/src/icu/source/i18n/double-conversion-ieee.h
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2018 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | // |
4 | | // From the double-conversion library. Original license: |
5 | | // |
6 | | // Copyright 2012 the V8 project authors. All rights reserved. |
7 | | // Redistribution and use in source and binary forms, with or without |
8 | | // modification, are permitted provided that the following conditions are |
9 | | // met: |
10 | | // |
11 | | // * Redistributions of source code must retain the above copyright |
12 | | // notice, this list of conditions and the following disclaimer. |
13 | | // * Redistributions in binary form must reproduce the above |
14 | | // copyright notice, this list of conditions and the following |
15 | | // disclaimer in the documentation and/or other materials provided |
16 | | // with the distribution. |
17 | | // * Neither the name of Google Inc. nor the names of its |
18 | | // contributors may be used to endorse or promote products derived |
19 | | // from this software without specific prior written permission. |
20 | | // |
21 | | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
22 | | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
23 | | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
24 | | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
25 | | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
26 | | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
27 | | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
28 | | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
29 | | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
30 | | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
31 | | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
32 | | |
33 | | // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING |
34 | | #include "unicode/utypes.h" |
35 | | #if !UCONFIG_NO_FORMATTING |
36 | | |
37 | | #ifndef DOUBLE_CONVERSION_DOUBLE_H_ |
38 | | #define DOUBLE_CONVERSION_DOUBLE_H_ |
39 | | |
40 | | // ICU PATCH: Customize header file paths for ICU. |
41 | | |
42 | | #include "double-conversion-diy-fp.h" |
43 | | |
44 | | // ICU PATCH: Wrap in ICU namespace |
45 | | U_NAMESPACE_BEGIN |
46 | | |
47 | | namespace double_conversion { |
48 | | |
49 | | // We assume that doubles and uint64_t have the same endianness. |
50 | 0 | static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); } Unexecuted instantiation: double-conversion-double-to-string.cpp:icu_70::double_conversion::double_to_uint64(double) Unexecuted instantiation: double-conversion-fast-dtoa.cpp:icu_70::double_conversion::double_to_uint64(double) Unexecuted instantiation: double-conversion-string-to-double.cpp:icu_70::double_conversion::double_to_uint64(double) Unexecuted instantiation: double-conversion-strtod.cpp:icu_70::double_conversion::double_to_uint64(double) Unexecuted instantiation: double-conversion-bignum-dtoa.cpp:icu_70::double_conversion::double_to_uint64(double) |
51 | 0 | static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); } Unexecuted instantiation: double-conversion-double-to-string.cpp:icu_70::double_conversion::uint64_to_double(unsigned long) Unexecuted instantiation: double-conversion-fast-dtoa.cpp:icu_70::double_conversion::uint64_to_double(unsigned long) Unexecuted instantiation: double-conversion-string-to-double.cpp:icu_70::double_conversion::uint64_to_double(unsigned long) Unexecuted instantiation: double-conversion-strtod.cpp:icu_70::double_conversion::uint64_to_double(unsigned long) Unexecuted instantiation: double-conversion-bignum-dtoa.cpp:icu_70::double_conversion::uint64_to_double(unsigned long) |
52 | 0 | static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); } Unexecuted instantiation: double-conversion-double-to-string.cpp:icu_70::double_conversion::float_to_uint32(float) Unexecuted instantiation: double-conversion-fast-dtoa.cpp:icu_70::double_conversion::float_to_uint32(float) Unexecuted instantiation: double-conversion-string-to-double.cpp:icu_70::double_conversion::float_to_uint32(float) Unexecuted instantiation: double-conversion-strtod.cpp:icu_70::double_conversion::float_to_uint32(float) Unexecuted instantiation: double-conversion-bignum-dtoa.cpp:icu_70::double_conversion::float_to_uint32(float) |
53 | 0 | static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); } Unexecuted instantiation: double-conversion-double-to-string.cpp:icu_70::double_conversion::uint32_to_float(unsigned int) Unexecuted instantiation: double-conversion-fast-dtoa.cpp:icu_70::double_conversion::uint32_to_float(unsigned int) Unexecuted instantiation: double-conversion-string-to-double.cpp:icu_70::double_conversion::uint32_to_float(unsigned int) Unexecuted instantiation: double-conversion-strtod.cpp:icu_70::double_conversion::uint32_to_float(unsigned int) Unexecuted instantiation: double-conversion-bignum-dtoa.cpp:icu_70::double_conversion::uint32_to_float(unsigned int) |
54 | | |
55 | | // Helper functions for doubles. |
56 | | class Double { |
57 | | public: |
58 | | static const uint64_t kSignMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x80000000, 00000000); |
59 | | static const uint64_t kExponentMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000); |
60 | | static const uint64_t kSignificandMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x000FFFFF, FFFFFFFF); |
61 | | static const uint64_t kHiddenBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00100000, 00000000); |
62 | | static const uint64_t kQuietNanBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00080000, 00000000); |
63 | | static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit. |
64 | | static const int kSignificandSize = 53; |
65 | | static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; |
66 | | static const int kMaxExponent = 0x7FF - kExponentBias; |
67 | | |
68 | 0 | Double() : d64_(0) {} |
69 | 0 | explicit Double(double d) : d64_(double_to_uint64(d)) {} |
70 | 0 | explicit Double(uint64_t d64) : d64_(d64) {} |
71 | | explicit Double(DiyFp diy_fp) |
72 | 0 | : d64_(DiyFpToUint64(diy_fp)) {} |
73 | | |
74 | | // The value encoded by this Double must be greater or equal to +0.0. |
75 | | // It must not be special (infinity, or NaN). |
76 | 0 | DiyFp AsDiyFp() const { |
77 | 0 | DOUBLE_CONVERSION_ASSERT(Sign() > 0); |
78 | 0 | DOUBLE_CONVERSION_ASSERT(!IsSpecial()); |
79 | 0 | return DiyFp(Significand(), Exponent()); |
80 | 0 | } |
81 | | |
82 | | // The value encoded by this Double must be strictly greater than 0. |
83 | 0 | DiyFp AsNormalizedDiyFp() const { |
84 | 0 | DOUBLE_CONVERSION_ASSERT(value() > 0.0); |
85 | 0 | uint64_t f = Significand(); |
86 | 0 | int e = Exponent(); |
87 | | |
88 | | // The current double could be a denormal. |
89 | 0 | while ((f & kHiddenBit) == 0) { |
90 | 0 | f <<= 1; |
91 | 0 | e--; |
92 | 0 | } |
93 | | // Do the final shifts in one go. |
94 | 0 | f <<= DiyFp::kSignificandSize - kSignificandSize; |
95 | 0 | e -= DiyFp::kSignificandSize - kSignificandSize; |
96 | 0 | return DiyFp(f, e); |
97 | 0 | } |
98 | | |
99 | | // Returns the double's bit as uint64. |
100 | 0 | uint64_t AsUint64() const { |
101 | 0 | return d64_; |
102 | 0 | } |
103 | | |
104 | | // Returns the next greater double. Returns +infinity on input +infinity. |
105 | 0 | double NextDouble() const { |
106 | 0 | if (d64_ == kInfinity) return Double(kInfinity).value(); |
107 | 0 | if (Sign() < 0 && Significand() == 0) { |
108 | | // -0.0 |
109 | 0 | return 0.0; |
110 | 0 | } |
111 | 0 | if (Sign() < 0) { |
112 | 0 | return Double(d64_ - 1).value(); |
113 | 0 | } else { |
114 | 0 | return Double(d64_ + 1).value(); |
115 | 0 | } |
116 | 0 | } |
117 | | |
118 | 0 | double PreviousDouble() const { |
119 | 0 | if (d64_ == (kInfinity | kSignMask)) return -Infinity(); |
120 | 0 | if (Sign() < 0) { |
121 | 0 | return Double(d64_ + 1).value(); |
122 | 0 | } else { |
123 | 0 | if (Significand() == 0) return -0.0; |
124 | 0 | return Double(d64_ - 1).value(); |
125 | 0 | } |
126 | 0 | } |
127 | | |
128 | 0 | int Exponent() const { |
129 | 0 | if (IsDenormal()) return kDenormalExponent; |
130 | | |
131 | 0 | uint64_t d64 = AsUint64(); |
132 | 0 | int biased_e = |
133 | 0 | static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); |
134 | 0 | return biased_e - kExponentBias; |
135 | 0 | } |
136 | | |
137 | 0 | uint64_t Significand() const { |
138 | 0 | uint64_t d64 = AsUint64(); |
139 | 0 | uint64_t significand = d64 & kSignificandMask; |
140 | 0 | if (!IsDenormal()) { |
141 | 0 | return significand + kHiddenBit; |
142 | 0 | } else { |
143 | 0 | return significand; |
144 | 0 | } |
145 | 0 | } |
146 | | |
147 | | // Returns true if the double is a denormal. |
148 | 0 | bool IsDenormal() const { |
149 | 0 | uint64_t d64 = AsUint64(); |
150 | 0 | return (d64 & kExponentMask) == 0; |
151 | 0 | } |
152 | | |
153 | | // We consider denormals not to be special. |
154 | | // Hence only Infinity and NaN are special. |
155 | 0 | bool IsSpecial() const { |
156 | 0 | uint64_t d64 = AsUint64(); |
157 | 0 | return (d64 & kExponentMask) == kExponentMask; |
158 | 0 | } |
159 | | |
160 | 0 | bool IsNan() const { |
161 | 0 | uint64_t d64 = AsUint64(); |
162 | 0 | return ((d64 & kExponentMask) == kExponentMask) && |
163 | 0 | ((d64 & kSignificandMask) != 0); |
164 | 0 | } |
165 | | |
166 | 0 | bool IsQuietNan() const { |
167 | 0 | return IsNan() && ((AsUint64() & kQuietNanBit) != 0); |
168 | 0 | } |
169 | | |
170 | 0 | bool IsSignalingNan() const { |
171 | 0 | return IsNan() && ((AsUint64() & kQuietNanBit) == 0); |
172 | 0 | } |
173 | | |
174 | | |
175 | 0 | bool IsInfinite() const { |
176 | 0 | uint64_t d64 = AsUint64(); |
177 | 0 | return ((d64 & kExponentMask) == kExponentMask) && |
178 | 0 | ((d64 & kSignificandMask) == 0); |
179 | 0 | } |
180 | | |
181 | 0 | int Sign() const { |
182 | 0 | uint64_t d64 = AsUint64(); |
183 | 0 | return (d64 & kSignMask) == 0? 1: -1; |
184 | 0 | } |
185 | | |
186 | | // Precondition: the value encoded by this Double must be greater or equal |
187 | | // than +0.0. |
188 | 0 | DiyFp UpperBoundary() const { |
189 | 0 | DOUBLE_CONVERSION_ASSERT(Sign() > 0); |
190 | 0 | return DiyFp(Significand() * 2 + 1, Exponent() - 1); |
191 | 0 | } |
192 | | |
193 | | // Computes the two boundaries of this. |
194 | | // The bigger boundary (m_plus) is normalized. The lower boundary has the same |
195 | | // exponent as m_plus. |
196 | | // Precondition: the value encoded by this Double must be greater than 0. |
197 | 0 | void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { |
198 | 0 | DOUBLE_CONVERSION_ASSERT(value() > 0.0); |
199 | 0 | DiyFp v = this->AsDiyFp(); |
200 | 0 | DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); |
201 | 0 | DiyFp m_minus; |
202 | 0 | if (LowerBoundaryIsCloser()) { |
203 | 0 | m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); |
204 | 0 | } else { |
205 | 0 | m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); |
206 | 0 | } |
207 | 0 | m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); |
208 | 0 | m_minus.set_e(m_plus.e()); |
209 | 0 | *out_m_plus = m_plus; |
210 | 0 | *out_m_minus = m_minus; |
211 | 0 | } |
212 | | |
213 | 0 | bool LowerBoundaryIsCloser() const { |
214 | | // The boundary is closer if the significand is of the form f == 2^p-1 then |
215 | | // the lower boundary is closer. |
216 | | // Think of v = 1000e10 and v- = 9999e9. |
217 | | // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but |
218 | | // at a distance of 1e8. |
219 | | // The only exception is for the smallest normal: the largest denormal is |
220 | | // at the same distance as its successor. |
221 | | // Note: denormals have the same exponent as the smallest normals. |
222 | 0 | bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0); |
223 | 0 | return physical_significand_is_zero && (Exponent() != kDenormalExponent); |
224 | 0 | } |
225 | | |
226 | 0 | double value() const { return uint64_to_double(d64_); } |
227 | | |
228 | | // Returns the significand size for a given order of magnitude. |
229 | | // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. |
230 | | // This function returns the number of significant binary digits v will have |
231 | | // once it's encoded into a double. In almost all cases this is equal to |
232 | | // kSignificandSize. The only exceptions are denormals. They start with |
233 | | // leading zeroes and their effective significand-size is hence smaller. |
234 | 0 | static int SignificandSizeForOrderOfMagnitude(int order) { |
235 | 0 | if (order >= (kDenormalExponent + kSignificandSize)) { |
236 | 0 | return kSignificandSize; |
237 | 0 | } |
238 | 0 | if (order <= kDenormalExponent) return 0; |
239 | 0 | return order - kDenormalExponent; |
240 | 0 | } |
241 | | |
242 | 0 | static double Infinity() { |
243 | 0 | return Double(kInfinity).value(); |
244 | 0 | } |
245 | | |
246 | 0 | static double NaN() { |
247 | 0 | return Double(kNaN).value(); |
248 | 0 | } |
249 | | |
250 | | private: |
251 | | static const int kDenormalExponent = -kExponentBias + 1; |
252 | | static const uint64_t kInfinity = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000); |
253 | | static const uint64_t kNaN = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF80000, 00000000); |
254 | | |
255 | | const uint64_t d64_; |
256 | | |
257 | 0 | static uint64_t DiyFpToUint64(DiyFp diy_fp) { |
258 | 0 | uint64_t significand = diy_fp.f(); |
259 | 0 | int exponent = diy_fp.e(); |
260 | 0 | while (significand > kHiddenBit + kSignificandMask) { |
261 | 0 | significand >>= 1; |
262 | 0 | exponent++; |
263 | 0 | } |
264 | 0 | if (exponent >= kMaxExponent) { |
265 | 0 | return kInfinity; |
266 | 0 | } |
267 | 0 | if (exponent < kDenormalExponent) { |
268 | 0 | return 0; |
269 | 0 | } |
270 | 0 | while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { |
271 | 0 | significand <<= 1; |
272 | 0 | exponent--; |
273 | 0 | } |
274 | 0 | uint64_t biased_exponent; |
275 | 0 | if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { |
276 | 0 | biased_exponent = 0; |
277 | 0 | } else { |
278 | 0 | biased_exponent = static_cast<uint64_t>(exponent + kExponentBias); |
279 | 0 | } |
280 | 0 | return (significand & kSignificandMask) | |
281 | 0 | (biased_exponent << kPhysicalSignificandSize); |
282 | 0 | } |
283 | | |
284 | | DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Double); |
285 | | }; |
286 | | |
287 | | class Single { |
288 | | public: |
289 | | static const uint32_t kSignMask = 0x80000000; |
290 | | static const uint32_t kExponentMask = 0x7F800000; |
291 | | static const uint32_t kSignificandMask = 0x007FFFFF; |
292 | | static const uint32_t kHiddenBit = 0x00800000; |
293 | | static const uint32_t kQuietNanBit = 0x00400000; |
294 | | static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit. |
295 | | static const int kSignificandSize = 24; |
296 | | |
297 | 0 | Single() : d32_(0) {} |
298 | 0 | explicit Single(float f) : d32_(float_to_uint32(f)) {} |
299 | 0 | explicit Single(uint32_t d32) : d32_(d32) {} |
300 | | |
301 | | // The value encoded by this Single must be greater or equal to +0.0. |
302 | | // It must not be special (infinity, or NaN). |
303 | 0 | DiyFp AsDiyFp() const { |
304 | 0 | DOUBLE_CONVERSION_ASSERT(Sign() > 0); |
305 | 0 | DOUBLE_CONVERSION_ASSERT(!IsSpecial()); |
306 | 0 | return DiyFp(Significand(), Exponent()); |
307 | 0 | } |
308 | | |
309 | | // Returns the single's bit as uint64. |
310 | 0 | uint32_t AsUint32() const { |
311 | 0 | return d32_; |
312 | 0 | } |
313 | | |
314 | 0 | int Exponent() const { |
315 | 0 | if (IsDenormal()) return kDenormalExponent; |
316 | | |
317 | 0 | uint32_t d32 = AsUint32(); |
318 | 0 | int biased_e = |
319 | 0 | static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize); |
320 | 0 | return biased_e - kExponentBias; |
321 | 0 | } |
322 | | |
323 | 0 | uint32_t Significand() const { |
324 | 0 | uint32_t d32 = AsUint32(); |
325 | 0 | uint32_t significand = d32 & kSignificandMask; |
326 | 0 | if (!IsDenormal()) { |
327 | 0 | return significand + kHiddenBit; |
328 | 0 | } else { |
329 | 0 | return significand; |
330 | 0 | } |
331 | 0 | } |
332 | | |
333 | | // Returns true if the single is a denormal. |
334 | 0 | bool IsDenormal() const { |
335 | 0 | uint32_t d32 = AsUint32(); |
336 | 0 | return (d32 & kExponentMask) == 0; |
337 | 0 | } |
338 | | |
339 | | // We consider denormals not to be special. |
340 | | // Hence only Infinity and NaN are special. |
341 | 0 | bool IsSpecial() const { |
342 | 0 | uint32_t d32 = AsUint32(); |
343 | 0 | return (d32 & kExponentMask) == kExponentMask; |
344 | 0 | } |
345 | | |
346 | 0 | bool IsNan() const { |
347 | 0 | uint32_t d32 = AsUint32(); |
348 | 0 | return ((d32 & kExponentMask) == kExponentMask) && |
349 | 0 | ((d32 & kSignificandMask) != 0); |
350 | 0 | } |
351 | | |
352 | 0 | bool IsQuietNan() const { |
353 | 0 | return IsNan() && ((AsUint32() & kQuietNanBit) != 0); |
354 | 0 | } |
355 | | |
356 | 0 | bool IsSignalingNan() const { |
357 | 0 | return IsNan() && ((AsUint32() & kQuietNanBit) == 0); |
358 | 0 | } |
359 | | |
360 | | |
361 | 0 | bool IsInfinite() const { |
362 | 0 | uint32_t d32 = AsUint32(); |
363 | 0 | return ((d32 & kExponentMask) == kExponentMask) && |
364 | 0 | ((d32 & kSignificandMask) == 0); |
365 | 0 | } |
366 | | |
367 | 0 | int Sign() const { |
368 | 0 | uint32_t d32 = AsUint32(); |
369 | 0 | return (d32 & kSignMask) == 0? 1: -1; |
370 | 0 | } |
371 | | |
372 | | // Computes the two boundaries of this. |
373 | | // The bigger boundary (m_plus) is normalized. The lower boundary has the same |
374 | | // exponent as m_plus. |
375 | | // Precondition: the value encoded by this Single must be greater than 0. |
376 | 0 | void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { |
377 | 0 | DOUBLE_CONVERSION_ASSERT(value() > 0.0); |
378 | 0 | DiyFp v = this->AsDiyFp(); |
379 | 0 | DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); |
380 | 0 | DiyFp m_minus; |
381 | 0 | if (LowerBoundaryIsCloser()) { |
382 | 0 | m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); |
383 | 0 | } else { |
384 | 0 | m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); |
385 | 0 | } |
386 | 0 | m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); |
387 | 0 | m_minus.set_e(m_plus.e()); |
388 | 0 | *out_m_plus = m_plus; |
389 | 0 | *out_m_minus = m_minus; |
390 | 0 | } |
391 | | |
392 | | // Precondition: the value encoded by this Single must be greater or equal |
393 | | // than +0.0. |
394 | 0 | DiyFp UpperBoundary() const { |
395 | 0 | DOUBLE_CONVERSION_ASSERT(Sign() > 0); |
396 | 0 | return DiyFp(Significand() * 2 + 1, Exponent() - 1); |
397 | 0 | } |
398 | | |
399 | 0 | bool LowerBoundaryIsCloser() const { |
400 | | // The boundary is closer if the significand is of the form f == 2^p-1 then |
401 | | // the lower boundary is closer. |
402 | | // Think of v = 1000e10 and v- = 9999e9. |
403 | | // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but |
404 | | // at a distance of 1e8. |
405 | | // The only exception is for the smallest normal: the largest denormal is |
406 | | // at the same distance as its successor. |
407 | | // Note: denormals have the same exponent as the smallest normals. |
408 | 0 | bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0); |
409 | 0 | return physical_significand_is_zero && (Exponent() != kDenormalExponent); |
410 | 0 | } |
411 | | |
412 | 0 | float value() const { return uint32_to_float(d32_); } |
413 | | |
414 | 0 | static float Infinity() { |
415 | 0 | return Single(kInfinity).value(); |
416 | 0 | } |
417 | | |
418 | 0 | static float NaN() { |
419 | 0 | return Single(kNaN).value(); |
420 | 0 | } |
421 | | |
422 | | private: |
423 | | static const int kExponentBias = 0x7F + kPhysicalSignificandSize; |
424 | | static const int kDenormalExponent = -kExponentBias + 1; |
425 | | static const int kMaxExponent = 0xFF - kExponentBias; |
426 | | static const uint32_t kInfinity = 0x7F800000; |
427 | | static const uint32_t kNaN = 0x7FC00000; |
428 | | |
429 | | const uint32_t d32_; |
430 | | |
431 | | DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Single); |
432 | | }; |
433 | | |
434 | | } // namespace double_conversion |
435 | | |
436 | | // ICU PATCH: Close ICU namespace |
437 | | U_NAMESPACE_END |
438 | | |
439 | | #endif // DOUBLE_CONVERSION_DOUBLE_H_ |
440 | | #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING |