Coverage Report

Created: 2025-06-24 06:43

/src/icu/source/i18n/nfsubs.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2016 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
/*
4
******************************************************************************
5
*   Copyright (C) 1997-2015, International Business Machines
6
*   Corporation and others.  All Rights Reserved.
7
******************************************************************************
8
*   file name:  nfsubs.cpp
9
*   encoding:   UTF-8
10
*   tab size:   8 (not used)
11
*   indentation:4
12
*
13
* Modification history
14
* Date        Name      Comments
15
* 10/11/2001  Doug      Ported from ICU4J
16
*/
17
18
#include <stdio.h>
19
#include "utypeinfo.h"  // for 'typeid' to work
20
21
#include "nfsubs.h"
22
#include "fmtableimp.h"
23
#include "putilimp.h"
24
#include "number_decimalquantity.h"
25
26
#if U_HAVE_RBNF
27
28
static const UChar gLessThan = 0x003c;
29
static const UChar gEquals = 0x003d;
30
static const UChar gGreaterThan = 0x003e;
31
static const UChar gPercent = 0x0025;
32
static const UChar gPound = 0x0023;
33
static const UChar gZero = 0x0030;
34
static const UChar gSpace = 0x0020;
35
36
static const UChar gEqualsEquals[] =
37
{
38
    0x3D, 0x3D, 0
39
}; /* "==" */
40
static const UChar gGreaterGreaterGreaterThan[] =
41
{
42
    0x3E, 0x3E, 0x3E, 0
43
}; /* ">>>" */
44
static const UChar gGreaterGreaterThan[] =
45
{
46
    0x3E, 0x3E, 0
47
}; /* ">>" */
48
49
U_NAMESPACE_BEGIN
50
51
using number::impl::DecimalQuantity;
52
53
class SameValueSubstitution : public NFSubstitution {
54
public:
55
    SameValueSubstitution(int32_t pos,
56
        const NFRuleSet* ruleset,
57
        const UnicodeString& description,
58
        UErrorCode& status);
59
    virtual ~SameValueSubstitution();
60
61
0
    virtual int64_t transformNumber(int64_t number) const { return number; }
62
0
    virtual double transformNumber(double number) const { return number; }
63
0
    virtual double composeRuleValue(double newRuleValue, double /*oldRuleValue*/) const { return newRuleValue; }
64
0
    virtual double calcUpperBound(double oldUpperBound) const { return oldUpperBound; }
65
0
    virtual UChar tokenChar() const { return (UChar)0x003d; } // '='
66
67
public:
68
    static UClassID getStaticClassID(void);
69
    virtual UClassID getDynamicClassID(void) const;
70
};
71
72
0
SameValueSubstitution::~SameValueSubstitution() {}
73
74
class MultiplierSubstitution : public NFSubstitution {
75
    int64_t divisor;
76
77
public:
78
    MultiplierSubstitution(int32_t _pos,
79
        const NFRule *rule,
80
        const NFRuleSet* _ruleSet,
81
        const UnicodeString& description,
82
        UErrorCode& status)
83
0
        : NFSubstitution(_pos, _ruleSet, description, status), divisor(rule->getDivisor())
84
0
    {
85
0
        if (divisor == 0) {
86
0
            status = U_PARSE_ERROR;
87
0
        }
88
0
    }
89
    virtual ~MultiplierSubstitution();
90
91
0
    virtual void setDivisor(int32_t radix, int16_t exponent, UErrorCode& status) { 
92
0
        divisor = util64_pow(radix, exponent);
93
94
0
        if(divisor == 0) {
95
0
            status = U_PARSE_ERROR;
96
0
        }
97
0
    }
98
99
    virtual bool operator==(const NFSubstitution& rhs) const;
100
101
0
    virtual int64_t transformNumber(int64_t number) const {
102
0
        return number / divisor;
103
0
    }
104
105
0
    virtual double transformNumber(double number) const {
106
0
        if (getRuleSet()) {
107
0
            return uprv_floor(number / divisor);
108
0
        } else {
109
0
            return number / divisor;
110
0
        }
111
0
    }
112
113
0
    virtual double composeRuleValue(double newRuleValue, double /*oldRuleValue*/) const {
114
0
        return newRuleValue * divisor;
115
0
    }
116
117
0
    virtual double calcUpperBound(double /*oldUpperBound*/) const { return static_cast<double>(divisor); }
118
119
0
    virtual UChar tokenChar() const { return (UChar)0x003c; } // '<'
120
121
public:
122
    static UClassID getStaticClassID(void);
123
    virtual UClassID getDynamicClassID(void) const;
124
};
125
126
0
MultiplierSubstitution::~MultiplierSubstitution() {}
127
128
class ModulusSubstitution : public NFSubstitution {
129
    int64_t  divisor;
130
    const NFRule* ruleToUse;
131
public:
132
    ModulusSubstitution(int32_t pos,
133
        const NFRule* rule,
134
        const NFRule* rulePredecessor,
135
        const NFRuleSet* ruleSet,
136
        const UnicodeString& description,
137
        UErrorCode& status);
138
    virtual ~ModulusSubstitution();
139
140
0
    virtual void setDivisor(int32_t radix, int16_t exponent, UErrorCode& status) { 
141
0
        divisor = util64_pow(radix, exponent);
142
143
0
        if (divisor == 0) {
144
0
            status = U_PARSE_ERROR;
145
0
        }
146
0
    }
147
148
    virtual bool operator==(const NFSubstitution& rhs) const;
149
150
    virtual void doSubstitution(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const;
151
    virtual void doSubstitution(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const;
152
153
0
    virtual int64_t transformNumber(int64_t number) const { return number % divisor; }
154
0
    virtual double transformNumber(double number) const { return uprv_fmod(number, static_cast<double>(divisor)); }
155
156
    virtual UBool doParse(const UnicodeString& text, 
157
        ParsePosition& parsePosition,
158
        double baseValue,
159
        double upperBound,
160
        UBool lenientParse,
161
        uint32_t nonNumericalExecutedRuleMask,
162
        Formattable& result) const;
163
164
0
    virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const {
165
0
        return oldRuleValue - uprv_fmod(oldRuleValue, static_cast<double>(divisor)) + newRuleValue;
166
0
    }
167
168
0
    virtual double calcUpperBound(double /*oldUpperBound*/) const { return static_cast<double>(divisor); }
169
170
0
    virtual UBool isModulusSubstitution() const { return TRUE; }
171
172
0
    virtual UChar tokenChar() const { return (UChar)0x003e; } // '>'
173
174
  virtual void toString(UnicodeString& result) const;
175
176
public:
177
    static UClassID getStaticClassID(void);
178
    virtual UClassID getDynamicClassID(void) const;
179
};
180
181
0
ModulusSubstitution::~ModulusSubstitution() {}
182
183
class IntegralPartSubstitution : public NFSubstitution {
184
public:
185
    IntegralPartSubstitution(int32_t _pos,
186
        const NFRuleSet* _ruleSet,
187
