCalendarAstro == NULL) { |
602 | 0 | gChineseCalendarAstro = new CalendarAstronomer(); |
603 | 0 | ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup); |
604 | 0 | } |
605 | 0 | gChineseCalendarAstro->setTime(daysToMillis(days)); |
606 | 0 | UDate solarLongitude = gChineseCalendarAstro->getSunLongitude(); |
607 | 0 | umtx_unlock(&astroLock); |
608 | | |
609 | | // Compute (floor(solarLongitude / (pi/6)) + 2) % 12 |
610 | 0 | int32_t term = ( ((int32_t)(6 * solarLongitude / CalendarAstronomer::PI)) + 2 ) % 12; |
611 | 0 | if (term < 1) { |
612 | 0 | term += 12; |
613 | 0 | } |
614 | 0 | return term; |
615 | 0 | } |
616 | | |
617 | | /** |
618 | | * Return true if the given month lacks a major solar term. |
619 | | * @param newMoon days after January 1, 1970 0:00 Asia/Shanghai of a new |
620 | | * moon |
621 | | */ |
622 | 0 | UBool ChineseCalendar::hasNoMajorSolarTerm(int32_t newMoon) const { |
623 | 0 | return majorSolarTerm(newMoon) == |
624 | 0 | majorSolarTerm(newMoonNear(newMoon + SYNODIC_GAP, TRUE)); |
625 | 0 | } |
626 | | |
627 | | |
628 | | //------------------------------------------------------------------ |
629 | | // Time to fields |
630 | | //------------------------------------------------------------------ |
631 | | |
632 | | /** |
633 | | * Return true if there is a leap month on or after month newMoon1 and |
634 | | * at or before month newMoon2. |
635 | | * @param newMoon1 days after January 1, 1970 0:00 astronomical base zone |
636 | | * of a new moon |
637 | | * @param newMoon2 days after January 1, 1970 0:00 astronomical base zone |
638 | | * of a new moon |
639 | | */ |
640 | 0 | UBool ChineseCalendar::isLeapMonthBetween(int32_t newMoon1, int32_t newMoon2) const { |
641 | |
|
642 | | #ifdef U_DEBUG_CHNSECAL |
643 | | // This is only needed to debug the timeOfAngle divergence bug. |
644 | | // Remove this later. Liu 11/9/00 |
645 | | if (synodicMonthsBetween(newMoon1, newMoon2) >= 50) { |
646 | | U_DEBUG_CHNSECAL_MSG(( |
647 | | "isLeapMonthBetween(%d, %d): Invalid parameters", newMoon1, newMoon2 |
648 | | )); |
649 | | } |
650 | | #endif |
651 | |
|
652 | 0 | return (newMoon2 >= newMoon1) && |
653 | 0 | (isLeapMonthBetween(newMoon1, newMoonNear(newMoon2 - SYNODIC_GAP, FALSE)) || |
654 | 0 | hasNoMajorSolarTerm(newMoon2)); |
655 | 0 | } |
656 | | |
657 | | /** |
658 | | * Compute fields for the Chinese calendar system. This method can |
659 | | * either set all relevant fields, as required by |
660 | | * <code>handleComputeFields()</code>, or it can just set the MONTH and |
661 | | * IS_LEAP_MONTH fields, as required by |
662 | | * <code>handleComputeMonthStart()</code>. |
663 | | * |
664 | | * <p>As a side effect, this method sets {@link #isLeapYear}. |
665 | | * @param days days after January 1, 1970 0:00 astronomical base zone |
666 | | * of the date to compute fields for |
667 | | * @param gyear the Gregorian year of the given date |
668 | | * @param gmonth the Gregorian month of the given date |
669 | | * @param setAllFields if true, set the EXTENDED_YEAR, ERA, YEAR, |
670 | | * DAY_OF_MONTH, and DAY_OF_YEAR fields. In either case set the MONTH |
671 | | * and IS_LEAP_MONTH fields. |
672 | | */ |
673 | | void ChineseCalendar::computeChineseFields(int32_t days, int32_t gyear, int32_t gmonth, |
674 | 0 | UBool setAllFields) { |
675 | | |
676 | | // Find the winter solstices before and after the target date. |
677 | | // These define the boundaries of this Chinese year, specifically, |
678 | | // the position of month 11, which always contains the solstice. |
679 | | // We want solsticeBefore <= date < solsticeAfter. |
680 | 0 | int32_t solsticeBefore; |
681 | 0 | int32_t solsticeAfter = winterSolstice(gyear); |
682 | 0 | if (days < solsticeAfter) { |
683 | 0 | solsticeBefore = winterSolstice(gyear - 1); |
684 | 0 | } else { |
685 | 0 | solsticeBefore = solsticeAfter; |
686 | 0 | solsticeAfter = winterSolstice(gyear + 1); |
687 | 0 | } |
688 | | |
689 | | // Find the start of the month after month 11. This will be either |
690 | | // the prior month 12 or leap month 11 (very rare). Also find the |
691 | | // start of the following month 11. |
692 | 0 | int32_t firstMoon = newMoonNear(solsticeBefore + 1, TRUE); |
693 | 0 | int32_t lastMoon = newMoonNear(solsticeAfter + 1, FALSE); |
694 | 0 | int32_t thisMoon = newMoonNear(days + 1, FALSE); // Start of this month |
695 | | // Note: isLeapYear is a member variable |
696 | 0 | isLeapYear = synodicMonthsBetween(firstMoon, lastMoon) == 12; |
697 | |
|
698 | 0 | int32_t month = synodicMonthsBetween(firstMoon, thisMoon); |
699 | 0 | if (isLeapYear && isLeapMonthBetween(firstMoon, thisMoon)) { |
700 | 0 | month--; |
701 | 0 | } |
702 | 0 | if (month < 1) { |
703 | 0 | month += 12; |
704 | 0 | } |
705 | |
|
706 | 0 | UBool isLeapMonth = isLeapYear && |
707 | 0 | hasNoMajorSolarTerm(thisMoon) && |
708 | 0 | !isLeapMonthBetween(firstMoon, newMoonNear(thisMoon - SYNODIC_GAP, FALSE)); |
709 | |
|
710 | 0 | internalSet(UCAL_MONTH, month-1); // Convert from 1-based to 0-based |
711 | 0 | internalSet(UCAL_IS_LEAP_MONTH, isLeapMonth?1:0); |
712 | |
|
713 | 0 | if (setAllFields) { |
714 | | |
715 | | // Extended year and cycle year is based on the epoch year |
716 | | |
717 | 0 | int32_t extended_year = gyear - fEpochYear; |
718 | 0 | int cycle_year = gyear - CHINESE_EPOCH_YEAR; |
719 | 0 | if (month < 11 || |
720 | 0 | gmonth >= UCAL_JULY) { |
721 | 0 | extended_year++; |
722 | 0 | cycle_year++; |
723 | 0 | } |
724 | 0 | int32_t dayOfMonth = days - thisMoon + 1; |
725 | |
|
726 | 0 | internalSet(UCAL_EXTENDED_YEAR, extended_year); |
727 | | |
728 | | // 0->0,60 1->1,1 60->1,60 61->2,1 etc. |
729 | 0 | int32_t yearOfCycle; |
730 | 0 | int32_t cycle = ClockMath::floorDivide(cycle_year - 1, 60, yearOfCycle); |
731 | 0 | internalSet(UCAL_ERA, cycle + 1); |
732 | 0 | internalSet(UCAL_YEAR, yearOfCycle + 1); |
733 | |
|
734 | 0 | internalSet(UCAL_DAY_OF_MONTH, dayOfMonth); |
735 | | |
736 | | // Days will be before the first new year we compute if this |
737 | | // date is in month 11, leap 11, 12. There is never a leap 12. |
738 | | // New year computations are cached so this should be cheap in |
739 | | // the long run. |
740 | 0 | int32_t theNewYear = newYear(gyear); |
741 | 0 | if (days < theNewYear) { |
742 | 0 | theNewYear = newYear(gyear-1); |
743 | 0 | } |
744 | 0 | internalSet(UCAL_DAY_OF_YEAR, days - theNewYear + 1); |
745 | 0 | } |
746 | 0 | } |
747 | | |
748 | | |
749 | | //------------------------------------------------------------------ |
750 | | // Fields to time |
751 | | //------------------------------------------------------------------ |
752 | | |
753 | | /** |
754 | | * Return the Chinese new year of the given Gregorian year. |
755 | | * @param gyear a Gregorian year |
756 | | * @return days after January 1, 1970 0:00 astronomical base zone of the |
757 | | * Chinese new year of the given year (this will be a new moon) |
758 | | */ |
759 | 0 | int32_t ChineseCalendar::newYear(int32_t gyear) const { |
760 | 0 | UErrorCode status = U_ZERO_ERROR; |
761 | 0 | int32_t cacheValue = CalendarCache::get(&gChineseCalendarNewYearCache, gyear, status); |
762 | |
|
763 | 0 | if (cacheValue == 0) { |
764 | |
|
765 | 0 | int32_t solsticeBefore= winterSolstice(gyear - 1); |
766 | 0 | int32_t solsticeAfter = winterSolstice(gyear); |
767 | 0 | int32_t newMoon1 = newMoonNear(solsticeBefore + 1, TRUE); |
768 | 0 | int32_t newMoon2 = newMoonNear(newMoon1 + SYNODIC_GAP, TRUE); |
769 | 0 | int32_t newMoon11 = newMoonNear(solsticeAfter + 1, FALSE); |
770 | | |
771 | 0 | if (synodicMonthsBetween(newMoon1, newMoon11) == 12 && |
772 | 0 | (hasNoMajorSolarTerm(newMoon1) || hasNoMajorSolarTerm(newMoon2))) { |
773 | 0 | cacheValue = newMoonNear(newMoon2 + SYNODIC_GAP, TRUE); |
774 | 0 | } else { |
775 | 0 | cacheValue = newMoon2; |
776 | 0 | } |
777 | |
|
778 | 0 | CalendarCache::put(&gChineseCalendarNewYearCache, gyear, cacheValue, status); |
779 | 0 | } |
780 | 0 | if(U_FAILURE(status)) { |
781 | 0 | cacheValue = 0; |
782 | 0 | } |
783 | 0 | return cacheValue; |
784 | 0 | } |
785 | | |
786 | | /** |
787 | | * Adjust this calendar to be delta months before or after a given |
788 | | * start position, pinning the day of month if necessary. The start |
789 | | * position is given as a local days number for the start of the month |
790 | | * and a day-of-month. Used by add() and roll(). |
791 | | * @param newMoon the local days of the first day of the month of the |
792 | | * start position (days after January 1, 1970 0:00 Asia/Shanghai) |
793 | | * @param dom the 1-based day-of-month of the start position |
794 | | * @param delta the number of months to move forward or backward from |
795 | | * the start position |
796 | | */ |
797 | 0 | void ChineseCalendar::offsetMonth(int32_t newMoon, int32_t dom, int32_t delta) { |
798 | 0 | UErrorCode status = U_ZERO_ERROR; |
799 | | |
800 | | // Move to the middle of the month before our target month. |
801 | 0 | newMoon += (int32_t) (CalendarAstronomer::SYNODIC_MONTH * (delta - 0.5)); |
802 | | |
803 | | // Search forward to the target month's new moon |
804 | 0 | newMoon = newMoonNear(newMoon, TRUE); |
805 | | |
806 | | // Find the target dom |
807 | 0 | int32_t jd = newMoon + kEpochStartAsJulianDay - 1 + dom; |
808 | | |
809 | | // Pin the dom. In this calendar all months are 29 or 30 days |
810 | | // so pinning just means handling dom 30. |
811 | 0 | if (dom > 29) { |
812 | 0 | set(UCAL_JULIAN_DAY, jd-1); |
813 | | // TODO Fix this. We really shouldn't ever have to |
814 | | // explicitly call complete(). This is either a bug in |
815 | | // this method, in ChineseCalendar, or in |
816 | | // Calendar.getActualMaximum(). I suspect the last. |
817 | 0 | complete(status); |
818 | 0 | if (U_FAILURE(status)) return; |
819 | 0 | if (getActualMaximum(UCAL_DAY_OF_MONTH, status) >= dom) { |
820 | 0 | if (U_FAILURE(status)) return; |
821 | 0 | set(UCAL_JULIAN_DAY, jd); |
822 | 0 | } |
823 | 0 | } else { |
824 | 0 | set(UCAL_JULIAN_DAY, jd); |
825 | 0 | } |
826 | 0 | } |
827 | | |
828 | | |
829 | | UBool |
830 | | ChineseCalendar::inDaylightTime(UErrorCode& status) const |
831 | 0 | { |
832 | | // copied from GregorianCalendar |
833 | 0 | if (U_FAILURE(status) || !getTimeZone().useDaylightTime()) |
834 | 0 | return FALSE; |
835 | | |
836 | | // Force an update of the state of the Calendar. |
837 | 0 | ((ChineseCalendar*)this)->complete(status); // cast away const |
838 | |
|
839 | 0 | return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE); |
840 | 0 | } |
841 | | |
842 | | // default century |
843 | | |
844 | | static UDate gSystemDefaultCenturyStart = DBL_MIN; |
845 | | static int32_t gSystemDefaultCenturyStartYear = -1; |
846 | | static icu::UInitOnce gSystemDefaultCenturyInitOnce = U_INITONCE_INITIALIZER; |
847 | | |
848 | | |
849 | | UBool ChineseCalendar::haveDefaultCentury() const |
850 | 0 | { |
851 | 0 | return TRUE; |
852 | 0 | } |
853 | | |
854 | | UDate ChineseCalendar::defaultCenturyStart() const |
855 | 0 | { |
856 | 0 | return internalGetDefaultCenturyStart(); |
857 | 0 | } |
858 | | |
859 | | int32_t ChineseCalendar::defaultCenturyStartYear() const |
860 | 0 | { |
861 | 0 | return internalGetDefaultCenturyStartYear(); |
862 | 0 | } |
863 | | |
864 | | static void U_CALLCONV initializeSystemDefaultCentury() |
865 | 0 | { |
866 | | // initialize systemDefaultCentury and systemDefaultCenturyYear based |
867 | | // on the current time. They'll be set to 80 years before |
868 | | // the current time. |
869 | 0 | UErrorCode status = U_ZERO_ERROR; |
870 | 0 | ChineseCalendar calendar(Locale("@calendar=chinese"),status); |
871 | 0 | if (U_SUCCESS(status)) { |
872 | 0 | calendar.setTime(Calendar::getNow(), status); |
873 | 0 | calendar.add(UCAL_YEAR, -80, status); |
874 | 0 | gSystemDefaultCenturyStart = calendar.getTime(status); |
875 | 0 | gSystemDefaultCenturyStartYear = calendar.get(UCAL_YEAR, status); |
876 | 0 | } |
877 | | // We have no recourse upon failure unless we want to propagate the failure |
878 | | // out. |
879 | 0 | } |
880 | | |
881 | | UDate |
882 | | ChineseCalendar::internalGetDefaultCenturyStart() const |
883 | 0 | { |
884 | | // lazy-evaluate systemDefaultCenturyStart |
885 | 0 | umtx_initOnce(gSystemDefaultCenturyInitOnce, &initializeSystemDefaultCentury); |
886 | 0 | return gSystemDefaultCenturyStart; |
887 | 0 | } |
888 | | |
889 | | int32_t |
890 | | ChineseCalendar::internalGetDefaultCenturyStartYear() const |
891 | 0 | { |
892 | | // lazy-evaluate systemDefaultCenturyStartYear |
893 | 0 | umtx_initOnce(gSystemDefaultCenturyInitOnce, &initializeSystemDefaultCentury); |
894 | 0 | return gSystemDefaultCenturyStartYear; |
895 | 0 | } |
896 | | |
897 | | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(ChineseCalendar) |
898 | | |
899 | | U_NAMESPACE_END |
900 | | |
901 | | #endif |
902 | | |