Coverage Report

Created: 2025-06-24 06:43

/src/icu/source/i18n/double-conversion-bignum-dtoa.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2018 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
//
4
// From the double-conversion library. Original license:
5
//
6
// Copyright 2010 the V8 project authors. All rights reserved.
7
// Redistribution and use in source and binary forms, with or without
8
// modification, are permitted provided that the following conditions are
9
// met:
10
//
11
//     * Redistributions of source code must retain the above copyright
12
//       notice, this list of conditions and the following disclaimer.
13
//     * Redistributions in binary form must reproduce the above
14
//       copyright notice, this list of conditions and the following
15
//       disclaimer in the documentation and/or other materials provided
16
//       with the distribution.
17
//     * Neither the name of Google Inc. nor the names of its
18
//       contributors may be used to endorse or promote products derived
19
//       from this software without specific prior written permission.
20
//
21
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
33
// ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34
#include "unicode/utypes.h"
35
#if !UCONFIG_NO_FORMATTING
36
37
#include <cmath>
38
39
// ICU PATCH: Customize header file paths for ICU.
40
41
#include "double-conversion-bignum-dtoa.h"
42
43
#include "double-conversion-bignum.h"
44
#include "double-conversion-ieee.h"
45
46
// ICU PATCH: Wrap in ICU namespace
47
U_NAMESPACE_BEGIN
48
49
namespace double_conversion {
50
51
0
static int NormalizedExponent(uint64_t significand, int exponent) {
52
0
  DOUBLE_CONVERSION_ASSERT(significand != 0);
53
0
  while ((significand & Double::kHiddenBit) == 0) {
54
0
    significand = significand << 1;
55
0
    exponent = exponent - 1;
56
0
  }
57
0
  return exponent;
58
0
}
59
60
61
// Forward declarations:
62
// Returns an estimation of k such that 10^(k-1) <= v < 10^k.
63
static int EstimatePower(int exponent);
64
// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
65
// and denominator.
66
static void InitialScaledStartValues(uint64_t significand,
67
                                     int exponent,
68
                                     bool lower_boundary_is_closer,
69
                                     int estimated_power,
70
                                     bool need_boundary_deltas,
71
                                     Bignum* numerator,
72
                                     Bignum* denominator,
73
                                     Bignum* delta_minus,
74
                                     Bignum* delta_plus);
75
// Multiplies numerator/denominator so that its values lies in the range 1-10.
76
// Returns decimal_point s.t.
77
//  v = numerator'/denominator' * 10^(decimal_point-1)
78
//     where numerator' and denominator' are the values of numerator and
79
//     denominator after the call to this function.
80
static void FixupMultiply10(int estimated_power, bool is_even,
81
                            int* decimal_point,
82
                            Bignum* numerator, Bignum* denominator,
83
                            Bignum* delta_minus, Bignum* delta_plus);
84
// Generates digits from the left to the right and stops when the generated
85
// digits yield the shortest decimal representation of v.
86
static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
87
                                   Bignum* delta_minus, Bignum* delta_plus,
88
                                   bool is_even,
89
                                   Vector<char> buffer, int* length);
90
// Generates 'requested_digits' after the decimal point.
91
static void BignumToFixed(int requested_digits, int* decimal_point,
92
                          Bignum* numerator, Bignum* denominator,
93
                          Vector<char> buffer, int* length);
94
// Generates 'count' digits of numerator/denominator.
95
// Once 'count' digits have been produced rounds the result depending on the
96
// remainder (remainders of exactly .5 round upwards). Might update the
97
// decimal_point when rounding up (for example for 0.9999).
98
static void GenerateCountedDigits(int count, int* decimal_point,
99
                                  Bignum* numerator, Bignum* denominator,
100
                                  Vector<char> buffer, int* length);
101
102
103
void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
104
0
                Vector<char> buffer, int* length, int* decimal_point) {
105
0
  DOUBLE_CONVERSION_ASSERT(v > 0);
106
0
  DOUBLE_CONVERSION_ASSERT(!Double(v).IsSpecial());
107
0
  uint64_t significand;
108
0
  int exponent;
109
0
  bool lower_boundary_is_closer;
110
0
  if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) {
111
0
    float f = static_cast<float>(v);
112
0
    DOUBLE_CONVERSION_ASSERT(f == v);
113
0
    significand = Single(f).Significand();
114
0
    exponent = Single(f).Exponent();
115
0
    lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser();
116
0
  } else {
117
0
    significand = Double(v).Significand();
118
0
    exponent = Double(v).Exponent();
119
0
    lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser();
120
0
  }
121
0
  bool need_boundary_deltas =
122
0
      (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE);
123
124
0
  bool is_even = (significand & 1) == 0;
125
0
  int normalized_exponent = NormalizedExponent(significand, exponent);
126
  // estimated_power might be too low by 1.
127
0
  int estimated_power = EstimatePower(normalized_exponent);
128
129
  // Shortcut for Fixed.
130
  // The requested digits correspond to the digits after the point. If the
131
  // number is much too small, then there is no need in trying to get any
132
  // digits.
133
0
  if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
134
0
    buffer[0] = '\0';
135
0
    *length = 0;
136
    // Set decimal-point to -requested_digits. This is what Gay does.
137
    // Note that it should not have any effect anyways since the string is
138
    // empty.
139
0
    *decimal_point = -requested_digits;
140
0
    return;
141
0
  }
142
143
0
  Bignum numerator;
144
0
  Bignum denominator;
145
0
  Bignum delta_minus;
146
0
  Bignum delta_plus;
147
  // Make sure the bignum can grow large enough. The smallest double equals
148
  // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
149
  // The maximum double is 1.7976931348623157e308 which needs fewer than
150
  // 308*4 binary digits.
151
0
  DOUBLE_CONVERSION_ASSERT(Bignum::kMaxSignificantBits >= 324*4);
152
0
  InitialScaledStartValues(significand, exponent, lower_boundary_is_closer,
153
0
                           estimated_power, need_boundary_deltas,
154
0
                           &numerator, &denominator,
155
0
                           &delta_minus, &delta_plus);
156
  // We now have v = (numerator / denominator) * 10^estimated_power.
157
0
  FixupMultiply10(estimated_power, is_even, decimal_point,
158
0
                  &numerator, &denominator,
159
0
                  &delta_minus, &delta_plus);
160
  // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
161
  //  1 <= (numerator + delta_plus) / denominator < 10
162
0
  switch (mode) {
163
0
    case BIGNUM_DTOA_SHORTEST:
164
0
    case BIGNUM_DTOA_SHORTEST_SINGLE:
165
0
      GenerateShortestDigits(&numerator, &denominator,
166
0
                             &delta_minus, &delta_plus,
167
0
                             is_even, buffer, length);
168
0
      break;
169
0
    case BIGNUM_DTOA_FIXED:
170
0
      BignumToFixed(requested_digits, decimal_point,
171
0
                    &numerator, &denominator,
172
0
                    buffer, length);
173
0
      break;
174
0
    case BIGNUM_DTOA_PRECISION:
175
0
      GenerateCountedDigits(requested_digits, decimal_point,
176
0
                            &numerator, &denominator,
177
0
                            buffer, length);
178
0
      break;
179
0
    default:
180
0
      DOUBLE_CONVERSION_UNREACHABLE();
181
0
  }
182
0
  buffer[*length] = '\0';
183
0
}
184
185
186
// The procedure starts generating digits from the left to the right and stops
187
// when the generated digits yield the shortest decimal representation of v. A
188
// decimal representation of v is a number lying closer to v than to any other
189
// double, so it converts to v when read.
190
//
191
// This is true if d, the decimal representation, is between m- and m+, the
192
// upper and lower boundaries. d must be strictly between them if !is_even.
193
//           m- := (numerator - delta_minus) / denominator
194
//           m+ := (numerator + delta_plus) / denominator
195
//
196
// Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
197
//   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
198
//   will be produced. This should be the standard precondition.
199
static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
200
                                   Bignum* delta_minus, Bignum* delta_plus,
201
                                   bool is_even,
202
0
                                   Vector<char> buffer, int* length) {
203
  // Small optimization: if delta_minus and delta_plus are the same just reuse
204
  // one of the two bignums.
205
0
  if (Bignum::Equal(*delta_minus, *delta_plus)) {
206
0
    delta_plus = delta_minus;
207
0
  }
208
0
  *length = 0;
209
0
  for (;;) {
210
0
    uint16_t digit;
211
0
    digit = numerator->DivideModuloIntBignum(*denominator);
212
0
    DOUBLE_CONVERSION_ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
213
    // digit = numerator / denominator (integer division).
214
    // numerator = numerator % denominator.
215
0
    buffer[(*length)++] = static_cast<char>(digit + '0');
216
217
    // Can we stop already?
218
    // If the remainder of the division is less than the distance to the lower
219
    // boundary we can stop. In this case we simply round down (discarding the
220
    // remainder).
221
    // Similarly we test if we can round up (using the upper boundary).
222
0
    bool in_delta_room_minus;
223
0
    bool in_delta_room_plus;
224
0
    if (is_even) {
225
0
      in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
226
0
    } else {
227
0
      in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
228
0
    }
229
0
    if (is_even) {
230
0
      in_delta_room_plus =
231
0
          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
232
0
    } else {
233
0
      in_delta_room_plus =
234
0
          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
235
0
    }
236
0
    if (!in_delta_room_minus && !in_delta_room_plus) {
237
      // Prepare for next iteration.
238
0
      numerator->Times10();
239
0
      delta_minus->Times10();
240
      // We optimized delta_plus to be equal to delta_minus (if they share the
241
      // same value). So don't multiply delta_plus if they point to the same
242
      // object.
243
0
      if (delta_minus != delta_plus) {
244
0
        delta_plus->Times10();
245
0
      }
246
0
    } else if (in_delta_room_minus && in_delta_room_plus) {
247
      // Let's see if 2*numerator < denominator.
248
      // If yes, then the next digit would be < 5 and we can round down.
249
0
      int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
250
0
      if (compare < 0) {
251
        // Remaining digits are less than .5. -> Round down (== do nothing).
252
0
      } else if (compare > 0) {
253
        // Remaining digits are more than .5 of denominator. -> Round up.
254
        // Note that the last digit could not be a '9' as otherwise the whole
255
        // loop would have stopped earlier.
256
        // We still have an assert here in case the preconditions were not
257
        // satisfied.
258
0
        DOUBLE_CONVERSION_ASSERT(buffer[(*length) - 1] != '9');
259
0
        buffer[(*length) - 1]++;
260
0
      } else {
261
        // Halfway case.
262
        // TODO(floitsch): need a way to solve half-way cases.
263
        //   For now let's round towards even (since this is what Gay seems to
264
        //   do).
265
266
0
        if ((buffer[(*length) - 1] - '0') % 2 == 0) {
267
          // Round down => Do nothing.
268
0
        } else {
269
0
          DOUBLE_CONVERSION_ASSERT(buffer[(*length) - 1] != '9');
270
0
          buffer[(*length) - 1]++;
271
0
        }
272
0
      }
273
0
      return;
274
0
    } else if (in_delta_room_minus) {
275
      // Round down (== do nothing).
276
0
      return;
277
0
    } else {  // in_delta_room_plus
278
      // Round up.
279
      // Note again that the last digit could not be '9' since this would have
280
      // stopped the loop earlier.
281
      // We still have an DOUBLE_CONVERSION_ASSERT here, in case the preconditions were not
282
      // satisfied.
283
0
      DOUBLE_CONVERSION_ASSERT(buffer[(*length) -1] != '9');
284
0
      buffer[(*length) - 1]++;
285
0
      return;
286
0
    }
287
0
  }
288
0
}
289
290
291
// Let v = numerator / denominator < 10.
292
// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
293
// from left to right. Once 'count' digits have been produced we decide whether
294
// to round up or down. Remainders of exactly .5 round upwards. Numbers such
295
// as 9.999999 propagate a carry all the way, and change the
296
// exponent (decimal_point), when rounding upwards.
297
static void GenerateCountedDigits(int count, int* decimal_point,
298
                                  Bignum* numerator, Bignum* denominator,
299
0
                                  Vector<char> buffer, int* length) {
300
0
  DOUBLE_CONVERSION_ASSERT(count >= 0);
301
0
  for (int i = 0; i < count - 1; ++i) {
302
0
    uint16_t digit;
303
0
    digit = numerator->DivideModuloIntBignum(*denominator);
304
0
    DOUBLE_CONVERSION_ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
305
    // digit = numerator / denominator (integer division).
306
    // numerator = numerator % denominator.
307
0
    buffer[i] = static_cast<char>(digit + '0');
308
    // Prepare for next iteration.
309
0
    numerator->Times10();
310
0
  }
311
  // Generate the last digit.
312
0
  uint16_t digit;
313
0
  digit = numerator->DivideModuloIntBignum(*denominator);
314
0
  if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
315
0
    digit++;
316
0
  }
317
0
  DOUBLE_CONVERSION_ASSERT(digit <= 10);
318
0
  buffer[count - 1] = static_cast<char>(digit + '0');
319
  // Correct bad digits (in case we had a sequence of '9's). Propagate the
320
  // carry until we hat a non-'9' or til we reach the first digit.
321
0
  for (int i = count - 1; i > 0; --i) {
322
0
    if (buffer[i] != '0' + 10) break;
323
0
    buffer[i] = '0';
324
0
    buffer[i - 1]++;
325
0
  }
326
0
  if (buffer[0] == '0' + 10) {
327
    // Propagate a carry past the top place.
328
0
    buffer[0] = '1';
329
0
    (*decimal_point)++;
330
0
  }
331
0
  *length = count;
332
0
}
333
334
335
// Generates 'requested_digits' after the decimal point. It might omit
336
// trailing '0's. If the input number is too small then no digits at all are
337
// generated (ex.: 2 fixed digits for 0.00001).
338
//
339
// Input verifies:  1 <= (numerator + delta) / denominator < 10.
340
static void BignumToFixed(int requested_digits, int* decimal_point,
341
                          Bignum* numerator, Bignum* denominator,
342
0
                          Vector<char> buffer, int* length) {
343
  // Note that we have to look at more than just the requested_digits, since
344
  // a number could be rounded up. Example: v=0.5 with requested_digits=0.
345
  // Even though the power of v equals 0 we can't just stop here.
346
0
  if (-(*decimal_point) > requested_digits) {
347
    // The number is definitively too small.
348
    // Ex: 0.001 with requested_digits == 1.
349
    // Set decimal-point to -requested_digits. This is what Gay does.
350
    // Note that it should not have any effect anyways since the string is
351
    // empty.
352
0
    *decimal_point = -requested_digits;
353
0
    *length = 0;
354
0
    return;
355
0
  } else if (-(*decimal_point) == requested_digits) {
356
    // We only need to verify if the number rounds down or up.
357
    // Ex: 0.04 and 0.06 with requested_digits == 1.
358
0
    DOUBLE_CONVERSION_ASSERT(*decimal_point == -requested_digits);
359
    // Initially the fraction lies in range (1, 10]. Multiply the denominator
360
    // by 10 so that we can compare more easily.
361
0
    denominator->Times10();
362
0
    if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
363
      // If the fraction is >= 0.5 then we have to include the rounded
364
      // digit.
365
0
      buffer[0] = '1';
366
0
      *length = 1;
367
0
      (*decimal_point)++;
368
0
    } else {
369
      // Note that we caught most of similar cases earlier.
370
0
      *length = 0;
371
0
    }
372
0
    return;
373
0
  } else {
374
    // The requested digits correspond to the digits after the point.
375
    // The variable 'needed_digits' includes the digits before the point.
376
0
    int needed_digits = (*decimal_point) + requested_digits;
377
0
    GenerateCountedDigits(needed_digits, decimal_point,
378
0
                          numerator, denominator,
379
0
                          buffer, length);
380
0
  }
381
0
}
382
383
384
// Returns an estimation of k such that 10^(k-1) <= v < 10^k where
385
// v = f * 2^exponent and 2^52 <= f < 2^53.
386
// v is hence a normalized double with the given exponent. The output is an
387
// approximation for the exponent of the decimal approximation .digits * 10^k.
388
//
389
// The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
390
// Note: this property holds for v's upper boundary m+ too.
391
//    10^k <= m+ < 10^k+1.
392
//   (see explanation below).
393
//
394
// Examples:
395
//  EstimatePower(0)   => 16
396
//  EstimatePower(-52) => 0
397
//
398
// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
399
0
static int EstimatePower(int exponent) {
400
  // This function estimates log10 of v where v = f*2^e (with e == exponent).
401
  // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
402
  // Note that f is bounded by its container size. Let p = 53 (the double's
403
  // significand size). Then 2^(p-1) <= f < 2^p.
404
  //
405
  // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
406
  // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
407
  // The computed number undershoots by less than 0.631 (when we compute log3
408
  // and not log10).
409
  //
410
  // Optimization: since we only need an approximated result this computation
411
  // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
412
  // not really measurable, though.
413
  //
414
  // Since we want to avoid overshooting we decrement by 1e10 so that
415
  // floating-point imprecisions don't affect us.
416
  //
417
  // Explanation for v's boundary m+: the computation takes advantage of
418
  // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
419
  // (even for denormals where the delta can be much more important).
420
421
0
  const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
422
423
  // For doubles len(f) == 53 (don't forget the hidden bit).
424
0
  const int kSignificandSize = Double::kSignificandSize;
425
0
  double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
426
0
  return static_cast<int>(estimate);
427
0
}
428
429
430
// See comments for InitialScaledStartValues.
431
static void InitialScaledStartValuesPositiveExponent(
432
    uint64_t significand, int exponent,
433
    int estimated_power, bool need_boundary_deltas,
434
    Bignum* numerator, Bignum* denominator,
435
0
    Bignum* delta_minus, Bignum* delta_plus) {
436
  // A positive exponent implies a positive power.
437
0
  DOUBLE_CONVERSION_ASSERT(estimated_power >= 0);
438
  // Since the estimated_power is positive we simply multiply the denominator
439
  // by 10^estimated_power.
440
441
  // numerator = v.
442
0
  numerator->AssignUInt64(significand);
443
0
  numerator->ShiftLeft(exponent);
444
  // denominator = 10^estimated_power.
445
0
  denominator->AssignPowerUInt16(10, estimated_power);
446
447
0
  if (need_boundary_deltas) {
448
    // Introduce a common denominator so that the deltas to the boundaries are
449
    // integers.
450
0
    denominator->ShiftLeft(1);
451
0
    numerator->ShiftLeft(1);
452
    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
453
    // denominator (of 2) delta_plus equals 2^e.
454
0
    delta_plus->AssignUInt16(1);
455
0
    delta_plus->ShiftLeft(exponent);
456
    // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
457
0
    delta_minus->AssignUInt16(1);
458
0
    delta_minus->ShiftLeft(exponent);
459
0
  }
460
0
}
461
462
463
// See comments for InitialScaledStartValues
464
static void InitialScaledStartValuesNegativeExponentPositivePower(
465
    uint64_t significand, int exponent,
466
    int estimated_power, bool need_boundary_deltas,
467
    Bignum* numerator, Bignum* denominator,
468
0
    Bignum* delta_minus, Bignum* delta_plus) {
469
  // v = f * 2^e with e < 0, and with estimated_power >= 0.
470
  // This means that e is close to 0 (have a look at how estimated_power is
471
  // computed).
472
473
  // numerator = significand
474
  //  since v = significand * 2^exponent this is equivalent to
475
  //  numerator = v * / 2^-exponent
476
0
  numerator->AssignUInt64(significand);
477
  // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
478
0
  denominator->AssignPowerUInt16(10, estimated_power);
479
0
  denominator->ShiftLeft(-exponent);
480
481
0
  if (need_boundary_deltas) {
482
    // Introduce a common denominator so that the deltas to the boundaries are
483
    // integers.
484
0
    denominator->ShiftLeft(1);
485
0
    numerator->ShiftLeft(1);
486
    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
487
    // denominator (of 2) delta_plus equals 2^e.
488
    // Given that the denominator already includes v's exponent the distance
489
    // to the boundaries is simply 1.
490
0
    delta_plus->AssignUInt16(1);
491
    // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
492
0
    delta_minus->AssignUInt16(1);
493
0
  }
494
0
}
495
496
497
// See comments for InitialScaledStartValues
498
static void InitialScaledStartValuesNegativeExponentNegativePower(
499
    uint64_t significand, int exponent,
500
    int estimated_power, bool need_boundary_deltas,
501
    Bignum* numerator, Bignum* denominator,
502
0
    Bignum* delta_minus, Bignum* delta_plus) {
503
  // Instead of multiplying the denominator with 10^estimated_power we
504
  // multiply all values (numerator and deltas) by 10^-estimated_power.
505
506
  // Use numerator as temporary container for power_ten.
507
0
  Bignum* power_ten = numerator;
508
0
  power_ten->AssignPowerUInt16(10, -estimated_power);
509
510
0
  if (need_boundary_deltas) {
511
    // Since power_ten == numerator we must make a copy of 10^estimated_power
512
    // before we complete the computation of the numerator.
513
    // delta_plus = delta_minus = 10^estimated_power
514
0
    delta_plus->AssignBignum(*power_ten);
515
0
    delta_minus->AssignBignum(*power_ten);
516
0
  }
517
518
  // numerator = significand * 2 * 10^-estimated_power
519
  //  since v = significand * 2^exponent this is equivalent to
520
  // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
521
  // Remember: numerator has been abused as power_ten. So no need to assign it
522
  //  to itself.
523
0
  DOUBLE_CONVERSION_ASSERT(numerator == power_ten);
524
0
  numerator->MultiplyByUInt64(significand);
525
526
  // denominator = 2 * 2^-exponent with exponent < 0.
527
0
  denominator->AssignUInt16(1);
528
0
  denominator->ShiftLeft(-exponent);
529
530
0
  if (need_boundary_deltas) {
531
    // Introduce a common denominator so that the deltas to the boundaries are
532
    // integers.
533
0
    numerator->ShiftLeft(1);
534
0
    denominator->ShiftLeft(1);
535
    // With this shift the boundaries have their correct value, since
536
    // delta_plus = 10^-estimated_power, and
537
    // delta_minus = 10^-estimated_power.
538
    // These assignments have been done earlier.
539
    // The adjustments if f == 2^p-1 (lower boundary is closer) are done later.
540
0
  }
541
0
}
542
543
544
// Let v = significand * 2^exponent.
545
// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
546
// and denominator. The functions GenerateShortestDigits and
547
// GenerateCountedDigits will then convert this ratio to its decimal
548
// representation d, with the required accuracy.
549
// Then d * 10^estimated_power is the representation of v.
550
// (Note: the fraction and the estimated_power might get adjusted before
551
// generating the decimal representation.)
552
//
553
// The initial start values consist of:
554
//  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
555
//  - a scaled (common) denominator.
556
//  optionally (used by GenerateShortestDigits to decide if it has the shortest
557
//  decimal converting back to v):
558
//  - v - m-: the distance to the lower boundary.
559
//  - m+ - v: the distance to the upper boundary.
560
//
561
// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
562
//
563
// Let ep == estimated_power, then the returned values will satisfy:
564
//  v / 10^ep = numerator / denominator.
565
//  v's boundaries m- and m+:
566
//    m- / 10^ep == v / 10^ep - delta_minus / denominator
567
//    m+ / 10^ep == v / 10^ep + delta_plus / denominator
568
//  Or in other words:
569
//    m- == v - delta_minus * 10^ep / denominator;
570
//    m+ == v + delta_plus * 10^ep / denominator;
571
//
572
// Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
573
//  or       10^k <= v < 10^(k+1)
574
//  we then have 0.1 <= numerator/denominator < 1
575
//           or    1 <= numerator/denominator < 10
576
//
577
// It is then easy to kickstart the digit-generation routine.
578
//
579
// The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST
580
// or BIGNUM_DTOA_SHORTEST_SINGLE.
581
582
static void InitialScaledStartValues(uint64_t significand,
583
                                     int exponent,
584
                                     bool lower_boundary_is_closer,
585
                                     int estimated_power,
586
                                     bool need_boundary_deltas,
587
                                     Bignum* numerator,
588
                                     Bignum* denominator,
589
                                     Bignum* delta_minus,
590
0
                                     Bignum* delta_plus) {
591
0
  if (exponent >= 0) {
592
0
    InitialScaledStartValuesPositiveExponent(
593
0
        significand, exponent, estimated_power, need_boundary_deltas,
594
0
        numerator, denominator, delta_minus, delta_plus);
595
0
  } else if (estimated_power >= 0) {
596
0
    InitialScaledStartValuesNegativeExponentPositivePower(
597
0
        significand, exponent, estimated_power, need_boundary_deltas,
598
0
        numerator, denominator, delta_minus, delta_plus);
599
0
  } else {
600
0
    InitialScaledStartValuesNegativeExponentNegativePower(
601
0
        significand, exponent, estimated_power, need_boundary_deltas,
602
0
        numerator, denominator, delta_minus, delta_plus);
603
0
  }
604
605
0
  if (need_boundary_deltas && lower_boundary_is_closer) {
606
    // The lower boundary is closer at half the distance of "normal" numbers.
607
    // Increase the common denominator and adapt all but the delta_minus.
608
0
    denominator->ShiftLeft(1);  // *2
609
0
    numerator->ShiftLeft(1);    // *2
610
0
    delta_plus->ShiftLeft(1);   // *2
611
0
  }
612
0
}
613
614
615
// This routine multiplies numerator/denominator so that its values lies in the
616
// range 1-10. That is after a call to this function we have:
617
//    1 <= (numerator + delta_plus) /denominator < 10.
618
// Let numerator the input before modification and numerator' the argument
619
// after modification, then the output-parameter decimal_point is such that
620
//  numerator / denominator * 10^estimated_power ==
621
//    numerator' / denominator' * 10^(decimal_point - 1)
622
// In some cases estimated_power was too low, and this is already the case. We
623
// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
624
// estimated_power) but do not touch the numerator or denominator.
625
// Otherwise the routine multiplies the numerator and the deltas by 10.
626
static void FixupMultiply10(int estimated_power, bool is_even,
627
                            int* decimal_point,
628
                            Bignum* numerator, Bignum* denominator,
629
0
                            Bignum* delta_minus, Bignum* delta_plus) {
630
0
  bool in_range;
631
0
  if (is_even) {
632
    // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
633
    // are rounded to the closest floating-point number with even significand.
634
0
    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
635
0
  } else {
636
0
    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
637
0
  }
638
0
  if (in_range) {
639
    // Since numerator + delta_plus >= denominator we already have
640
    // 1 <= numerator/denominator < 10. Simply update the estimated_power.
641
0
    *decimal_point = estimated_power + 1;
642
0
  } else {
643
0
    *decimal_point = estimated_power;
644
0
    numerator->Times10();
645
0
    if (Bignum::Equal(*delta_minus, *delta_plus)) {
646
0
      delta_minus->Times10();
647
0
      delta_plus->AssignBignum(*delta_minus);
648
0
    } else {
649
0
      delta_minus->Times10();
650
0
      delta_plus->Times10();
651
0
    }
652
0
  }
653
0
}
654
655
}  // namespace double_conversion
656
657
// ICU PATCH: Close ICU namespace
658
U_NAMESPACE_END
659
#endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING