Coverage Report

Created: 2025-06-24 06:43

/src/icu/source/i18n/double-conversion-string-to-double.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2018 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
//
4
// From the double-conversion library. Original license:
5
//
6
// Copyright 2010 the V8 project authors. All rights reserved.
7
// Redistribution and use in source and binary forms, with or without
8
// modification, are permitted provided that the following conditions are
9
// met:
10
//
11
//     * Redistributions of source code must retain the above copyright
12
//       notice, this list of conditions and the following disclaimer.
13
//     * Redistributions in binary form must reproduce the above
14
//       copyright notice, this list of conditions and the following
15
//       disclaimer in the documentation and/or other materials provided
16
//       with the distribution.
17
//     * Neither the name of Google Inc. nor the names of its
18
//       contributors may be used to endorse or promote products derived
19
//       from this software without specific prior written permission.
20
//
21
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
33
// ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34
#include "unicode/utypes.h"
35
#if !UCONFIG_NO_FORMATTING
36
37
// ICU PATCH: Do not include std::locale.
38
39
#include <climits>
40
// #include <locale>
41
#include <cmath>
42
43
// ICU PATCH: Customize header file paths for ICU.
44
45
#include "double-conversion-string-to-double.h"
46
47
#include "double-conversion-ieee.h"
48
#include "double-conversion-strtod.h"
49
#include "double-conversion-utils.h"
50
51
// ICU PATCH: Wrap in ICU namespace
52
U_NAMESPACE_BEGIN
53
54
#ifdef _MSC_VER
55
#  if _MSC_VER >= 1900
56
// Fix MSVC >= 2015 (_MSC_VER == 1900) warning
57
// C4244: 'argument': conversion from 'const uc16' to 'char', possible loss of data
58
// against Advance and friends, when instantiated with **it as char, not uc16.
59
 __pragma(warning(disable: 4244))
60
#  endif
61
#  if _MSC_VER <= 1700 // VS2012, see IsDecimalDigitForRadix warning fix, below
62
#    define VS2012_RADIXWARN
63
#  endif
64
#endif
65
66
namespace double_conversion {
67
68
namespace {
69
70
0
inline char ToLower(char ch) {
71
#if 0  // do not include std::locale in ICU
72
  static const std::ctype<char>& cType =
73
      std::use_facet<std::ctype<char> >(std::locale::classic());
74
  return cType.tolower(ch);
75
#else
76
0
  (void)ch;
77
0
  DOUBLE_CONVERSION_UNREACHABLE();
78
0
#endif
79
0
}
80
81
0
inline char Pass(char ch) {
82
0
  return ch;
83
0
}
84
85
template <class Iterator, class Converter>
86
static inline bool ConsumeSubStringImpl(Iterator* current,
87
                                        Iterator end,
88
                                        const char* substring,
89
0
                                        Converter converter) {
90
0
  DOUBLE_CONVERSION_ASSERT(converter(**current) == *substring);
91
0
  for (substring++; *substring != '\0'; substring++) {
92
0
    ++*current;
93
0
    if (*current == end || converter(**current) != *substring) {
94
0
      return false;
95
0
    }
96
0
  }
97
0
  ++*current;
98
0
  return true;
99
0
}
Unexecuted instantiation: double-conversion-string-to-double.cpp:bool icu_70::double_conversion::(anonymous namespace)::ConsumeSubStringImpl<char const*, char (*)(char)>(char const**, char const*, char const*, char (*)(char))
Unexecuted instantiation: double-conversion-string-to-double.cpp:bool icu_70::double_conversion::(anonymous namespace)::ConsumeSubStringImpl<unsigned short const*, char (*)(char)>(unsigned short const**, unsigned short const*, char const*, char (*)(char))
100
101
// Consumes the given substring from the iterator.
102
// Returns false, if the substring does not match.
103
template <class Iterator>
104
static bool ConsumeSubString(Iterator* current,
105
                             Iterator end,
106
                             const char* substring,
107
0
                             bool allow_case_insensitivity) {
108
0
  if (allow_case_insensitivity) {
109
0
    return ConsumeSubStringImpl(current, end, substring, ToLower);
110
0
  } else {
111
0
    return ConsumeSubStringImpl(current, end, substring, Pass);
112
0
  }
113
0
}
Unexecuted instantiation: double-conversion-string-to-double.cpp:bool icu_70::double_conversion::(anonymous namespace)::ConsumeSubString<char const*>(char const**, char const*, char const*, bool)
Unexecuted instantiation: double-conversion-string-to-double.cpp:bool icu_70::double_conversion::(anonymous namespace)::ConsumeSubString<unsigned short const*>(unsigned short const**, unsigned short const*, char const*, bool)
114
115
// Consumes first character of the str is equal to ch
116
inline bool ConsumeFirstCharacter(char ch,
117
                                         const char* str,
118
0
                                         bool case_insensitivity) {
119
0
  return case_insensitivity ? ToLower(ch) == str[0] : ch == str[0];
120
0
}
121
}  // namespace
122
123
// Maximum number of significant digits in decimal representation.
124
// The longest possible double in decimal representation is
125
// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
126
// (768 digits). If we parse a number whose first digits are equal to a
127
// mean of 2 adjacent doubles (that could have up to 769 digits) the result
128
// must be rounded to the bigger one unless the tail consists of zeros, so
129
// we don't need to preserve all the digits.
130
const int kMaxSignificantDigits = 772;
131
132
133
static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 };
134
static const int kWhitespaceTable7Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable7);
135
136
137
static const uc16 kWhitespaceTable16[] = {
138
  160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195,
139
  8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279
140
};
141
static const int kWhitespaceTable16Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable16);
142
143
144
0
static bool isWhitespace(int x) {
145
0
  if (x < 128) {
146
0
    for (int i = 0; i < kWhitespaceTable7Length; i++) {
147
0
      if (kWhitespaceTable7[i] == x) return true;
148
0
    }
149
0
  } else {
150
0
    for (int i = 0; i < kWhitespaceTable16Length; i++) {
151
0
      if (kWhitespaceTable16[i] == x) return true;
152
0
    }
153
0
  }
154
0
  return false;
155
0
}
156
157
158
// Returns true if a nonspace found and false if the end has reached.
159
template <class Iterator>
160
0
static inline bool AdvanceToNonspace(Iterator* current, Iterator end) {
161
0
  while (*current != end) {
162
0
    if (!isWhitespace(**current)) return true;
163
0
    ++*current;
164
0
  }
165
0
  return false;
166
0
}
Unexecuted instantiation: double-conversion-string-to-double.cpp:bool icu_70::double_conversion::AdvanceToNonspace<char const*>(char const**, char const*)
Unexecuted instantiation: double-conversion-string-to-double.cpp:bool icu_70::double_conversion::AdvanceToNonspace<char*>(char**, char*)
Unexecuted instantiation: double-conversion-string-to-double.cpp:bool icu_70::double_conversion::AdvanceToNonspace<unsigned short const*>(unsigned short const**, unsigned short const*)
167
168
169
0
static bool isDigit(int x, int radix) {
170
0
  return (x >= '0' && x <= '9' && x < '0' + radix)
171
0
      || (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
172
0
      || (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
173
0
}
174
175
176
0
static double SignedZero(bool sign) {
177
0
  return sign ? -0.0 : 0.0;
178
0
}
179
180
181
// Returns true if 'c' is a decimal digit that is valid for the given radix.
182
//
183
// The function is small and could be inlined, but VS2012 emitted a warning
184
// because it constant-propagated the radix and concluded that the last
185
// condition was always true. Moving it into a separate function and
186
// suppressing optimisation keeps the compiler from warning.
187
#ifdef VS2012_RADIXWARN
188
#pragma optimize("",off)
189
static bool IsDecimalDigitForRadix(int c, int radix) {
190
  return '0' <= c && c <= '9' && (c - '0') < radix;
191
}
192
#pragma optimize("",on)
193
#else
194
0
static bool inline IsDecimalDigitForRadix(int c, int radix) {
195
0
  return '0' <= c && c <= '9' && (c - '0') < radix;
196
0
}
197
#endif
198
// Returns true if 'c' is a character digit that is valid for the given radix.
199
// The 'a_character' should be 'a' or 'A'.
200
//
201
// The function is small and could be inlined, but VS2012 emitted a warning
202
// because it constant-propagated the radix and concluded that the first
203
// condition was always false. By moving it into a separate function the
204
// compiler wouldn't warn anymore.
205
0
static bool IsCharacterDigitForRadix(int c, int radix, char a_character) {
206
0
  return radix > 10 && c >= a_character && c < a_character + radix - 10;
207
0
}
208
209
// Returns true, when the iterator is equal to end.
210
template<class Iterator>
211
0
static bool Advance (Iterator* it, uc16 separator, int base, Iterator& end) {
212
0
  if (separator == StringToDoubleConverter::kNoSeparator) {
213
0
    ++(*it);
214
0
    return *it == end;
215
0
  }
216
0
  if (!isDigit(**it, base)) {
217
0
    ++(*it);
218
0
    return *it == end;
219
0
  }
220
0
  ++(*it);
221
0
  if (*it == end) return true;
222
0
  if (*it + 1 == end) return false;
223
0
  if (**it == separator && isDigit(*(*it + 1), base)) {
224
0
    ++(*it);
225
0
  }
226
0
  return *it == end;
227
0
}
Unexecuted instantiation: double-conversion-string-to-double.cpp:bool icu_70::double_conversion::Advance<char const*>(char const**, unsigned short, int, char const*&)
Unexecuted instantiation: double-conversion-string-to-double.cpp:bool icu_70::double_conversion::Advance<char*>(char**, unsigned short, int, char*&)
Unexecuted instantiation: double-conversion-string-to-double.cpp:bool icu_70::double_conversion::Advance<unsigned short const*>(unsigned short const**, unsigned short, int, unsigned short const*&)
228
229
// Checks whether the string in the range start-end is a hex-float string.
230
// This function assumes that the leading '0x'/'0X' is already consumed.
231
//
232
// Hex float strings are of one of the following forms:
233
//   - hex_digits+ 'p' ('+'|'-')? exponent_digits+
234
//   - hex_digits* '.' hex_digits+ 'p' ('+'|'-')? exponent_digits+
235
//   - hex_digits+ '.' 'p' ('+'|'-')? exponent_digits+
236
template<class Iterator>
237
static bool IsHexFloatString(Iterator start,
238
                             Iterator end,
239
                             uc16 separator,
240
0
                             bool allow_trailing_junk) {
241
0
  DOUBLE_CONVERSION_ASSERT(start != end);
242
243
0
  Iterator current = start;
244
245
0
  bool saw_digit = false;
246
0
  while (isDigit(*current, 16)) {
247
0
    saw_digit = true;
248
0
    if (Advance(&current, separator, 16, end)) return false;
249
0
  }
250
0
  if (*current == '.') {
251
0
    if (Advance(&current, separator, 16, end)) return false;
252
0
    while (isDigit(*current, 16)) {
253
0
      saw_digit = true;
254
0
      if (Advance(&current, separator, 16, end)) return false;
255
0
    }
256
0
  }
257
0
  if (!saw_digit) return false;
258
0
  if (*current != 'p' && *current != 'P') return false;
259
0
  if (Advance(&current, separator, 16, end)) return false;
260
0
  if (*current == '+' || *current == '-') {
261
0
    if (Advance(&current, separator, 16, end)) return false;
262
0
  }
263
0
  if (!isDigit(*current, 10)) return false;
264
0
  if (Advance(&current, separator, 16, end)) return true;
265
0
  while (isDigit(*current, 10)) {
266
0
    if (Advance(&current, separator, 16, end)) return true;
267
0
  }
268
0
  return allow_trailing_junk || !AdvanceToNonspace(&current, end);
269
0
}
Unexecuted instantiation: double-conversion-string-to-double.cpp:bool icu_70::double_conversion::IsHexFloatString<char const*>(char const*, char const*, unsigned short, bool)
Unexecuted instantiation: double-conversion-string-to-double.cpp:bool icu_70::double_conversion::IsHexFloatString<unsigned short const*>(unsigned short const*, unsigned short const*, unsigned short, bool)
270
271
272
// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
273
//
274
// If parse_as_hex_float is true, then the string must be a valid
275
// hex-float.
276
template <int radix_log_2, class Iterator>
277
static double RadixStringToIeee(Iterator* current,
278
                                Iterator end,
279
                                bool sign,
280
                                uc16 separator,
281
                                bool parse_as_hex_float,
282
                                bool allow_trailing_junk,
283
                                double junk_string_value,
284
                                bool read_as_double,
285
0
                                bool* result_is_junk) {
286
0
  DOUBLE_CONVERSION_ASSERT(*current != end);
287
0
  DOUBLE_CONVERSION_ASSERT(!parse_as_hex_float ||
288
0
      IsHexFloatString(*current, end, separator, allow_trailing_junk));
289
290
0
  const int kDoubleSize = Double::kSignificandSize;
291
0
  const int kSingleSize = Single::kSignificandSize;
292
0
  const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize;
293
294
0
  *result_is_junk = true;
295
296
0
  int64_t number = 0;
297
0
  int exponent = 0;
298
0
  const int radix = (1 << radix_log_2);
299
  // Whether we have encountered a '.' and are parsing the decimal digits.
300
  // Only relevant if parse_as_hex_float is true.
301
0
  bool post_decimal = false;
302
303
  // Skip leading 0s.
304
0
  while (**current == '0') {
305
0
    if (Advance(current, separator, radix, end)) {
306
0
      *result_is_junk = false;
307
0
      return SignedZero(sign);
308
0
    }
309
0
  }
310
311
0
  while (true) {
312
0
    int digit;
313
0
    if (IsDecimalDigitForRadix(**current, radix)) {
314
0
      digit = static_cast<char>(**current) - '0';
315
0
      if (post_decimal) exponent -= radix_log_2;
316
0
    } else if (IsCharacterDigitForRadix(**current, radix, 'a')) {
317
0
      digit = static_cast<char>(**current) - 'a' + 10;
318
0
      if (post_decimal) exponent -= radix_log_2;
319
0
    } else if (IsCharacterDigitForRadix(**current, radix, 'A')) {
320
0
      digit = static_cast<char>(**current) - 'A' + 10;
321
0
      if (post_decimal) exponent -= radix_log_2;
322
0
    } else if (parse_as_hex_float && **current == '.') {
323
0
      post_decimal = true;
324
0
      Advance(current, separator, radix, end);
325
0
      DOUBLE_CONVERSION_ASSERT(*current != end);
326
0
      continue;
327
0
    } else if (parse_as_hex_float && (**current == 'p' || **current == 'P')) {
328
0
      break;
329
0
    } else {
330
0
      if (allow_trailing_junk || !AdvanceToNonspace(current, end)) {
331
0
        break;
332
0
      } else {
333
0
        return junk_string_value;
334
0
      }
335
0
    }
336
337
0
    number = number * radix + digit;
338
0
    int overflow = static_cast<int>(number >> kSignificandSize);
339
0
    if (overflow != 0) {
340
      // Overflow occurred. Need to determine which direction to round the
341
      // result.
342
0
      int overflow_bits_count = 1;
343
0
      while (overflow > 1) {
344
0
        overflow_bits_count++;
345
0
        overflow >>= 1;
346
0
      }
347
348
0
      int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
349
0
      int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
350
0
      number >>= overflow_bits_count;
351
0
      exponent += overflow_bits_count;
352
353
0
      bool zero_tail = true;
354
0
      for (;;) {
355
0
        if (Advance(current, separator, radix, end)) break;
356
0
        if (parse_as_hex_float && **current == '.') {
357
          // Just run over the '.'. We are just trying to see whether there is
358
          // a non-zero digit somewhere.
359
0
          Advance(current, separator, radix, end);
360
0
          DOUBLE_CONVERSION_ASSERT(*current != end);
361
0
          post_decimal = true;
362
0
        }
363
0
        if (!isDigit(**current, radix)) break;
364
0
        zero_tail = zero_tail && **current == '0';
365
0
        if (!post_decimal) exponent += radix_log_2;
366
0
      }
367
368
0
      if (!parse_as_hex_float &&
369
0
          !allow_trailing_junk &&
370
0
          AdvanceToNonspace(current, end)) {
371
0
        return junk_string_value;
372
0
      }
373
374
0
      int middle_value = (1 << (overflow_bits_count - 1));
375
0
      if (dropped_bits > middle_value) {
376
0
        number++;  // Rounding up.
377
0
      } else if (dropped_bits == middle_value) {
378
        // Rounding to even to consistency with decimals: half-way case rounds
379
        // up if significant part is odd and down otherwise.
380
0
        if ((number & 1) != 0 || !zero_tail) {
381
0
          number++;  // Rounding up.
382
0
        }
383
0
      }
384
385
      // Rounding up may cause overflow.
386
0
      if ((number & ((int64_t)1 << kSignificandSize)) != 0) {
387
0
        exponent++;
388
0
        number >>= 1;
389
0
      }
390
0
      break;
391
0
    }
392
0
    if (Advance(current, separator, radix, end)) break;
393
0
  }
394
395
0
  DOUBLE_CONVERSION_ASSERT(number < ((int64_t)1 << kSignificandSize));
396
0
  DOUBLE_CONVERSION_ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
397
398
0
  *result_is_junk = false;
399
400
0
  if (parse_as_hex_float) {
401
0
    DOUBLE_CONVERSION_ASSERT(**current == 'p' || **current == 'P');
402
0
    Advance(current, separator, radix, end);
403
0
    DOUBLE_CONVERSION_ASSERT(*current != end);
404
0
    bool is_negative = false;
405
0
    if (**current == '+') {
406
0
      Advance(current, separator, radix, end);
407
0
      DOUBLE_CONVERSION_ASSERT(*current != end);
408
0
    } else if (**current == '-') {
409
0
      is_negative = true;
410
0
      Advance(current, separator, radix, end);
411
0
      DOUBLE_CONVERSION_ASSERT(*current != end);
412
0
    }
413
0
    int written_exponent = 0;
414
0
    while (IsDecimalDigitForRadix(**current, 10)) {
415
      // No need to read exponents if they are too big. That could potentially overflow
416
      // the `written_exponent` variable.
417
0
      if (abs(written_exponent) <= 100 * Double::kMaxExponent) {
418
0
        written_exponent = 10 * written_exponent + **current - '0';
419
0
      }
420
0
      if (Advance(current, separator, radix, end)) break;
421
0
    }
422
0
    if (is_negative) written_exponent = -written_exponent;
423
0
    exponent += written_exponent;
424
0
  }
425
426
0
  if (exponent == 0 || number == 0) {
427
0
    if (sign) {
428
0
      if (number == 0) return -0.0;
429
0
      number = -number;
430
0
    }
431
0
    return static_cast<double>(number);
432
0
  }
433
434
0
  DOUBLE_CONVERSION_ASSERT(number != 0);
435
0
  double result = Double(DiyFp(number, exponent)).value();
436
0
  return sign ? -result : result;
437
0
}
Unexecuted instantiation: double-conversion-string-to-double.cpp:double icu_70::double_conversion::RadixStringToIeee<4, char const*>(char const**, char const*, bool, unsigned short, bool, bool, double, bool, bool*)
Unexecuted instantiation: double-conversion-string-to-double.cpp:double icu_70::double_conversion::RadixStringToIeee<3, char*>(char**, char*, bool, unsigned short, bool, bool, double, bool, bool*)
Unexecuted instantiation: double-conversion-string-to-double.cpp:double icu_70::double_conversion::RadixStringToIeee<4, unsigned short const*>(unsigned short const**, unsigned short const*, bool, unsigned short, bool, bool, double, bool, bool*)
438
439
template <class Iterator>
440
double StringToDoubleConverter::StringToIeee(
441
    Iterator input,
442
    int length,
443
    bool read_as_double,
444
0
    int* processed_characters_count) const {
445
0
  Iterator current = input;
446
0
  Iterator end = input + length;
447
448
0
  *processed_characters_count = 0;
449
450
0
  const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0;
451
0
  const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
452
0
  const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
453
0
  const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
454
0
  const bool allow_case_insensitivity = (flags_ & ALLOW_CASE_INSENSITIVITY) != 0;
455
456
  // To make sure that iterator dereferencing is valid the following
457
  // convention is used:
458
  // 1. Each '++current' statement is followed by check for equality to 'end'.
459
  // 2. If AdvanceToNonspace returned false then current == end.
460
  // 3. If 'current' becomes equal to 'end' the function returns or goes to
461
  // 'parsing_done'.
462
  // 4. 'current' is not dereferenced after the 'parsing_done' label.
463
  // 5. Code before 'parsing_done' may rely on 'current != end'.
464
0
  if (current == end) return empty_string_value_;
465
466
0
  if (allow_leading_spaces || allow_trailing_spaces) {
467
0
    if (!AdvanceToNonspace(&current, end)) {
468
0
      *processed_characters_count = static_cast<int>(current - input);
469
0
      return empty_string_value_;
470
0
    }
471
0
    if (!allow_leading_spaces && (input != current)) {
472
      // No leading spaces allowed, but AdvanceToNonspace moved forward.
473
0
      return junk_string_value_;
474
0
    }
475
0
  }
476
477
  // Exponent will be adjusted if insignificant digits of the integer part
478
  // or insignificant leading zeros of the fractional part are dropped.
479
0
  int exponent = 0;
480
0
  int significant_digits = 0;
481
0
  int insignificant_digits = 0;
482
0
  bool nonzero_digit_dropped = false;
483
484
0
  bool sign = false;
485
486
0
  if (*current == '+' || *current == '-') {
487
0
    sign = (*current == '-');
488
0
    ++current;
489
0
    Iterator next_non_space = current;
490
    // Skip following spaces (if allowed).
491
0
    if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
492
0
    if (!allow_spaces_after_sign && (current != next_non_space)) {
493
0
      return junk_string_value_;
494
0
    }
495
0
    current = next_non_space;
496
0
  }
497
498
0
  if (infinity_symbol_ != NULL) {
499
0
    if (ConsumeFirstCharacter(*current, infinity_symbol_, allow_case_insensitivity)) {
500
0
      if (!ConsumeSubString(&current, end, infinity_symbol_, allow_case_insensitivity)) {
501
0
        return junk_string_value_;
502
0
      }
503
504
0
      if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
505
0
        return junk_string_value_;
506
0
      }
507
0
      if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
508
0
        return junk_string_value_;
509
0
      }
510
511
0
      *processed_characters_count = static_cast<int>(current - input);
512
0
      return sign ? -Double::Infinity() : Double::Infinity();
513
0
    }
514
0
  }
515
516
0
  if (nan_symbol_ != NULL) {
517
0
    if (ConsumeFirstCharacter(*current, nan_symbol_, allow_case_insensitivity)) {
518
0
      if (!ConsumeSubString(&current, end, nan_symbol_, allow_case_insensitivity)) {
519
0
        return junk_string_value_;
520
0
      }
521
522
0
      if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
523
0
        return junk_string_value_;
524
0
      }
525
0
      if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
526
0
        return junk_string_value_;
527
0
      }
528
529
0
      *processed_characters_count = static_cast<int>(current - input);
530
0
      return sign ? -Double::NaN() : Double::NaN();
531
0
    }
532
0
  }
533
534
0
  bool leading_zero = false;
535
0
  if (*current == '0') {
536
0
    if (Advance(&current, separator_, 10, end)) {
537
0
      *processed_characters_count = static_cast<int>(current - input);
538
0
      return SignedZero(sign);
539
0
    }
540
541
0
    leading_zero = true;
542
543
    // It could be hexadecimal value.
544
0
    if (((flags_ & ALLOW_HEX) || (flags_ & ALLOW_HEX_FLOATS)) &&
545
0
        (*current == 'x' || *current == 'X')) {
546
0
      ++current;
547
548
0
      if (current == end) return junk_string_value_;  // "0x"
549
550
0
      bool parse_as_hex_float = (flags_ & ALLOW_HEX_FLOATS) &&
551
0
                IsHexFloatString(current, end, separator_, allow_trailing_junk);
552
553
0
      if (!parse_as_hex_float && !isDigit(*current, 16)) {
554
0
        return junk_string_value_;
555
0
      }
556
557
0
      bool result_is_junk;
558
0
      double result = RadixStringToIeee<4>(&current,
559
0
                                           end,
560
0
                                           sign,
561
0
                                           separator_,
562
0
                                           parse_as_hex_float,
563
0
                                           allow_trailing_junk,
564
0
                                           junk_string_value_,
565
0
                                           read_as_double,
566
0
                                           &result_is_junk);
567
0
      if (!result_is_junk) {
568
0
        if (allow_trailing_spaces) AdvanceToNonspace(&current, end);
569
0
        *processed_characters_count = static_cast<int>(current - input);
570
0
      }
571
0
      return result;
572
0
    }
573
574
    // Ignore leading zeros in the integer part.
575
0
    while (*current == '0') {
576
0
      if (Advance(&current, separator_, 10, end)) {
577
0
        *processed_characters_count = static_cast<int>(current - input);
578
0
        return SignedZero(sign);
579
0
      }
580
0
    }
581
0
  }
582
583
0
  bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0;
584
585
  // The longest form of simplified number is: "-<significant digits>.1eXXX\0".
586
0
  const int kBufferSize = kMaxSignificantDigits + 10;
587
0
  DOUBLE_CONVERSION_STACK_UNINITIALIZED char
588
0
      buffer[kBufferSize];  // NOLINT: size is known at compile time.
589
0
  int buffer_pos = 0;
590
591
  // Copy significant digits of the integer part (if any) to the buffer.
592
0
  while (*current >= '0' && *current <= '9') {
593
0
    if (significant_digits < kMaxSignificantDigits) {
594
0
      DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
595
0
      buffer[buffer_pos++] = static_cast<char>(*current);
596
0
      significant_digits++;
597
      // Will later check if it's an octal in the buffer.
598
0
    } else {
599
0
      insignificant_digits++;  // Move the digit into the exponential part.
600
0
      nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
601
0
    }
602
0
    octal = octal && *current < '8';
603
0
    if (Advance(&current, separator_, 10, end)) goto parsing_done;
604
0
  }
605
606
0
  if (significant_digits == 0) {
607
0
    octal = false;
608
0
  }
609
610
0
  if (*current == '.') {
611
0
    if (octal && !allow_trailing_junk) return junk_string_value_;
612
0
    if (octal) goto parsing_done;
613
614
0
    if (Advance(&current, separator_, 10, end)) {
615
0
      if (significant_digits == 0 && !leading_zero) {
616
0
        return junk_string_value_;
617
0
      } else {
618
0
        goto parsing_done;
619
0
      }
620
0
    }
621
622
0
    if (significant_digits == 0) {
623
      // octal = false;
624
      // Integer part consists of 0 or is absent. Significant digits start after
625
      // leading zeros (if any).
626
0
      while (*current == '0') {
627
0
        if (Advance(&current, separator_, 10, end)) {
628
0
          *processed_characters_count = static_cast<int>(current - input);
629
0
          return SignedZero(sign);
630
0
        }
631
0
        exponent--;  // Move this 0 into the exponent.
632
0
      }
633
0
    }
634
635
    // There is a fractional part.
636
    // We don't emit a '.', but adjust the exponent instead.
637
0
    while (*current >= '0' && *current <= '9') {
638
0
      if (significant_digits < kMaxSignificantDigits) {
639
0
        DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
640
0
        buffer[buffer_pos++] = static_cast<char>(*current);
641
0
        significant_digits++;
642
0
        exponent--;
643
0
      } else {
644
        // Ignore insignificant digits in the fractional part.
645
0
        nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
646
0
      }
647
0
      if (Advance(&current, separator_, 10, end)) goto parsing_done;
648
0
    }
649
0
  }
650
651
0
  if (!leading_zero && exponent == 0 && significant_digits == 0) {
652
    // If leading_zeros is true then the string contains zeros.
653
    // If exponent < 0 then string was [+-]\.0*...
654
    // If significant_digits != 0 the string is not equal to 0.
655
    // Otherwise there are no digits in the string.
656
0
    return junk_string_value_;
657
0
  }
658
659
  // Parse exponential part.
660
0
  if (*current == 'e' || *current == 'E') {
661
0
    if (octal && !allow_trailing_junk) return junk_string_value_;
662
0
    if (octal) goto parsing_done;
663
0
    Iterator junk_begin = current;
664
0
    ++current;
665
0
    if (current == end) {
666
0
      if (allow_trailing_junk) {
667
0
        current = junk_begin;
668
0
        goto parsing_done;
669
0
      } else {
670
0
        return junk_string_value_;
671
0
      }
672
0
    }
673
0
    char exponen_sign = '+';
674
0
    if (*current == '+' || *current == '-') {
675
0
      exponen_sign = static_cast<char>(*current);
676
0
      ++current;
677
0
      if (current == end) {
678
0
        if (allow_trailing_junk) {
679
0
          current = junk_begin;
680
0
          goto parsing_done;
681
0
        } else {
682
0
          return junk_string_value_;
683
0
        }
684
0
      }
685
0
    }
686
687
0
    if (current == end || *current < '0' || *current > '9') {
688
0
      if (allow_trailing_junk) {
689
0
        current = junk_begin;
690
0
        goto parsing_done;
691
0
      } else {
692
0
        return junk_string_value_;
693
0
      }
694
0
    }
695
696
0
    const int max_exponent = INT_MAX / 2;
697
0
    DOUBLE_CONVERSION_ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
698
0
    int num = 0;
699
0
    do {
700
      // Check overflow.
701
0
      int digit = *current - '0';
702
0
      if (num >= max_exponent / 10
703
0
          && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
704
0
        num = max_exponent;
705
0
      } else {
706
0
        num = num * 10 + digit;
707
0
      }
708
0
      ++current;
709
0
    } while (current != end && *current >= '0' && *current <= '9');
710
711
0
    exponent += (exponen_sign == '-' ? -num : num);
712
0
  }
713
714
0
  if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
715
0
    return junk_string_value_;
716
0
  }
717
0
  if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
718
0
    return junk_string_value_;
719
0
  }
720
0
  if (allow_trailing_spaces) {
721
0
    AdvanceToNonspace(&current, end);
722
0
  }
723
724
0
  parsing_done:
725
0
  exponent += insignificant_digits;
726
727
0
  if (octal) {
728
0
    double result;
729
0
    bool result_is_junk;
730
0
    char* start = buffer;
731
0
    result = RadixStringToIeee<3>(&start,
732
0
                                  buffer + buffer_pos,
733
0
                                  sign,
734
0
                                  separator_,
735
0
                                  false, // Don't parse as hex_float.
736
0
                                  allow_trailing_junk,
737
0
                                  junk_string_value_,
738
0
                                  read_as_double,
739
0
                                  &result_is_junk);
740
0
    DOUBLE_CONVERSION_ASSERT(!result_is_junk);
741
0
    *processed_characters_count = static_cast<int>(current - input);
742
0
    return result;
743
0
  }
744
745
0
  if (nonzero_digit_dropped) {
746
0
    buffer[buffer_pos++] = '1';
747
0
    exponent--;
748
0
  }
749
750
0
  DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
751
0
  buffer[buffer_pos] = '\0';
752
753
  // Code above ensures there are no leading zeros and the buffer has fewer than
754
  // kMaxSignificantDecimalDigits characters. Trim trailing zeros.
755
0
  Vector<const char> chars(buffer, buffer_pos);
756
0
  chars = TrimTrailingZeros(chars);
757
0
  exponent += buffer_pos - chars.length();
758
759
0
  double converted;
760
0
  if (read_as_double) {
761
0
    converted = StrtodTrimmed(chars, exponent);
762
0
  } else {
763
0
    converted = StrtofTrimmed(chars, exponent);
764
0
  }
765
0
  *processed_characters_count = static_cast<int>(current - input);
766
0
  return sign? -converted: converted;
767
0
}
Unexecuted instantiation: double icu_70::double_conversion::StringToDoubleConverter::StringToIeee<char const*>(char const*, int, bool, int*) const
Unexecuted instantiation: double icu_70::double_conversion::StringToDoubleConverter::StringToIeee<unsigned short const*>(unsigned short const*, int, bool, int*) const
768
769
770
double StringToDoubleConverter::StringToDouble(
771
    const char* buffer,
772
    int length,
773
0
    int* processed_characters_count) const {
774
0
  return StringToIeee(buffer, length, true, processed_characters_count);
775
0
}
776
777
778
double StringToDoubleConverter::StringToDouble(
779
    const uc16* buffer,
780
    int length,
781
0
    int* processed_characters_count) const {
782
0
  return StringToIeee(buffer, length, true, processed_characters_count);
783
0
}
784
785
786
float StringToDoubleConverter::StringToFloat(
787
    const char* buffer,
788
    int length,
789
0
    int* processed_characters_count) const {
790
0
  return static_cast<float>(StringToIeee(buffer, length, false,
791
0
                                         processed_characters_count));
792
0
}
793
794
795
float StringToDoubleConverter::StringToFloat(
796
    const uc16* buffer,
797
    int length,
798
0
    int* processed_characters_count) const {
799
0
  return static_cast<float>(StringToIeee(buffer, length, false,
800
0
                                         processed_characters_count));
801
0
}
802
803
}  // namespace double_conversion
804
805
// ICU PATCH: Close ICU namespace
806
U_NAMESPACE_END
807
#endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING