/src/icu/source/i18n/nfrs.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /* |
4 | | ****************************************************************************** |
5 | | * Copyright (C) 1997-2015, International Business Machines |
6 | | * Corporation and others. All Rights Reserved. |
7 | | ****************************************************************************** |
8 | | * file name: nfrs.cpp |
9 | | * encoding: UTF-8 |
10 | | * tab size: 8 (not used) |
11 | | * indentation:4 |
12 | | * |
13 | | * Modification history |
14 | | * Date Name Comments |
15 | | * 10/11/2001 Doug Ported from ICU4J |
16 | | */ |
17 | | |
18 | | #include "nfrs.h" |
19 | | |
20 | | #if U_HAVE_RBNF |
21 | | |
22 | | #include "unicode/uchar.h" |
23 | | #include "nfrule.h" |
24 | | #include "nfrlist.h" |
25 | | #include "patternprops.h" |
26 | | #include "putilimp.h" |
27 | | |
28 | | #ifdef RBNF_DEBUG |
29 | | #include "cmemory.h" |
30 | | #endif |
31 | | |
32 | | enum { |
33 | | /** -x */ |
34 | | NEGATIVE_RULE_INDEX = 0, |
35 | | /** x.x */ |
36 | | IMPROPER_FRACTION_RULE_INDEX = 1, |
37 | | /** 0.x */ |
38 | | PROPER_FRACTION_RULE_INDEX = 2, |
39 | | /** x.0 */ |
40 | | DEFAULT_RULE_INDEX = 3, |
41 | | /** Inf */ |
42 | | INFINITY_RULE_INDEX = 4, |
43 | | /** NaN */ |
44 | | NAN_RULE_INDEX = 5, |
45 | | NON_NUMERICAL_RULE_LENGTH = 6 |
46 | | }; |
47 | | |
48 | | U_NAMESPACE_BEGIN |
49 | | |
50 | | #if 0 |
51 | | // euclid's algorithm works with doubles |
52 | | // note, doubles only get us up to one quadrillion or so, which |
53 | | // isn't as much range as we get with longs. We probably still |
54 | | // want either 64-bit math, or BigInteger. |
55 | | |
56 | | static int64_t |
57 | | util_lcm(int64_t x, int64_t y) |
58 | | { |
59 | | x.abs(); |
60 | | y.abs(); |
61 | | |
62 | | if (x == 0 || y == 0) { |
63 | | return 0; |
64 | | } else { |
65 | | do { |
66 | | if (x < y) { |
67 | | int64_t t = x; x = y; y = t; |
68 | | } |
69 | | x -= y * (x/y); |
70 | | } while (x != 0); |
71 | | |
72 | | return y; |
73 | | } |
74 | | } |
75 | | |
76 | | #else |
77 | | /** |
78 | | * Calculates the least common multiple of x and y. |
79 | | */ |
80 | | static int64_t |
81 | | util_lcm(int64_t x, int64_t y) |
82 | 0 | { |
83 | | // binary gcd algorithm from Knuth, "The Art of Computer Programming," |
84 | | // vol. 2, 1st ed., pp. 298-299 |
85 | 0 | int64_t x1 = x; |
86 | 0 | int64_t y1 = y; |
87 | |
|
88 | 0 | int p2 = 0; |
89 | 0 | while ((x1 & 1) == 0 && (y1 & 1) == 0) { |
90 | 0 | ++p2; |
91 | 0 | x1 >>= 1; |
92 | 0 | y1 >>= 1; |
93 | 0 | } |
94 | |
|
95 | 0 | int64_t t; |
96 | 0 | if ((x1 & 1) == 1) { |
97 | 0 | t = -y1; |
98 | 0 | } else { |
99 | 0 | t = x1; |
100 | 0 | } |
101 | |
|
102 | 0 | while (t != 0) { |
103 | 0 | while ((t & 1) == 0) { |
104 | 0 | t = t >> 1; |
105 | 0 | } |
106 | 0 | if (t > 0) { |
107 | 0 | x1 = t; |
108 | 0 | } else { |
109 | 0 | y1 = -t; |
110 | 0 | } |
111 | 0 | t = x1 - y1; |
112 | 0 | } |
113 | |
|
114 | 0 | int64_t gcd = x1 << p2; |
115 | | |
116 | | // x * y == gcd(x, y) * lcm(x, y) |
117 | 0 | return x / gcd * y; |
118 | 0 | } |
119 | | #endif |
120 | | |
121 | | static const UChar gPercent = 0x0025; |
122 | | static const UChar gColon = 0x003a; |
123 | | static const UChar gSemicolon = 0x003b; |
124 | | static const UChar gLineFeed = 0x000a; |
125 | | |
126 | | static const UChar gPercentPercent[] = |
127 | | { |
128 | | 0x25, 0x25, 0 |
129 | | }; /* "%%" */ |
130 | | |
131 | | static const UChar gNoparse[] = |
132 | | { |
133 | | 0x40, 0x6E, 0x6F, 0x70, 0x61, 0x72, 0x73, 0x65, 0 |
134 | | }; /* "@noparse" */ |
135 | | |
136 | | NFRuleSet::NFRuleSet(RuleBasedNumberFormat *_owner, UnicodeString* descriptions, int32_t index, UErrorCode& status) |
137 | 0 | : name() |
138 | 0 | , rules(0) |
139 | 0 | , owner(_owner) |
140 | 0 | , fractionRules() |
141 | 0 | , fIsFractionRuleSet(FALSE) |
142 | 0 | , fIsPublic(FALSE) |
143 | 0 | , fIsParseable(TRUE) |
144 | 0 | { |
145 | 0 | for (int32_t i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) { |
146 | 0 | nonNumericalRules[i] = NULL; |
147 | 0 | } |
148 | |
|
149 | 0 | if (U_FAILURE(status)) { |
150 | 0 | return; |
151 | 0 | } |
152 | | |
153 | 0 | UnicodeString& description = descriptions[index]; // !!! make sure index is valid |
154 | |
|
155 | 0 | if (description.length() == 0) { |
156 | | // throw new IllegalArgumentException("Empty rule set description"); |
157 | 0 | status = U_PARSE_ERROR; |
158 | 0 | return; |
159 | 0 | } |
160 | | |
161 | | // if the description begins with a rule set name (the rule set |
162 | | // name can be omitted in formatter descriptions that consist |
163 | | // of only one rule set), copy it out into our "name" member |
164 | | // and delete it from the description |
165 | 0 | if (description.charAt(0) == gPercent) { |
166 | 0 | int32_t pos = description.indexOf(gColon); |
167 | 0 | if (pos == -1) { |
168 | | // throw new IllegalArgumentException("Rule set name doesn't end in colon"); |
169 | 0 | status = U_PARSE_ERROR; |
170 | 0 | } else { |
171 | 0 | name.setTo(description, 0, pos); |
172 | 0 | while (pos < description.length() && PatternProps::isWhiteSpace(description.charAt(++pos))) { |
173 | 0 | } |
174 | 0 | description.remove(0, pos); |
175 | 0 | } |
176 | 0 | } else { |
177 | 0 | name.setTo(UNICODE_STRING_SIMPLE("%default")); |
178 | 0 | } |
179 | |
|
180 | 0 | if (description.length() == 0) { |
181 | | // throw new IllegalArgumentException("Empty rule set description"); |
182 | 0 | status = U_PARSE_ERROR; |
183 | 0 | } |
184 | |
|
185 | 0 | fIsPublic = name.indexOf(gPercentPercent, 2, 0) != 0; |
186 | |
|
187 | 0 | if ( name.endsWith(gNoparse,8) ) { |
188 | 0 | fIsParseable = FALSE; |
189 | 0 | name.truncate(name.length()-8); // remove the @noparse from the name |
190 | 0 | } |
191 | | |
192 | | // all of the other members of NFRuleSet are initialized |
193 | | // by parseRules() |
194 | 0 | } |
195 | | |
196 | | void |
197 | | NFRuleSet::parseRules(UnicodeString& description, UErrorCode& status) |
198 | 0 | { |
199 | | // start by creating a Vector whose elements are Strings containing |
200 | | // the descriptions of the rules (one rule per element). The rules |
201 | | // are separated by semicolons (there's no escape facility: ALL |
202 | | // semicolons are rule delimiters) |
203 | |
|
204 | 0 | if (U_FAILURE(status)) { |
205 | 0 | return; |
206 | 0 | } |
207 | | |
208 | | // ensure we are starting with an empty rule list |
209 | 0 | rules.deleteAll(); |
210 | | |
211 | | // dlf - the original code kept a separate description array for no reason, |
212 | | // so I got rid of it. The loop was too complex so I simplified it. |
213 | |
|
214 | 0 | UnicodeString currentDescription; |
215 | 0 | int32_t oldP = 0; |
216 | 0 | while (oldP < description.length()) { |
217 | 0 | int32_t p = description.indexOf(gSemicolon, oldP); |
218 | 0 | if (p == -1) { |
219 | 0 | p = description.length(); |
220 | 0 | } |
221 | 0 | currentDescription.setTo(description, oldP, p - oldP); |
222 | 0 | NFRule::makeRules(currentDescription, this, rules.last(), owner, rules, status); |
223 | 0 | oldP = p + 1; |
224 | 0 | } |
225 | | |
226 | | // for rules that didn't specify a base value, their base values |
227 | | // were initialized to 0. Make another pass through the list and |
228 | | // set all those rules' base values. We also remove any special |
229 | | // rules from the list and put them into their own member variables |
230 | 0 | int64_t defaultBaseValue = 0; |
231 | | |
232 | | // (this isn't a for loop because we might be deleting items from |
233 | | // the vector-- we want to make sure we only increment i when |
234 | | // we _didn't_ delete anything from the vector) |
235 | 0 | int32_t rulesSize = rules.size(); |
236 | 0 | for (int32_t i = 0; i < rulesSize; i++) { |
237 | 0 | NFRule* rule = rules[i]; |
238 | 0 | int64_t baseValue = rule->getBaseValue(); |
239 | |
|
240 | 0 | if (baseValue == 0) { |
241 | | // if the rule's base value is 0, fill in a default |
242 | | // base value (this will be 1 plus the preceding |
243 | | // rule's base value for regular rule sets, and the |
244 | | // same as the preceding rule's base value in fraction |
245 | | // rule sets) |
246 | 0 | rule->setBaseValue(defaultBaseValue, status); |
247 | 0 | } |
248 | 0 | else { |
249 | | // if it's a regular rule that already knows its base value, |
250 | | // check to make sure the rules are in order, and update |
251 | | // the default base value for the next rule |
252 | 0 | if (baseValue < defaultBaseValue) { |
253 | | // throw new IllegalArgumentException("Rules are not in order"); |
254 | 0 | status = U_PARSE_ERROR; |
255 | 0 | return; |
256 | 0 | } |
257 | 0 | defaultBaseValue = baseValue; |
258 | 0 | } |
259 | 0 | if (!fIsFractionRuleSet) { |
260 | 0 | ++defaultBaseValue; |
261 | 0 | } |
262 | 0 | } |
263 | 0 | } |
264 | | |
265 | | /** |
266 | | * Set one of the non-numerical rules. |
267 | | * @param rule The rule to set. |
268 | | */ |
269 | 0 | void NFRuleSet::setNonNumericalRule(NFRule *rule) { |
270 | 0 | int64_t baseValue = rule->getBaseValue(); |
271 | 0 | if (baseValue == NFRule::kNegativeNumberRule) { |
272 | 0 | delete nonNumericalRules[NEGATIVE_RULE_INDEX]; |
273 | 0 | nonNumericalRules[NEGATIVE_RULE_INDEX] = rule; |
274 | 0 | } |
275 | 0 | else if (baseValue == NFRule::kImproperFractionRule) { |
276 | 0 | setBestFractionRule(IMPROPER_FRACTION_RULE_INDEX, rule, TRUE); |
277 | 0 | } |
278 | 0 | else if (baseValue == NFRule::kProperFractionRule) { |
279 | 0 | setBestFractionRule(PROPER_FRACTION_RULE_INDEX, rule, TRUE); |
280 | 0 | } |
281 | 0 | else if (baseValue == NFRule::kDefaultRule) { |
282 | 0 | setBestFractionRule(DEFAULT_RULE_INDEX, rule, TRUE); |
283 | 0 | } |
284 | 0 | else if (baseValue == NFRule::kInfinityRule) { |
285 | 0 | delete nonNumericalRules[INFINITY_RULE_INDEX]; |
286 | 0 | nonNumericalRules[INFINITY_RULE_INDEX] = rule; |
287 | 0 | } |
288 | 0 | else if (baseValue == NFRule::kNaNRule) { |
289 | 0 | delete nonNumericalRules[NAN_RULE_INDEX]; |
290 | 0 | nonNumericalRules[NAN_RULE_INDEX] = rule; |
291 | 0 | } |
292 | 0 | } |
293 | | |
294 | | /** |
295 | | * Determine the best fraction rule to use. Rules matching the decimal point from |
296 | | * DecimalFormatSymbols become the main set of rules to use. |
297 | | * @param originalIndex The index into nonNumericalRules |
298 | | * @param newRule The new rule to consider |
299 | | * @param rememberRule Should the new rule be added to fractionRules. |
300 | | */ |
301 | 0 | void NFRuleSet::setBestFractionRule(int32_t originalIndex, NFRule *newRule, UBool rememberRule) { |
302 | 0 | if (rememberRule) { |
303 | 0 | fractionRules.add(newRule); |
304 | 0 | } |
305 | 0 | NFRule *bestResult = nonNumericalRules[originalIndex]; |
306 | 0 | if (bestResult == NULL) { |
307 | 0 | nonNumericalRules[originalIndex] = newRule; |
308 | 0 | } |
309 | 0 | else { |
310 | | // We have more than one. Which one is better? |
311 | 0 | const DecimalFormatSymbols *decimalFormatSymbols = owner->getDecimalFormatSymbols(); |
312 | 0 | if (decimalFormatSymbols->getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol).charAt(0) |
313 | 0 | == newRule->getDecimalPoint()) |
314 | 0 | { |
315 | 0 | nonNumericalRules[originalIndex] = newRule; |
316 | 0 | } |
317 | | // else leave it alone |
318 | 0 | } |
319 | 0 | } |
320 | | |
321 | | NFRuleSet::~NFRuleSet() |
322 | 0 | { |
323 | 0 | for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) { |
324 | 0 | if (i != IMPROPER_FRACTION_RULE_INDEX |
325 | 0 | && i != PROPER_FRACTION_RULE_INDEX |
326 | 0 | && i != DEFAULT_RULE_INDEX) |
327 | 0 | { |
328 | 0 | delete nonNumericalRules[i]; |
329 | 0 | } |
330 | | // else it will be deleted via NFRuleList fractionRules |
331 | 0 | } |
332 | 0 | } |
333 | | |
334 | | static UBool |
335 | | util_equalRules(const NFRule* rule1, const NFRule* rule2) |
336 | 0 | { |
337 | 0 | if (rule1) { |
338 | 0 | if (rule2) { |
339 | 0 | return *rule1 == *rule2; |
340 | 0 | } |
341 | 0 | } else if (!rule2) { |
342 | 0 | return TRUE; |
343 | 0 | } |
344 | 0 | return FALSE; |
345 | 0 | } |
346 | | |
347 | | bool |
348 | | NFRuleSet::operator==(const NFRuleSet& rhs) const |
349 | 0 | { |
350 | 0 | if (rules.size() == rhs.rules.size() && |
351 | 0 | fIsFractionRuleSet == rhs.fIsFractionRuleSet && |
352 | 0 | name == rhs.name) { |
353 | | |
354 | | // ...then compare the non-numerical rule lists... |
355 | 0 | for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) { |
356 | 0 | if (!util_equalRules(nonNumericalRules[i], rhs.nonNumericalRules[i])) { |
357 | 0 | return FALSE; |
358 | 0 | } |
359 | 0 | } |
360 | | |
361 | | // ...then compare the rule lists... |
362 | 0 | for (uint32_t i = 0; i < rules.size(); ++i) { |
363 | 0 | if (*rules[i] != *rhs.rules[i]) { |
364 | 0 | return FALSE; |
365 | 0 | } |
366 | 0 | } |
367 | 0 | return TRUE; |
368 | 0 | } |
369 | 0 | return FALSE; |
370 | 0 | } |
371 | | |
372 | | void |
373 | 0 | NFRuleSet::setDecimalFormatSymbols(const DecimalFormatSymbols &newSymbols, UErrorCode& status) { |
374 | 0 | for (uint32_t i = 0; i < rules.size(); ++i) { |
375 | 0 | rules[i]->setDecimalFormatSymbols(newSymbols, status); |
376 | 0 | } |
377 | | // Switch the fraction rules to mirror the DecimalFormatSymbols. |
378 | 0 | for (int32_t nonNumericalIdx = IMPROPER_FRACTION_RULE_INDEX; nonNumericalIdx <= DEFAULT_RULE_INDEX; nonNumericalIdx++) { |
379 | 0 | if (nonNumericalRules[nonNumericalIdx]) { |
380 | 0 | for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) { |
381 | 0 | NFRule *fractionRule = fractionRules[fIdx]; |
382 | 0 | if (nonNumericalRules[nonNumericalIdx]->getBaseValue() == fractionRule->getBaseValue()) { |
383 | 0 | setBestFractionRule(nonNumericalIdx, fractionRule, FALSE); |
384 | 0 | } |
385 | 0 | } |
386 | 0 | } |
387 | 0 | } |
388 | |
|
389 | 0 | for (uint32_t nnrIdx = 0; nnrIdx < NON_NUMERICAL_RULE_LENGTH; nnrIdx++) { |
390 | 0 | NFRule *rule = nonNumericalRules[nnrIdx]; |
391 | 0 | if (rule) { |
392 | 0 | rule->setDecimalFormatSymbols(newSymbols, status); |
393 | 0 | } |
394 | 0 | } |
395 | 0 | } |
396 | | |
397 | 0 | #define RECURSION_LIMIT 64 |
398 | | |
399 | | void |
400 | | NFRuleSet::format(int64_t number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const |
401 | 0 | { |
402 | 0 | if (recursionCount >= RECURSION_LIMIT) { |
403 | | // stop recursion |
404 | 0 | status = U_INVALID_STATE_ERROR; |
405 | 0 | return; |
406 | 0 | } |
407 | 0 | const NFRule *rule = findNormalRule(number); |
408 | 0 | if (rule) { // else error, but can't report it |
409 | 0 | rule->doFormat(number, toAppendTo, pos, ++recursionCount, status); |
410 | 0 | } |
411 | 0 | } |
412 | | |
413 | | void |
414 | | NFRuleSet::format(double number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const |
415 | 0 | { |
416 | 0 | if (recursionCount >= RECURSION_LIMIT) { |
417 | | // stop recursion |
418 | 0 | status = U_INVALID_STATE_ERROR; |
419 | 0 | return; |
420 | 0 | } |
421 | 0 | const NFRule *rule = findDoubleRule(number); |
422 | 0 | if (rule) { // else error, but can't report it |
423 | 0 | rule->doFormat(number, toAppendTo, pos, ++recursionCount, status); |
424 | 0 | } |
425 | 0 | } |
426 | | |
427 | | const NFRule* |
428 | | NFRuleSet::findDoubleRule(double number) const |
429 | 0 | { |
430 | | // if this is a fraction rule set, use findFractionRuleSetRule() |
431 | 0 | if (isFractionRuleSet()) { |
432 | 0 | return findFractionRuleSetRule(number); |
433 | 0 | } |
434 | | |
435 | 0 | if (uprv_isNaN(number)) { |
436 | 0 | const NFRule *rule = nonNumericalRules[NAN_RULE_INDEX]; |
437 | 0 | if (!rule) { |
438 | 0 | rule = owner->getDefaultNaNRule(); |
439 | 0 | } |
440 | 0 | return rule; |
441 | 0 | } |
442 | | |
443 | | // if the number is negative, return the negative number rule |
444 | | // (if there isn't a negative-number rule, we pretend it's a |
445 | | // positive number) |
446 | 0 | if (number < 0) { |
447 | 0 | if (nonNumericalRules[NEGATIVE_RULE_INDEX]) { |
448 | 0 | return nonNumericalRules[NEGATIVE_RULE_INDEX]; |
449 | 0 | } else { |
450 | 0 | number = -number; |
451 | 0 | } |
452 | 0 | } |
453 | | |
454 | 0 | if (uprv_isInfinite(number)) { |
455 | 0 | const NFRule *rule = nonNumericalRules[INFINITY_RULE_INDEX]; |
456 | 0 | if (!rule) { |
457 | 0 | rule = owner->getDefaultInfinityRule(); |
458 | 0 | } |
459 | 0 | return rule; |
460 | 0 | } |
461 | | |
462 | | // if the number isn't an integer, we use one of the fraction rules... |
463 | 0 | if (number != uprv_floor(number)) { |
464 | | // if the number is between 0 and 1, return the proper |
465 | | // fraction rule |
466 | 0 | if (number < 1 && nonNumericalRules[PROPER_FRACTION_RULE_INDEX]) { |
467 | 0 | return nonNumericalRules[PROPER_FRACTION_RULE_INDEX]; |
468 | 0 | } |
469 | | // otherwise, return the improper fraction rule |
470 | 0 | else if (nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX]) { |
471 | 0 | return nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX]; |
472 | 0 | } |
473 | 0 | } |
474 | | |
475 | | // if there's a default rule, use it to format the number |
476 | 0 | if (nonNumericalRules[DEFAULT_RULE_INDEX]) { |
477 | 0 | return nonNumericalRules[DEFAULT_RULE_INDEX]; |
478 | 0 | } |
479 | | |
480 | | // and if we haven't yet returned a rule, use findNormalRule() |
481 | | // to find the applicable rule |
482 | 0 | int64_t r = util64_fromDouble(number + 0.5); |
483 | 0 | return findNormalRule(r); |
484 | 0 | } |
485 | | |
486 | | const NFRule * |
487 | | NFRuleSet::findNormalRule(int64_t number) const |
488 | 0 | { |
489 | | // if this is a fraction rule set, use findFractionRuleSetRule() |
490 | | // to find the rule (we should only go into this clause if the |
491 | | // value is 0) |
492 | 0 | if (fIsFractionRuleSet) { |
493 | 0 | return findFractionRuleSetRule((double)number); |
494 | 0 | } |
495 | | |
496 | | // if the number is negative, return the negative-number rule |
497 | | // (if there isn't one, pretend the number is positive) |
498 | 0 | if (number < 0) { |
499 | 0 | if (nonNumericalRules[NEGATIVE_RULE_INDEX]) { |
500 | 0 | return nonNumericalRules[NEGATIVE_RULE_INDEX]; |
501 | 0 | } else { |
502 | 0 | number = -number; |
503 | 0 | } |
504 | 0 | } |
505 | | |
506 | | // we have to repeat the preceding two checks, even though we |
507 | | // do them in findRule(), because the version of format() that |
508 | | // takes a long bypasses findRule() and goes straight to this |
509 | | // function. This function does skip the fraction rules since |
510 | | // we know the value is an integer (it also skips the default |
511 | | // rule, since it's considered a fraction rule. Skipping the |
512 | | // default rule in this function is also how we avoid infinite |
513 | | // recursion) |
514 | | |
515 | | // {dlf} unfortunately this fails if there are no rules except |
516 | | // special rules. If there are no rules, use the default rule. |
517 | | |
518 | | // binary-search the rule list for the applicable rule |
519 | | // (a rule is used for all values from its base value to |
520 | | // the next rule's base value) |
521 | 0 | int32_t hi = rules.size(); |
522 | 0 | if (hi > 0) { |
523 | 0 | int32_t lo = 0; |
524 | |
|
525 | 0 | while (lo < hi) { |
526 | 0 | int32_t mid = (lo + hi) / 2; |
527 | 0 | if (rules[mid]->getBaseValue() == number) { |
528 | 0 | return rules[mid]; |
529 | 0 | } |
530 | 0 | else if (rules[mid]->getBaseValue() > number) { |
531 | 0 | hi = mid; |
532 | 0 | } |
533 | 0 | else { |
534 | 0 | lo = mid + 1; |
535 | 0 | } |
536 | 0 | } |
537 | 0 | if (hi == 0) { // bad rule set, minimum base > 0 |
538 | 0 | return NULL; // want to throw exception here |
539 | 0 | } |
540 | | |
541 | 0 | NFRule *result = rules[hi - 1]; |
542 | | |
543 | | // use shouldRollBack() to see whether we need to invoke the |
544 | | // rollback rule (see shouldRollBack()'s documentation for |
545 | | // an explanation of the rollback rule). If we do, roll back |
546 | | // one rule and return that one instead of the one we'd normally |
547 | | // return |
548 | 0 | if (result->shouldRollBack(number)) { |
549 | 0 | if (hi == 1) { // bad rule set, no prior rule to rollback to from this base |
550 | 0 | return NULL; |
551 | 0 | } |
552 | 0 | result = rules[hi - 2]; |
553 | 0 | } |
554 | 0 | return result; |
555 | 0 | } |
556 | | // else use the default rule |
557 | 0 | return nonNumericalRules[DEFAULT_RULE_INDEX]; |
558 | 0 | } |
559 | | |
560 | | /** |
561 | | * If this rule is a fraction rule set, this function is used by |
562 | | * findRule() to select the most appropriate rule for formatting |
563 | | * the number. Basically, the base value of each rule in the rule |
564 | | * set is treated as the denominator of a fraction. Whichever |
565 | | * denominator can produce the fraction closest in value to the |
566 | | * number passed in is the result. If there's a tie, the earlier |
567 | | * one in the list wins. (If there are two rules in a row with the |
568 | | * same base value, the first one is used when the numerator of the |
569 | | * fraction would be 1, and the second rule is used the rest of the |
570 | | * time. |
571 | | * @param number The number being formatted (which will always be |
572 | | * a number between 0 and 1) |
573 | | * @return The rule to use to format this number |
574 | | */ |
575 | | const NFRule* |
576 | | NFRuleSet::findFractionRuleSetRule(double number) const |
577 | 0 | { |
578 | | // the obvious way to do this (multiply the value being formatted |
579 | | // by each rule's base value until you get an integral result) |
580 | | // doesn't work because of rounding error. This method is more |
581 | | // accurate |
582 | | |
583 | | // find the least common multiple of the rules' base values |
584 | | // and multiply this by the number being formatted. This is |
585 | | // all the precision we need, and we can do all of the rest |
586 | | // of the math using integer arithmetic |
587 | 0 | int64_t leastCommonMultiple = rules[0]->getBaseValue(); |
588 | 0 | int64_t numerator; |
589 | 0 | { |
590 | 0 | for (uint32_t i = 1; i < rules.size(); ++i) { |
591 | 0 | leastCommonMultiple = util_lcm(leastCommonMultiple, rules[i]->getBaseValue()); |
592 | 0 | } |
593 | 0 | numerator = util64_fromDouble(number * (double)leastCommonMultiple + 0.5); |
594 | 0 | } |
595 | | // for each rule, do the following... |
596 | 0 | int64_t tempDifference; |
597 | 0 | int64_t difference = util64_fromDouble(uprv_maxMantissa()); |
598 | 0 | int32_t winner = 0; |
599 | 0 | for (uint32_t i = 0; i < rules.size(); ++i) { |
600 | | // "numerator" is the numerator of the fraction if the |
601 | | // denominator is the LCD. The numerator if the rule's |
602 | | // base value is the denominator is "numerator" times the |
603 | | // base value divided bythe LCD. Here we check to see if |
604 | | // that's an integer, and if not, how close it is to being |
605 | | // an integer. |
606 | 0 | tempDifference = numerator * rules[i]->getBaseValue() % leastCommonMultiple; |
607 | | |
608 | | |
609 | | // normalize the result of the above calculation: we want |
610 | | // the numerator's distance from the CLOSEST multiple |
611 | | // of the LCD |
612 | 0 | if (leastCommonMultiple - tempDifference < tempDifference) { |
613 | 0 | tempDifference = leastCommonMultiple - tempDifference; |
614 | 0 | } |
615 | | |
616 | | // if this is as close as we've come, keep track of how close |
617 | | // that is, and the line number of the rule that did it. If |
618 | | // we've scored a direct hit, we don't have to look at any more |
619 | | // rules |
620 | 0 | if (tempDifference < difference) { |
621 | 0 | difference = tempDifference; |
622 | 0 | winner = i; |
623 | 0 | if (difference == 0) { |
624 | 0 | break; |
625 | 0 | } |
626 | 0 | } |
627 | 0 | } |
628 | | |
629 | | // if we have two successive rules that both have the winning base |
630 | | // value, then the first one (the one we found above) is used if |
631 | | // the numerator of the fraction is 1 and the second one is used if |
632 | | // the numerator of the fraction is anything else (this lets us |
633 | | // do things like "one third"/"two thirds" without having to define |
634 | | // a whole bunch of extra rule sets) |
635 | 0 | if ((unsigned)(winner + 1) < rules.size() && |
636 | 0 | rules[winner + 1]->getBaseValue() == rules[winner]->getBaseValue()) { |
637 | 0 | double n = ((double)rules[winner]->getBaseValue()) * number; |
638 | 0 | if (n < 0.5 || n >= 2) { |
639 | 0 | ++winner; |
640 | 0 | } |
641 | 0 | } |
642 | | |
643 | | // finally, return the winning rule |
644 | 0 | return rules[winner]; |
645 | 0 | } |
646 | | |
647 | | /** |
648 | | * Parses a string. Matches the string to be parsed against each |
649 | | * of its rules (with a base value less than upperBound) and returns |
650 | | * the value produced by the rule that matched the most characters |
651 | | * in the source string. |
652 | | * @param text The string to parse |
653 | | * @param parsePosition The initial position is ignored and assumed |
654 | | * to be 0. On exit, this object has been updated to point to the |
655 | | * first character position this rule set didn't consume. |
656 | | * @param upperBound Limits the rules that can be allowed to match. |
657 | | * Only rules whose base values are strictly less than upperBound |
658 | | * are considered. |
659 | | * @return The numerical result of parsing this string. This will |
660 | | * be the matching rule's base value, composed appropriately with |
661 | | * the results of matching any of its substitutions. The object |
662 | | * will be an instance of Long if it's an integral value; otherwise, |
663 | | * it will be an instance of Double. This function always returns |
664 | | * a valid object: If nothing matched the input string at all, |
665 | | * this function returns new Long(0), and the parse position is |
666 | | * left unchanged. |
667 | | */ |
668 | | #ifdef RBNF_DEBUG |
669 | | #include <stdio.h> |
670 | | |
671 | | static void dumpUS(FILE* f, const UnicodeString& us) { |
672 | | int len = us.length(); |
673 | | char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; |
674 | | if (buf != NULL) { |
675 | | us.extract(0, len, buf); |
676 | | buf[len] = 0; |
677 | | fprintf(f, "%s", buf); |
678 | | uprv_free(buf); //delete[] buf; |
679 | | } |
680 | | } |
681 | | #endif |
682 | | |
683 | | UBool |
684 | | NFRuleSet::parse(const UnicodeString& text, ParsePosition& pos, double upperBound, uint32_t nonNumericalExecutedRuleMask, Formattable& result) const |
685 | 0 | { |
686 | | // try matching each rule in the rule set against the text being |
687 | | // parsed. Whichever one matches the most characters is the one |
688 | | // that determines the value we return. |
689 | |
|
690 | 0 | result.setLong(0); |
691 | | |
692 | | // dump out if there's no text to parse |
693 | 0 | if (text.length() == 0) { |
694 | 0 | return 0; |
695 | 0 | } |
696 | | |
697 | 0 | ParsePosition highWaterMark; |
698 | 0 | ParsePosition workingPos = pos; |
699 | |
|
700 | | #ifdef RBNF_DEBUG |
701 | | fprintf(stderr, "<nfrs> %x '", this); |
702 | | dumpUS(stderr, name); |
703 | | fprintf(stderr, "' text '"); |
704 | | dumpUS(stderr, text); |
705 | | fprintf(stderr, "'\n"); |
706 | | fprintf(stderr, " parse negative: %d\n", this, negativeNumberRule != 0); |
707 | | #endif |
708 | | // Try each of the negative rules, fraction rules, infinity rules and NaN rules |
709 | 0 | for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) { |
710 | 0 | if (nonNumericalRules[i] && ((nonNumericalExecutedRuleMask >> i) & 1) == 0) { |
711 | | // Mark this rule as being executed so that we don't try to execute it again. |
712 | 0 | nonNumericalExecutedRuleMask |= 1 << i; |
713 | |
|
714 | 0 | Formattable tempResult; |
715 | 0 | UBool success = nonNumericalRules[i]->doParse(text, workingPos, 0, upperBound, nonNumericalExecutedRuleMask, tempResult); |
716 | 0 | if (success && (workingPos.getIndex() > highWaterMark.getIndex())) { |
717 | 0 | result = tempResult; |
718 | 0 | highWaterMark = workingPos; |
719 | 0 | } |
720 | 0 | workingPos = pos; |
721 | 0 | } |
722 | 0 | } |
723 | | #ifdef RBNF_DEBUG |
724 | | fprintf(stderr, "<nfrs> continue other with text '"); |
725 | | dumpUS(stderr, text); |
726 | | fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex()); |
727 | | #endif |
728 | | |
729 | | // finally, go through the regular rules one at a time. We start |
730 | | // at the end of the list because we want to try matching the most |
731 | | // sigificant rule first (this helps ensure that we parse |
732 | | // "five thousand three hundred six" as |
733 | | // "(five thousand) (three hundred) (six)" rather than |
734 | | // "((five thousand three) hundred) (six)"). Skip rules whose |
735 | | // base values are higher than the upper bound (again, this helps |
736 | | // limit ambiguity by making sure the rules that match a rule's |
737 | | // are less significant than the rule containing the substitutions)/ |
738 | 0 | { |
739 | 0 | int64_t ub = util64_fromDouble(upperBound); |
740 | | #ifdef RBNF_DEBUG |
741 | | { |
742 | | char ubstr[64]; |
743 | | util64_toa(ub, ubstr, 64); |
744 | | char ubstrhex[64]; |
745 | | util64_toa(ub, ubstrhex, 64, 16); |
746 | | fprintf(stderr, "ub: %g, i64: %s (%s)\n", upperBound, ubstr, ubstrhex); |
747 | | } |
748 | | #endif |
749 | 0 | for (int32_t i = rules.size(); --i >= 0 && highWaterMark.getIndex() < text.length();) { |
750 | 0 | if ((!fIsFractionRuleSet) && (rules[i]->getBaseValue() >= ub)) { |
751 | 0 | continue; |
752 | 0 | } |
753 | 0 | Formattable tempResult; |
754 | 0 | UBool success = rules[i]->doParse(text, workingPos, fIsFractionRuleSet, upperBound, nonNumericalExecutedRuleMask, tempResult); |
755 | 0 | if (success && workingPos.getIndex() > highWaterMark.getIndex()) { |
756 | 0 | result = tempResult; |
757 | 0 | highWaterMark = workingPos; |
758 | 0 | } |
759 | 0 | workingPos = pos; |
760 | 0 | } |
761 | 0 | } |
762 | | #ifdef RBNF_DEBUG |
763 | | fprintf(stderr, "<nfrs> exit\n"); |
764 | | #endif |
765 | | // finally, update the parse position we were passed to point to the |
766 | | // first character we didn't use, and return the result that |
767 | | // corresponds to that string of characters |
768 | 0 | pos = highWaterMark; |
769 | |
|
770 | 0 | return 1; |
771 | 0 | } |
772 | | |
773 | | void |
774 | | NFRuleSet::appendRules(UnicodeString& result) const |
775 | 0 | { |
776 | 0 | uint32_t i; |
777 | | |
778 | | // the rule set name goes first... |
779 | 0 | result.append(name); |
780 | 0 | result.append(gColon); |
781 | 0 | result.append(gLineFeed); |
782 | | |
783 | | // followed by the regular rules... |
784 | 0 | for (i = 0; i < rules.size(); i++) { |
785 | 0 | rules[i]->_appendRuleText(result); |
786 | 0 | result.append(gLineFeed); |
787 | 0 | } |
788 | | |
789 | | // followed by the special rules (if they exist) |
790 | 0 | for (i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) { |
791 | 0 | NFRule *rule = nonNumericalRules[i]; |
792 | 0 | if (nonNumericalRules[i]) { |
793 | 0 | if (rule->getBaseValue() == NFRule::kImproperFractionRule |
794 | 0 | || rule->getBaseValue() == NFRule::kProperFractionRule |
795 | 0 | || rule->getBaseValue() == NFRule::kDefaultRule) |
796 | 0 | { |
797 | 0 | for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) { |
798 | 0 | NFRule *fractionRule = fractionRules[fIdx]; |
799 | 0 | if (fractionRule->getBaseValue() == rule->getBaseValue()) { |
800 | 0 | fractionRule->_appendRuleText(result); |
801 | 0 | result.append(gLineFeed); |
802 | 0 | } |
803 | 0 | } |
804 | 0 | } |
805 | 0 | else { |
806 | 0 | rule->_appendRuleText(result); |
807 | 0 | result.append(gLineFeed); |
808 | 0 | } |
809 | 0 | } |
810 | 0 | } |
811 | 0 | } |
812 | | |
813 | | // utility functions |
814 | | |
815 | 0 | int64_t util64_fromDouble(double d) { |
816 | 0 | int64_t result = 0; |
817 | 0 | if (!uprv_isNaN(d)) { |
818 | 0 | double mant = uprv_maxMantissa(); |
819 | 0 | if (d < -mant) { |
820 | 0 | d = -mant; |
821 | 0 | } else if (d > mant) { |
822 | 0 | d = mant; |
823 | 0 | } |
824 | 0 | UBool neg = d < 0; |
825 | 0 | if (neg) { |
826 | 0 | d = -d; |
827 | 0 | } |
828 | 0 | result = (int64_t)uprv_floor(d); |
829 | 0 | if (neg) { |
830 | 0 | result = -result; |
831 | 0 | } |
832 | 0 | } |
833 | 0 | return result; |
834 | 0 | } |
835 | | |
836 | 0 | uint64_t util64_pow(uint32_t base, uint16_t exponent) { |
837 | 0 | if (base == 0) { |
838 | 0 | return 0; |
839 | 0 | } |
840 | 0 | uint64_t result = 1; |
841 | 0 | uint64_t pow = base; |
842 | 0 | while (true) { |
843 | 0 | if ((exponent & 1) == 1) { |
844 | 0 | result *= pow; |
845 | 0 | } |
846 | 0 | exponent >>= 1; |
847 | 0 | if (exponent == 0) { |
848 | 0 | break; |
849 | 0 | } |
850 | 0 | pow *= pow; |
851 | 0 | } |
852 | 0 | return result; |
853 | 0 | } |
854 | | |
855 | | static const uint8_t asciiDigits[] = { |
856 | | 0x30u, 0x31u, 0x32u, 0x33u, 0x34u, 0x35u, 0x36u, 0x37u, |
857 | | 0x38u, 0x39u, 0x61u, 0x62u, 0x63u, 0x64u, 0x65u, 0x66u, |
858 | | 0x67u, 0x68u, 0x69u, 0x6au, 0x6bu, 0x6cu, 0x6du, 0x6eu, |
859 | | 0x6fu, 0x70u, 0x71u, 0x72u, 0x73u, 0x74u, 0x75u, 0x76u, |
860 | | 0x77u, 0x78u, 0x79u, 0x7au, |
861 | | }; |
862 | | |
863 | | static const UChar kUMinus = (UChar)0x002d; |
864 | | |
865 | | #ifdef RBNF_DEBUG |
866 | | static const char kMinus = '-'; |
867 | | |
868 | | static const uint8_t digitInfo[] = { |
869 | | 0, 0, 0, 0, 0, 0, 0, 0, |
870 | | 0, 0, 0, 0, 0, 0, 0, 0, |
871 | | 0, 0, 0, 0, 0, 0, 0, 0, |
872 | | 0, 0, 0, 0, 0, 0, 0, 0, |
873 | | 0, 0, 0, 0, 0, 0, 0, 0, |
874 | | 0, 0, 0, 0, 0, 0, 0, 0, |
875 | | 0x80u, 0x81u, 0x82u, 0x83u, 0x84u, 0x85u, 0x86u, 0x87u, |
876 | | 0x88u, 0x89u, 0, 0, 0, 0, 0, 0, |
877 | | 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, |
878 | | 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, |
879 | | 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, |
880 | | 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, |
881 | | 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, |
882 | | 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, |
883 | | 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, |
884 | | 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, |
885 | | }; |
886 | | |
887 | | int64_t util64_atoi(const char* str, uint32_t radix) |
888 | | { |
889 | | if (radix > 36) { |
890 | | radix = 36; |
891 | | } else if (radix < 2) { |
892 | | radix = 2; |
893 | | } |
894 | | int64_t lradix = radix; |
895 | | |
896 | | int neg = 0; |
897 | | if (*str == kMinus) { |
898 | | ++str; |
899 | | neg = 1; |
900 | | } |
901 | | int64_t result = 0; |
902 | | uint8_t b; |
903 | | while ((b = digitInfo[*str++]) && ((b &= 0x7f) < radix)) { |
904 | | result *= lradix; |
905 | | result += (int32_t)b; |
906 | | } |
907 | | if (neg) { |
908 | | result = -result; |
909 | | } |
910 | | return result; |
911 | | } |
912 | | |
913 | | int64_t util64_utoi(const UChar* str, uint32_t radix) |
914 | | { |
915 | | if (radix > 36) { |
916 | | radix = 36; |
917 | | } else if (radix < 2) { |
918 | | radix = 2; |
919 | | } |
920 | | int64_t lradix = radix; |
921 | | |
922 | | int neg = 0; |
923 | | if (*str == kUMinus) { |
924 | | ++str; |
925 | | neg = 1; |
926 | | } |
927 | | int64_t result = 0; |
928 | | UChar c; |
929 | | uint8_t b; |
930 | | while (((c = *str++) < 0x0080) && (b = digitInfo[c]) && ((b &= 0x7f) < radix)) { |
931 | | result *= lradix; |
932 | | result += (int32_t)b; |
933 | | } |
934 | | if (neg) { |
935 | | result = -result; |
936 | | } |
937 | | return result; |
938 | | } |
939 | | |
940 | | uint32_t util64_toa(int64_t w, char* buf, uint32_t len, uint32_t radix, UBool raw) |
941 | | { |
942 | | if (radix > 36) { |
943 | | radix = 36; |
944 | | } else if (radix < 2) { |
945 | | radix = 2; |
946 | | } |
947 | | int64_t base = radix; |
948 | | |
949 | | char* p = buf; |
950 | | if (len && (w < 0) && (radix == 10) && !raw) { |
951 | | w = -w; |
952 | | *p++ = kMinus; |
953 | | --len; |
954 | | } else if (len && (w == 0)) { |
955 | | *p++ = (char)raw ? 0 : asciiDigits[0]; |
956 | | --len; |
957 | | } |
958 | | |
959 | | while (len && w != 0) { |
960 | | int64_t n = w / base; |
961 | | int64_t m = n * base; |
962 | | int32_t d = (int32_t)(w-m); |
963 | | *p++ = raw ? (char)d : asciiDigits[d]; |
964 | | w = n; |
965 | | --len; |
966 | | } |
967 | | if (len) { |
968 | | *p = 0; // null terminate if room for caller convenience |
969 | | } |
970 | | |
971 | | len = p - buf; |
972 | | if (*buf == kMinus) { |
973 | | ++buf; |
974 | | } |
975 | | while (--p > buf) { |
976 | | char c = *p; |
977 | | *p = *buf; |
978 | | *buf = c; |
979 | | ++buf; |
980 | | } |
981 | | |
982 | | return len; |
983 | | } |
984 | | #endif |
985 | | |
986 | | uint32_t util64_tou(int64_t w, UChar* buf, uint32_t len, uint32_t radix, UBool raw) |
987 | 0 | { |
988 | 0 | if (radix > 36) { |
989 | 0 | radix = 36; |
990 | 0 | } else if (radix < 2) { |
991 | 0 | radix = 2; |
992 | 0 | } |
993 | 0 | int64_t base = radix; |
994 | |
|
995 | 0 | UChar* p = buf; |
996 | 0 | if (len && (w < 0) && (radix == 10) && !raw) { |
997 | 0 | w = -w; |
998 | 0 | *p++ = kUMinus; |
999 | 0 | --len; |
1000 | 0 | } else if (len && (w == 0)) { |
1001 | 0 | *p++ = (UChar)raw ? 0 : asciiDigits[0]; |
1002 | 0 | --len; |
1003 | 0 | } |
1004 | |
|
1005 | 0 | while (len && (w != 0)) { |
1006 | 0 | int64_t n = w / base; |
1007 | 0 | int64_t m = n * base; |
1008 | 0 | int32_t d = (int32_t)(w-m); |
1009 | 0 | *p++ = (UChar)(raw ? d : asciiDigits[d]); |
1010 | 0 | w = n; |
1011 | 0 | --len; |
1012 | 0 | } |
1013 | 0 | if (len) { |
1014 | 0 | *p = 0; // null terminate if room for caller convenience |
1015 | 0 | } |
1016 | |
|
1017 | 0 | len = (uint32_t)(p - buf); |
1018 | 0 | if (*buf == kUMinus) { |
1019 | 0 | ++buf; |
1020 | 0 | } |
1021 | 0 | while (--p > buf) { |
1022 | 0 | UChar c = *p; |
1023 | 0 | *p = *buf; |
1024 | 0 | *buf = c; |
1025 | 0 | ++buf; |
1026 | 0 | } |
1027 | |
|
1028 | 0 | return len; |
1029 | 0 | } |
1030 | | |
1031 | | |
1032 | | U_NAMESPACE_END |
1033 | | |
1034 | | /* U_HAVE_RBNF */ |
1035 | | #endif |