        const UnicodeString& description,
188
        UErrorCode& status)
189
0
        : NFSubstitution(_pos, _ruleSet, description, status) {}
190
    virtual ~IntegralPartSubstitution();
191
192
0
    virtual int64_t transformNumber(int64_t number) const { return number; }
193
0
    virtual double transformNumber(double number) const { return uprv_floor(number); }
194
0
    virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const { return newRuleValue + oldRuleValue; }
195
0
    virtual double calcUpperBound(double /*oldUpperBound*/) const { return DBL_MAX; }
196
0
    virtual UChar tokenChar() const { return (UChar)0x003c; } // '<'
197
198
public:
199
    static UClassID getStaticClassID(void);
200
    virtual UClassID getDynamicClassID(void) const;
201
};
202
203
0
IntegralPartSubstitution::~IntegralPartSubstitution() {}
204
205
class FractionalPartSubstitution : public NFSubstitution {
206
    UBool byDigits;
207
    UBool useSpaces;
208
    enum { kMaxDecimalDigits = 8 };
209
public:
210
    FractionalPartSubstitution(int32_t pos,
211
        const NFRuleSet* ruleSet,
212
        const UnicodeString& description,
213
        UErrorCode& status);
214
    virtual ~FractionalPartSubstitution();
215
216
    virtual bool operator==(const NFSubstitution& rhs) const;
217
218
    virtual void doSubstitution(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const;
219
0
    virtual void doSubstitution(int64_t /*number*/, UnicodeString& /*toInsertInto*/, int32_t /*_pos*/, int32_t /*recursionCount*/, UErrorCode& /*status*/) const {}
220
0
    virtual int64_t transformNumber(int64_t /*number*/) const { return 0; }
221
0
    virtual double transformNumber(double number) const { return number - uprv_floor(number); }
222
223
    virtual UBool doParse(const UnicodeString& text,
224
        ParsePosition& parsePosition,
225
        double baseValue,
226
        double upperBound,
227
        UBool lenientParse,
228
        uint32_t nonNumericalExecutedRuleMask,
229
        Formattable& result) const;
230
231
0
    virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const { return newRuleValue + oldRuleValue; }
232
0
    virtual double calcUpperBound(double /*oldUpperBound*/) const { return 0.0; }
233
0
    virtual UChar tokenChar() const { return (UChar)0x003e; } // '>'
234
235
public:
236
    static UClassID getStaticClassID(void);
237
    virtual UClassID getDynamicClassID(void) const;
238
};
239
240
0
FractionalPartSubstitution::~FractionalPartSubstitution() {}
241
242
class AbsoluteValueSubstitution : public NFSubstitution {
243
public:
244
    AbsoluteValueSubstitution(int32_t _pos,
245
        const NFRuleSet* _ruleSet,
246
        const UnicodeString& description,
247
        UErrorCode& status)
248
0
        : NFSubstitution(_pos, _ruleSet, description, status) {}
249
    virtual ~AbsoluteValueSubstitution();
250
251
0
    virtual int64_t transformNumber(int64_t number) const { return number >= 0 ? number : -number; }
252
0
    virtual double transformNumber(double number) const { return uprv_fabs(number); }
253
0
    virtual double composeRuleValue(double newRuleValue, double /*oldRuleValue*/) const { return -newRuleValue; }
254
0
    virtual double calcUpperBound(double /*oldUpperBound*/) const { return DBL_MAX; }
255
0
    virtual UChar tokenChar() const { return (UChar)0x003e; } // '>'
256
257
public:
258
    static UClassID getStaticClassID(void);
259
    virtual UClassID getDynamicClassID(void) const;
260
};
261
262
0
AbsoluteValueSubstitution::~AbsoluteValueSubstitution() {}
263
264
class NumeratorSubstitution : public NFSubstitution {
265
    double denominator;
266
    int64_t ldenominator;
267
    UBool withZeros;
268
public:
269
0
    static inline UnicodeString fixdesc(const UnicodeString& desc) {
270
0
        if (desc.endsWith(LTLT, 2)) {
271
0
            UnicodeString result(desc, 0, desc.length()-1);
272
0
            return result;
273
0
        }
274
0
        return desc;
275
0
    }
276
    NumeratorSubstitution(int32_t _pos,
277
        double _denominator,
278
        NFRuleSet* _ruleSet,
279
        const UnicodeString& description,
280
        UErrorCode& status)
281
0
        : NFSubstitution(_pos, _ruleSet, fixdesc(description), status), denominator(_denominator) 
282
0
    {
283
0
        ldenominator = util64_fromDouble(denominator);
284
0
        withZeros = description.endsWith(LTLT, 2);
285
0
    }
286
    virtual ~NumeratorSubstitution();
287
288
    virtual bool operator==(const NFSubstitution& rhs) const;
289
290
0
    virtual int64_t transformNumber(int64_t number) const { return number * ldenominator; }
291
0
    virtual double transformNumber(double number) const { return uprv_round(number * denominator); }
292
293
0
    virtual void doSubstitution(int64_t /*number*/, UnicodeString& /*toInsertInto*/, int32_t /*_pos*/, int32_t /*recursionCount*/, UErrorCode& /*status*/) const {}
294
    virtual void doSubstitution(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const;
295
    virtual UBool doParse(const UnicodeString& text, 
296
        ParsePosition& parsePosition,
297
        double baseValue,
298
        double upperBound,
299
        UBool /*lenientParse*/,
300
        uint32_t nonNumericalExecutedRuleMask,
301
        Formattable& result) const;
302
303
0
    virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const { return newRuleValue / oldRuleValue; }
304
0
    virtual double calcUpperBound(double /*oldUpperBound*/) const { return denominator; }
305
0
    virtual UChar tokenChar() const { return (UChar)0x003c; } // '<'
306
private:
307
    static const UChar LTLT[2];
308
309
public:
310
    static UClassID getStaticClassID(void);
311
    virtual UClassID getDynamicClassID(void) const;
312
};
313
314
0
NumeratorSubstitution::~NumeratorSubstitution() {}
315
316
NFSubstitution*
317
NFSubstitution::makeSubstitution(int32_t pos,
318
                                 const NFRule* rule,
319
                                 const NFRule* predecessor,
320
                                 const NFRuleSet* ruleSet,
321
                                 const RuleBasedNumberFormat* formatter,
322
                                 const UnicodeString& description,
323
                                 UErrorCode& status)
324
0
{
325
    // if the description is empty, return a NullSubstitution
326
0
    if (description.length() == 0) {
327
0
        return NULL;
328
0
    }
329
330
0
    switch (description.charAt(0)) {
331
        // if the description begins with '<'...
332
0
    case gLessThan:
333
        // throw an exception if the rule is a negative number
334
        // rule
335
0
        if (rule->getBaseValue() == NFRule::kNegativeNumberRule) {
336
            // throw new IllegalArgumentException("<< not allowed in negative-number rule");
337
0
            status = U_PARSE_ERROR;
338
0
            return NULL;
339
0
        }
340
341
        // if the rule is a fraction rule, return an
342
        // IntegralPartSubstitution
343
0
        else if (rule->getBaseValue() == NFRule::kImproperFractionRule
344
0
            || rule->getBaseValue() == NFRule::kProperFractionRule
345
0
            || rule->getBaseValue() == NFRule::kDefaultRule) {
346
0
            return new IntegralPartSubstitution(pos, ruleSet, description, status);
347
0
        }
348
349
        // if the rule set containing the rule is a fraction
350
        // rule set, return a NumeratorSubstitution
351
0
        else if (ruleSet->isFractionRuleSet()) {
352
0
            return new NumeratorSubstitution(pos, (double)rule->getBaseValue(),
353
0
                formatter->getDefaultRuleSet(), description, status);
354
0
        }
355
356
        // otherwise, return a MultiplierSubstitution
357
0
        else {
358
0
            return new MultiplierSubstitution(pos, rule, ruleSet,
359
0
                description, status);
360
0
        }
361
362
        // if the description begins with '>'...
363
0
    case gGreaterThan:
364
        // if the rule is a negative-number rule, return
365
        // an AbsoluteValueSubstitution
366
0
        if (rule->getBaseValue() == NFRule::kNegativeNumberRule) {
367
0
            return new AbsoluteValueSubstitution(pos, ruleSet, description, status);
368
0
        }
369
370
        // if the rule is a fraction rule, return a
371
        // FractionalPartSubstitution
372
0
        else if (rule->getBaseValue() == NFRule::kImproperFractionRule
373
0
            || rule->getBaseValue() == NFRule::kProperFractionRule
374
0
            || rule->getBaseValue() == NFRule::kDefaultRule) {
375
0
            return new FractionalPartSubstitution(pos, ruleSet, description, status);
376
0
        }
377
378
        // if the rule set owning the rule is a fraction rule set,
379
        // throw an exception
380
0
        else if (ruleSet->isFractionRuleSet()) {
381
            // throw new IllegalArgumentException(">> not allowed in fraction rule set");
382
0
            status = U_PARSE_ERROR;
383
0
            return NULL;
384
0
        }
385
386
        // otherwise, return a ModulusSubstitution
387
0
        else {
388
0
            return new ModulusSubstitution(pos, rule, predecessor,
389
0
                ruleSet, description, status);
390
0
        }
391
392
        // if the description begins with '=', always return a
393
        // SameValueSubstitution
394
0
    case gEquals:
395
0
        return new SameValueSubstitution(pos, ruleSet, description, status);
396
397
        // and if it's anything else, throw an exception
398
0
    default:
399
        // throw new IllegalArgumentException("Illegal substitution character");
400
0
        status = U_PARSE_ERROR;
401
0
    }
402
0
    return NULL;
403
0
}
404
405
NFSubstitution::NFSubstitution(int32_t _pos,
406
                               const NFRuleSet* _ruleSet,
407
                               const UnicodeString& description,
408
                               UErrorCode& status)
409
0
                               : pos(_pos), ruleSet(NULL), numberFormat(NULL)
410
0
{
411
    // the description should begin and end with the same character.
412
    // If it doesn't that's a syntax error.  Otherwise,
413
    // makeSubstitution() was the only thing that needed to know
414
    // about these characters, so strip them off
415
0
    UnicodeString workingDescription(description);
416
0
    if (description.length() >= 2
417
0
        && description.charAt(0) == description.charAt(description.length() - 1))
418
0
    {
419
0
        workingDescription.remove(description.length() - 1, 1);
420
0
        workingDescription.remove(0, 1);
421
0
    }
422
0
    else if (description.length() != 0) {
423
        // throw new IllegalArgumentException("Illegal substitution syntax");
424
0
        status = U_PARSE_ERROR;
425
0
        return;
426
0
    }
427
428
0
    if (workingDescription.length() == 0) {
429
        // if the description was just two paired token characters
430
        // (i.e., "<<" or ">>"), it uses the rule set it belongs to to
431
        // format its result
432
0
        this->ruleSet = _ruleSet;
433
0
    }
434
0
    else if (workingDescription.charAt(0) == gPercent) {
435
        // if the description contains a rule set name, that's the rule
436
        // set we use to format the result: get a reference to the
437
        // names rule set
438
0
        this->ruleSet = _ruleSet->getOwner()->findRuleSet(workingDescription, status);
439
0
    }
440
0
    else if (workingDescription.charAt(0) == gPound || workingDescription.charAt(0) ==gZero) {
441
        // if the description begins with 0 or #, treat it as a
442
        // DecimalFormat pattern, and initialize a DecimalFormat with
443
        // that pattern (then set it to use the DecimalFormatSymbols
444
        // belonging to our formatter)
445
0
        const DecimalFormatSymbols* sym = _ruleSet->getOwner()->getDecimalFormatSymbols();
446
0
        if (!sym) {
447
0
            status = U_MISSING_RESOURCE_ERROR;
448
0
            return;
449
0
        }
450
0
        DecimalFormat *tempNumberFormat = new DecimalFormat(workingDescription, *sym, status);
451
        /* test for NULL */
452
0
        if (!tempNumberFormat) {
453
0
            status = U_MEMORY_ALLOCATION_ERROR;
454
0
            return;
455
0
        }
456
0
        if (U_FAILURE(status)) {
457
0
            delete tempNumberFormat;
458
0
            return;
459
0
        }
460
0
        this->numberFormat = tempNumberFormat;
461
0
    }
462
0
    else if (workingDescription.charAt(0) == gGreaterThan) {
463
        // if the description is ">>>", this substitution bypasses the
464
        // usual rule-search process and always uses the rule that precedes
465
        // it in its own rule set's rule list (this is used for place-value
466
        // notations: formats where you want to see a particular part of
467
        // a number even when it's 0)
468
469
        // this causes problems when >>> is used in a frationalPartSubstitution
470
        // this->ruleSet = NULL;
471
0
        this->ruleSet = _ruleSet;
472
0
        this->numberFormat = NULL;
473
0
    }
474
0
    else {
475
        // and of the description is none of these things, it's a syntax error
476
477
        // throw new IllegalArgumentException("Illegal substitution syntax");
478
0
        status = U_PARSE_ERROR;
479
0
    }
480
0
}
481
482
NFSubstitution::~NFSubstitution()
483
0
{
484
0
    delete numberFormat;
485
0
    numberFormat = NULL;
486
0
}
487
488
/**
489
 * Set's the substitution's divisor.  Used by NFRule.setBaseValue().
490
 * A no-op for all substitutions except multiplier and modulus
491
 * substitutions.
492
 * @param radix The radix of the divisor
493
 * @param exponent The exponent of the divisor
494
 */
495
void
496
0
NFSubstitution::setDivisor(int32_t /*radix*/, int16_t /*exponent*/, UErrorCode& /*status*/) {
497
  // a no-op for all substitutions except multiplier and modulus substitutions
498
0
}
499
500
void
501
0
NFSubstitution::setDecimalFormatSymbols(const DecimalFormatSymbols &newSymbols, UErrorCode& /*status*/) {
502
0
    if (numberFormat != NULL) {
503
0
        numberFormat->setDecimalFormatSymbols(newSymbols);
504
0
    }
505
0
}
506
507
//-----------------------------------------------------------------------
508
// boilerplate
509
//-----------------------------------------------------------------------
510
511
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(NFSubstitution)
512
513
/**
514
 * Compares two substitutions for equality
515
 * @param The substitution to compare this one to
516
 * @return true if the two substitutions are functionally equivalent
517
 */
518
bool
519
NFSubstitution::operator==(const NFSubstitution& rhs) const
520
0
{
521
  // compare class and all of the fields all substitutions have
522
  // in common
523
  // this should be called by subclasses before their own equality tests
524
0
  return typeid(*this) == typeid(rhs)
525
0
  && pos == rhs.pos
526
0
  && (ruleSet == NULL) == (rhs.ruleSet == NULL)
527
  // && ruleSet == rhs.ruleSet causes circularity, other checks to make instead?
528
0
  && (numberFormat == NULL
529
0
      ? (rhs.numberFormat == NULL)
530
0
      : (*numberFormat == *rhs.numberFormat));
531
0
}
532
533
/**
534
 * Returns a textual description of the substitution
535
 * @return A textual description of the substitution.  This might
536
 * not be identical to the description it was created from, but
537
 * it'll produce the same result.
538
 */
539
void
540
NFSubstitution::toString(UnicodeString& text) const
541
0
{
542
  // use tokenChar() to get the character at the beginning and
543
  // end of the substitutin token.  In between them will go
544
  // either the name of the rule set it uses, or the pattern of
545
  // the DecimalFormat it uses
546
0
  text.remove();
547
0
  text.append(tokenChar());
548
549
0
  UnicodeString temp;
550
0
  if (ruleSet != NULL) {
551
0
    ruleSet->getName(temp);
552
0
  } else if (numberFormat != NULL) {
553
0
    numberFormat->toPattern(temp);
554
0
  }
555
0
  text.append(temp);
556
0
  text.append(tokenChar());
557
0
}
558
559
//-----------------------------------------------------------------------
560
// formatting
561
//-----------------------------------------------------------------------
562
563
/**
564
 * Performs a mathematical operation on the number, formats it using
565
 * either ruleSet or decimalFormat, and inserts the result into
566
 * toInsertInto.
567
 * @param number The number being formatted.
568
 * @param toInsertInto The string we insert the result into
569
 * @param pos The position in toInsertInto where the owning rule's
570
 * rule text begins (this value is added to this substitution's
571
 * position to determine exactly where to insert the new text)
572
 */
573
void
574
NFSubstitution::doSubstitution(int64_t number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const
575
0
{
576
0
    if (ruleSet != NULL) {
577
        // Perform a transformation on the number that is dependent
578
        // on the type of substitution this is, then just call its
579
        // rule set's format() method to format the result
580
0
        ruleSet->format(transformNumber(number), toInsertInto, _pos + this->pos, recursionCount, status);
581
0
    } else if (numberFormat != NULL) {
582
0
        if (number <= MAX_INT64_IN_DOUBLE) {
583
            // or perform the transformation on the number (preserving
584
            // the result's fractional part if the formatter it set
585
            // to show it), then use that formatter's format() method
586
            // to format the result
587
0
            double numberToFormat = transformNumber((double)number);
588
0
            if (numberFormat->getMaximumFractionDigits() == 0) {
589
0
                numberToFormat = uprv_floor(numberToFormat);
590
0
            }
591
592
0
            UnicodeString temp;
593
0
            numberFormat->format(numberToFormat, temp, status);
594
0
            toInsertInto.insert(_pos + this->pos, temp);
595
0
        } 
596
0
        else { 
597
            // We have gone beyond double precision. Something has to give. 
598
            // We're favoring accuracy of the large number over potential rules 
599
            // that round like a CompactDecimalFormat, which is not a common use case. 
600
            // 
601
            // Perform a transformation on the number that is dependent 
602
            // on the type of substitution this is, then just call its 
603
            // rule set's format() method to format the result 
604
0
            int64_t numberToFormat = transformNumber(number); 
605
0
            UnicodeString temp;
606
0
            numberFormat->format(numberToFormat, temp, status);
607
0
            toInsertInto.insert(_pos + this->pos, temp);
608
0
        } 
609
0
    }
610
0
}
611
612
/**
613
 * Performs a mathematical operation on the number, formats it using
614
 * either ruleSet or decimalFormat, and inserts the result into
615
 * toInsertInto.
616
 * @param number The number being formatted.
617
 * @param toInsertInto The string we insert the result into
618
 * @param pos The position in toInsertInto where the owning rule's
619
 * rule text begins (this value is added to this substitution's
620
 * position to determine exactly where to insert the new text)
621
 */
622
void
623
0
NFSubstitution::doSubstitution(double number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const {
624
    // perform a transformation on the number being formatted that
625
    // is dependent on the type of substitution this is
626
0
    double numberToFormat = transformNumber(number);
627
628
0
    if (uprv_isInfinite(numberToFormat)) {
629
        // This is probably a minus rule. Combine it with an infinite rule.
630
0
        const NFRule *infiniteRule = ruleSet->findDoubleRule(uprv_getInfinity());
631
0
        infiniteRule->doFormat(numberToFormat, toInsertInto, _pos + this->pos, recursionCount, status);
632
0
        return;
633
0
    }
634
635
    // if the result is an integer, from here on out we work in integer
636
    // space (saving time and memory and preserving accuracy)
637
0
    if (numberToFormat == uprv_floor(numberToFormat) && ruleSet != NULL) {
638
0
        ruleSet->format(util64_fromDouble(numberToFormat), toInsertInto, _pos + this->pos, recursionCount, status);
639
640
        // if the result isn't an integer, then call either our rule set's
641
        // format() method or our DecimalFormat's format() method to
642
        // format the result
643
0
    } else {
644
0
        if (ruleSet != NULL) {
645
0
            ruleSet->format(numberToFormat, toInsertInto, _pos + this->pos, recursionCount, status);
646
0
        } else if (numberFormat != NULL) {
647
0
            UnicodeString temp;
648
0
            numberFormat->format(numberToFormat, temp);
649
0
            toInsertInto.insert(_pos + this->pos, temp);
650
0
        }
651
0
    }
652
0
}
653
654
655
    //-----------------------------------------------------------------------
656
    // parsing
657
    //-----------------------------------------------------------------------
658
659
#ifdef RBNF_DEBUG
660
#include <stdio.h>
661
#endif
662
663
/**
664
 * Parses a string using the rule set or DecimalFormat belonging
665
 * to this substitution.  If there's a match, a mathematical
666
 * operation (the inverse of the one used in formatting) is
667
 * performed on the result of the parse and the value passed in
668
 * and returned as the result.  The parse position is updated to
669
 * point to the first unmatched character in the string.
670
 * @param text The string to parse
671
 * @param parsePosition On entry, ignored, but assumed to be 0.
672
 * On exit, this is updated to point to the first unmatched
673
 * character (or 0 if the substitution didn't match)
674
 * @param baseValue A partial parse result that should be
675
 * combined with the result of this parse
676
 * @param upperBound When searching the rule set for a rule
677
 * matching the string passed in, only rules with base values
678
 * lower than this are considered
679
 * @param lenientParse If true and matching against rules fails,
680
 * the substitution will also try matching the text against
681
 * numerals using a default-costructed NumberFormat.  If false,
682
 * no extra work is done.  (This value is false whenever the
683
 * formatter isn't in lenient-parse mode, but is also false
684
 * under some conditions even when the formatter _is_ in
685
 * lenient-parse mode.)
686
 * @return If there's a match, this is the result of composing
687
 * baseValue with whatever was returned from matching the
688
 * characters.  This will be either a Long or a Double.  If there's
689
 * no match this is new Long(0) (not null), and parsePosition
690
 * is left unchanged.
691
 */
692
UBool
693
NFSubstitution::doParse(const UnicodeString& text,
694
                        ParsePosition& parsePosition,
695
                        double baseValue,
696
                        double upperBound,
697
                        UBool lenientParse,
698
                        uint32_t nonNumericalExecutedRuleMask,
699
                        Formattable& result) const
700
0
{
701
#ifdef RBNF_DEBUG
702
    fprintf(stderr, "<nfsubs> %x bv: %g ub: %g\n", this, baseValue, upperBound);
703
#endif
704
    // figure out the highest base value a rule can have and match
705
    // the text being parsed (this varies according to the type of
706
    // substitutions: multiplier, modulus, and numerator substitutions
707
    // restrict the search to rules with base values lower than their
708
    // own; same-value substitutions leave the upper bound wherever
709
    // it was, and the others allow any rule to match
710
0
    upperBound = calcUpperBound(upperBound);
711
712
    // use our rule set to parse the text.  If that fails and
713
    // lenient parsing is enabled (this is always false if the
714
    // formatter's lenient-parsing mode is off, but it may also
715
    // be false even when the formatter's lenient-parse mode is
716
    // on), then also try parsing the text using a default-
717
    // constructed NumberFormat
718
0
    if (ruleSet != NULL) {
719
0
        ruleSet->parse(text, parsePosition, upperBound, nonNumericalExecutedRuleMask, result);
720
0
        if (lenientParse && !ruleSet->isFractionRuleSet() && parsePosition.getIndex() == 0) {
721
0
            UErrorCode status = U_ZERO_ERROR;
722
0
            NumberFormat* fmt = NumberFormat::createInstance(status);
723
0
            if (U_SUCCESS(status)) {
724
0
                fmt->parse(text, result, parsePosition);
725
0
            }
726
0
            delete fmt;
727
0
        }
728
729
        // ...or use our DecimalFormat to parse the text
730
0
    } else if (numberFormat != NULL) {
731
0
        numberFormat->parse(text, result, parsePosition);
732
0
    }
733
734
    // if the parse was successful, we've already advanced the caller's
735
    // parse position (this is the one function that doesn't have one
736
    // of its own).  Derive a parse result and return it as a Long,
737
    // if possible, or a Double
738
0
    if (parsePosition.getIndex() != 0) {
739
0
        UErrorCode status = U_ZERO_ERROR;
740
0
        double tempResult = result.getDouble(status);
741
742
        // composeRuleValue() produces a full parse result from
743
        // the partial parse result passed to this function from
744
        // the caller (this is either the owning rule's base value
745
        // or the partial result obtained from composing the
746
        // owning rule's base value with its other substitution's
747
        // parse result) and the partial parse result obtained by
748
        // matching the substitution (which will be the same value
749
        // the caller would get by parsing just this part of the
750
        // text with RuleBasedNumberFormat.parse() ).  How the two
751
        // values are used to derive the full parse result depends
752
        // on the types of substitutions: For a regular rule, the
753
        // ultimate result is its multiplier substitution's result
754
        // times the rule's divisor (or the rule's base value) plus
755
        // the modulus substitution's result (which will actually
756
        // supersede part of the rule's base value).  For a negative-
757
        // number rule, the result is the negative of its substitution's
758
        // result.  For a fraction rule, it's the sum of its two
759
        // substitution results.  For a rule in a fraction rule set,
760
        // it's the numerator substitution's result divided by
761
        // the rule's base value.  Results from same-value substitutions
762
        // propagate back upard, and null substitutions don't affect
763
        // the result.
764
0
        tempResult = composeRuleValue(tempResult, baseValue);
765
0
        result.setDouble(tempResult);
766
0
        return TRUE;
767
        // if the parse was UNsuccessful, return 0
768
0
    } else {
769
0
        result.setLong(0);
770
0
        return FALSE;
771
0
    }
772
0
}
773
774
    /**
775
     * Returns true if this is a modulus substitution.  (We didn't do this
776
     * with instanceof partially because it causes source files to
777
     * proliferate and partially because we have to port this to C++.)
778
     * @return true if this object is an instance of ModulusSubstitution
779
     */
780
UBool
781
0
NFSubstitution::isModulusSubstitution() const {
782
0
    return FALSE;
783
0
}
784
785
//===================================================================
786
// SameValueSubstitution
787
//===================================================================
788
789
/**
790
 * A substitution that passes the value passed to it through unchanged.
791
 * Represented by == in rule descriptions.
792
 */
793
SameValueSubstitution::SameValueSubstitution(int32_t _pos,
794
                        const NFRuleSet* _ruleSet,
795
                        const UnicodeString& description,
796
                        UErrorCode& status)
797
0
: NFSubstitution(_pos, _ruleSet, description, status)
798
0
{
799
0
    if (0 == description.compare(gEqualsEquals, 2)) {
800
        // throw new IllegalArgumentException("== is not a legal token");
801
0
        status = U_PARSE_ERROR;
802
0
    }
803
0
}
804
805
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(SameValueSubstitution)
806
807
//===================================================================
808
// MultiplierSubstitution
809
//===================================================================
810
811
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(MultiplierSubstitution)
812
813
bool MultiplierSubstitution::operator==(const NFSubstitution& rhs) const
814
0
{
815
0
    return NFSubstitution::operator==(rhs) &&
816
0
        divisor == ((const MultiplierSubstitution*)&rhs)->divisor;
817
0
}
818
819
820
//===================================================================
821
// ModulusSubstitution
822
//===================================================================
823
824
/**
825
 * A substitution that divides the number being formatted by the its rule's
826
 * divisor and formats the remainder.  Represented by "&gt;&gt;" in a
827
 * regular rule.
828
 */
829
ModulusSubstitution::ModulusSubstitution(int32_t _pos,
830
                                         const NFRule* rule,
831
                                         const NFRule* predecessor,
832
                                         const NFRuleSet* _ruleSet,
833
                                         const UnicodeString& description,
834
                                         UErrorCode& status)
835
0
 : NFSubstitution(_pos, _ruleSet, description, status)
836
0
 , divisor(rule->getDivisor())
837
 , ruleToUse(NULL)
838
0
{
839
  // the owning rule's divisor controls the behavior of this
840
  // substitution: rather than keeping a backpointer to the rule,
841
  // we keep a copy of the divisor
842
843
0
  if (divisor == 0) {
844
0
      status = U_PARSE_ERROR;
845
0
  }
846
847
0
  if (0 == description.compare(gGreaterGreaterGreaterThan, 3)) {
848
    // the >>> token doesn't alter how this substitution calculates the
849
    // values it uses for formatting and parsing, but it changes
850
    // what's done with that value after it's obtained: >>> short-
851
    // circuits the rule-search process and goes straight to the
852
    // specified rule to format the substitution value
853
0
    ruleToUse = predecessor;
854
0
  }
855
0
}
856
857
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(ModulusSubstitution)
858
859
bool ModulusSubstitution::operator==(const NFSubstitution& rhs) const
860
0
{
861
0
  return NFSubstitution::operator==(rhs) &&
862
0
  divisor == ((const ModulusSubstitution*)&rhs)->divisor &&
863
0
  ruleToUse == ((const ModulusSubstitution*)&rhs)->ruleToUse;
864
0
}
865
866
//-----------------------------------------------------------------------
867
// formatting
868
//-----------------------------------------------------------------------
869
870
871
/**
872
 * If this is a &gt;&gt;&gt; substitution, use ruleToUse to fill in
873
 * the substitution.  Otherwise, just use the superclass function.
874
 * @param number The number being formatted
875
 * @toInsertInto The string to insert the result of this substitution
876
 * into
877
 * @param pos The position of the rule text in toInsertInto
878
 */
879
void
880
ModulusSubstitution::doSubstitution(int64_t number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const
881
0
{
882
    // if this isn't a >>> substitution, just use the inherited version
883
    // of this function (which uses either a rule set or a DecimalFormat
884
    // to format its substitution value)
885
0
    if (ruleToUse == NULL) {
886
0
        NFSubstitution::doSubstitution(number, toInsertInto, _pos, recursionCount, status);
887
888
        // a >>> substitution goes straight to a particular rule to
889
        // format the substitution value
890
0
    } else {
891
0
        int64_t numberToFormat = transformNumber(number);
892
0
        ruleToUse->doFormat(numberToFormat, toInsertInto, _pos + getPos(), recursionCount, status);
893
0
    }
894
0
}
895
896
/**
897
* If this is a &gt;&gt;&gt; substitution, use ruleToUse to fill in
898
* the substitution.  Otherwise, just use the superclass function.
899
* @param number The number being formatted
900
* @toInsertInto The string to insert the result of this substitution
901
* into
902
* @param pos The position of the rule text in toInsertInto
903
*/
904
void
905
ModulusSubstitution::doSubstitution(double number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const
906
0
{
907
    // if this isn't a >>> substitution, just use the inherited version
908
    // of this function (which uses either a rule set or a DecimalFormat
909
    // to format its substitution value)
910
0
    if (ruleToUse == NULL) {
911
0
        NFSubstitution::doSubstitution(number, toInsertInto, _pos, recursionCount, status);
912
913
        // a >>> substitution goes straight to a particular rule to
914
        // format the substitution value
915
0
    } else {
916
0
        double numberToFormat = transformNumber(number);
917
918
0
        ruleToUse->doFormat(numberToFormat, toInsertInto, _pos + getPos(), recursionCount, status);
919
0
    }
920
0
}
921
922
//-----------------------------------------------------------------------
923
// parsing
924
//-----------------------------------------------------------------------
925
926
/**
927
 * If this is a &gt;&gt;&gt; substitution, match only against ruleToUse.
928
 * Otherwise, use the superclass function.
929
 * @param text The string to parse
930
 * @param parsePosition Ignored on entry, updated on exit to point to
931
 * the first unmatched character.
932
 * @param baseValue The partial parse result prior to calling this
933
 * routine.
934
 */
935
UBool
936
ModulusSubstitution::doParse(const UnicodeString& text,
937
                             ParsePosition& parsePosition,
938
                             double baseValue,
939
                             double upperBound,
940
                             UBool lenientParse,
941
                             uint32_t nonNumericalExecutedRuleMask,
942
                             Formattable& result) const
943
0
{
944
    // if this isn't a >>> substitution, we can just use the
945
    // inherited parse() routine to do the parsing
946
0
    if (ruleToUse == NULL) {
947
0
        return NFSubstitution::doParse(text, parsePosition, baseValue, upperBound, lenientParse, nonNumericalExecutedRuleMask, result);
948
949
        // but if it IS a >>> substitution, we have to do it here: we
950
        // use the specific rule's doParse() method, and then we have to
951
        // do some of the other work of NFRuleSet.parse()
952
0
    } else {
953
0
        ruleToUse->doParse(text, parsePosition, FALSE, upperBound, nonNumericalExecutedRuleMask, result);
954
955
0
        if (parsePosition.getIndex() != 0) {
956
0
            UErrorCode status = U_ZERO_ERROR;
957
0
            double tempResult = result.getDouble(status);
958
0
            tempResult = composeRuleValue(tempResult, baseValue);
959
0
            result.setDouble(tempResult);
960
0
        }
961
962
0
        return TRUE;
963
0
    }
964
0
}
965
/**
966
 * Returns a textual description of the substitution
967
 * @return A textual description of the substitution.  This might
968
 * not be identical to the description it was created from, but
969
 * it'll produce the same result.
970
 */
971
void
972
ModulusSubstitution::toString(UnicodeString& text) const
973
0
{
974
  // use tokenChar() to get the character at the beginning and
975
  // end of the substitutin token.  In between them will go
976
  // either the name of the rule set it uses, or the pattern of
977
  // the DecimalFormat it uses
978
979
0
  if ( ruleToUse != NULL ) { // Must have been a >>> substitution.
980
0
      text.remove();
981
0
      text.append(tokenChar());
982
0
      text.append(tokenChar());
983
0
      text.append(tokenChar());
984
0
  } else { // Otherwise just use the super-class function.
985
0
    NFSubstitution::toString(text);
986
0
  }
987
0
}
988
//===================================================================
989
// IntegralPartSubstitution
990
//===================================================================
991
992
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(IntegralPartSubstitution)
993
994
995
//===================================================================
996
// FractionalPartSubstitution
997
//===================================================================
998
999
1000
    /**
1001
     * Constructs a FractionalPartSubstitution.  This object keeps a flag
1002
     * telling whether it should format by digits or not.  In addition,
1003
     * it marks the rule set it calls (if any) as a fraction rule set.
1004
     */
1005
FractionalPartSubstitution::FractionalPartSubstitution(int32_t _pos,
1006
                             const NFRuleSet* _ruleSet,
1007
                             const UnicodeString& description,
1008
                             UErrorCode& status)
1009
0
 : NFSubstitution(_pos, _ruleSet, description, status)
1010
0
 , byDigits(FALSE)
1011
0
 , useSpaces(TRUE)
1012
1013
0
{
1014
    // akk, ruleSet can change in superclass constructor
1015
0
    if (0 == description.compare(gGreaterGreaterThan, 2) ||
1016
0
        0 == description.compare(gGreaterGreaterGreaterThan, 3) ||
1017
0
        _ruleSet == getRuleSet()) {
1018
0
        byDigits = TRUE;
1019
0
        if (0 == description.compare(gGreaterGreaterGreaterThan, 3)) {
1020
0
            useSpaces = FALSE;
1021
0
        }
1022
0
    } else {
1023
        // cast away const
1024
0
        ((NFRuleSet*)getRuleSet())->makeIntoFractionRuleSet();
1025
0
    }
1026
0
}
1027
1028
//-----------------------------------------------------------------------
1029
// formatting
1030
//-----------------------------------------------------------------------
1031
1032
/**
1033
 * If in "by digits" mode, fills in the substitution one decimal digit
1034
 * at a time using the rule set containing this substitution.
1035
 * Otherwise, uses the superclass function.
1036
 * @param number The number being formatted
1037
 * @param toInsertInto The string to insert the result of formatting
1038
 * the substitution into
1039
 * @param pos The position of the owning rule's rule text in
1040
 * toInsertInto
1041
 */
1042
void
1043
FractionalPartSubstitution::doSubstitution(double number, UnicodeString& toInsertInto,
1044
                                           int32_t _pos, int32_t recursionCount, UErrorCode& status) const
1045
0
{
1046
  // if we're not in "byDigits" mode, just use the inherited
1047
  // doSubstitution() routine
1048
0
  if (!byDigits) {
1049
0
    NFSubstitution::doSubstitution(number, toInsertInto, _pos, recursionCount, status);
1050
1051
    // if we're in "byDigits" mode, transform the value into an integer
1052
    // by moving the decimal point eight places to the right and
1053
    // pulling digits off the right one at a time, formatting each digit
1054
    // as an integer using this substitution's owning rule set
1055
    // (this is slower, but more accurate, than doing it from the
1056
    // other end)
1057
0
  } else {
1058
    //          int32_t numberToFormat = (int32_t)uprv_round(transformNumber(number) * uprv_pow(10, kMaxDecimalDigits));
1059
    //          // this flag keeps us from formatting trailing zeros.  It starts
1060
    //          // out false because we're pulling from the right, and switches
1061
    //          // to true the first time we encounter a non-zero digit
1062
    //          UBool doZeros = FALSE;
1063
    //          for (int32_t i = 0; i < kMaxDecimalDigits; i++) {
1064
    //              int64_t digit = numberToFormat % 10;
1065
    //              if (digit != 0 || doZeros) {
1066
    //                  if (doZeros && useSpaces) {
1067
    //                      toInsertInto.insert(_pos + getPos(), gSpace);
1068
    //                  }
1069
    //                  doZeros = TRUE;
1070
    //                  getRuleSet()->format(digit, toInsertInto, _pos + getPos());
1071
    //              }
1072
    //              numberToFormat /= 10;
1073
    //          }
1074
1075
0
    DecimalQuantity dl;
1076
0
    dl.setToDouble(number);
1077
0
    dl.roundToMagnitude(-20, UNUM_ROUND_HALFEVEN, status);     // round to 20 fraction digits.
1078
    
1079
0
    UBool pad = FALSE;
1080
0
    for (int32_t didx = dl.getLowerDisplayMagnitude(); didx<0; didx++) {
1081
      // Loop iterates over fraction digits, starting with the LSD.
1082
      //   include both real digits from the number, and zeros
1083
      //   to the left of the MSD but to the right of the decimal point.
1084
0
      if (pad && useSpaces) {
1085
0
        toInsertInto.insert(_pos + getPos(), gSpace);
1086
0
      } else {
1087
0
        pad = TRUE;
1088
0
      }
1089
0
      int64_t digit = dl.getDigit(didx);
1090
0
      getRuleSet()->format(digit, toInsertInto, _pos + getPos(), recursionCount, status);
1091
0
    }
1092
1093
0
    if (!pad) {
1094
      // hack around lack of precision in digitlist. if we would end up with
1095
      // "foo point" make sure we add a " zero" to the end.
1096
0
      getRuleSet()->format((int64_t)0, toInsertInto, _pos + getPos(), recursionCount, status);
1097
0
    }
1098
0
  }
1099
0
}
1100
1101
//-----------------------------------------------------------------------
1102
// parsing
1103
//-----------------------------------------------------------------------
1104
1105
/**
1106
 * If in "by digits" mode, parses the string as if it were a string
1107
 * of individual digits; otherwise, uses the superclass function.
1108
 * @param text The string to parse
1109
 * @param parsePosition Ignored on entry, but updated on exit to point
1110
 * to the first unmatched character
1111
 * @param baseValue The partial parse result prior to entering this
1112
 * function
1113
 * @param upperBound Only consider rules with base values lower than
1114
 * this when filling in the substitution
1115
 * @param lenientParse If true, try matching the text as numerals if
1116
 * matching as words doesn't work
1117
 * @return If the match was successful, the current partial parse
1118
 * result; otherwise new Long(0).  The result is either a Long or
1119
 * a Double.
1120
 */
1121
1122
UBool
1123
FractionalPartSubstitution::doParse(const UnicodeString& text,
1124
                ParsePosition& parsePosition,
1125
                double baseValue,
1126
                double /*upperBound*/,
1127
                UBool lenientParse,
1128
                uint32_t nonNumericalExecutedRuleMask,
1129
                Formattable& resVal) const
1130
0
{
1131
    // if we're not in byDigits mode, we can just use the inherited
1132
    // doParse()
1133
0
    if (!byDigits) {
1134
0
        return NFSubstitution::doParse(text, parsePosition, baseValue, 0, lenientParse, nonNumericalExecutedRuleMask, resVal);
1135
1136
        // if we ARE in byDigits mode, parse the text one digit at a time
1137
        // using this substitution's owning rule set (we do this by setting
1138
        // upperBound to 10 when calling doParse() ) until we reach
1139
        // nonmatching text
1140
0
    } else {
1141
0
        UnicodeString workText(text);
1142
0
        ParsePosition workPos(1);
1143
0
        double result = 0;
1144
0
        int32_t digit;
1145
//          double p10 = 0.1;
1146
1147
0
        DecimalQuantity dl;
1148
0
        int32_t totalDigits = 0;
1149
0
        NumberFormat* fmt = NULL;
1150
0
        while (workText.length() > 0 && workPos.getIndex() != 0) {
1151
0
            workPos.setIndex(0);
1152
0
            Formattable temp;
1153
0
            getRuleSet()->parse(workText, workPos, 10, nonNumericalExecutedRuleMask, temp);
1154
0
            UErrorCode status = U_ZERO_ERROR;
1155
0
            digit = temp.getLong(status);
1156
//            digit = temp.getType() == Formattable::kLong ?
1157
//               temp.getLong() :
1158
//            (int32_t)temp.getDouble();
1159
1160
0
            if (lenientParse && workPos.getIndex() == 0) {
1161
0
                if (!fmt) {
1162
0
                    status = U_ZERO_ERROR;
1163
0
                    fmt = NumberFormat::createInstance(status);
1164
0
                    if (U_FAILURE(status)) {
1165
0
                        delete fmt;
1166
0
                        fmt = NULL;
1167
0
                    }
1168
0
                }
1169
0
                if (fmt) {
1170
0
                    fmt->parse(workText, temp, workPos);
1171
0
                    digit = temp.getLong(status);
1172
0
                }
1173
0
            }
1174
1175
0
            if (workPos.getIndex() != 0) {
1176
0
                dl.appendDigit(static_cast<int8_t>(digit), 0, true);
1177
0
                totalDigits++;
1178
//                  result += digit * p10;
1179
//                  p10 /= 10;
1180
0
                parsePosition.setIndex(parsePosition.getIndex() + workPos.getIndex());
1181
0
                workText.removeBetween(0, workPos.getIndex());
1182
0
                while (workText.length() > 0 && workText.charAt(0) == gSpace) {
1183
0
                    workText.removeBetween(0, 1);
1184
0
                    parsePosition.setIndex(parsePosition.getIndex() + 1);
1185
0
                }
1186
0
            }
1187
0
        }
1188
0
        delete fmt;
1189
1190
0
        dl.adjustMagnitude(-totalDigits);
1191
0
        result = dl.toDouble();
1192
0
        result = composeRuleValue(result, baseValue);
1193
0
        resVal.setDouble(result);
1194
0
        return TRUE;
1195
0
    }
1196
0
}
1197
1198
bool
1199
FractionalPartSubstitution::operator==(const NFSubstitution& rhs) const
1200
0
{
1201
0
  return NFSubstitution::operator==(rhs) &&
1202
0
  ((const FractionalPartSubstitution*)&rhs)->byDigits == byDigits;
1203
0
}
1204
1205
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(FractionalPartSubstitution)
1206
1207
1208
//===================================================================
1209
// AbsoluteValueSubstitution
1210
//===================================================================
1211
1212
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(AbsoluteValueSubstitution)
1213
1214
//===================================================================
1215
// NumeratorSubstitution
1216
//===================================================================
1217
1218
void
1219
0
NumeratorSubstitution::doSubstitution(double number, UnicodeString& toInsertInto, int32_t apos, int32_t recursionCount, UErrorCode& status) const {
1220
    // perform a transformation on the number being formatted that
1221
    // is dependent on the type of substitution this is
1222
1223
0
    double numberToFormat = transformNumber(number);
1224
0
    int64_t longNF = util64_fromDouble(numberToFormat);
1225
1226
0
    const NFRuleSet* aruleSet = getRuleSet();
1227
0
    if (withZeros && aruleSet != NULL) {
1228
        // if there are leading zeros in the decimal expansion then emit them
1229
0
        int64_t nf =longNF;
1230
0
        int32_t len = toInsertInto.length();
1231
0
        while ((nf *= 10) < denominator) {
1232
0
            toInsertInto.insert(apos + getPos(), gSpace);
1233
0
            aruleSet->format((int64_t)0, toInsertInto, apos + getPos(), recursionCount, status);
1234
0
        }
1235
0
        apos += toInsertInto.length() - len;
1236
0
    }
1237
1238
    // if the result is an integer, from here on out we work in integer
1239
    // space (saving time and memory and preserving accuracy)
1240
0
    if (numberToFormat == longNF && aruleSet != NULL) {
1241
0
        aruleSet->format(longNF, toInsertInto, apos + getPos(), recursionCount, status);
1242
1243
        // if the result isn't an integer, then call either our rule set's
1244
        // format() method or our DecimalFormat's format() method to
1245
        // format the result
1246
0
    } else {
1247
0
        if (aruleSet != NULL) {
1248
0
            aruleSet->format(numberToFormat, toInsertInto, apos + getPos(), recursionCount, status);
1249
0
        } else {
1250
0
            UnicodeString temp;
1251
0
            getNumberFormat()->format(numberToFormat, temp, status);
1252
0
            toInsertInto.insert(apos + getPos(), temp);
1253
0
        }
1254
0
    }
1255
0
}
1256
1257
UBool 
1258
NumeratorSubstitution::doParse(const UnicodeString& text, 
1259
                               ParsePosition& parsePosition,
1260
                               double baseValue,
1261
                               double upperBound,
1262
                               UBool /*lenientParse*/,
1263
                               uint32_t nonNumericalExecutedRuleMask,
1264
                               Formattable& result) const
1265
0
{
1266
    // we don't have to do anything special to do the parsing here,
1267
    // but we have to turn lenient parsing off-- if we leave it on,
1268
    // it SERIOUSLY messes up the algorithm
1269
1270
    // if withZeros is true, we need to count the zeros
1271
    // and use that to adjust the parse result
1272
0
    UErrorCode status = U_ZERO_ERROR;
1273
0
    int32_t zeroCount = 0;
1274
0
    UnicodeString workText(text);
1275
1276
0
    if (withZeros) {
1277
0
        ParsePosition workPos(1);
1278
0
        Formattable temp;
1279
1280
0
        while (workText.length() > 0 && workPos.getIndex() != 0) {
1281
0
            workPos.setIndex(0);
1282
0
            getRuleSet()->parse(workText, workPos, 1, nonNumericalExecutedRuleMask, temp); // parse zero or nothing at all
1283
0
            if (workPos.getIndex() == 0) {
1284
                // we failed, either there were no more zeros, or the number was formatted with digits
1285
                // either way, we're done
1286
0
                break;
1287
0
            }
1288
1289
0
            ++zeroCount;
1290
0
            parsePosition.setIndex(parsePosition.getIndex() + workPos.getIndex());
1291
0
            workText.remove(0, workPos.getIndex());
1292
0
            while (workText.length() > 0 && workText.charAt(0) == gSpace) {
1293
0
                workText.remove(0, 1);
1294
0
                parsePosition.setIndex(parsePosition.getIndex() + 1);
1295
0
            }
1296
0
        }
1297
1298
0
        workText = text;
1299
0
        workText.remove(0, (int32_t)parsePosition.getIndex());
1300
0
        parsePosition.setIndex(0);
1301
0
    }
1302
1303
    // we've parsed off the zeros, now let's parse the rest from our current position
1304
0
    NFSubstitution::doParse(workText, parsePosition, withZeros ? 1 : baseValue, upperBound, FALSE, nonNumericalExecutedRuleMask, result);
1305
1306
0
    if (withZeros) {
1307
        // any base value will do in this case.  is there a way to
1308
        // force this to not bother trying all the base values?
1309
1310
        // compute the 'effective' base and prescale the value down
1311
0
        int64_t n = result.getLong(status); // force conversion!
1312
0
        int64_t d = 1;
1313
0
        int32_t pow = 0;
1314
0
        while (d <= n) {
1315
0
            d *= 10;
1316
0
            ++pow;
1317
0
        }
1318
        // now add the zeros
1319
0
        while (zeroCount > 0) {
1320
0
            d *= 10;
1321
0
            --zeroCount;
1322
0
        }
1323
        // d is now our true denominator
1324
0
        result.setDouble((double)n/(double)d);
1325
0
    }
1326
1327
0
    return TRUE;
1328
0
}
1329
1330
bool
1331
NumeratorSubstitution::operator==(const NFSubstitution& rhs) const
1332
0
{
1333
0
    return NFSubstitution::operator==(rhs) &&
1334
0
        denominator == ((const NumeratorSubstitution*)&rhs)->denominator;
1335
0
}
1336
1337
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(NumeratorSubstitution)
1338
1339
const UChar NumeratorSubstitution::LTLT[] = { 0x003c, 0x003c };
1340
        
1341
U_NAMESPACE_END
1342
1343
/* U_HAVE_RBNF */
1344
#endif
1345