Coverage Report

Created: 2025-06-24 06:43

/src/icu/source/i18n/double-conversion-fast-dtoa.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2018 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
//
4
// From the double-conversion library. Original license:
5
//
6
// Copyright 2012 the V8 project authors. All rights reserved.
7
// Redistribution and use in source and binary forms, with or without
8
// modification, are permitted provided that the following conditions are
9
// met:
10
//
11
//     * Redistributions of source code must retain the above copyright
12
//       notice, this list of conditions and the following disclaimer.
13
//     * Redistributions in binary form must reproduce the above
14
//       copyright notice, this list of conditions and the following
15
//       disclaimer in the documentation and/or other materials provided
16
//       with the distribution.
17
//     * Neither the name of Google Inc. nor the names of its
18
//       contributors may be used to endorse or promote products derived
19
//       from this software without specific prior written permission.
20
//
21
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
33
// ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34
#include "unicode/utypes.h"
35
#if !UCONFIG_NO_FORMATTING
36
37
// ICU PATCH: Customize header file paths for ICU.
38
39
#include "double-conversion-fast-dtoa.h"
40
41
#include "double-conversion-cached-powers.h"
42
#include "double-conversion-diy-fp.h"
43
#include "double-conversion-ieee.h"
44
45
// ICU PATCH: Wrap in ICU namespace
46
U_NAMESPACE_BEGIN
47
48
namespace double_conversion {
49
50
// The minimal and maximal target exponent define the range of w's binary
51
// exponent, where 'w' is the result of multiplying the input by a cached power
52
// of ten.
53
//
54
// A different range might be chosen on a different platform, to optimize digit
55
// generation, but a smaller range requires more powers of ten to be cached.
56
static const int kMinimalTargetExponent = -60;
57
static const int kMaximalTargetExponent = -32;
58
59
60
// Adjusts the last digit of the generated number, and screens out generated
61
// solutions that may be inaccurate. A solution may be inaccurate if it is
62
// outside the safe interval, or if we cannot prove that it is closer to the
63
// input than a neighboring representation of the same length.
64
//
65
// Input: * buffer containing the digits of too_high / 10^kappa
66
//        * the buffer's length
67
//        * distance_too_high_w == (too_high - w).f() * unit
68
//        * unsafe_interval == (too_high - too_low).f() * unit
69
//        * rest = (too_high - buffer * 10^kappa).f() * unit
70
//        * ten_kappa = 10^kappa * unit
71
//        * unit = the common multiplier
72
// Output: returns true if the buffer is guaranteed to contain the closest
73
//    representable number to the input.
74
//  Modifies the generated digits in the buffer to approach (round towards) w.
75
static bool RoundWeed(Vector<char> buffer,
76
                      int length,
77
                      uint64_t distance_too_high_w,
78
                      uint64_t unsafe_interval,
79
                      uint64_t rest,
80
                      uint64_t ten_kappa,
81
0
                      uint64_t unit) {
82
0
  uint64_t small_distance = distance_too_high_w - unit;
83
0
  uint64_t big_distance = distance_too_high_w + unit;
84
  // Let w_low  = too_high - big_distance, and
85
  //     w_high = too_high - small_distance.
86
  // Note: w_low < w < w_high
87
  //
88
  // The real w (* unit) must lie somewhere inside the interval
89
  // ]w_low; w_high[ (often written as "(w_low; w_high)")
90
91
  // Basically the buffer currently contains a number in the unsafe interval
92
  // ]too_low; too_high[ with too_low < w < too_high
93
  //
94
  //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
95
  //                     ^v 1 unit            ^      ^                 ^      ^
96
  //  boundary_high ---------------------     .      .                 .      .
97
  //                     ^v 1 unit            .      .                 .      .
98
  //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .
99
  //                                          .      .         ^       .      .
100
  //                                          .  big_distance  .       .      .
101
  //                                          .      .         .       .    rest
102
  //                              small_distance     .         .       .      .
103
  //                                          v      .         .       .      .
104
  //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .
105
  //                     ^v 1 unit                   .         .       .      .
106
  //  w ----------------------------------------     .         .       .      .
107
  //                     ^v 1 unit                   v         .       .      .
108
  //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .
109
  //                                                           .       .      v
110
  //  buffer --------------------------------------------------+-------+--------
111
  //                                                           .       .
