Coverage Report

Created: 2025-06-24 06:43

/src/icu/source/i18n/nfrule.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2016 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
/*
4
******************************************************************************
5
*   Copyright (C) 1997-2015, International Business Machines
6
*   Corporation and others.  All Rights Reserved.
7
******************************************************************************
8
*   file name:  nfrule.cpp
9
*   encoding:   UTF-8
10
*   tab size:   8 (not used)
11
*   indentation:4
12
*
13
* Modification history
14
* Date        Name      Comments
15
* 10/11/2001  Doug      Ported from ICU4J
16
*/
17
18
#include "nfrule.h"
19
20
#if U_HAVE_RBNF
21
22
#include "unicode/localpointer.h"
23
#include "unicode/rbnf.h"
24
#include "unicode/tblcoll.h"
25
#include "unicode/plurfmt.h"
26
#include "unicode/upluralrules.h"
27
#include "unicode/coleitr.h"
28
#include "unicode/uchar.h"
29
#include "nfrs.h"
30
#include "nfrlist.h"
31
#include "nfsubs.h"
32
#include "patternprops.h"
33
#include "putilimp.h"
34
35
U_NAMESPACE_BEGIN
36
37
NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status)
38
0
  : baseValue((int32_t)0)
39
0
  , radix(10)
40
0
  , exponent(0)
41
0
  , decimalPoint(0)
42
0
  , fRuleText(_ruleText)
43
  , sub1(NULL)
44
  , sub2(NULL)
45
0
  , formatter(_rbnf)
46
  , rulePatternFormat(NULL)
47
0
{
48
0
    if (!fRuleText.isEmpty()) {
49
0
        parseRuleDescriptor(fRuleText, status);
50
0
    }
51
0
}
52
53
NFRule::~NFRule()
54
0
{
55
0
    if (sub1 != sub2) {
56
0
        delete sub2;
57
0
        sub2 = NULL;
58
0
    }
59
0
    delete sub1;
60
0
    sub1 = NULL;
61
0
    delete rulePatternFormat;
62
0
    rulePatternFormat = NULL;
63
0
}
64
65
static const UChar gLeftBracket = 0x005b;
66
static const UChar gRightBracket = 0x005d;
67
static const UChar gColon = 0x003a;
68
static const UChar gZero = 0x0030;
69
static const UChar gNine = 0x0039;
70
static const UChar gSpace = 0x0020;
71
static const UChar gSlash = 0x002f;
72
static const UChar gGreaterThan = 0x003e;
73
static const UChar gLessThan = 0x003c;
74
static const UChar gComma = 0x002c;
75
static const UChar gDot = 0x002e;
76
static const UChar gTick = 0x0027;
77
//static const UChar gMinus = 0x002d;
78
static const UChar gSemicolon = 0x003b;
79
static const UChar gX = 0x0078;
80
81
static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
82
static const UChar gInf[] =                     {0x49, 0x6E, 0x66, 0}; /* "Inf" */
83
static const UChar gNaN[] =                     {0x4E, 0x61, 0x4E, 0}; /* "NaN" */
84
85
static const UChar gDollarOpenParenthesis[] =   {0x24, 0x28, 0}; /* "$(" */
86
static const UChar gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */
87
88
static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
89
static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
90
static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
91
static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
92
static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
93
static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
94
static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
95
static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
96
static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
97
static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
98
static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
99
static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
100
101
static const UChar * const RULE_PREFIXES[] = {
102
    gLessLess, gLessPercent, gLessHash, gLessZero,
103
    gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
104
    gEqualPercent, gEqualHash, gEqualZero, NULL
105
};
106
107
void
108
NFRule::makeRules(UnicodeString& description,
109
                  NFRuleSet *owner,
110
                  const NFRule *predecessor,
111
                  const RuleBasedNumberFormat *rbnf,
112
                  NFRuleList& rules,
113
                  UErrorCode& status)
114
0
{
115
    // we know we're making at least one rule, so go ahead and
116
    // new it up and initialize its basevalue and divisor
117
    // (this also strips the rule descriptor, if any, off the
118
    // description string)
119
0
    NFRule* rule1 = new NFRule(rbnf, description, status);
120
    /* test for NULL */
121
0
    if (rule1 == 0) {
122
0
        status = U_MEMORY_ALLOCATION_ERROR;
123
0
        return;
124
0
    }
125
0
    description = rule1->fRuleText;
126
127
    // check the description to see whether there's text enclosed
128
    // in brackets
129
0
    int32_t brack1 = description.indexOf(gLeftBracket);
130
0
    int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket);
131
132
    // if the description doesn't contain a matched pair of brackets,
133
    // or if it's of a type that doesn't recognize bracketed text,
134
    // then leave the description alone, initialize the rule's
135
    // rule text and substitutions, and return that rule
136
0
    if (brack2 < 0 || brack1 > brack2
137
0
        || rule1->getType() == kProperFractionRule
138
0
        || rule1->getType() == kNegativeNumberRule
139
0
        || rule1->getType() == kInfinityRule
140
0
        || rule1->getType() == kNaNRule)
141
0
    {
142
0
        rule1->extractSubstitutions(owner, description, predecessor, status);
143
0
    }
144
0
    else {
145
        // if the description does contain a matched pair of brackets,
146
        // then it's really shorthand for two rules (with one exception)
147
0
        NFRule* rule2 = NULL;
148
0
        UnicodeString sbuf;
149
150
        // we'll actually only split the rule into two rules if its
151
        // base value is an even multiple of its divisor (or it's one
152
        // of the special rules)
153
0
        if ((rule1->baseValue > 0
154
0
            && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
155
0
            || rule1->getType() == kImproperFractionRule
156
0
            || rule1->getType() == kDefaultRule) {
157
158
            // if it passes that test, new up the second rule.  If the
159
            // rule set both rules will belong to is a fraction rule
160
            // set, they both have the same base value; otherwise,
161
            // increment the original rule's base value ("rule1" actually
162
            // goes SECOND in the rule set's rule list)
163
0
            rule2 = new NFRule(rbnf, UnicodeString(), status);
164
            /* test for NULL */
165
0
            if (rule2 == 0) {
166
0
                status = U_MEMORY_ALLOCATION_ERROR;
167
0
                return;
168
0
            }
169
0
            if (rule1->baseValue >= 0) {
170
0
                rule2->baseValue = rule1->baseValue;
171
0
                if (!owner->isFractionRuleSet()) {
172
0
                    ++rule1->baseValue;
173
0
                }
174
0
            }
175
176
            // if the description began with "x.x" and contains bracketed
177
            // text, it describes both the improper fraction rule and
178
            // the proper fraction rule
179
0
            else if (rule1->getType() == kImproperFractionRule) {
180
0
                rule2->setType(kProperFractionRule);
181
0
            }
182
183
            // if the description began with "x.0" and contains bracketed
184
            // text, it describes both the default rule and the
185
            // improper fraction rule
186
0
            else if (rule1->getType() == kDefaultRule) {
187
0
                rule2->baseValue = rule1->baseValue;
188
0
                rule1->setType(kImproperFractionRule);
189
0
            }
190
191
            // both rules have the same radix and exponent (i.e., the
192
            // same divisor)
193
0
            rule2->radix = rule1->radix;
194
0
            rule2->exponent = rule1->exponent;
195
196
            // rule2's rule text omits the stuff in brackets: initialize
197
            // its rule text and substitutions accordingly
198
0
            sbuf.append(description, 0, brack1);
199
0
            if (brack2 + 1 < description.length()) {
200
0
                sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
201
0
            }
202
0
            rule2->extractSubstitutions(owner, sbuf, predecessor, status);
203
0
        }
204
205
        // rule1's text includes the text in the brackets but omits
206
        // the brackets themselves: initialize _its_ rule text and
207
        // substitutions accordingly
208
0
        sbuf.setTo(description, 0, brack1);
209
0
        sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
210
0
        if (brack2 + 1 < description.length()) {
211
0
            sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
212
0
        }
213
0
        rule1->extractSubstitutions(owner, sbuf, predecessor, status);
214
215
        // if we only have one rule, return it; if we have two, return
216
        // a two-element array containing them (notice that rule2 goes
217
        // BEFORE rule1 in the list: in all cases, rule2 OMITS the
218
        // material in the brackets and rule1 INCLUDES the material
219
        // in the brackets)
220
0
        if (rule2 != NULL) {
221
0
            if (rule2->baseValue >= kNoBase) {
222
0
                rules.add(rule2);
223
0
            }
224
0
            else {
225
0
                owner->setNonNumericalRule(rule2);
226
0
            }
227
0
        }
228
0
    }
229
0
    if (rule1->baseValue >= kNoBase) {
230
0
        rules.add(rule1);
231
0
    }
232
0
    else {
233
0
        owner->setNonNumericalRule(rule1);
234
0
    }
235
0
}
236
237
/**
238
 * This function parses the rule's rule descriptor (i.e., the base
239
 * value and/or other tokens that precede the rule's rule text
240
 * in the description) and sets the rule's base value, radix, and
241
 * exponent according to the descriptor.  (If the description doesn't
242
 * include a rule descriptor, then this function sets everything to
243
 * default values and the rule set sets the rule's real base value).
244
 * @param description The rule's description
245
 * @return If "description" included a rule descriptor, this is
246
 * "description" with the descriptor and any trailing whitespace
247
 * stripped off.  Otherwise; it's "descriptor" unchangd.
248
 */
249
void
250
NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
251
0
{
252
    // the description consists of a rule descriptor and a rule body,
253
    // separated by a colon.  The rule descriptor is optional.  If
254
    // it's omitted, just set the base value to 0.
255
0
    int32_t p = description.indexOf(gColon);
256
0
    if (p != -1) {
257
        // copy the descriptor out into its own string and strip it,
258
        // along with any trailing whitespace, out of the original
259
        // description
260
0
        UnicodeString descriptor;
261
0
        descriptor.setTo(description, 0, p);
262
263
0
        ++p;
264
0
        while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
265
0
            ++p;
266
0
        }
267
0
        description.removeBetween(0, p);
268
269
        // check first to see if the rule descriptor matches the token
270
        // for one of the special rules.  If it does, set the base
271
        // value to the correct identifier value
272
0
        int descriptorLength = descriptor.length();
273
0
        UChar firstChar = descriptor.charAt(0);
274
0
        UChar lastChar = descriptor.charAt(descriptorLength - 1);
275
0
        if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) {
276
            // if the rule descriptor begins with a digit, it's a descriptor
277
            // for a normal rule
278
            // since we don't have Long.parseLong, and this isn't much work anyway,
279
            // just build up the value as we encounter the digits.
280
0
            int64_t val = 0;
281
0
            p = 0;
282
0
            UChar c = gSpace;
283
284
            // begin parsing the descriptor: copy digits
285
            // into "tempValue", skip periods, commas, and spaces,
286
            // stop on a slash or > sign (or at the end of the string),
287
            // and throw an exception on any other character
288
0
            int64_t ll_10 = 10;
289
0
            while (p < descriptorLength) {
290
0
                c = descriptor.charAt(p);
291
0
                if (c >= gZero && c <= gNine) {
292
0
                    val = val * ll_10 + (int32_t)(c - gZero);
293
0
                }
294
0
                else if (c == gSlash || c == gGreaterThan) {
295
0
                    break;
296
0
                }
297
0
                else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
298
0
                }
299
0
                else {
300
                    // throw new IllegalArgumentException("Illegal character in rule descriptor");
301
0
                    status = U_PARSE_ERROR;
302
0
                    return;
303
0
                }
304
0
                ++p;
305
0
            }
306
307
            // we have the base value, so set it
308
0
            setBaseValue(val, status);
309
310
            // if we stopped the previous loop on a slash, we're
311
            // now parsing the rule's radix.  Again, accumulate digits
312
            // in tempValue, skip punctuation, stop on a > mark, and
313
            // throw an exception on anything else
314
0
            if (c == gSlash) {
315
0
                val = 0;
316
0
                ++p;
317
0
                ll_10 = 10;
318
0
                while (p < descriptorLength) {
319
0
                    c = descriptor.charAt(p);
320
0
                    if (c >= gZero && c <= gNine) {
321
0
                        val = val * ll_10 + (int32_t)(c - gZero);
322
0
                    }
323
0
                    else if (c == gGreaterThan) {
324
0
                        break;
325
0
                    }
326
0
                    else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
327
0
                    }
328
0
                    else {
329
                        // throw new IllegalArgumentException("Illegal character is rule descriptor");
330
0
                        status = U_PARSE_ERROR;
331
0
                        return;
332
0
                    }
333
0
                    ++p;
334
0
                }
335
336
                // tempValue now contain's the rule's radix.  Set it
337
                // accordingly, and recalculate the rule's exponent
338
0
                radix = (int32_t)val;
339
0
                if (radix == 0) {
340
                    // throw new IllegalArgumentException("Rule can't have radix of 0");
341
0
                    status = U_PARSE_ERROR;
342
0
                }
343
344
0
                exponent = expectedExponent();
345
0
            }
346
347
            // if we stopped the previous loop on a > sign, then continue
348
            // for as long as we still see > signs.  For each one,
349
            // decrement the exponent (unless the exponent is already 0).
350
            // If we see another character before reaching the end of
351
            // the descriptor, that's also a syntax error.
352
0
            if (c == gGreaterThan) {
353
0
                while (p < descriptor.length()) {
354
0
                    c = descriptor.charAt(p);
355
0
                    if (c == gGreaterThan && exponent > 0) {
356
0
                        --exponent;
357
0
                    } else {
358
                        // throw new IllegalArgumentException("Illegal character in rule descriptor");
359
0
                        status = U_PARSE_ERROR;
360
0
                        return;
361
0
                    }
362
0
                    ++p;
363
0
                }
364
0
            }
365
0
        }
366
0
        else if (0 == descriptor.compare(gMinusX, 2)) {
367
0
            setType(kNegativeNumberRule);
368
0
        }
369
0
        else if (descriptorLength == 3) {
370
0
            if (firstChar == gZero && lastChar == gX) {
371
0
                setBaseValue(kProperFractionRule, status);
372
0
                decimalPoint = descriptor.charAt(1);
373
0
            }
374
0
            else if (firstChar == gX && lastChar == gX) {
375
0
                setBaseValue(kImproperFractionRule, status);
376
0
                decimalPoint = descriptor.charAt(1);
377
0
            }
378
0
            else if (firstChar == gX && lastChar == gZero) {
379
0
                setBaseValue(kDefaultRule, status);
380
0
                decimalPoint = descriptor.charAt(1);
381
0
            }
382
0
            else if (descriptor.compare(gNaN, 3) == 0) {
383
0
                setBaseValue(kNaNRule, status);
384
0
            }
385
0
            else if (descriptor.compare(gInf, 3) == 0) {
386
0
                setBaseValue(kInfinityRule, status);
387
0
            }
388
0
        }
389
0
    }
390
    // else use the default base value for now.
391
392
    // finally, if the rule body begins with an apostrophe, strip it off
393
    // (this is generally used to put whitespace at the beginning of
394
    // a rule's rule text)
395
0
    if (description.length() > 0 && description.charAt(0) == gTick) {
396
0
        description.removeBetween(0, 1);
397
0
    }
398
399
    // return the description with all the stuff we've just waded through
400
    // stripped off the front.  It now contains just the rule body.
401
    // return description;
402
0
}
403
404
/**
405
* Searches the rule's rule text for the substitution tokens,
406
* creates the substitutions, and removes the substitution tokens
407
* from the rule's rule text.
408
* @param owner The rule set containing this rule
409
* @param predecessor The rule preseding this one in "owners" rule list
410
* @param ownersOwner The RuleBasedFormat that owns this rule
411
*/
412
void
413
NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
414
                             const UnicodeString &ruleText,
415
                             const NFRule* predecessor,
416
                             UErrorCode& status)
417
0
{
418
0
    if (U_FAILURE(status)) {
419
0
        return;
420
0
    }
421
0
    fRuleText = ruleText;
422
0
    sub1 = extractSubstitution(ruleSet, predecessor, status);
423
0
    if (sub1 == NULL) {
424
        // Small optimization. There is no need to create a redundant NullSubstitution.
425
0
        sub2 = NULL;
426
0
    }
427
0
    else {
428
0
        sub2 = extractSubstitution(ruleSet, predecessor, status);
429
0
    }
430
0
    int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
431
0
    int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1);
432
0
    if (pluralRuleEnd >= 0) {
433
0
        int32_t endType = fRuleText.indexOf(gComma, pluralRuleStart);
434
0
        if (endType < 0) {
435
0
            status = U_PARSE_ERROR;
436
0
            return;
437
0
        }
438
0
        UnicodeString type(fRuleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2));
439
0
        UPluralType pluralType;
440
0
        if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) {
441
0
            pluralType = UPLURAL_TYPE_CARDINAL;
442
0
        }
443
0
        else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) {
444
0
            pluralType = UPLURAL_TYPE_ORDINAL;
445
0
        }
446
0
        else {
447
0
            status = U_ILLEGAL_ARGUMENT_ERROR;
448
0
            return;
449
0
        }
450
0
        rulePatternFormat = formatter->createPluralFormat(pluralType,
451
0
                fRuleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status);
452
0
    }
453
0
}
454
455
/**
456
* Searches the rule's rule text for the first substitution token,
457
* creates a substitution based on it, and removes the token from
458
* the rule's rule text.
459
* @param owner The rule set containing this rule
460
* @param predecessor The rule preceding this one in the rule set's
461
* rule list
462
* @param ownersOwner The RuleBasedNumberFormat that owns this rule
463
* @return The newly-created substitution.  This is never null; if
464
* the rule text doesn't contain any substitution tokens, this will
465
* be a NullSubstitution.
466
*/
467
NFSubstitution *
468
NFRule::extractSubstitution(const NFRuleSet* ruleSet,
469
                            const NFRule* predecessor,
470
                            UErrorCode& status)
471
0
{
472
0
    NFSubstitution* result = NULL;
473
474
    // search the rule's rule text for the first two characters of
475
    // a substitution token
476
0
    int32_t subStart = indexOfAnyRulePrefix();
477
0
    int32_t subEnd = subStart;
478
479
    // if we didn't find one, create a null substitution positioned
480
    // at the end of the rule text
481
0
    if (subStart == -1) {
482
0
        return NULL;
483
0
    }
484
485
    // special-case the ">>>" token, since searching for the > at the
486
    // end will actually find the > in the middle
487
0
    if (fRuleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
488
0
        subEnd = subStart + 2;
489
490
        // otherwise the substitution token ends with the same character
491
        // it began with
492
0
    } else {
493
0
        UChar c = fRuleText.charAt(subStart);
494
0
        subEnd = fRuleText.indexOf(c, subStart + 1);
495
        // special case for '<%foo<<'
496
0
        if (c == gLessThan && subEnd != -1 && subEnd < fRuleText.length() - 1 && fRuleText.charAt(subEnd+1) == c) {
497
            // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
498
            // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
499
            // to get around this.  Having the duplicate at the front would cause problems with
500
            // rules like "<<%" to format, say, percents...
501
0
            ++subEnd;
502
0
        }
503
0
   }
504
505
    // if we don't find the end of the token (i.e., if we're on a single,
506
    // unmatched token character), create a null substitution positioned
507
    // at the end of the rule
508
0
    if (subEnd == -1) {
509
0
        return NULL;
510
0
    }
511
512
    // if we get here, we have a real substitution token (or at least
513
    // some text bounded by substitution token characters).  Use
514
    // makeSubstitution() to create the right kind of substitution
515
0
    UnicodeString subToken;
516
0
    subToken.setTo(fRuleText, subStart, subEnd + 1 - subStart);
517
0
    result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
518
0
        this->formatter, subToken, status);
519
520
    // remove the substitution from the rule text
521
0
    fRuleText.removeBetween(subStart, subEnd+1);
522
523
0
    return result;
524
0
}
525
526
/**
527
 * Sets the rule's base value, and causes the radix and exponent
528
 * to be recalculated.  This is used during construction when we
529
 * don't know the rule's base value until after it's been
530
 * constructed.  It should be used at any other time.
531
 * @param The new base value for the rule.
532
 */
533
void
534
NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
535
0
{
536
    // set the base value
537
0
    baseValue = newBaseValue;
538
0
    radix = 10;
539
540
    // if this isn't a special rule, recalculate the radix and exponent
541
    // (the radix always defaults to 10; if it's supposed to be something
542
    // else, it's cleaned up by the caller and the exponent is
543
    // recalculated again-- the only function that does this is
544
    // NFRule.parseRuleDescriptor() )
545
0
    if (baseValue >= 1) {
546
0
        exponent = expectedExponent();
547
548
        // this function gets called on a fully-constructed rule whose
549
        // description didn't specify a base value.  This means it
550
        // has substitutions, and some substitutions hold on to copies
551
        // of the rule's divisor.  Fix their copies of the divisor.
552
0
        if (sub1 != NULL) {
553
0
            sub1->setDivisor(radix, exponent, status);
554
0
        }
555
0
        if (sub2 != NULL) {
556
0
            sub2->setDivisor(radix, exponent, status);
557
0
        }
558
559
        // if this is a special rule, its radix and exponent are basically
560
        // ignored.  Set them to "safe" default values
561
0
    } else {
562
0
        exponent = 0;
563
0
    }
564
0
}
565
566
/**
567
* This calculates the rule's exponent based on its radix and base
568
* value.  This will be the highest power the radix can be raised to
569
* and still produce a result less than or equal to the base value.
570
*/
571
int16_t
572
NFRule::expectedExponent() const
573
0
{
574
    // since the log of 0, or the log base 0 of something, causes an
575
    // error, declare the exponent in these cases to be 0 (we also
576
    // deal with the special-rule identifiers here)
577
0
    if (radix == 0 || baseValue < 1) {
578
0
        return 0;
579
0
    }
580
581
    // we get rounding error in some cases-- for example, log 1000 / log 10
582
    // gives us 1.9999999996 instead of 2.  The extra logic here is to take
583
    // that into account
584
0
    int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
585
0
    int64_t temp = util64_pow(radix, tempResult + 1);
586
0
    if (temp <= baseValue) {
587
0
        tempResult += 1;
588
0
    }
589
0
    return tempResult;
590
0
}
591
592
/**
593
 * Searches the rule's rule text for any of the specified strings.
594
 * @return The index of the first match in the rule's rule text
595
 * (i.e., the first substring in the rule's rule text that matches
596
 * _any_ of the strings in "strings").  If none of the strings in
597
 * "strings" is found in the rule's rule text, returns -1.
598
 */
599
int32_t
600
NFRule::indexOfAnyRulePrefix() const
601
0
{
602
0
    int result = -1;
603
0
    for (int i = 0; RULE_PREFIXES[i]; i++) {
604
0
        int32_t pos = fRuleText.indexOf(*RULE_PREFIXES[i]);
605
0
        if (pos != -1 && (result == -1 || pos < result)) {
606
0
            result = pos;
607
0
        }
608
0
    }
609
0
    return result;
610
0
}
611
612
//-----------------------------------------------------------------------
613
// boilerplate
614
//-----------------------------------------------------------------------
615
616
static UBool
617
util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2)
618
0
{
619
0
    if (sub1) {
620
0
        if (sub2) {
621
0
            return *sub1 == *sub2;
622
0
        }
623
0
    } else if (!sub2) {
624
0
        return TRUE;
625
0
    }
626
0
    return FALSE;
627
0
}
628
629
/**
630
* Tests two rules for equality.
631
* @param that The rule to compare this one against
632
* @return True is the two rules are functionally equivalent
633
*/
634
bool
635
NFRule::operator==(const NFRule& rhs) const
636
0
{
637
0
    return baseValue == rhs.baseValue
638
0
        && radix == rhs.radix
639
0
        && exponent == rhs.exponent
640
0
        && fRuleText == rhs.fRuleText
641
0
        && util_equalSubstitutions(sub1, rhs.sub1)
642
0
        && util_equalSubstitutions(sub2, rhs.sub2);
643
0
}
644
645
/**
646
* Returns a textual representation of the rule.  This won't
647
* necessarily be the same as the description that this rule
648
* was created with, but it will produce the same result.
649
* @return A textual description of the rule
650
*/
651
static void util_append64(UnicodeString& result, int64_t n)
652
0
{
653
0
    UChar buffer[256];
654
0
    int32_t len = util64_tou(n, buffer, sizeof(buffer));
655
0
    UnicodeString temp(buffer, len);
656
0
    result.append(temp);
657
0
}
658
659
void
660
NFRule::_appendRuleText(UnicodeString& result) const
661
0
{
662
0
    switch (getType()) {
663
0
    case kNegativeNumberRule: result.append(gMinusX, 2); break;
664
0
    case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
665
0
    case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
666
0
    case kDefaultRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break;
667
0
    case kInfinityRule: result.append(gInf, 3); break;
668
0
    case kNaNRule: result.append(gNaN, 3); break;
669
0
    default:
670
        // for a normal rule, write out its base value, and if the radix is
671
        // something other than 10, write out the radix (with the preceding
672
        // slash, of course).  Then calculate the expected exponent and if
673
        // if isn't the same as the actual exponent, write an appropriate
674
        // number of > signs.  Finally, terminate the whole thing with
675
        // a colon.
676
0
        util_append64(result, baseValue);
677
0
        if (radix != 10) {
678
0
            result.append(gSlash);
679
0
            util_append64(result, radix);
680
0
        }
681
0
        int numCarets = expectedExponent() - exponent;
682
0
        for (int i = 0; i < numCarets; i++) {
683
0
            result.append(gGreaterThan);
684
0
        }
685
0
        break;
686
0
    }
687
0
    result.append(gColon);
688
0
    result.append(gSpace);
689
690
    // if the rule text begins with a space, write an apostrophe
691
    // (whitespace after the rule descriptor is ignored; the
692
    // apostrophe is used to make the whitespace significant)
693
0
    if (fRuleText.charAt(0) == gSpace && (sub1 == NULL || sub1->getPos() != 0)) {
694
0
        result.append(gTick);
695
0
    }
696
697
    // now, write the rule's rule text, inserting appropriate
698
    // substitution tokens in the appropriate places
699
0
    UnicodeString ruleTextCopy;
700
0
    ruleTextCopy.setTo(fRuleText);
701
702
0
    UnicodeString temp;
703
0
    if (sub2 != NULL) {
704
0
        sub2->toString(temp);
705
0
        ruleTextCopy.insert(sub2->getPos(), temp);
706
0
    }
707
0
    if (sub1 != NULL) {
708
0
        sub1->toString(temp);
709
0
        ruleTextCopy.insert(sub1->getPos(), temp);
710
0
    }
711
712
0
    result.append(ruleTextCopy);
713
714
    // and finally, top the whole thing off with a semicolon and
715
    // return the result
716
0
    result.append(gSemicolon);
717
0
}
718
719
int64_t NFRule::getDivisor() const
720
0
{
721
0
    return util64_pow(radix, exponent);
722
0
}
723
724
725
//-----------------------------------------------------------------------
726
// formatting
727
//-----------------------------------------------------------------------
728
729
/**
730
* Formats the number, and inserts the resulting text into
731
* toInsertInto.
732
* @param number The number being formatted
733
* @param toInsertInto The string where the resultant text should
734
* be inserted
735
* @param pos The position in toInsertInto where the resultant text
736
* should be inserted
737
*/
738
void
739
NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
740
0
{
741
    // first, insert the rule's rule text into toInsertInto at the
742
    // specified position, then insert the results of the substitutions
743
    // into the right places in toInsertInto (notice we do the
744
    // substitutions in reverse order so that the offsets don't get
745
    // messed up)
746
0
    int32_t pluralRuleStart = fRuleText.length();
747
0
    int32_t lengthOffset = 0;
748
0
    if (!rulePatternFormat) {
749
0
        toInsertInto.insert(pos, fRuleText);
750
0
    }
751
0
    else {
752
0
        pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
753
0
        int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
754
0
        int initialLength = toInsertInto.length();
755
0
        if (pluralRuleEnd < fRuleText.length() - 1) {
756
0
            toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2));
757
0
        }
758
0
        toInsertInto.insert(pos,
759
0
            rulePatternFormat->format((int32_t)(number/util64_pow(radix, exponent)), status));
760
0
        if (pluralRuleStart > 0) {
761
0
            toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart));
762
0
        }
763
0
        lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength);
764
0
    }
765
766
0
    if (sub2 != NULL) {
767
0
        sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
768
0
    }
769
0
    if (sub1 != NULL) {
770
0
        sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
771
0
    }
772
0
}
773
774
/**
775
* Formats the number, and inserts the resulting text into
776
* toInsertInto.
777
* @param number The number being formatted
778
* @param toInsertInto The string where the resultant text should
779
* be inserted
780
* @param pos The position in toInsertInto where the resultant text
781
* should be inserted
782
*/
783
void
784
NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
785
0
{
786
    // first, insert the rule's rule text into toInsertInto at the
787
    // specified position, then insert the results of the substitutions
788
    // into the right places in toInsertInto
789
    // [again, we have two copies of this routine that do the same thing
790
    // so that we don't sacrifice precision in a long by casting it
791
    // to a double]
792
0
    int32_t pluralRuleStart = fRuleText.length();
793
0
    int32_t lengthOffset = 0;
794
0
    if (!rulePatternFormat) {
795
0
        toInsertInto.insert(pos, fRuleText);
796
0
    }
797
0
    else {
798
0
        pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
799
0
        int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
800
0
        int initialLength = toInsertInto.length();
801
0
        if (pluralRuleEnd < fRuleText.length() - 1) {
802
0
            toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2));
803
0
        }
804
0
        double pluralVal = number;
805
0
        if (0 <= pluralVal && pluralVal < 1) {
806
            // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior.
807
            // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors.
808
0
            pluralVal = uprv_round(pluralVal * util64_pow(radix, exponent));
809
0
        }
810
0
        else {
811
0
            pluralVal = pluralVal / util64_pow(radix, exponent);
812
0
        }
813
0
        toInsertInto.insert(pos, rulePatternFormat->format((int32_t)(pluralVal), status));
814
0
        if (pluralRuleStart > 0) {
815
0
            toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart));
816
0
        }
817
0
        lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength);
818
0
    }
819
820
0
    if (sub2 != NULL) {
821
0
        sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
822
0
    }
823
0
    if (sub1 != NULL) {
824
0
        sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
825
0
    }
826
0
}
827
828
/**
829
* Used by the owning rule set to determine whether to invoke the
830
* rollback rule (i.e., whether this rule or the one that precedes
831
* it in the rule set's list should be used to format the number)
832
* @param The number being formatted
833
* @return True if the rule set should use the rule that precedes
834
* this one in its list; false if it should use this rule
835
*/
836
UBool
837
NFRule::shouldRollBack(int64_t number) const
838
0
{
839
    // we roll back if the rule contains a modulus substitution,
840
    // the number being formatted is an even multiple of the rule's
841
    // divisor, and the rule's base value is NOT an even multiple
842
    // of its divisor
843
    // In other words, if the original description had
844
    //    100: << hundred[ >>];
845
    // that expands into
846
    //    100: << hundred;
847
    //    101: << hundred >>;
848
    // internally.  But when we're formatting 200, if we use the rule
849
    // at 101, which would normally apply, we get "two hundred zero".
850
    // To prevent this, we roll back and use the rule at 100 instead.
851
    // This is the logic that makes this happen: the rule at 101 has
852
    // a modulus substitution, its base value isn't an even multiple
853
    // of 100, and the value we're trying to format _is_ an even
854
    // multiple of 100.  This is called the "rollback rule."
855
0
    if ((sub1 != NULL && sub1->isModulusSubstitution()) || (sub2 != NULL && sub2->isModulusSubstitution())) {
856
0
        int64_t re = util64_pow(radix, exponent);
857
0
        return (number % re) == 0 && (baseValue % re) != 0;
858
0
    }
859
0
    return FALSE;
860
0
}
861
862
//-----------------------------------------------------------------------
863
// parsing
864
//-----------------------------------------------------------------------
865
866
/**
867
* Attempts to parse the string with this rule.
868
* @param text The string being parsed
869
* @param parsePosition On entry, the value is ignored and assumed to
870
* be 0. On exit, this has been updated with the position of the first
871
* character not consumed by matching the text against this rule
872
* (if this rule doesn't match the text at all, the parse position
873
* if left unchanged (presumably at 0) and the function returns
874
* new Long(0)).
875
* @param isFractionRule True if this rule is contained within a
876
* fraction rule set.  This is only used if the rule has no
877
* substitutions.
878
* @return If this rule matched the text, this is the rule's base value
879
* combined appropriately with the results of parsing the substitutions.
880
* If nothing matched, this is new Long(0) and the parse position is
881
* left unchanged.  The result will be an instance of Long if the
882
* result is an integer and Double otherwise.  The result is never null.
883
*/
884
#ifdef RBNF_DEBUG
885
#include <stdio.h>
886
887
static void dumpUS(FILE* f, const UnicodeString& us) {
888
  int len = us.length();
889
  char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
890
  if (buf != NULL) {
891
    us.extract(0, len, buf);
892
    buf[len] = 0;
893
    fprintf(f, "%s", buf);
894
    uprv_free(buf); //delete[] buf;
895
  }
896
}
897
#endif
898
UBool
899
NFRule::doParse(const UnicodeString& text,
900
                ParsePosition& parsePosition,
901
                UBool isFractionRule,
902
                double upperBound,
903
                uint32_t nonNumericalExecutedRuleMask,
904
                Formattable& resVal) const
905
0
{
906
    // internally we operate on a copy of the string being parsed
907
    // (because we're going to change it) and use our own ParsePosition
908
0
    ParsePosition pp;
909
0
    UnicodeString workText(text);
910
911
0
    int32_t sub1Pos = sub1 != NULL ? sub1->getPos() : fRuleText.length();
912
0
    int32_t sub2Pos = sub2 != NULL ? sub2->getPos() : fRuleText.length();
913
914
    // check to see whether the text before the first substitution
915
    // matches the text at the beginning of the string being
916
    // parsed.  If it does, strip that off the front of workText;
917
    // otherwise, dump out with a mismatch
918
0
    UnicodeString prefix;
919
0
    prefix.setTo(fRuleText, 0, sub1Pos);
920
921
#ifdef RBNF_DEBUG
922
    fprintf(stderr, "doParse %p ", this);
923
    {
924
        UnicodeString rt;
925
        _appendRuleText(rt);
926
        dumpUS(stderr, rt);
927
    }
928
929
    fprintf(stderr, " text: '");
930
    dumpUS(stderr, text);
931
    fprintf(stderr, "' prefix: '");
932
    dumpUS(stderr, prefix);
933
#endif
934
0
    stripPrefix(workText, prefix, pp);
935
0
    int32_t prefixLength = text.length() - workText.length();
936
937
#ifdef RBNF_DEBUG
938
    fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1Pos);
939
#endif
940
941
0
    if (pp.getIndex() == 0 && sub1Pos != 0) {
942
        // commented out because ParsePosition doesn't have error index in 1.1.x
943
        // restored for ICU4C port
944
0
        parsePosition.setErrorIndex(pp.getErrorIndex());
945
0
        resVal.setLong(0);
946
0
        return TRUE;
947
0
    }
948
0
    if (baseValue == kInfinityRule) {
949
        // If you match this, don't try to perform any calculations on it.
950
0
        parsePosition.setIndex(pp.getIndex());
951
0
        resVal.setDouble(uprv_getInfinity());
952
0
        return TRUE;
953
0
    }
954
0
    if (baseValue == kNaNRule) {
955
        // If you match this, don't try to perform any calculations on it.
956
0
        parsePosition.setIndex(pp.getIndex());
957
0
        resVal.setDouble(uprv_getNaN());
958
0
        return TRUE;
959
0
    }
960
961
    // this is the fun part.  The basic guts of the rule-matching
962
    // logic is matchToDelimiter(), which is called twice.  The first
963
    // time it searches the input string for the rule text BETWEEN
964
    // the substitutions and tries to match the intervening text
965
    // in the input string with the first substitution.  If that
966
    // succeeds, it then calls it again, this time to look for the
967
    // rule text after the second substitution and to match the
968
    // intervening input text against the second substitution.
969
    //
970
    // For example, say we have a rule that looks like this:
971
    //    first << middle >> last;
972
    // and input text that looks like this:
973
    //    first one middle two last
974
    // First we use stripPrefix() to match "first " in both places and
975
    // strip it off the front, leaving
976
    //    one middle two last
977
    // Then we use matchToDelimiter() to match " middle " and try to
978
    // match "one" against a substitution.  If it's successful, we now
979
    // have
980
    //    two last
981
    // We use matchToDelimiter() a second time to match " last" and
982
    // try to match "two" against a substitution.  If "two" matches
983
    // the substitution, we have a successful parse.
984
    //
985
    // Since it's possible in many cases to find multiple instances
986
    // of each of these pieces of rule text in the input string,
987
    // we need to try all the possible combinations of these
988
    // locations.  This prevents us from prematurely declaring a mismatch,
989
    // and makes sure we match as much input text as we can.
990
0
    int highWaterMark = 0;
991
0
    double result = 0;
992
0
    int start = 0;
993
0
    double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
994
995
0
    UnicodeString temp;
996
0
    do {
997
        // our partial parse result starts out as this rule's base
998
        // value.  If it finds a successful match, matchToDelimiter()
999
        // will compose this in some way with what it gets back from
1000
        // the substitution, giving us a new partial parse result
1001
0
        pp.setIndex(0);
1002
1003
0
        temp.setTo(fRuleText, sub1Pos, sub2Pos - sub1Pos);
1004
0
        double partialResult = matchToDelimiter(workText, start, tempBaseValue,
1005
0
            temp, pp, sub1,
1006
0
            nonNumericalExecutedRuleMask,
1007
0
            upperBound);
1008
1009
        // if we got a successful match (or were trying to match a
1010
        // null substitution), pp is now pointing at the first unmatched
1011
        // character.  Take note of that, and try matchToDelimiter()
1012
        // on the input text again
1013
0
        if (pp.getIndex() != 0 || sub1 == NULL) {
1014
0
            start = pp.getIndex();
1015
1016
0
            UnicodeString workText2;
1017
0
            workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
1018
0
            ParsePosition pp2;
1019
1020
            // the second matchToDelimiter() will compose our previous
1021
            // partial result with whatever it gets back from its
1022
            // substitution if there's a successful match, giving us
1023
            // a real result
1024
0
            temp.setTo(fRuleText, sub2Pos, fRuleText.length() - sub2Pos);
1025
0
            partialResult = matchToDelimiter(workText2, 0, partialResult,
1026
0
                temp, pp2, sub2,
1027
0
                nonNumericalExecutedRuleMask,
1028
0
                upperBound);
1029
1030
            // if we got a successful match on this second
1031
            // matchToDelimiter() call, update the high-water mark
1032
            // and result (if necessary)
1033
0
            if (pp2.getIndex() != 0 || sub2 == NULL) {
1034
0
                if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
1035
0
                    highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
1036
0
                    result = partialResult;
1037
0
                }
1038
0
            }
1039
0
            else {
1040
                // commented out because ParsePosition doesn't have error index in 1.1.x
1041
                // restored for ICU4C port
1042
0
                int32_t i_temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex();
1043
0
                if (i_temp> parsePosition.getErrorIndex()) {
1044
0
                    parsePosition.setErrorIndex(i_temp);
1045
0
                }
1046
0
            }
1047
0
        }
1048
0
        else {
1049
            // commented out because ParsePosition doesn't have error index in 1.1.x
1050
            // restored for ICU4C port
1051
0
            int32_t i_temp = sub1Pos + pp.getErrorIndex();
1052
0
            if (i_temp > parsePosition.getErrorIndex()) {
1053
0
                parsePosition.setErrorIndex(i_temp);
1054
0
            }
1055
0
        }
1056
        // keep trying to match things until the outer matchToDelimiter()
1057
        // call fails to make a match (each time, it picks up where it
1058
        // left off the previous time)
1059
0
    } while (sub1Pos != sub2Pos
1060
0
        && pp.getIndex() > 0
1061
0
        && pp.getIndex() < workText.length()
1062
0
        && pp.getIndex() != start);
1063
1064
    // update the caller's ParsePosition with our high-water mark
1065
    // (i.e., it now points at the first character this function
1066
    // didn't match-- the ParsePosition is therefore unchanged if
1067
    // we didn't match anything)
1068
0
    parsePosition.setIndex(highWaterMark);
1069
    // commented out because ParsePosition doesn't have error index in 1.1.x
1070
    // restored for ICU4C port
1071
0
    if (highWaterMark > 0) {
1072
0
        parsePosition.setErrorIndex(0);
1073
0
    }
1074
1075
    // this is a hack for one unusual condition: Normally, whether this
1076
    // rule belong to a fraction rule set or not is handled by its
1077
    // substitutions.  But if that rule HAS NO substitutions, then
1078
    // we have to account for it here.  By definition, if the matching
1079
    // rule in a fraction rule set has no substitutions, its numerator
1080
    // is 1, and so the result is the reciprocal of its base value.
1081
0
    if (isFractionRule && highWaterMark > 0 && sub1 == NULL) {
1082
0
        result = 1 / result;
1083
0
    }
1084
1085
0
    resVal.setDouble(result);
1086
0
    return TRUE; // ??? do we need to worry if it is a long or a double?
1087
0
}
1088
1089
/**
1090
* This function is used by parse() to match the text being parsed
1091
* against a possible prefix string.  This function
1092
* matches characters from the beginning of the string being parsed
1093
* to characters from the prospective prefix.  If they match, pp is
1094
* updated to the first character not matched, and the result is
1095
* the unparsed part of the string.  If they don't match, the whole
1096
* string is returned, and pp is left unchanged.
1097
* @param text The string being parsed
1098
* @param prefix The text to match against
1099
* @param pp On entry, ignored and assumed to be 0.  On exit, points
1100
* to the first unmatched character (assuming the whole prefix matched),
1101
* or is unchanged (if the whole prefix didn't match).
1102
* @return If things match, this is the unparsed part of "text";
1103
* if they didn't match, this is "text".
1104
*/
1105
void
1106
NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
1107
0
{
1108
    // if the prefix text is empty, dump out without doing anything
1109
0
    if (prefix.length() != 0) {
1110
0
      UErrorCode status = U_ZERO_ERROR;
1111
        // use prefixLength() to match the beginning of
1112
        // "text" against "prefix".  This function returns the
1113
        // number of characters from "text" that matched (or 0 if
1114
        // we didn't match the whole prefix)
1115
0
        int32_t pfl = prefixLength(text, prefix, status);
1116
0
        if (U_FAILURE(status)) { // Memory allocation error.
1117
0
          return;
1118
0
        }
1119
0
        if (pfl != 0) {
1120
            // if we got a successful match, update the parse position
1121
            // and strip the prefix off of "text"
1122
0
            pp.setIndex(pp.getIndex() + pfl);
1123
0
            text.remove(0, pfl);
1124
0
        }
1125
0
    }
1126
0
}
1127
1128
/**
1129
* Used by parse() to match a substitution and any following text.
1130
* "text" is searched for instances of "delimiter".  For each instance
1131
* of delimiter, the intervening text is tested to see whether it
1132
* matches the substitution.  The longest match wins.
1133
* @param text The string being parsed
1134
* @param startPos The position in "text" where we should start looking
1135
* for "delimiter".
1136
* @param baseValue A partial parse result (often the rule's base value),
1137
* which is combined with the result from matching the substitution
1138
* @param delimiter The string to search "text" for.
1139
* @param pp Ignored and presumed to be 0 on entry.  If there's a match,
1140
* on exit this will point to the first unmatched character.
1141
* @param sub If we find "delimiter" in "text", this substitution is used
1142
* to match the text between the beginning of the string and the
1143
* position of "delimiter."  (If "delimiter" is the empty string, then
1144
* this function just matches against this substitution and updates
1145
* everything accordingly.)
1146
* @param upperBound When matching the substitution, it will only
1147
* consider rules with base values lower than this value.
1148
* @return If there's a match, this is the result of composing
1149
* baseValue with the result of matching the substitution.  Otherwise,
1150
* this is new Long(0).  It's never null.  If the result is an integer,
1151
* this will be an instance of Long; otherwise, it's an instance of
1152
* Double.
1153
*
1154
* !!! note {dlf} in point of fact, in the java code the caller always converts
1155
* the result to a double, so we might as well return one.
1156
*/
1157
double
1158
NFRule::matchToDelimiter(const UnicodeString& text,
1159
                         int32_t startPos,
1160
                         double _baseValue,
1161
                         const UnicodeString& delimiter,
1162
                         ParsePosition& pp,
1163
                         const NFSubstitution* sub,
1164
                         uint32_t nonNumericalExecutedRuleMask,
1165
                         double upperBound) const
1166
0
{
1167
0
  UErrorCode status = U_ZERO_ERROR;
1168
    // if "delimiter" contains real (i.e., non-ignorable) text, search
1169
    // it for "delimiter" beginning at "start".  If that succeeds, then
1170
    // use "sub"'s doParse() method to match the text before the
1171
    // instance of "delimiter" we just found.
1172
0
    if (!allIgnorable(delimiter, status)) {
1173
0
      if (U_FAILURE(status)) { //Memory allocation error.
1174
0
        return 0;
1175
0
      }
1176
0
        ParsePosition tempPP;
1177
0
        Formattable result;
1178
1179
        // use findText() to search for "delimiter".  It returns a two-
1180
        // element array: element 0 is the position of the match, and
1181
        // element 1 is the number of characters that matched
1182
        // "delimiter".
1183
0
        int32_t dLen;
1184
0
        int32_t dPos = findText(text, delimiter, startPos, &dLen);
1185
1186
        // if findText() succeeded, isolate the text preceding the
1187
        // match, and use "sub" to match that text
1188
0
        while (dPos >= 0) {
1189
0
            UnicodeString subText;
1190
0
            subText.setTo(text, 0, dPos);
1191
0
            if (subText.length() > 0) {
1192
0
                UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1193
#if UCONFIG_NO_COLLATION
1194
                    FALSE,
1195
#else
1196
0
                    formatter->isLenient(),
1197
0
#endif
1198
0
                    nonNumericalExecutedRuleMask,
1199
0
                    result);
1200
1201
                // if the substitution could match all the text up to
1202
                // where we found "delimiter", then this function has
1203
                // a successful match.  Bump the caller's parse position
1204
                // to point to the first character after the text
1205
                // that matches "delimiter", and return the result
1206
                // we got from parsing the substitution.
1207
0
                if (success && tempPP.getIndex() == dPos) {
1208
0
                    pp.setIndex(dPos + dLen);
1209
0
                    return result.getDouble();
1210
0
                }
1211
0
                else {
1212
                    // commented out because ParsePosition doesn't have error index in 1.1.x
1213
                    // restored for ICU4C port
1214
0
                    if (tempPP.getErrorIndex() > 0) {
1215
0
                        pp.setErrorIndex(tempPP.getErrorIndex());
1216
0
                    } else {
1217
0
                        pp.setErrorIndex(tempPP.getIndex());
1218
0
                    }
1219
0
                }
1220
0
            }
1221
1222
            // if we didn't match the substitution, search for another
1223
            // copy of "delimiter" in "text" and repeat the loop if
1224
            // we find it
1225
0
            tempPP.setIndex(0);
1226
0
            dPos = findText(text, delimiter, dPos + dLen, &dLen);
1227
0
        }
1228
        // if we make it here, this was an unsuccessful match, and we
1229
        // leave pp unchanged and return 0
1230
0
        pp.setIndex(0);
1231
0
        return 0;
1232
1233
        // if "delimiter" is empty, or consists only of ignorable characters
1234
        // (i.e., is semantically empty), thwe we obviously can't search
1235
        // for "delimiter".  Instead, just use "sub" to parse as much of
1236
        // "text" as possible.
1237
0
    }
1238
0
    else if (sub == NULL) {
1239
0
        return _baseValue;
1240
0
    }
1241
0
    else {
1242
0
        ParsePosition tempPP;
1243
0
        Formattable result;
1244
1245
        // try to match the whole string against the substitution
1246
0
        UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1247
#if UCONFIG_NO_COLLATION
1248
            FALSE,
1249
#else
1250
0
            formatter->isLenient(),
1251
0
#endif
1252
0
            nonNumericalExecutedRuleMask,
1253
0
            result);
1254
0
        if (success && (tempPP.getIndex() != 0)) {
1255
            // if there's a successful match (or it's a null
1256
            // substitution), update pp to point to the first
1257
            // character we didn't match, and pass the result from
1258
            // sub.doParse() on through to the caller
1259
0
            pp.setIndex(tempPP.getIndex());
1260
0
            return result.getDouble();
1261
0
        }
1262
0
        else {
1263
            // commented out because ParsePosition doesn't have error index in 1.1.x
1264
            // restored for ICU4C port
1265
0
            pp.setErrorIndex(tempPP.getErrorIndex());
1266
0
        }
1267
1268
        // and if we get to here, then nothing matched, so we return
1269
        // 0 and leave pp alone
1270
0
        return 0;
1271
0
    }
1272
0
}
1273
1274
/**
1275
* Used by stripPrefix() to match characters.  If lenient parse mode
1276
* is off, this just calls startsWith().  If lenient parse mode is on,
1277
* this function uses CollationElementIterators to match characters in
1278
* the strings (only primary-order differences are significant in
1279
* determining whether there's a match).
1280
* @param str The string being tested
1281
* @param prefix The text we're hoping to see at the beginning
1282
* of "str"
1283
* @return If "prefix" is found at the beginning of "str", this
1284
* is the number of characters in "str" that were matched (this
1285
* isn't necessarily the same as the length of "prefix" when matching
1286
* text with a collator).  If there's no match, this is 0.
1287
*/
1288
int32_t
1289
NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1290
0
{
1291
    // if we're looking for an empty prefix, it obviously matches
1292
    // zero characters.  Just go ahead and return 0.
1293
0
    if (prefix.length() == 0) {
1294
0
        return 0;
1295
0
    }
1296
1297
0
#if !UCONFIG_NO_COLLATION
1298
    // go through all this grief if we're in lenient-parse mode
1299
0
    if (formatter->isLenient()) {
1300
        // Check if non-lenient rule finds the text before call lenient parsing
1301
0
        if (str.startsWith(prefix)) {
1302
0
            return prefix.length();
1303
0
        }
1304
        // get the formatter's collator and use it to create two
1305
        // collation element iterators, one over the target string
1306
        // and another over the prefix (right now, we'll throw an
1307
        // exception if the collator we get back from the formatter
1308
        // isn't a RuleBasedCollator, because RuleBasedCollator defines
1309
        // the CollationElementIterator protocol.  Hopefully, this
1310
        // will change someday.)
1311
0
        const RuleBasedCollator* collator = formatter->getCollator();
1312
0
        if (collator == NULL) {
1313
0
            status = U_MEMORY_ALLOCATION_ERROR;
1314
0
            return 0;
1315
0
        }
1316
0
        LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str));
1317
0
        LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix));
1318
        // Check for memory allocation error.
1319
0
        if (strIter.isNull() || prefixIter.isNull()) {
1320
0
            status = U_MEMORY_ALLOCATION_ERROR;
1321
0
            return 0;
1322
0
        }
1323
1324
0
        UErrorCode err = U_ZERO_ERROR;
1325
1326
        // The original code was problematic.  Consider this match:
1327
        // prefix = "fifty-"
1328
        // string = " fifty-7"
1329
        // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1330
        // in the string.  Unfortunately, we were getting a match, and then computing where
1331
        // the match terminated by rematching the string.  The rematch code was using as an
1332
        // initial guess the substring of string between 0 and prefix.length.  Because of
1333
        // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1334
        // the position before the hyphen in the string.  Recursing down, we then parsed the
1335
        // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
1336
        // This was not pretty, especially since the string "fifty-7" parsed just fine.
1337
        //
1338
        // We have newer APIs now, so we can use calls on the iterator to determine what we
1339
        // matched up to.  If we terminate because we hit the last element in the string,
1340
        // our match terminates at this length.  If we terminate because we hit the last element
1341
        // in the target, our match terminates at one before the element iterator position.
1342
1343
        // match collation elements between the strings
1344
0
        int32_t oStr = strIter->next(err);
1345
0
        int32_t oPrefix = prefixIter->next(err);
1346
1347
0
        while (oPrefix != CollationElementIterator::NULLORDER) {
1348
            // skip over ignorable characters in the target string
1349
0
            while (CollationElementIterator::primaryOrder(oStr) == 0
1350
0
                && oStr != CollationElementIterator::NULLORDER) {
1351
0
                oStr = strIter->next(err);
1352
0
            }
1353
1354
            // skip over ignorable characters in the prefix
1355
0
            while (CollationElementIterator::primaryOrder(oPrefix) == 0
1356
0
                && oPrefix != CollationElementIterator::NULLORDER) {
1357
0
                oPrefix = prefixIter->next(err);
1358
0
            }
1359
1360
            // dlf: move this above following test, if we consume the
1361
            // entire target, aren't we ok even if the source was also
1362
            // entirely consumed?
1363
1364
            // if skipping over ignorables brought to the end of
1365
            // the prefix, we DID match: drop out of the loop
1366
0
            if (oPrefix == CollationElementIterator::NULLORDER) {
1367
0
                break;
1368
0
            }
1369
1370
            // if skipping over ignorables brought us to the end
1371
            // of the target string, we didn't match and return 0
1372
0
            if (oStr == CollationElementIterator::NULLORDER) {
1373
0
                return 0;
1374
0
            }
1375
1376
            // match collation elements from the two strings
1377
            // (considering only primary differences).  If we
1378
            // get a mismatch, dump out and return 0
1379
0
            if (CollationElementIterator::primaryOrder(oStr)
1380
0
                != CollationElementIterator::primaryOrder(oPrefix)) {
1381
0
                return 0;
1382
1383
                // otherwise, advance to the next character in each string
1384
                // and loop (we drop out of the loop when we exhaust
1385
                // collation elements in the prefix)
1386
0
            } else {
1387
0
                oStr = strIter->next(err);
1388
0
                oPrefix = prefixIter->next(err);
1389
0
            }
1390
0
        }
1391
1392
0
        int32_t result = strIter->getOffset();
1393
0
        if (oStr != CollationElementIterator::NULLORDER) {
1394
0
            --result; // back over character that we don't want to consume;
1395
0
        }
1396
1397
#ifdef RBNF_DEBUG
1398
        fprintf(stderr, "prefix length: %d\n", result);
1399
#endif
1400
0
        return result;
1401
#if 0
1402
        //----------------------------------------------------------------
1403
        // JDK 1.2-specific API call
1404
        // return strIter.getOffset();
1405
        //----------------------------------------------------------------
1406
        // JDK 1.1 HACK (take out for 1.2-specific code)
1407
1408
        // if we make it to here, we have a successful match.  Now we
1409
        // have to find out HOW MANY characters from the target string
1410
        // matched the prefix (there isn't necessarily a one-to-one
1411
        // mapping between collation elements and characters).
1412
        // In JDK 1.2, there's a simple getOffset() call we can use.
1413
        // In JDK 1.1, on the other hand, we have to go through some
1414
        // ugly contortions.  First, use the collator to compare the
1415
        // same number of characters from the prefix and target string.
1416
        // If they're equal, we're done.
1417
        collator->setStrength(Collator::PRIMARY);
1418
        if (str.length() >= prefix.length()) {
1419
            UnicodeString temp;
1420
            temp.setTo(str, 0, prefix.length());
1421
            if (collator->equals(temp, prefix)) {
1422
#ifdef RBNF_DEBUG
1423
                fprintf(stderr, "returning: %d\n", prefix.length());
1424
#endif
1425
                return prefix.length();
1426
            }
1427
        }
1428
1429
        // if they're not equal, then we have to compare successively
1430
        // larger and larger substrings of the target string until we
1431
        // get to one that matches the prefix.  At that point, we know
1432
        // how many characters matched the prefix, and we can return.
1433
        int32_t p = 1;
1434
        while (p <= str.length()) {
1435
            UnicodeString temp;
1436
            temp.setTo(str, 0, p);
1437
            if (collator->equals(temp, prefix)) {
1438
                return p;
1439
            } else {
1440
                ++p;
1441
            }
1442
        }
1443
1444
        // SHOULD NEVER GET HERE!!!
1445
        return 0;
1446
        //----------------------------------------------------------------
1447
#endif
1448
1449
        // If lenient parsing is turned off, forget all that crap above.
1450
        // Just use String.startsWith() and be done with it.
1451
0
  } else
1452
0
#endif
1453
0
  {
1454
0
      if (str.startsWith(prefix)) {
1455
0
          return prefix.length();
1456
0
      } else {
1457
0
          return 0;
1458
0
      }
1459
0
  }
1460
0
}
1461
1462
/**
1463
* Searches a string for another string.  If lenient parsing is off,
1464
* this just calls indexOf().  If lenient parsing is on, this function
1465
* uses CollationElementIterator to match characters, and only
1466
* primary-order differences are significant in determining whether
1467
* there's a match.
1468
* @param str The string to search
1469
* @param key The string to search "str" for
1470
* @param startingAt The index into "str" where the search is to
1471
* begin
1472
* @return A two-element array of ints.  Element 0 is the position
1473
* of the match, or -1 if there was no match.  Element 1 is the
1474
* number of characters in "str" that matched (which isn't necessarily
1475
* the same as the length of "key")
1476
*/
1477
int32_t
1478
NFRule::findText(const UnicodeString& str,
1479
                 const UnicodeString& key,
1480
                 int32_t startingAt,
1481
                 int32_t* length) const
1482
0
{
1483
0
    if (rulePatternFormat) {
1484
0
        Formattable result;
1485
0
        FieldPosition position(UNUM_INTEGER_FIELD);
1486
0
        position.setBeginIndex(startingAt);
1487
0
        rulePatternFormat->parseType(str, this, result, position);
1488
0
        int start = position.getBeginIndex();
1489
0
        if (start >= 0) {
1490
0
            int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
1491
0
            int32_t pluralRuleSuffix = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2;
1492
0
            int32_t matchLen = position.getEndIndex() - start;
1493
0
            UnicodeString prefix(fRuleText.tempSubString(0, pluralRuleStart));
1494
0
            UnicodeString suffix(fRuleText.tempSubString(pluralRuleSuffix));
1495
0
            if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0
1496
0
                    && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0)
1497
0
            {
1498
0
                *length = matchLen + prefix.length() + suffix.length();
1499
0
                return start - prefix.length();
1500
0
            }
1501
0
        }
1502
0
        *length = 0;
1503
0
        return -1;
1504
0
    }
1505
0
    if (!formatter->isLenient()) {
1506
        // if lenient parsing is turned off, this is easy: just call
1507
        // String.indexOf() and we're done
1508
0
        *length = key.length();
1509
0
        return str.indexOf(key, startingAt);
1510
0
    }
1511
0
    else {
1512
        // Check if non-lenient rule finds the text before call lenient parsing
1513
0
        *length = key.length();
1514
0
        int32_t pos = str.indexOf(key, startingAt);
1515
0
        if(pos >= 0) {
1516
0
            return pos;
1517
0
        } else {
1518
            // but if lenient parsing is turned ON, we've got some work ahead of us
1519
0
            return findTextLenient(str, key, startingAt, length);
1520
0
        }
1521
0
    }
1522
0
}
1523
1524
int32_t
1525
NFRule::findTextLenient(const UnicodeString& str,
1526
                 const UnicodeString& key,
1527
                 int32_t startingAt,
1528
                 int32_t* length) const
1529
0
{
1530
    //----------------------------------------------------------------
1531
    // JDK 1.1 HACK (take out of 1.2-specific code)
1532
1533
    // in JDK 1.2, CollationElementIterator provides us with an
1534
    // API to map between character offsets and collation elements
1535
    // and we can do this by marching through the string comparing
1536
    // collation elements.  We can't do that in JDK 1.1.  Instead,
1537
    // we have to go through this horrible slow mess:
1538
0
    int32_t p = startingAt;
1539
0
    int32_t keyLen = 0;
1540
1541
    // basically just isolate smaller and smaller substrings of
1542
    // the target string (each running to the end of the string,
1543
    // and with the first one running from startingAt to the end)
1544
    // and then use prefixLength() to see if the search key is at
1545
    // the beginning of each substring.  This is excruciatingly
1546
    // slow, but it will locate the key and tell use how long the
1547
    // matching text was.
1548
0
    UnicodeString temp;
1549
0
    UErrorCode status = U_ZERO_ERROR;
1550
0
    while (p < str.length() && keyLen == 0) {
1551
0
        temp.setTo(str, p, str.length() - p);
1552
0
        keyLen = prefixLength(temp, key, status);
1553
0
        if (U_FAILURE(status)) {
1554
0
            break;
1555
0
        }
1556
0
        if (keyLen != 0) {
1557
0
            *length = keyLen;
1558
0
            return p;
1559
0
        }
1560
0
        ++p;
1561
0
    }
1562
    // if we make it to here, we didn't find it.  Return -1 for the
1563
    // location.  The length should be ignored, but set it to 0,
1564
    // which should be "safe"
1565
0
    *length = 0;
1566
0
    return -1;
1567
0
}
1568
1569
/**
1570
* Checks to see whether a string consists entirely of ignorable
1571
* characters.
1572
* @param str The string to test.
1573
* @return true if the string is empty of consists entirely of
1574
* characters that the number formatter's collator says are
1575
* ignorable at the primary-order level.  false otherwise.
1576
*/
1577
UBool
1578
NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1579
0
{
1580
    // if the string is empty, we can just return true
1581
0
    if (str.length() == 0) {
1582
0
        return TRUE;
1583
0
    }
1584
1585
0
#if !UCONFIG_NO_COLLATION
1586
    // if lenient parsing is turned on, walk through the string with
1587
    // a collation element iterator and make sure each collation
1588
    // element is 0 (ignorable) at the primary level
1589
0
    if (formatter->isLenient()) {
1590
0
        const RuleBasedCollator* collator = formatter->getCollator();
1591
0
        if (collator == NULL) {
1592
0
            status = U_MEMORY_ALLOCATION_ERROR;
1593
0
            return FALSE;
1594
0
        }
1595
0
        LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str));
1596
1597
        // Memory allocation error check.
1598
0
        if (iter.isNull()) {
1599
0
            status = U_MEMORY_ALLOCATION_ERROR;
1600
0
            return FALSE;
1601
0
        }
1602
1603
0
        UErrorCode err = U_ZERO_ERROR;
1604
0
        int32_t o = iter->next(err);
1605
0
        while (o != CollationElementIterator::NULLORDER
1606
0
            && CollationElementIterator::primaryOrder(o) == 0) {
1607
0
            o = iter->next(err);
1608
0
        }
1609
1610
0
        return o == CollationElementIterator::NULLORDER;
1611
0
    }
1612
0
#endif
1613
1614
    // if lenient parsing is turned off, there is no such thing as
1615
    // an ignorable character: return true only if the string is empty
1616
0
    return FALSE;
1617
0
}
1618
1619
void
1620
0
NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) {
1621
0
    if (sub1 != NULL) {
1622
0
        sub1->setDecimalFormatSymbols(newSymbols, status);
1623
0
    }
1624
0
    if (sub2 != NULL) {
1625
0
        sub2->setDecimalFormatSymbols(newSymbols, status);
1626
0
    }
1627
0
}
1628
1629
U_NAMESPACE_END
1630
1631
/* U_HAVE_RBNF */
1632
#endif