Coverage Report

Created: 2025-06-24 06:43

/src/icu/source/i18n/collationiterator.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2016 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
/*
4
*******************************************************************************
5
* Copyright (C) 2010-2014, International Business Machines
6
* Corporation and others.  All Rights Reserved.
7
*******************************************************************************
8
* collationiterator.cpp
9
*
10
* created on: 2010oct27
11
* created by: Markus W. Scherer
12
*/
13
14
#include "utypeinfo.h"  // for 'typeid' to work
15
16
#include "unicode/utypes.h"
17
18
#if !UCONFIG_NO_COLLATION
19
20
#include "unicode/ucharstrie.h"
21
#include "unicode/ustringtrie.h"
22
#include "charstr.h"
23
#include "cmemory.h"
24
#include "collation.h"
25
#include "collationdata.h"
26
#include "collationfcd.h"
27
#include "collationiterator.h"
28
#include "normalizer2impl.h"
29
#include "uassert.h"
30
#include "uvectr32.h"
31
32
U_NAMESPACE_BEGIN
33
34
0
CollationIterator::CEBuffer::~CEBuffer() {}
35
36
UBool
37
0
CollationIterator::CEBuffer::ensureAppendCapacity(int32_t appCap, UErrorCode &errorCode) {
38
0
    int32_t capacity = buffer.getCapacity();
39
0
    if((length + appCap) <= capacity) { return TRUE; }
40
0
    if(U_FAILURE(errorCode)) { return FALSE; }
41
0
    do {
42
0
        if(capacity < 1000) {
43
0
            capacity *= 4;
44
0
        } else {
45
0
            capacity *= 2;
46
0
        }
47
0
    } while(capacity < (length + appCap));
48
0
    int64_t *p = buffer.resize(capacity, length);
49
0
    if(p == NULL) {
50
0
        errorCode = U_MEMORY_ALLOCATION_ERROR;
51
0
        return FALSE;
52
0
    }
53
0
    return TRUE;
54
0
}
55
56
// State of combining marks skipped in discontiguous contraction.
57
// We create a state object on first use and keep it around deactivated between uses.
58
class SkippedState : public UMemory {
59
public:
60
    // Born active but empty.
61
0
    SkippedState() : pos(0), skipLengthAtMatch(0) {}
62
0
    void clear() {
63
0
        oldBuffer.remove();
64
0
        pos = 0;
65
        // The newBuffer is reset by setFirstSkipped().
66
0
    }
67
68
0
    UBool isEmpty() const { return oldBuffer.isEmpty(); }
69
70
0
    UBool hasNext() const { return pos < oldBuffer.length(); }
71
72
    // Requires hasNext().
73
0
    UChar32 next() {
74
0
        UChar32 c = oldBuffer.char32At(pos);
75
0
        pos += U16_LENGTH(c);
76
0
        return c;
77
0
    }
78
79
    // Accounts for one more input code point read beyond the end of the marks buffer.
80
0
    void incBeyond() {
81
0
        U_ASSERT(!hasNext());
82
0
        ++pos;
83
0
    }
84
85
    // Goes backward through the skipped-marks buffer.
86
    // Returns the number of code points read beyond the skipped marks
87
    // that need to be backtracked through normal input.
88
0
    int32_t backwardNumCodePoints(int32_t n) {
89
0
        int32_t length = oldBuffer.length();
90
0
        int32_t beyond = pos - length;
91
0
        if(beyond > 0) {
92
0
            if(beyond >= n) {
93
                // Not back far enough to re-enter the oldBuffer.
94
0
                pos -= n;
95
0
                return n;
96
0
            } else {
97
                // Back out all beyond-oldBuffer code points and re-enter the buffer.
98
0
                pos = oldBuffer.moveIndex32(length, beyond - n);
99
0
                return beyond;
100
0
            }
101
0
        } else {
102
            // Go backwards from inside the oldBuffer.
103
0
            pos = oldBuffer.moveIndex32(pos, -n);
104
0
            return 0;
105
0
        }
106
0
    }
107
108
0
    void setFirstSkipped(UChar32 c) {
109
0
        skipLengthAtMatch = 0;
110
0
        newBuffer.setTo(c);
111
0
    }
112
113
0
    void skip(UChar32 c) {
114
0
        newBuffer.append(c);
115
0
    }
116
117
0
    void recordMatch() { skipLengthAtMatch = newBuffer.length(); }
118
119
    // Replaces the characters we consumed with the newly skipped ones.
120
0
    void replaceMatch() {
121
        // Note: UnicodeString.replace() pins pos to at most length().
122
0
        oldBuffer.replace(0, pos, newBuffer, 0, skipLengthAtMatch);
123
0
        pos = 0;
124
0
    }
125
126
0
    void saveTrieState(const UCharsTrie &trie) { trie.saveState(state); }
127
0
    void resetToTrieState(UCharsTrie &trie) const { trie.resetToState(state); }
128
129
private:
130
    // Combining marks skipped in previous discontiguous-contraction matching.
131
    // After that discontiguous contraction was completed, we start reading them from here.
132
    UnicodeString oldBuffer;
133
    // Combining marks newly skipped in current discontiguous-contraction matching.
134
    // These might have been read from the normal text or from the oldBuffer.
135
    UnicodeString newBuffer;
136
    // Reading index in oldBuffer,
137
    // or counter for how many code points have been read beyond oldBuffer (pos-oldBuffer.length()).
138
    int32_t pos;
139
    // newBuffer.length() at the time of the last matching character.
140
    // When a partial match fails, we back out skipped and partial-matching input characters.
141
    int32_t skipLengthAtMatch;
142
    // We save the trie state before we attempt to match a character,
143
    // so that we can skip it and try the next one.
144
    UCharsTrie::State state;
145
};
146
147
CollationIterator::CollationIterator(const CollationIterator &other)
148
0
        : UObject(other),
149
0
          trie(other.trie),
150
0
          data(other.data),
151
0
          cesIndex(other.cesIndex),
152
          skipped(NULL),
153
0
          numCpFwd(other.numCpFwd),
154
0
          isNumeric(other.isNumeric) {
155
0
    UErrorCode errorCode = U_ZERO_ERROR;
156
0
    int32_t length = other.ceBuffer.length;
157
0
    if(length > 0 && ceBuffer.ensureAppendCapacity(length, errorCode)) {
158
0
        for(int32_t i = 0; i < length; ++i) {
159
0
            ceBuffer.set(i, other.ceBuffer.get(i));
160
0
        }
161
0
        ceBuffer.length = length;
162
0
    } else {
163
0
        cesIndex = 0;
164
0
    }
165
0
}
166
167
0
CollationIterator::~CollationIterator() {
168
0
    delete skipped;
169
0
}
170
171
bool
172
0
CollationIterator::operator==(const CollationIterator &other) const {
173
    // Subclasses: Call this method and then add more specific checks.
174
    // Compare the iterator state but not the collation data (trie & data fields):
175
    // Assume that the caller compares the data.
176
    // Ignore skipped since that should be unused between calls to nextCE().
177
    // (It only stays around to avoid another memory allocation.)
178
0
    if(!(typeid(*this) == typeid(other) &&
179
0
            ceBuffer.length == other.ceBuffer.length &&
180
0
            cesIndex == other.cesIndex &&
181
0
            numCpFwd == other.numCpFwd &&
182
0
            isNumeric == other.isNumeric)) {
183
0
        return FALSE;
184
0
    }
185
0
    for(int32_t i = 0; i < ceBuffer.length; ++i) {
186
0
        if(ceBuffer.get(i) != other.ceBuffer.get(i)) { return FALSE; }
187
0
    }
188
0
    return TRUE;
189
0
}
190
191
void
192
0
CollationIterator::reset() {
193
0
    cesIndex = ceBuffer.length = 0;
194
0
    if(skipped != NULL) { skipped->clear(); }
195
0
}
196
197
int32_t
198
0
CollationIterator::fetchCEs(UErrorCode &errorCode) {
199
0
    while(U_SUCCESS(errorCode) && nextCE(errorCode) != Collation::NO_CE) {
200
        // No need to loop for each expansion CE.
201
0
        cesIndex = ceBuffer.length;
202
0
    }
203
0
    return ceBuffer.length;
204
0
}
205
206
uint32_t
207
0
CollationIterator::handleNextCE32(UChar32 &c, UErrorCode &errorCode) {
208
0
    c = nextCodePoint(errorCode);
209
0
    return (c < 0) ? Collation::FALLBACK_CE32 : data->getCE32(c);
210
0
}
211
212
UChar
213
0
CollationIterator::handleGetTrailSurrogate() {
214
0
    return 0;
215
0
}
216
217
UBool
218
0
CollationIterator::foundNULTerminator() {
219
0
    return FALSE;
220
0
}
221
222
UBool
223
0
CollationIterator::forbidSurrogateCodePoints() const {
224
0
    return FALSE;
225
0
}
226
227
uint32_t
228
0
CollationIterator::getDataCE32(UChar32 c) const {
229
0
    return data->getCE32(c);
230
0
}
231
232
uint32_t
233
0
CollationIterator::getCE32FromBuilderData(uint32_t /*ce32*/, UErrorCode &errorCode) {
234
0
    if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; }
235
0
    return 0;
236
0
}
237
238
int64_t
239
CollationIterator::nextCEFromCE32(const CollationData *d, UChar32 c, uint32_t ce32,
240
0
                                  UErrorCode &errorCode) {
241
0
    --ceBuffer.length;  // Undo ceBuffer.incLength().
242
0
    appendCEsFromCE32(d, c, ce32, TRUE, errorCode);
243
0
    if(U_SUCCESS(errorCode)) {
244
0
        return ceBuffer.get(cesIndex++);
245
0
    } else {
246
0
        return Collation::NO_CE_PRIMARY;
247
0
    }
248
0
}
249
250
void
251
CollationIterator::appendCEsFromCE32(const CollationData *d, UChar32 c, uint32_t ce32,
252
0
                                     UBool forward, UErrorCode &errorCode) {
253
0
    while(Collation::isSpecialCE32(ce32)) {
254
0
        switch(Collation::tagFromCE32(ce32)) {
255
0
        case Collation::FALLBACK_TAG:
256
0
        case Collation::RESERVED_TAG_3:
257
0
            if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; }
258
0
            return;
259
0
        case Collation::LONG_PRIMARY_TAG:
260
0
            ceBuffer.append(Collation::ceFromLongPrimaryCE32(ce32), errorCode);
261
0
            return;
262
0
        case Collation::LONG_SECONDARY_TAG:
263
0
            ceBuffer.append(Collation::ceFromLongSecondaryCE32(ce32), errorCode);
264
0
            return;
265
0
        case Collation::LATIN_EXPANSION_TAG:
266
0
            if(ceBuffer.ensureAppendCapacity(2, errorCode)) {
267
0
                ceBuffer.set(ceBuffer.length, Collation::latinCE0FromCE32(ce32));
268
0
                ceBuffer.set(ceBuffer.length + 1, Collation::latinCE1FromCE32(ce32));
269
0
                ceBuffer.length += 2;
270
0
            }
271
0
            return;
272
0
        case Collation::EXPANSION32_TAG: {
273
0
            const uint32_t *ce32s = d->ce32s + Collation::indexFromCE32(ce32);
274
0
            int32_t length = Collation::lengthFromCE32(ce32);
275
0
            if(ceBuffer.ensureAppendCapacity(length, errorCode)) {
276
0
                do {
277
0
                    ceBuffer.appendUnsafe(Collation::ceFromCE32(*ce32s++));
278
0
                } while(--length > 0);
279
0
            }
280
0
            return;
281
0
        }
282
0
        case Collation::EXPANSION_TAG: {
283
0
            const int64_t *ces = d->ces + Collation::indexFromCE32(ce32);
284
0
            int32_t length = Collation::lengthFromCE32(ce32);
285
0
            if(ceBuffer.ensureAppendCapacity(length, errorCode)) {
286
0
                do {
287
0
                    ceBuffer.appendUnsafe(*ces++);
288
0
                } while(--length > 0);
289
0
            }
290
0
            return;
291
0
        }
292
0
        case Collation::BUILDER_DATA_TAG:
293
0
            ce32 = getCE32FromBuilderData(ce32, errorCode);
294
0
            if(U_FAILURE(errorCode)) { return; }
295
0
            if(ce32 == Collation::FALLBACK_CE32) {
296
0
                d = data->base;
297
0
                ce32 = d->getCE32(c);
298
0
            }
299
0
            break;
300
0
        case Collation::PREFIX_TAG:
301
0
            if(forward) { backwardNumCodePoints(1, errorCode); }
302
0
            ce32 = getCE32FromPrefix(d, ce32, errorCode);
303
0
            if(forward) { forwardNumCodePoints(1, errorCode); }
304
0
            break;
305
0
        case Collation::CONTRACTION_TAG: {
306
0
            const UChar *p = d->contexts + Collation::indexFromCE32(ce32);
307
0
            uint32_t defaultCE32 = CollationData::readCE32(p);  // Default if no suffix match.
308
0
            if(!forward) {
309
                // Backward contractions are handled by previousCEUnsafe().
310
                // c has contractions but they were not found.
311
0
                ce32 = defaultCE32;
312
0
                break;
313
0
            }
314
0
            UChar32 nextCp;
315
0
            if(skipped == NULL && numCpFwd < 0) {
316
                // Some portion of nextCE32FromContraction() pulled out here as an ASCII fast path,
317
                // avoiding the function call and the nextSkippedCodePoint() overhead.
318
0
                nextCp = nextCodePoint(errorCode);
319
0
                if(nextCp < 0) {
320
                    // No more text.
321
0
                    ce32 = defaultCE32;
322
0
                    break;
323
0
                } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 &&
324
0
                        !CollationFCD::mayHaveLccc(nextCp)) {
325
                    // All contraction suffixes start with characters with lccc!=0
326
                    // but the next code point has lccc==0.
327
0
                    backwardNumCodePoints(1, errorCode);
328
0
                    ce32 = defaultCE32;
329
0
                    break;
330
0
                }
331
0
            } else {
332
0
                nextCp = nextSkippedCodePoint(errorCode);
333
0
                if(nextCp < 0) {
334
                    // No more text.
335
0
                    ce32 = defaultCE32;
336
0
                    break;
337
0
                } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 &&
338
0
                        !CollationFCD::mayHaveLccc(nextCp)) {
339
                    // All contraction suffixes start with characters with lccc!=0
340
                    // but the next code point has lccc==0.
341
0
                    backwardNumSkipped(1, errorCode);
342
0
                    ce32 = defaultCE32;
343
0
                    break;
344
0
                }
345
0
            }
346
0
            ce32 = nextCE32FromContraction(d, ce32, p + 2, defaultCE32, nextCp, errorCode);
347
0
            if(ce32 == Collation::NO_CE32) {
348
                // CEs from a discontiguous contraction plus the skipped combining marks
349
                // have been appended already.
350
0
                return;
351
0
            }
352
0
            break;
353
0
        }
354
0
        case Collation::DIGIT_TAG:
355
0
            if(isNumeric) {
356
0
                appendNumericCEs(ce32, forward, errorCode);
357
0
                return;
358
0
            } else {
359
                // Fetch the non-numeric-collation CE32 and continue.
360
0
                ce32 = d->ce32s[Collation::indexFromCE32(ce32)];
361
0
                break;
362
0
            }
363
0
        case Collation::U0000_TAG:
364
0
            U_ASSERT(c == 0);
365
0
            if(forward && foundNULTerminator()) {
366
                // Handle NUL-termination. (Not needed in Java.)
367
0
                ceBuffer.append(Collation::NO_CE, errorCode);
368
0
                return;
369
0
            } else {
370
                // Fetch the normal ce32 for U+0000 and continue.
371
0
                ce32 = d->ce32s[0];
372
0
                break;
373
0
            }
374
0
        case Collation::HANGUL_TAG: {
375
0
            const uint32_t *jamoCE32s = d->jamoCE32s;
376
0
            c -= Hangul::HANGUL_BASE;
377
0
            UChar32 t = c % Hangul::JAMO_T_COUNT;
378
0
            c /= Hangul::JAMO_T_COUNT;
379
0
            UChar32 v = c % Hangul::JAMO_V_COUNT;
380
0
            c /= Hangul::JAMO_V_COUNT;
381
0
            if((ce32 & Collation::HANGUL_NO_SPECIAL_JAMO) != 0) {
382
                // None of the Jamo CE32s are isSpecialCE32().
383
                // Avoid recursive function calls and per-Jamo tests.
384
0
                if(ceBuffer.ensureAppendCapacity(t == 0 ? 2 : 3, errorCode)) {
385
0
                    ceBuffer.set(ceBuffer.length, Collation::ceFromCE32(jamoCE32s[c]));
386
0
                    ceBuffer.set(ceBuffer.length + 1, Collation::ceFromCE32(jamoCE32s[19 + v]));
387
0
                    ceBuffer.length += 2;
388
0
                    if(t != 0) {
389
0
                        ceBuffer.appendUnsafe(Collation::ceFromCE32(jamoCE32s[39 + t]));
390
0
                    }
391
0
                }
392
0
                return;
393
0
            } else {
394
                // We should not need to compute each Jamo code point.
395
                // In particular, there should be no offset or implicit ce32.
396
0
                appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[c], forward, errorCode);
397
0
                appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[19 + v], forward, errorCode);
398
0
                if(t == 0) { return; }
399
                // offset 39 = 19 + 21 - 1:
400
                // 19 = JAMO_L_COUNT
401
                // 21 = JAMO_T_COUNT
402
                // -1 = omit t==0
403
0
                ce32 = jamoCE32s[39 + t];
404
0
                c = U_SENTINEL;
405
0
                break;
406
0
            }
407
0
        }
408
0
        case Collation::LEAD_SURROGATE_TAG: {
409
0
            U_ASSERT(forward);  // Backward iteration should never see lead surrogate code _unit_ data.
410
0
            U_ASSERT(U16_IS_LEAD(c));
411
0
            UChar trail;
412
0
            if(U16_IS_TRAIL(trail = handleGetTrailSurrogate())) {
413
0
                c = U16_GET_SUPPLEMENTARY(c, trail);
414
0
                ce32 &= Collation::LEAD_TYPE_MASK;
415
0
                if(ce32 == Collation::LEAD_ALL_UNASSIGNED) {
416
0
                    ce32 = Collation::UNASSIGNED_CE32;  // unassigned-implicit
417
0
                } else if(ce32 == Collation::LEAD_ALL_FALLBACK ||
418
0
                        (ce32 = d->getCE32FromSupplementary(c)) == Collation::FALLBACK_CE32) {
419
                    // fall back to the base data
420
0
                    d = d->base;
421
0
                    ce32 = d->getCE32FromSupplementary(c);
422
0
                }
423
0
            } else {
424
                // c is an unpaired surrogate.
425
0
                ce32 = Collation::UNASSIGNED_CE32;
426
0
            }
427
0
            break;
428
0
        }
429
0
        case Collation::OFFSET_TAG:
430
0
            U_ASSERT(c >= 0);
431
0
            ceBuffer.append(d->getCEFromOffsetCE32(c, ce32), errorCode);
432
0
            return;
433
0
        case Collation::IMPLICIT_TAG:
434
0
            U_ASSERT(c >= 0);
435
0
            if(U_IS_SURROGATE(c) && forbidSurrogateCodePoints()) {
436
0
                ce32 = Collation::FFFD_CE32;
437
0
                break;
438
0
            } else {
439
0
                ceBuffer.append(Collation::unassignedCEFromCodePoint(c), errorCode);
440
0
                return;
441
0
            }
442
0
        }
443
0
    }
444
0
    ceBuffer.append(Collation::ceFromSimpleCE32(ce32), errorCode);
445
0
}
446
447
uint32_t
448
CollationIterator::getCE32FromPrefix(const CollationData *d, uint32_t ce32,
449
0
                                     UErrorCode &errorCode) {
450
0
    const UChar *p = d->contexts + Collation::indexFromCE32(ce32);
451
0
    ce32 = CollationData::readCE32(p);  // Default if no prefix match.
452
0
    p += 2;
453
    // Number of code points read before the original code point.
454
0
    int32_t lookBehind = 0;
455
0
    UCharsTrie prefixes(p);
456
0
    for(;;) {
457
0
        UChar32 c = previousCodePoint(errorCode);
458
0
        if(c < 0) { break; }
459
0
        ++lookBehind;
460
0
        UStringTrieResult match = prefixes.nextForCodePoint(c);
461
0
        if(USTRINGTRIE_HAS_VALUE(match)) {
462
0
            ce32 = (uint32_t)prefixes.getValue();
463
0
        }
464
0
        if(!USTRINGTRIE_HAS_NEXT(match)) { break; }
465
0
    }
466
0
    forwardNumCodePoints(lookBehind, errorCode);
467
0
    return ce32;
468
0
}
469
470
UChar32
471
0
CollationIterator::nextSkippedCodePoint(UErrorCode &errorCode) {
472
0
    if(skipped != NULL && skipped->hasNext()) { return skipped->next(); }
473
0
    if(numCpFwd == 0) { return U_SENTINEL; }
474
0
    UChar32 c = nextCodePoint(errorCode);
475
0
    if(skipped != NULL && !skipped->isEmpty() && c >= 0) { skipped->incBeyond(); }
476
0
    if(numCpFwd > 0 && c >= 0) { --numCpFwd; }
477
0
    return c;
478
0
}
479
480
void
481
0
CollationIterator::backwardNumSkipped(int32_t n, UErrorCode &errorCode) {
482
0
    if(skipped != NULL && !skipped->isEmpty()) {
483
0
        n = skipped->backwardNumCodePoints(n);
484
0
    }
485
0
    backwardNumCodePoints(n, errorCode);
486
0
    if(numCpFwd >= 0) { numCpFwd += n; }
487
0
}
488
489
uint32_t
490
CollationIterator::nextCE32FromContraction(const CollationData *d, uint32_t contractionCE32,
491
                                           const UChar *p, uint32_t ce32, UChar32 c,
492
0
                                           UErrorCode &errorCode) {
493
    // c: next code point after the original one
494
495
    // Number of code points read beyond the original code point.
496
    // Needed for discontiguous contraction matching.
497
0
    int32_t lookAhead = 1;
498
    // Number of code points read since the last match (initially only c).
499
0
    int32_t sinceMatch = 1;
500
    // Normally we only need a contiguous match,
501
    // and therefore need not remember the suffixes state from before a mismatch for retrying.
502
    // If we are already processing skipped combining marks, then we do track the state.
503
0
    UCharsTrie suffixes(p);
504
0
    if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); }
505
0
    UStringTrieResult match = suffixes.firstForCodePoint(c);
506
0
    for(;;) {
507
0
        UChar32 nextCp;
508
0
        if(USTRINGTRIE_HAS_VALUE(match)) {
509
0
            ce32 = (uint32_t)suffixes.getValue();
510
0
            if(!USTRINGTRIE_HAS_NEXT(match) || (c = nextSkippedCodePoint(errorCode)) < 0) {
511
0
                return ce32;
512
0
            }
513
0
            if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); }
514
0
            sinceMatch = 1;
515
0
        } else if(match == USTRINGTRIE_NO_MATCH || (nextCp = nextSkippedCodePoint(errorCode)) < 0) {
516
            // No match for c, or partial match (USTRINGTRIE_NO_VALUE) and no further text.
517
            // Back up if necessary, and try a discontiguous contraction.
518
0
            if((contractionCE32 & Collation::CONTRACT_TRAILING_CCC) != 0 &&
519
                    // Discontiguous contraction matching extends an existing match.
520
                    // If there is no match yet, then there is nothing to do.
521
0
                    ((contractionCE32 & Collation::CONTRACT_SINGLE_CP_NO_MATCH) == 0 ||
522
0
                        sinceMatch < lookAhead)) {
523
                // The last character of at least one suffix has lccc!=0,
524
                // allowing for discontiguous contractions.
525
                // UCA S2.1.1 only processes non-starters immediately following
526
                // "a match in the table" (sinceMatch=1).
527
0
                if(sinceMatch > 1) {
528
                    // Return to the state after the last match.
529
                    // (Return to sinceMatch=0 and re-fetch the first partially-matched character.)
530
0
                    backwardNumSkipped(sinceMatch, errorCode);
531
0
                    c = nextSkippedCodePoint(errorCode);
532
0
                    lookAhead -= sinceMatch - 1;
533
0
                    sinceMatch = 1;
534
0
                }
535
0
                if(d->getFCD16(c) > 0xff) {
536
0
                    return nextCE32FromDiscontiguousContraction(
537
0
                        d, suffixes, ce32, lookAhead, c, errorCode);
538
0
                }
539
0
            }
540
0
            break;
541
0
        } else {
542
            // Continue after partial match (USTRINGTRIE_NO_VALUE) for c.
543
            // It does not have a result value, therefore it is not itself "a match in the table".
544
            // If a partially-matched c has ccc!=0 then
545
            // it might be skipped in discontiguous contraction.
546
0
            c = nextCp;
547
0
            ++sinceMatch;
548
0
        }
549
0
        ++lookAhead;
550
0
        match = suffixes.nextForCodePoint(c);
551
0
    }
552
0
    backwardNumSkipped(sinceMatch, errorCode);
553
0
    return ce32;
554
0
}
555
556
uint32_t
557
CollationIterator::nextCE32FromDiscontiguousContraction(
558
        const CollationData *d, UCharsTrie &suffixes, uint32_t ce32,
559
        int32_t lookAhead, UChar32 c,
560
0
        UErrorCode &errorCode) {
561
0
    if(U_FAILURE(errorCode)) { return 0; }
562
563
    // UCA section 3.3.2 Contractions:
564
    // Contractions that end with non-starter characters
565
    // are known as discontiguous contractions.
566
    // ... discontiguous contractions must be detected in input text
567
    // whenever the final sequence of non-starter characters could be rearranged
568
    // so as to make a contiguous matching sequence that is canonically equivalent.
569
570
    // UCA: http://www.unicode.org/reports/tr10/#S2.1
571
    // S2.1 Find the longest initial substring S at each point that has a match in the table.
572
    // S2.1.1 If there are any non-starters following S, process each non-starter C.
573
    // S2.1.2 If C is not blocked from S, find if S + C has a match in the table.
574
    //     Note: A non-starter in a string is called blocked
575
    //     if there is another non-starter of the same canonical combining class or zero
576
    //     between it and the last character of canonical combining class 0.
577
    // S2.1.3 If there is a match, replace S by S + C, and remove C.
578
579
    // First: Is a discontiguous contraction even possible?
580
0
    uint16_t fcd16 = d->getFCD16(c);
581
0
    U_ASSERT(fcd16 > 0xff);  // The caller checked this already, as a shortcut.
582
0
    UChar32 nextCp = nextSkippedCodePoint(errorCode);
583
0
    if(nextCp < 0) {
584
        // No further text.
585
0
        backwardNumSkipped(1, errorCode);
586
0
        return ce32;
587
0
    }
588
0
    ++lookAhead;
589
0
    uint8_t prevCC = (uint8_t)fcd16;
590
0
    fcd16 = d->getFCD16(nextCp);
591
0
    if(fcd16 <= 0xff) {
592
        // The next code point after c is a starter (S2.1.1 "process each non-starter").
593
0
        backwardNumSkipped(2, errorCode);
594
0
        return ce32;
595
0
    }
596
597
    // We have read and matched (lookAhead-2) code points,
598
    // read non-matching c and peeked ahead at nextCp.
599
    // Return to the state before the mismatch and continue matching with nextCp.
600
0
    if(skipped == NULL || skipped->isEmpty()) {
601
0
        if(skipped == NULL) {
602
0
            skipped = new SkippedState();
603
0
            if(skipped == NULL) {
604
0
                errorCode = U_MEMORY_ALLOCATION_ERROR;
605
0
                return 0;
606
0
            }
607
0
        }
608
0
        suffixes.reset();
609
0
        if(lookAhead > 2) {
610
            // Replay the partial match so far.
611
0
            backwardNumCodePoints(lookAhead, errorCode);
612
0
            suffixes.firstForCodePoint(nextCodePoint(errorCode));
613
0
            for(int32_t i = 3; i < lookAhead; ++i) {
614
0
                suffixes.nextForCodePoint(nextCodePoint(errorCode));
615
0
            }
616
            // Skip c (which did not match) and nextCp (which we will try now).
617
0
            forwardNumCodePoints(2, errorCode);
618
0
        }
619
0
        skipped->saveTrieState(suffixes);
620
0
    } else {
621
        // Reset to the trie state before the failed match of c.
622
0
        skipped->resetToTrieState(suffixes);
623
0
    }
624
625
0
    skipped->setFirstSkipped(c);
626
    // Number of code points read since the last match (at this point: c and nextCp).
627
0
    int32_t sinceMatch = 2;
628
0
    c = nextCp;
629
0
    for(;;) {
630
0
        UStringTrieResult match;
631
        // "If C is not blocked from S, find if S + C has a match in the table." (S2.1.2)
632
0
        if(prevCC < (fcd16 >> 8) && USTRINGTRIE_HAS_VALUE(match = suffixes.nextForCodePoint(c))) {
633
            // "If there is a match, replace S by S + C, and remove C." (S2.1.3)
634
            // Keep prevCC unchanged.
635
0
            ce32 = (uint32_t)suffixes.getValue();
636
0
            sinceMatch = 0;
637
0
            skipped->recordMatch();
638
0
            if(!USTRINGTRIE_HAS_NEXT(match)) { break; }
639
0
            skipped->saveTrieState(suffixes);
640
0
        } else {
641
            // No match for "S + C", skip C.
642
0
            skipped->skip(c);
643
0
            skipped->resetToTrieState(suffixes);
644
0
            prevCC = (uint8_t)fcd16;
645
0
        }
646
0
        if((c = nextSkippedCodePoint(errorCode)) < 0) { break; }
647
0
        ++sinceMatch;
648
0
        fcd16 = d->getFCD16(c);
649
0
        if(fcd16 <= 0xff) {
650
            // The next code point after c is a starter (S2.1.1 "process each non-starter").
651
0
            break;
652
0
        }
653
0
    }
654
0
    backwardNumSkipped(sinceMatch, errorCode);
655
0
    UBool isTopDiscontiguous = skipped->isEmpty();
656
0
    skipped->replaceMatch();
657
0
    if(isTopDiscontiguous && !skipped->isEmpty()) {
658
        // We did get a match after skipping one or more combining marks,
659
        // and we are not in a recursive discontiguous contraction.
660
        // Append CEs from the contraction ce32
661
        // and then from the combining marks that we skipped before the match.
662
0
        c = U_SENTINEL;
663
0
        for(;;) {
664
0
            appendCEsFromCE32(d, c, ce32, TRUE, errorCode);
665
            // Fetch CE32s for skipped combining marks from the normal data, with fallback,
666
            // rather than from the CollationData where we found the contraction.
667
0
            if(!skipped->hasNext()) { break; }
668
0
            c = skipped->next();
669
0
            ce32 = getDataCE32(c);
670
0
            if(ce32 == Collation::FALLBACK_CE32) {
671
0
                d = data->base;
672
0
                ce32 = d->getCE32(c);
673
0
            } else {
674
0
                d = data;
675
0
            }
676
            // Note: A nested discontiguous-contraction match
677
            // replaces consumed combining marks with newly skipped ones
678
            // and resets the reading position to the beginning.
679
0
        }
680
0
        skipped->clear();
681
0
        ce32 = Collation::NO_CE32;  // Signal to the caller that the result is in the ceBuffer.
682
0
    }
683
0
    return ce32;
684
0
}
685
686
void
687
0
CollationIterator::appendNumericCEs(uint32_t ce32, UBool forward, UErrorCode &errorCode) {
688
    // Collect digits.
689
0
    CharString digits;
690
0
    if(forward) {
691
0
        for(;;) {
692
0
            char digit = Collation::digitFromCE32(ce32);
693
0
            digits.append(digit, errorCode);
694
0
            if(numCpFwd == 0) { break; }
695
0
            UChar32 c = nextCodePoint(errorCode);
696
0
            if(c < 0) { break; }
697
0
            ce32 = data->getCE32(c);
698
0
            if(ce32 == Collation::FALLBACK_CE32) {
699
0
                ce32 = data->base->getCE32(c);
700
0
            }
701
0
            if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) {
702
0
                backwardNumCodePoints(1, errorCode);
703
0
                break;
704
0
            }
705
0
            if(numCpFwd > 0) { --numCpFwd; }
706
0
        }
707
0
    } else {
708
0
        for(;;) {
709
0
            char digit = Collation::digitFromCE32(ce32);
710
0
            digits.append(digit, errorCode);
711
0
            UChar32 c = previousCodePoint(errorCode);
712
0
            if(c < 0) { break; }
713
0
            ce32 = data->getCE32(c);
714
0
            if(ce32 == Collation::FALLBACK_CE32) {
715
0
                ce32 = data->base->getCE32(c);
716
0
            }
717
0
            if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) {
718
0
                forwardNumCodePoints(1, errorCode);
719
0
                break;
720
0
            }
721
0
        }
722
        // Reverse the digit string.
723
0
        char *p = digits.data();
724
0
        char *q = p + digits.length() - 1;
725
0
        while(p < q) {
726
0
            char digit = *p;
727
0
            *p++ = *q;
728
0
            *q-- = digit;
729
0
        }
730
0
    }
731
0
    if(U_FAILURE(errorCode)) { return; }
732
0
    int32_t pos = 0;
733
0
    do {
734
        // Skip leading zeros.
735
0
        while(pos < (digits.length() - 1) && digits[pos] == 0) { ++pos; }
736
        // Write a sequence of CEs for at most 254 digits at a time.
737
0
        int32_t segmentLength = digits.length() - pos;
738
0
        if(segmentLength > 254) { segmentLength = 254; }
739
0
        appendNumericSegmentCEs(digits.data() + pos, segmentLength, errorCode);
740
0
        pos += segmentLength;
741
0
    } while(U_SUCCESS(errorCode) && pos < digits.length());
742
0
}
743
744
void
745
0
CollationIterator::appendNumericSegmentCEs(const char *digits, int32_t length, UErrorCode &errorCode) {
746
0
    U_ASSERT(1 <= length && length <= 254);
747
0
    U_ASSERT(length == 1 || digits[0] != 0);
748
0
    uint32_t numericPrimary = data->numericPrimary;
749
    // Note: We use primary byte values 2..255: digits are not compressible.
750
0
    if(length <= 7) {
751
        // Very dense encoding for small numbers.
752
0
        int32_t value = digits[0];
753
0
        for(int32_t i = 1; i < length; ++i) {
754
0
            value = value * 10 + digits[i];
755
0
        }
756
        // Primary weight second byte values:
757
        //     74 byte values   2.. 75 for small numbers in two-byte primary weights.
758
        //     40 byte values  76..115 for medium numbers in three-byte primary weights.
759
        //     16 byte values 116..131 for large numbers in four-byte primary weights.
760
        //    124 byte values 132..255 for very large numbers with 4..127 digit pairs.
761
0
        int32_t firstByte = 2;
762
0
        int32_t numBytes = 74;
763
0
        if(value < numBytes) {
764
            // Two-byte primary for 0..73, good for day & month numbers etc.
765
0
            uint32_t primary = numericPrimary | ((firstByte + value) << 16);
766
0
            ceBuffer.append(Collation::makeCE(primary), errorCode);
767
0
            return;
768
0
        }
769
0
        value -= numBytes;
770
0
        firstByte += numBytes;
771
0
        numBytes = 40;
772
0
        if(value < numBytes * 254) {
773
            // Three-byte primary for 74..10233=74+40*254-1, good for year numbers and more.
774
0
            uint32_t primary = numericPrimary |
775
0
                ((firstByte + value / 254) << 16) | ((2 + value % 254) << 8);
776
0
            ceBuffer.append(Collation::makeCE(primary), errorCode);
777
0
            return;
778
0
        }
779
0
        value -= numBytes * 254;
780
0
        firstByte += numBytes;
781
0
        numBytes = 16;
782
0
        if(value < numBytes * 254 * 254) {
783
            // Four-byte primary for 10234..1042489=10234+16*254*254-1.
784
0
            uint32_t primary = numericPrimary | (2 + value % 254);
785
0
            value /= 254;
786
0
            primary |= (2 + value % 254) << 8;
787
0
            value /= 254;
788
0
            primary |= (firstByte + value % 254) << 16;
789
0
            ceBuffer.append(Collation::makeCE(primary), errorCode);
790
0
            return;
791
0
        }
792
        // original value > 1042489
793
0
    }
794
0
    U_ASSERT(length >= 7);
795
796
    // The second primary byte value 132..255 indicates the number of digit pairs (4..127),
797
    // then we generate primary bytes with those pairs.
798
    // Omit trailing 00 pairs.
799
    // Decrement the value for the last pair.
800
801
    // Set the exponent. 4 pairs->132, 5 pairs->133, ..., 127 pairs->255.
802
0
    int32_t numPairs = (length + 1) / 2;
803
0
    uint32_t primary = numericPrimary | ((132 - 4 + numPairs) << 16);
804
    // Find the length without trailing 00 pairs.
805
0
    while(digits[length - 1] == 0 && digits[length - 2] == 0) {
806
0
        length -= 2;
807
0
    }
808
    // Read the first pair.
809
0
    uint32_t pair;
810
0
    int32_t pos;
811
0
    if(length & 1) {
812
        // Only "half a pair" if we have an odd number of digits.
813
0
        pair = digits[0];
814
0
        pos = 1;
815
0
    } else {
816
0
        pair = digits[0] * 10 + digits[1];
817
0
        pos = 2;
818
0
    }
819
0
    pair = 11 + 2 * pair;
820
    // Add the pairs of digits between pos and length.
821
0
    int32_t shift = 8;
822
0
    while(pos < length) {
823
0
        if(shift == 0) {
824
            // Every three pairs/bytes we need to store a 4-byte-primary CE
825
            // and start with a new CE with the '0' primary lead byte.
826
0
            primary |= pair;
827
0
            ceBuffer.append(Collation::makeCE(primary), errorCode);
828
0
            primary = numericPrimary;
829
0
            shift = 16;
830
0
        } else {
831
0
            primary |= pair << shift;
832
0
            shift -= 8;
833
0
        }
834
0
        pair = 11 + 2 * (digits[pos] * 10 + digits[pos + 1]);
835
0
        pos += 2;
836
0
    }
837
0
    primary |= (pair - 1) << shift;
838
0
    ceBuffer.append(Collation::makeCE(primary), errorCode);
839
0
}
840
841
int64_t
842
0
CollationIterator::previousCE(UVector32 &offsets, UErrorCode &errorCode) {
843
0
    if(ceBuffer.length > 0) {
844
        // Return the previous buffered CE.
845
0
        return ceBuffer.get(--ceBuffer.length);
846
0
    }
847
0
    offsets.removeAllElements();
848
0
    int32_t limitOffset = getOffset();
849
0
    UChar32 c = previousCodePoint(errorCode);
850
0
    if(c < 0) { return Collation::NO_CE; }
851
0
    if(data->isUnsafeBackward(c, isNumeric)) {
852
0
        return previousCEUnsafe(c, offsets, errorCode);
853
0
    }
854
    // Simple, safe-backwards iteration:
855
    // Get a CE going backwards, handle prefixes but no contractions.
856
0
    uint32_t ce32 = data->getCE32(c);
857
0
    const CollationData *d;
858
0
    if(ce32 == Collation::FALLBACK_CE32) {
859
0
        d = data->base;
860
0
        ce32 = d->getCE32(c);
861
0
    } else {
862
0
        d = data;
863
0
    }
864
0
    if(Collation::isSimpleOrLongCE32(ce32)) {
865
0
        return Collation::ceFromCE32(ce32);
866
0
    }
867
0
    appendCEsFromCE32(d, c, ce32, FALSE, errorCode);
868
0
    if(U_SUCCESS(errorCode)) {
869
0
        if(ceBuffer.length > 1) {
870
0
            offsets.addElement(getOffset(), errorCode);
871
            // For an expansion, the offset of each non-initial CE is the limit offset,
872
            // consistent with forward iteration.
873
0
            while(offsets.size() <= ceBuffer.length) {
874
0
                offsets.addElement(limitOffset, errorCode);
875
0
            }
876
0
        }
877
0
        return ceBuffer.get(--ceBuffer.length);
878
0
    } else {
879
0
        return Collation::NO_CE_PRIMARY;
880
0
    }
881
0
}
882
883
int64_t
884
0
CollationIterator::previousCEUnsafe(UChar32 c, UVector32 &offsets, UErrorCode &errorCode) {
885
    // We just move through the input counting safe and unsafe code points
886
    // without collecting the unsafe-backward substring into a buffer and
887
    // switching to it.
888
    // This is to keep the logic simple. Otherwise we would have to handle
889
    // prefix matching going before the backward buffer, switching
890
    // to iteration and back, etc.
891
    // In the most important case of iterating over a normal string,
892
    // reading from the string itself is already maximally fast.
893
    // The only drawback there is that after getting the CEs we always
894
    // skip backward to the safe character rather than switching out
895
    // of a backwardBuffer.
896
    // But this should not be the common case for previousCE(),
897
    // and correctness and maintainability are more important than
898
    // complex optimizations.
899
    // Find the first safe character before c.
900
0
    int32_t numBackward = 1;
901
0
    while((c = previousCodePoint(errorCode)) >= 0) {
902
0
        ++numBackward;
903
0
        if(!data->isUnsafeBackward(c, isNumeric)) {
904
0
            break;
905
0
        }
906
0
    }
907
    // Set the forward iteration limit.
908
    // Note: This counts code points.
909
    // We cannot enforce a limit in the middle of a surrogate pair or similar.
910
0
    numCpFwd = numBackward;
911
    // Reset the forward iterator.
912
0
    cesIndex = 0;
913
0
    U_ASSERT(ceBuffer.length == 0);
914
    // Go forward and collect the CEs.
915
0
    int32_t offset = getOffset();
916
0
    while(numCpFwd > 0) {
917
        // nextCE() normally reads one code point.
918
        // Contraction matching and digit specials read more and check numCpFwd.
919
0
        --numCpFwd;
920
        // Append one or more CEs to the ceBuffer.
921
0
        (void)nextCE(errorCode);
922
0
        U_ASSERT(U_FAILURE(errorCode) || ceBuffer.get(ceBuffer.length - 1) != Collation::NO_CE);
923
        // No need to loop for getting each expansion CE from nextCE().
924
0
        cesIndex = ceBuffer.length;
925
        // However, we need to write an offset for each CE.
926
        // This is for CollationElementIterator::getOffset() to return
927
        // intermediate offsets from the unsafe-backwards segment.
928
0
        U_ASSERT(offsets.size() < ceBuffer.length);
929
0
        offsets.addElement(offset, errorCode);
930
        // For an expansion, the offset of each non-initial CE is the limit offset,
931
        // consistent with forward iteration.
932
0
        offset = getOffset();
933
0
        while(offsets.size() < ceBuffer.length) {
934
0
            offsets.addElement(offset, errorCode);
935
0
        }
936
0
    }
937
0
    U_ASSERT(offsets.size() == ceBuffer.length);
938
    // End offset corresponding to just after the unsafe-backwards segment.
939
0
    offsets.addElement(offset, errorCode);
940
    // Reset the forward iteration limit
941
    // and move backward to before the segment for which we fetched CEs.
942
0
    numCpFwd = -1;
943
0
    backwardNumCodePoints(numBackward, errorCode);
944
    // Use the collected CEs and return the last one.
945
0
    cesIndex = 0;  // Avoid cesIndex > ceBuffer.length when that gets decremented.
946
0
    if(U_SUCCESS(errorCode)) {
947
0
        return ceBuffer.get(--ceBuffer.length);
948
0
    } else {
949
0
        return Collation::NO_CE_PRIMARY;
950
0
    }
951
0
}
952
953
U_NAMESPACE_END
954
955
#endif  // !UCONFIG_NO_COLLATION