112
  //                                                  safe_interval    .
113
  //                                                           v       .
114
  //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .
115
  //                     ^v 1 unit                                     .
116
  //  boundary_low -------------------------                     unsafe_interval
117
  //                     ^v 1 unit                                     v
118
  //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
119
  //
120
  //
121
  // Note that the value of buffer could lie anywhere inside the range too_low
122
  // to too_high.
123
  //
124
  // boundary_low, boundary_high and w are approximations of the real boundaries
125
  // and v (the input number). They are guaranteed to be precise up to one unit.
126
  // In fact the error is guaranteed to be strictly less than one unit.
127
  //
128
  // Anything that lies outside the unsafe interval is guaranteed not to round
129
  // to v when read again.
130
  // Anything that lies inside the safe interval is guaranteed to round to v
131
  // when read again.
132
  // If the number inside the buffer lies inside the unsafe interval but not
133
  // inside the safe interval then we simply do not know and bail out (returning
134
  // false).
135
  //
136
  // Similarly we have to take into account the imprecision of 'w' when finding
137
  // the closest representation of 'w'. If we have two potential
138
  // representations, and one is closer to both w_low and w_high, then we know
139
  // it is closer to the actual value v.
140
  //
141
  // By generating the digits of too_high we got the largest (closest to
142
  // too_high) buffer that is still in the unsafe interval. In the case where
143
  // w_high < buffer < too_high we try to decrement the buffer.
144
  // This way the buffer approaches (rounds towards) w.
145
  // There are 3 conditions that stop the decrementation process:
146
  //   1) the buffer is already below w_high
147
  //   2) decrementing the buffer would make it leave the unsafe interval
148
  //   3) decrementing the buffer would yield a number below w_high and farther
149
  //      away than the current number. In other words:
150
  //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
151
  // Instead of using the buffer directly we use its distance to too_high.
152
  // Conceptually rest ~= too_high - buffer
153
  // We need to do the following tests in this order to avoid over- and
154
  // underflows.
155
0
  DOUBLE_CONVERSION_ASSERT(rest <= unsafe_interval);
156
0
  while (rest < small_distance &&  // Negated condition 1
157
0
         unsafe_interval - rest >= ten_kappa &&  // Negated condition 2
158
0
         (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high
159
0
          small_distance - rest >= rest + ten_kappa - small_distance)) {
160
0
    buffer[length - 1]--;
161
0
    rest += ten_kappa;
162
0
  }
163
164
  // We have approached w+ as much as possible. We now test if approaching w-
165
  // would require changing the buffer. If yes, then we have two possible
166
  // representations close to w, but we cannot decide which one is closer.
167
0
  if (rest < big_distance &&
168
0
      unsafe_interval - rest >= ten_kappa &&
169
0
      (rest + ten_kappa < big_distance ||
170
0
       big_distance - rest > rest + ten_kappa - big_distance)) {
171
0
    return false;
172
0
  }
173
174
  // Weeding test.
175
  //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
176
  //   Since too_low = too_high - unsafe_interval this is equivalent to
177
  //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
178
  //   Conceptually we have: rest ~= too_high - buffer
179
0
  return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
180
0
}
181
182
183
// Rounds the buffer upwards if the result is closer to v by possibly adding
184
// 1 to the buffer. If the precision of the calculation is not sufficient to
185
// round correctly, return false.
186
// The rounding might shift the whole buffer in which case the kappa is
187
// adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
188
//
189
// If 2*rest > ten_kappa then the buffer needs to be round up.
190
// rest can have an error of +/- 1 unit. This function accounts for the
191
// imprecision and returns false, if the rounding direction cannot be
192
// unambiguously determined.
193
//
194
// Precondition: rest < ten_kappa.
195
static bool RoundWeedCounted(Vector<char> buffer,
196
                             int length,
197
                             uint64_t rest,
198
                             uint64_t ten_kappa,
199
                             uint64_t unit,
200
0
                             int* kappa) {
201
0
  DOUBLE_CONVERSION_ASSERT(rest < ten_kappa);
202
  // The following tests are done in a specific order to avoid overflows. They
203
  // will work correctly with any uint64 values of rest < ten_kappa and unit.
204
  //
205
  // If the unit is too big, then we don't know which way to round. For example
206
  // a unit of 50 means that the real number lies within rest +/- 50. If
207
  // 10^kappa == 40 then there is no way to tell which way to round.
208
0
  if (unit >= ten_kappa) return false;
209
  // Even if unit is just half the size of 10^kappa we are already completely
210
  // lost. (And after the previous test we know that the expression will not
211
  // over/underflow.)
212
0
  if (ten_kappa - unit <= unit) return false;
213
  // If 2 * (rest + unit) <= 10^kappa we can safely round down.
214
0
  if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
215
0
    return true;
216
0
  }
217
  // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
218
0
  if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
219
    // Increment the last digit recursively until we find a non '9' digit.
220
0
    buffer[length - 1]++;
221
0
    for (int i = length - 1; i > 0; --i) {
222
0
      if (buffer[i] != '0' + 10) break;
223
0
      buffer[i] = '0';
224
0
      buffer[i - 1]++;
225
0
    }
226
    // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
227
    // exception of the first digit all digits are now '0'. Simply switch the
228
    // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
229
    // the power (the kappa) is increased.
230
0
    if (buffer[0] == '0' + 10) {
231
0
      buffer[0] = '1';
232
0
      (*kappa) += 1;
233
0
    }
234
0
    return true;
235
0
  }
236
0
  return false;
237
0
}
238
239
// Returns the biggest power of ten that is less than or equal to the given
240
// number. We furthermore receive the maximum number of bits 'number' has.
241
//
242
// Returns power == 10^(exponent_plus_one-1) such that
243
//    power <= number < power * 10.
244
// If number_bits == 0 then 0^(0-1) is returned.
245
// The number of bits must be <= 32.
246
// Precondition: number < (1 << (number_bits + 1)).
247
248
// Inspired by the method for finding an integer log base 10 from here:
249
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
250
static unsigned int const kSmallPowersOfTen[] =
251
    {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
252
     1000000000};
253
254
static void BiggestPowerTen(uint32_t number,
255
                            int number_bits,
256
                            uint32_t* power,
257
0
                            int* exponent_plus_one) {
258
0
  DOUBLE_CONVERSION_ASSERT(number < (1u << (number_bits + 1)));
259
  // 1233/4096 is approximately 1/lg(10).
260
0
  int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12);
261
  // We increment to skip over the first entry in the kPowersOf10 table.
262
  // Note: kPowersOf10[i] == 10^(i-1).
263
0
  exponent_plus_one_guess++;
264
  // We don't have any guarantees that 2^number_bits <= number.
265
0
  if (number < kSmallPowersOfTen[exponent_plus_one_guess]) {
266
0
    exponent_plus_one_guess--;
267
0
  }
268
0
  *power = kSmallPowersOfTen[exponent_plus_one_guess];
269
0
  *exponent_plus_one = exponent_plus_one_guess;
270
0
}
271
272
// Generates the digits of input number w.
273
// w is a floating-point number (DiyFp), consisting of a significand and an
274
// exponent. Its exponent is bounded by kMinimalTargetExponent and
275
// kMaximalTargetExponent.
276
//       Hence -60 <= w.e() <= -32.
277
//
278
// Returns false if it fails, in which case the generated digits in the buffer
279
// should not be used.
280
// Preconditions:
281
//  * low, w and high are correct up to 1 ulp (unit in the last place). That
282
//    is, their error must be less than a unit of their last digits.
283
//  * low.e() == w.e() == high.e()
284
//  * low < w < high, and taking into account their error: low~ <= high~
285
//  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
286
// Postconditions: returns false if procedure fails.
287
//   otherwise:
288
//     * buffer is not null-terminated, but len contains the number of digits.
289
//     * buffer contains the shortest possible decimal digit-sequence
290
//       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
291
//       correct values of low and high (without their error).
292
//     * if more than one decimal representation gives the minimal number of
293
//       decimal digits then the one closest to W (where W is the correct value
294
//       of w) is chosen.
295
// Remark: this procedure takes into account the imprecision of its input
296
//   numbers. If the precision is not enough to guarantee all the postconditions
297
//   then false is returned. This usually happens rarely (~0.5%).
298
//
299
// Say, for the sake of example, that
300
//   w.e() == -48, and w.f() == 0x1234567890abcdef
301
// w's value can be computed by w.f() * 2^w.e()
302
// We can obtain w's integral digits by simply shifting w.f() by -w.e().
303
//  -> w's integral part is 0x1234
304
//  w's fractional part is therefore 0x567890abcdef.
305
// Printing w's integral part is easy (simply print 0x1234 in decimal).
306
// In order to print its fraction we repeatedly multiply the fraction by 10 and
307
// get each digit. Example the first digit after the point would be computed by
308
//   (0x567890abcdef * 10) >> 48. -> 3
309
// The whole thing becomes slightly more complicated because we want to stop
310
// once we have enough digits. That is, once the digits inside the buffer
311
// represent 'w' we can stop. Everything inside the interval low - high
312
// represents w. However we have to pay attention to low, high and w's
313
// imprecision.
314
static bool DigitGen(DiyFp low,
315
                     DiyFp w,
316
                     DiyFp high,
317
                     Vector<char> buffer,
318
                     int* length,
319
0
                     int* kappa) {
320
0
  DOUBLE_CONVERSION_ASSERT(low.e() == w.e() && w.e() == high.e());
321
0
  DOUBLE_CONVERSION_ASSERT(low.f() + 1 <= high.f() - 1);
322
0
  DOUBLE_CONVERSION_ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
323
  // low, w and high are imprecise, but by less than one ulp (unit in the last
324
  // place).
325
  // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
326
  // the new numbers are outside of the interval we want the final
327
  // representation to lie in.
328
  // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
329
  // numbers that are certain to lie in the interval. We will use this fact
330
  // later on.
331
  // We will now start by generating the digits within the uncertain
332
  // interval. Later we will weed out representations that lie outside the safe
333
  // interval and thus _might_ lie outside the correct interval.
334
0
  uint64_t unit = 1;
335
0
  DiyFp too_low = DiyFp(low.f() - unit, low.e());
336
0
  DiyFp too_high = DiyFp(high.f() + unit, high.e());
337
  // too_low and too_high are guaranteed to lie outside the interval we want the
338
  // generated number in.
339
0
  DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
340
  // We now cut the input number into two parts: the integral digits and the
341
  // fractionals. We will not write any decimal separator though, but adapt
342
  // kappa instead.
343
  // Reminder: we are currently computing the digits (stored inside the buffer)
344
  // such that:   too_low < buffer * 10^kappa < too_high
345
  // We use too_high for the digit_generation and stop as soon as possible.
346
  // If we stop early we effectively round down.
347
0
  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
348
  // Division by one is a shift.
349
0
  uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
350
  // Modulo by one is an and.
351
0
  uint64_t fractionals = too_high.f() & (one.f() - 1);
352
0
  uint32_t divisor;
353
0
  int divisor_exponent_plus_one;
354
0
  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
355
0
                  &divisor, &divisor_exponent_plus_one);
356
0
  *kappa = divisor_exponent_plus_one;
357
0
  *length = 0;
358
  // Loop invariant: buffer = too_high / 10^kappa  (integer division)
359
  // The invariant holds for the first iteration: kappa has been initialized
360
  // with the divisor exponent + 1. And the divisor is the biggest power of ten
361
  // that is smaller than integrals.
362
0
  while (*kappa > 0) {
363
0
    int digit = integrals / divisor;
364
0
    DOUBLE_CONVERSION_ASSERT(digit <= 9);
365
0
    buffer[*length] = static_cast<char>('0' + digit);
366
0
    (*length)++;
367
0
    integrals %= divisor;
368
0
    (*kappa)--;
369
    // Note that kappa now equals the exponent of the divisor and that the
370
    // invariant thus holds again.
371
0
    uint64_t rest =
372
0
        (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
373
    // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
374
    // Reminder: unsafe_interval.e() == one.e()
375
0
    if (rest < unsafe_interval.f()) {
376
      // Rounding down (by not emitting the remaining digits) yields a number
377
      // that lies within the unsafe interval.
378
0
      return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
379
0
                       unsafe_interval.f(), rest,
380
0
                       static_cast<uint64_t>(divisor) << -one.e(), unit);
381
0
    }
382
0
    divisor /= 10;
383
0
  }
384
385
  // The integrals have been generated. We are at the point of the decimal
386
  // separator. In the following loop we simply multiply the remaining digits by
387
  // 10 and divide by one. We just need to pay attention to multiply associated
388
  // data (like the interval or 'unit'), too.
389
  // Note that the multiplication by 10 does not overflow, because w.e >= -60
390
  // and thus one.e >= -60.
391
0
  DOUBLE_CONVERSION_ASSERT(one.e() >= -60);
392
0
  DOUBLE_CONVERSION_ASSERT(fractionals < one.f());
393
0
  DOUBLE_CONVERSION_ASSERT(DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
394
0
  for (;;) {
395
0
    fractionals *= 10;
396
0
    unit *= 10;
397
0
    unsafe_interval.set_f(unsafe_interval.f() * 10);
398
    // Integer division by one.
399
0
    int digit = static_cast<int>(fractionals >> -one.e());
400
0
    DOUBLE_CONVERSION_ASSERT(digit <= 9);
401
0
    buffer[*length] = static_cast<char>('0' + digit);
402
0
    (*length)++;
403
0
    fractionals &= one.f() - 1;  // Modulo by one.
404
0
    (*kappa)--;
405
0
    if (fractionals < unsafe_interval.f()) {
406
0
      return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
407
0
                       unsafe_interval.f(), fractionals, one.f(), unit);
408
0
    }
409
0
  }
410
0
}
411
412
413
414
// Generates (at most) requested_digits digits of input number w.
415
// w is a floating-point number (DiyFp), consisting of a significand and an
416
// exponent. Its exponent is bounded by kMinimalTargetExponent and
417
// kMaximalTargetExponent.
418
//       Hence -60 <= w.e() <= -32.
419
//
420
// Returns false if it fails, in which case the generated digits in the buffer
421
// should not be used.
422
// Preconditions:
423
//  * w is correct up to 1 ulp (unit in the last place). That
424
//    is, its error must be strictly less than a unit of its last digit.
425
//  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
426
//
427
// Postconditions: returns false if procedure fails.
428
//   otherwise:
429
//     * buffer is not null-terminated, but length contains the number of
430
//       digits.
431
//     * the representation in buffer is the most precise representation of
432
//       requested_digits digits.
433
//     * buffer contains at most requested_digits digits of w. If there are less
434
//       than requested_digits digits then some trailing '0's have been removed.
435
//     * kappa is such that
436
//            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
437
//
438
// Remark: This procedure takes into account the imprecision of its input
439
//   numbers. If the precision is not enough to guarantee all the postconditions
440
//   then false is returned. This usually happens rarely, but the failure-rate
441
//   increases with higher requested_digits.
442
static bool DigitGenCounted(DiyFp w,
443
                            int requested_digits,
444
                            Vector<char> buffer,
445
                            int* length,
446
0
                            int* kappa) {
447
0
  DOUBLE_CONVERSION_ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
448
0
  DOUBLE_CONVERSION_ASSERT(kMinimalTargetExponent >= -60);
449
0
  DOUBLE_CONVERSION_ASSERT(kMaximalTargetExponent <= -32);
450
  // w is assumed to have an error less than 1 unit. Whenever w is scaled we
451
  // also scale its error.
452
0
  uint64_t w_error = 1;
453
  // We cut the input number into two parts: the integral digits and the
454
  // fractional digits. We don't emit any decimal separator, but adapt kappa
455
  // instead. Example: instead of writing "1.2" we put "12" into the buffer and
456
  // increase kappa by 1.
457
0
  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
458
  // Division by one is a shift.
459
0
  uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
460
  // Modulo by one is an and.
461
0
  uint64_t fractionals = w.f() & (one.f() - 1);
462
0
  uint32_t divisor;
463
0
  int divisor_exponent_plus_one;
464
0
  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
465
0
                  &divisor, &divisor_exponent_plus_one);
466
0
  *kappa = divisor_exponent_plus_one;
467
0
  *length = 0;
468
469
  // Loop invariant: buffer = w / 10^kappa  (integer division)
470
  // The invariant holds for the first iteration: kappa has been initialized
471
  // with the divisor exponent + 1. And the divisor is the biggest power of ten
472
  // that is smaller than 'integrals'.
473
0
  while (*kappa > 0) {
474
0
    int digit = integrals / divisor;
475
0
    DOUBLE_CONVERSION_ASSERT(digit <= 9);
476
0
    buffer[*length] = static_cast<char>('0' + digit);
477
0
    (*length)++;
478
0
    requested_digits--;
479
0
    integrals %= divisor;
480
0
    (*kappa)--;
481
    // Note that kappa now equals the exponent of the divisor and that the
482
    // invariant thus holds again.
483
0
    if (requested_digits == 0) break;
484
0
    divisor /= 10;
485
0
  }
486
487
0
  if (requested_digits == 0) {
488
0
    uint64_t rest =
489
0
        (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
490
0
    return RoundWeedCounted(buffer, *length, rest,
491
0
                            static_cast<uint64_t>(divisor) << -one.e(), w_error,
492
0
                            kappa);
493
0
  }
494
495
  // The integrals have been generated. We are at the point of the decimal
496
  // separator. In the following loop we simply multiply the remaining digits by
497
  // 10 and divide by one. We just need to pay attention to multiply associated
498
  // data (the 'unit'), too.
499
  // Note that the multiplication by 10 does not overflow, because w.e >= -60
500
  // and thus one.e >= -60.
501
0
  DOUBLE_CONVERSION_ASSERT(one.e() >= -60);
502
0
  DOUBLE_CONVERSION_ASSERT(fractionals < one.f());
503
0
  DOUBLE_CONVERSION_ASSERT(DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
504
0
  while (requested_digits > 0 && fractionals > w_error) {
505
0
    fractionals *= 10;
506
0
    w_error *= 10;
507
    // Integer division by one.
508
0
    int digit = static_cast<int>(fractionals >> -one.e());
509
0
    DOUBLE_CONVERSION_ASSERT(digit <= 9);
510
0
    buffer[*length] = static_cast<char>('0' + digit);
511
0
    (*length)++;
512
0
    requested_digits--;
513
0
    fractionals &= one.f() - 1;  // Modulo by one.
514
0
    (*kappa)--;
515
0
  }
516
0
  if (requested_digits != 0) return false;
517
0
  return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
518
0
                          kappa);
519
0
}
520
521
522
// Provides a decimal representation of v.
523
// Returns true if it succeeds, otherwise the result cannot be trusted.
524
// There will be *length digits inside the buffer (not null-terminated).
525
// If the function returns true then
526
//        v == (double) (buffer * 10^decimal_exponent).
527
// The digits in the buffer are the shortest representation possible: no
528
// 0.09999999999999999 instead of 0.1. The shorter representation will even be
529
// chosen even if the longer one would be closer to v.
530
// The last digit will be closest to the actual v. That is, even if several
531
// digits might correctly yield 'v' when read again, the closest will be
532
// computed.
533
static bool Grisu3(double v,
534
                   FastDtoaMode mode,
535
                   Vector<char> buffer,
536
                   int* length,
537
0
                   int* decimal_exponent) {
538
0
  DiyFp w = Double(v).AsNormalizedDiyFp();
539
  // boundary_minus and boundary_plus are the boundaries between v and its
540
  // closest floating-point neighbors. Any number strictly between
541
  // boundary_minus and boundary_plus will round to v when convert to a double.
542
  // Grisu3 will never output representations that lie exactly on a boundary.
543
0
  DiyFp boundary_minus, boundary_plus;
544
0
  if (mode == FAST_DTOA_SHORTEST) {
545
0
    Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
546
0
  } else {
547
0
    DOUBLE_CONVERSION_ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE);
548
0
    float single_v = static_cast<float>(v);
549
0
    Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
550
0
  }
551
0
  DOUBLE_CONVERSION_ASSERT(boundary_plus.e() == w.e());
552
0
  DiyFp ten_mk;  // Cached power of ten: 10^-k
553
0
  int mk;        // -k
554
0
  int ten_mk_minimal_binary_exponent =
555
0
     kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
556
0
  int ten_mk_maximal_binary_exponent =
557
0
     kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
558
0
  PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
559
0
      ten_mk_minimal_binary_exponent,
560
0
      ten_mk_maximal_binary_exponent,
561
0
      &ten_mk, &mk);
562
0
  DOUBLE_CONVERSION_ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
563
0
          DiyFp::kSignificandSize) &&
564
0
         (kMaximalTargetExponent >= w.e() + ten_mk.e() +
565
0
          DiyFp::kSignificandSize));
566
  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
567
  // 64 bit significand and ten_mk is thus only precise up to 64 bits.
568
569
  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
570
  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
571
  // off by a small amount.
572
  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
573
  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
574
  //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
575
0
  DiyFp scaled_w = DiyFp::Times(w, ten_mk);
576
0
  DOUBLE_CONVERSION_ASSERT(scaled_w.e() ==
577
0
         boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
578
  // In theory it would be possible to avoid some recomputations by computing
579
  // the difference between w and boundary_minus/plus (a power of 2) and to
580
  // compute scaled_boundary_minus/plus by subtracting/adding from
581
  // scaled_w. However the code becomes much less readable and the speed
582
  // enhancements are not terriffic.
583
0
  DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
584
0
  DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk);
585
586
  // DigitGen will generate the digits of scaled_w. Therefore we have
587
  // v == (double) (scaled_w * 10^-mk).
588
  // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
589
  // integer than it will be updated. For instance if scaled_w == 1.23 then
590
  // the buffer will be filled with "123" und the decimal_exponent will be
591
  // decreased by 2.
592
0
  int kappa;
593
0
  bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
594
0
                         buffer, length, &kappa);
595
0
  *decimal_exponent = -mk + kappa;
596
0
  return result;
597
0
}
598
599
600
// The "counted" version of grisu3 (see above) only generates requested_digits
601
// number of digits. This version does not generate the shortest representation,
602
// and with enough requested digits 0.1 will at some point print as 0.9999999...
603
// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
604
// therefore the rounding strategy for halfway cases is irrelevant.
605
static bool Grisu3Counted(double v,
606
                          int requested_digits,
607
                          Vector<char> buffer,
608
                          int* length,
609
0
                          int* decimal_exponent) {
610
0
  DiyFp w = Double(v).AsNormalizedDiyFp();
611
0
  DiyFp ten_mk;  // Cached power of ten: 10^-k
612
0
  int mk;        // -k
613
0
  int ten_mk_minimal_binary_exponent =
614
0
     kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
615
0
  int ten_mk_maximal_binary_exponent =
616
0
     kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
617
0
  PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
618
0
      ten_mk_minimal_binary_exponent,
619
0
      ten_mk_maximal_binary_exponent,
620
0
      &ten_mk, &mk);
621
0
  DOUBLE_CONVERSION_ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
622
0
          DiyFp::kSignificandSize) &&
623
0
         (kMaximalTargetExponent >= w.e() + ten_mk.e() +
624
0
          DiyFp::kSignificandSize));
625
  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
626
  // 64 bit significand and ten_mk is thus only precise up to 64 bits.
627
628
  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
629
  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
630
  // off by a small amount.
631
  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
632
  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
633
  //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
634
0
  DiyFp scaled_w = DiyFp::Times(w, ten_mk);
635
636
  // We now have (double) (scaled_w * 10^-mk).
637
  // DigitGen will generate the first requested_digits digits of scaled_w and
638
  // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
639
  // will not always be exactly the same since DigitGenCounted only produces a
640
  // limited number of digits.)
641
0
  int kappa;
642
0
  bool result = DigitGenCounted(scaled_w, requested_digits,
643
0
                                buffer, length, &kappa);
644
0
  *decimal_exponent = -mk + kappa;
645
0
  return result;
646
0
}
647
648
649
bool FastDtoa(double v,
650
              FastDtoaMode mode,
651
              int requested_digits,
652
              Vector<char> buffer,
653
              int* length,
654
0
              int* decimal_point) {
655
0
  DOUBLE_CONVERSION_ASSERT(v > 0);
656
0
  DOUBLE_CONVERSION_ASSERT(!Double(v).IsSpecial());
657
658
0
  bool result = false;
659
0
  int decimal_exponent = 0;
660
0
  switch (mode) {
661
0
    case FAST_DTOA_SHORTEST:
662
0
    case FAST_DTOA_SHORTEST_SINGLE:
663
0
      result = Grisu3(v, mode, buffer, length, &decimal_exponent);
664
0
      break;
665
0
    case FAST_DTOA_PRECISION:
666
0
      result = Grisu3Counted(v, requested_digits,
667
0
                             buffer, length, &decimal_exponent);
668
0
      break;
669
0
    default:
670
0
      DOUBLE_CONVERSION_UNREACHABLE();
671
0
  }
672
0
  if (result) {
673
0
    *decimal_point = *length + decimal_exponent;
674
0
    buffer[*length] = '\0';
675
0
  }
676
0
  return result;
677
0
}
678
679
}  // namespace double_conversion
680
681
// ICU PATCH: Close ICU namespace
682
U_NAMESPACE_END
683
#endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING