/src/icu/source/i18n/number_rounding.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2017 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | |
4 | | #include "unicode/utypes.h" |
5 | | |
6 | | #if !UCONFIG_NO_FORMATTING |
7 | | |
8 | | #include "charstr.h" |
9 | | #include "uassert.h" |
10 | | #include "unicode/numberformatter.h" |
11 | | #include "number_types.h" |
12 | | #include "number_decimalquantity.h" |
13 | | #include "double-conversion.h" |
14 | | #include "number_roundingutils.h" |
15 | | #include "number_skeletons.h" |
16 | | #include "putilimp.h" |
17 | | #include "string_segment.h" |
18 | | |
19 | | using namespace icu; |
20 | | using namespace icu::number; |
21 | | using namespace icu::number::impl; |
22 | | |
23 | | |
24 | | using double_conversion::DoubleToStringConverter; |
25 | | using icu::StringSegment; |
26 | | |
27 | | void number::impl::parseIncrementOption(const StringSegment &segment, |
28 | | Precision &outPrecision, |
29 | 0 | UErrorCode &status) { |
30 | | // Need to do char <-> UChar conversion... |
31 | 0 | U_ASSERT(U_SUCCESS(status)); |
32 | 0 | CharString buffer; |
33 | 0 | SKELETON_UCHAR_TO_CHAR(buffer, segment.toTempUnicodeString(), 0, segment.length(), status); |
34 | | |
35 | | // Utilize DecimalQuantity/decNumber to parse this for us. |
36 | 0 | DecimalQuantity dq; |
37 | 0 | UErrorCode localStatus = U_ZERO_ERROR; |
38 | 0 | dq.setToDecNumber({buffer.data(), buffer.length()}, localStatus); |
39 | 0 | if (U_FAILURE(localStatus)) { |
40 | | // throw new SkeletonSyntaxException("Invalid rounding increment", segment, e); |
41 | 0 | status = U_NUMBER_SKELETON_SYNTAX_ERROR; |
42 | 0 | return; |
43 | 0 | } |
44 | 0 | double increment = dq.toDouble(); |
45 | | |
46 | | // We also need to figure out how many digits. Do a brute force string operation. |
47 | 0 | int decimalOffset = 0; |
48 | 0 | while (decimalOffset < segment.length() && segment.charAt(decimalOffset) != '.') { |
49 | 0 | decimalOffset++; |
50 | 0 | } |
51 | 0 | if (decimalOffset == segment.length()) { |
52 | 0 | outPrecision = Precision::increment(increment); |
53 | 0 | } else { |
54 | 0 | int32_t fractionLength = segment.length() - decimalOffset - 1; |
55 | 0 | outPrecision = Precision::increment(increment).withMinFraction(fractionLength); |
56 | 0 | } |
57 | 0 | } |
58 | | |
59 | | namespace { |
60 | | |
61 | 0 | int32_t getRoundingMagnitudeFraction(int maxFrac) { |
62 | 0 | if (maxFrac == -1) { |
63 | 0 | return INT32_MIN; |
64 | 0 | } |
65 | 0 | return -maxFrac; |
66 | 0 | } |
67 | | |
68 | 0 | int32_t getRoundingMagnitudeSignificant(const DecimalQuantity &value, int maxSig) { |
69 | 0 | if (maxSig == -1) { |
70 | 0 | return INT32_MIN; |
71 | 0 | } |
72 | 0 | int magnitude = value.isZeroish() ? 0 : value.getMagnitude(); |
73 | 0 | return magnitude - maxSig + 1; |
74 | 0 | } |
75 | | |
76 | 0 | int32_t getDisplayMagnitudeFraction(int minFrac) { |
77 | 0 | if (minFrac == 0) { |
78 | 0 | return INT32_MAX; |
79 | 0 | } |
80 | 0 | return -minFrac; |
81 | 0 | } |
82 | | |
83 | 0 | int32_t getDisplayMagnitudeSignificant(const DecimalQuantity &value, int minSig) { |
84 | 0 | int magnitude = value.isZeroish() ? 0 : value.getMagnitude(); |
85 | 0 | return magnitude - minSig + 1; |
86 | 0 | } |
87 | | |
88 | | } |
89 | | |
90 | | |
91 | 0 | MultiplierProducer::~MultiplierProducer() = default; |
92 | | |
93 | | |
94 | 0 | digits_t roundingutils::doubleFractionLength(double input, int8_t* singleDigit) { |
95 | 0 | char buffer[DoubleToStringConverter::kBase10MaximalLength + 1]; |
96 | 0 | bool sign; // unused; always positive |
97 | 0 | int32_t length; |
98 | 0 | int32_t point; |
99 | 0 | DoubleToStringConverter::DoubleToAscii( |
100 | 0 | input, |
101 | 0 | DoubleToStringConverter::DtoaMode::SHORTEST, |
102 | 0 | 0, |
103 | 0 | buffer, |
104 | 0 | sizeof(buffer), |
105 | 0 | &sign, |
106 | 0 | &length, |
107 | 0 | &point |
108 | 0 | ); |
109 | |
|
110 | 0 | if (singleDigit == nullptr) { |
111 | | // no-op |
112 | 0 | } else if (length == 1) { |
113 | 0 | *singleDigit = buffer[0] - '0'; |
114 | 0 | } else { |
115 | 0 | *singleDigit = -1; |
116 | 0 | } |
117 | |
|
118 | 0 | return static_cast<digits_t>(length - point); |
119 | 0 | } |
120 | | |
121 | | |
122 | 0 | Precision Precision::unlimited() { |
123 | 0 | return Precision(RND_NONE, {}); |
124 | 0 | } |
125 | | |
126 | 0 | FractionPrecision Precision::integer() { |
127 | 0 | return constructFraction(0, 0); |
128 | 0 | } |
129 | | |
130 | 0 | FractionPrecision Precision::fixedFraction(int32_t minMaxFractionPlaces) { |
131 | 0 | if (minMaxFractionPlaces >= 0 && minMaxFractionPlaces <= kMaxIntFracSig) { |
132 | 0 | return constructFraction(minMaxFractionPlaces, minMaxFractionPlaces); |
133 | 0 | } else { |
134 | 0 | return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
135 | 0 | } |
136 | 0 | } |
137 | | |
138 | 0 | FractionPrecision Precision::minFraction(int32_t minFractionPlaces) { |
139 | 0 | if (minFractionPlaces >= 0 && minFractionPlaces <= kMaxIntFracSig) { |
140 | 0 | return constructFraction(minFractionPlaces, -1); |
141 | 0 | } else { |
142 | 0 | return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
143 | 0 | } |
144 | 0 | } |
145 | | |
146 | 0 | FractionPrecision Precision::maxFraction(int32_t maxFractionPlaces) { |
147 | 0 | if (maxFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig) { |
148 | 0 | return constructFraction(0, maxFractionPlaces); |
149 | 0 | } else { |
150 | 0 | return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
151 | 0 | } |
152 | 0 | } |
153 | | |
154 | 0 | FractionPrecision Precision::minMaxFraction(int32_t minFractionPlaces, int32_t maxFractionPlaces) { |
155 | 0 | if (minFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig && |
156 | 0 | minFractionPlaces <= maxFractionPlaces) { |
157 | 0 | return constructFraction(minFractionPlaces, maxFractionPlaces); |
158 | 0 | } else { |
159 | 0 | return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
160 | 0 | } |
161 | 0 | } |
162 | | |
163 | 0 | Precision Precision::fixedSignificantDigits(int32_t minMaxSignificantDigits) { |
164 | 0 | if (minMaxSignificantDigits >= 1 && minMaxSignificantDigits <= kMaxIntFracSig) { |
165 | 0 | return constructSignificant(minMaxSignificantDigits, minMaxSignificantDigits); |
166 | 0 | } else { |
167 | 0 | return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
168 | 0 | } |
169 | 0 | } |
170 | | |
171 | 0 | Precision Precision::minSignificantDigits(int32_t minSignificantDigits) { |
172 | 0 | if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) { |
173 | 0 | return constructSignificant(minSignificantDigits, -1); |
174 | 0 | } else { |
175 | 0 | return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
176 | 0 | } |
177 | 0 | } |
178 | | |
179 | 0 | Precision Precision::maxSignificantDigits(int32_t maxSignificantDigits) { |
180 | 0 | if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) { |
181 | 0 | return constructSignificant(1, maxSignificantDigits); |
182 | 0 | } else { |
183 | 0 | return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
184 | 0 | } |
185 | 0 | } |
186 | | |
187 | 0 | Precision Precision::minMaxSignificantDigits(int32_t minSignificantDigits, int32_t maxSignificantDigits) { |
188 | 0 | if (minSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig && |
189 | 0 | minSignificantDigits <= maxSignificantDigits) { |
190 | 0 | return constructSignificant(minSignificantDigits, maxSignificantDigits); |
191 | 0 | } else { |
192 | 0 | return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
193 | 0 | } |
194 | 0 | } |
195 | | |
196 | 0 | Precision Precision::trailingZeroDisplay(UNumberTrailingZeroDisplay trailingZeroDisplay) const { |
197 | 0 | Precision result(*this); // copy constructor |
198 | 0 | result.fTrailingZeroDisplay = trailingZeroDisplay; |
199 | 0 | return result; |
200 | 0 | } |
201 | | |
202 | 0 | IncrementPrecision Precision::increment(double roundingIncrement) { |
203 | 0 | if (roundingIncrement > 0.0) { |
204 | 0 | return constructIncrement(roundingIncrement, 0); |
205 | 0 | } else { |
206 | 0 | return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
207 | 0 | } |
208 | 0 | } |
209 | | |
210 | 0 | CurrencyPrecision Precision::currency(UCurrencyUsage currencyUsage) { |
211 | 0 | return constructCurrency(currencyUsage); |
212 | 0 | } |
213 | | |
214 | | Precision FractionPrecision::withSignificantDigits( |
215 | | int32_t minSignificantDigits, |
216 | | int32_t maxSignificantDigits, |
217 | 0 | UNumberRoundingPriority priority) const { |
218 | 0 | if (fType == RND_ERROR) { return *this; } // no-op in error state |
219 | 0 | if (minSignificantDigits >= 1 && |
220 | 0 | maxSignificantDigits >= minSignificantDigits && |
221 | 0 | maxSignificantDigits <= kMaxIntFracSig) { |
222 | 0 | return constructFractionSignificant( |
223 | 0 | *this, |
224 | 0 | minSignificantDigits, |
225 | 0 | maxSignificantDigits, |
226 | 0 | priority); |
227 | 0 | } else { |
228 | 0 | return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
229 | 0 | } |
230 | 0 | } |
231 | | |
232 | 0 | Precision FractionPrecision::withMinDigits(int32_t minSignificantDigits) const { |
233 | 0 | if (fType == RND_ERROR) { return *this; } // no-op in error state |
234 | 0 | if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) { |
235 | 0 | return constructFractionSignificant( |
236 | 0 | *this, |
237 | 0 | 1, |
238 | 0 | minSignificantDigits, |
239 | 0 | UNUM_ROUNDING_PRIORITY_RELAXED); |
240 | 0 | } else { |
241 | 0 | return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
242 | 0 | } |
243 | 0 | } |
244 | | |
245 | 0 | Precision FractionPrecision::withMaxDigits(int32_t maxSignificantDigits) const { |
246 | 0 | if (fType == RND_ERROR) { return *this; } // no-op in error state |
247 | 0 | if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) { |
248 | 0 | return constructFractionSignificant(*this, |
249 | 0 | 1, |
250 | 0 | maxSignificantDigits, |
251 | 0 | UNUM_ROUNDING_PRIORITY_STRICT); |
252 | 0 | } else { |
253 | 0 | return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
254 | 0 | } |
255 | 0 | } |
256 | | |
257 | | // Private method on base class |
258 | 0 | Precision Precision::withCurrency(const CurrencyUnit ¤cy, UErrorCode &status) const { |
259 | 0 | if (fType == RND_ERROR) { return *this; } // no-op in error state |
260 | 0 | U_ASSERT(fType == RND_CURRENCY); |
261 | 0 | const char16_t *isoCode = currency.getISOCurrency(); |
262 | 0 | double increment = ucurr_getRoundingIncrementForUsage(isoCode, fUnion.currencyUsage, &status); |
263 | 0 | int32_t minMaxFrac = ucurr_getDefaultFractionDigitsForUsage( |
264 | 0 | isoCode, fUnion.currencyUsage, &status); |
265 | 0 | Precision retval = (increment != 0.0) |
266 | 0 | ? static_cast<Precision>(constructIncrement(increment, minMaxFrac)) |
267 | 0 | : static_cast<Precision>(constructFraction(minMaxFrac, minMaxFrac)); |
268 | 0 | retval.fTrailingZeroDisplay = fTrailingZeroDisplay; |
269 | 0 | return retval; |
270 | 0 | } |
271 | | |
272 | | // Public method on CurrencyPrecision subclass |
273 | 0 | Precision CurrencyPrecision::withCurrency(const CurrencyUnit ¤cy) const { |
274 | 0 | UErrorCode localStatus = U_ZERO_ERROR; |
275 | 0 | Precision result = Precision::withCurrency(currency, localStatus); |
276 | 0 | if (U_FAILURE(localStatus)) { |
277 | 0 | return {localStatus}; |
278 | 0 | } |
279 | 0 | return result; |
280 | 0 | } |
281 | | |
282 | 0 | Precision IncrementPrecision::withMinFraction(int32_t minFrac) const { |
283 | 0 | if (fType == RND_ERROR) { return *this; } // no-op in error state |
284 | 0 | if (minFrac >= 0 && minFrac <= kMaxIntFracSig) { |
285 | 0 | return constructIncrement(fUnion.increment.fIncrement, minFrac); |
286 | 0 | } else { |
287 | 0 | return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR}; |
288 | 0 | } |
289 | 0 | } |
290 | | |
291 | 0 | FractionPrecision Precision::constructFraction(int32_t minFrac, int32_t maxFrac) { |
292 | 0 | FractionSignificantSettings settings; |
293 | 0 | settings.fMinFrac = static_cast<digits_t>(minFrac); |
294 | 0 | settings.fMaxFrac = static_cast<digits_t>(maxFrac); |
295 | 0 | settings.fMinSig = -1; |
296 | 0 | settings.fMaxSig = -1; |
297 | 0 | PrecisionUnion union_; |
298 | 0 | union_.fracSig = settings; |
299 | 0 | return {RND_FRACTION, union_}; |
300 | 0 | } |
301 | | |
302 | 0 | Precision Precision::constructSignificant(int32_t minSig, int32_t maxSig) { |
303 | 0 | FractionSignificantSettings settings; |
304 | 0 | settings.fMinFrac = -1; |
305 | 0 | settings.fMaxFrac = -1; |
306 | 0 | settings.fMinSig = static_cast<digits_t>(minSig); |
307 | 0 | settings.fMaxSig = static_cast<digits_t>(maxSig); |
308 | 0 | PrecisionUnion union_; |
309 | 0 | union_.fracSig = settings; |
310 | 0 | return {RND_SIGNIFICANT, union_}; |
311 | 0 | } |
312 | | |
313 | | Precision |
314 | | Precision::constructFractionSignificant( |
315 | | const FractionPrecision &base, |
316 | | int32_t minSig, |
317 | | int32_t maxSig, |
318 | 0 | UNumberRoundingPriority priority) { |
319 | 0 | FractionSignificantSettings settings = base.fUnion.fracSig; |
320 | 0 | settings.fMinSig = static_cast<digits_t>(minSig); |
321 | 0 | settings.fMaxSig = static_cast<digits_t>(maxSig); |
322 | 0 | settings.fPriority = priority; |
323 | 0 | PrecisionUnion union_; |
324 | 0 | union_.fracSig = settings; |
325 | 0 | return {RND_FRACTION_SIGNIFICANT, union_}; |
326 | 0 | } |
327 | | |
328 | 0 | IncrementPrecision Precision::constructIncrement(double increment, int32_t minFrac) { |
329 | 0 | IncrementSettings settings; |
330 | | // Note: For number formatting, fIncrement is used for RND_INCREMENT but not |
331 | | // RND_INCREMENT_ONE or RND_INCREMENT_FIVE. However, fIncrement is used in all |
332 | | // three when constructing a skeleton. |
333 | 0 | settings.fIncrement = increment; |
334 | 0 | settings.fMinFrac = static_cast<digits_t>(minFrac); |
335 | | // One of the few pre-computed quantities: |
336 | | // Note: it is possible for minFrac to be more than maxFrac... (misleading) |
337 | 0 | int8_t singleDigit; |
338 | 0 | settings.fMaxFrac = roundingutils::doubleFractionLength(increment, &singleDigit); |
339 | 0 | PrecisionUnion union_; |
340 | 0 | union_.increment = settings; |
341 | 0 | if (singleDigit == 1) { |
342 | | // NOTE: In C++, we must return the correct value type with the correct union. |
343 | | // It would be invalid to return a RND_FRACTION here because the methods on the |
344 | | // IncrementPrecision type assume that the union is backed by increment data. |
345 | 0 | return {RND_INCREMENT_ONE, union_}; |
346 | 0 | } else if (singleDigit == 5) { |
347 | 0 | return {RND_INCREMENT_FIVE, union_}; |
348 | 0 | } else { |
349 | 0 | return {RND_INCREMENT, union_}; |
350 | 0 | } |
351 | 0 | } |
352 | | |
353 | 0 | CurrencyPrecision Precision::constructCurrency(UCurrencyUsage usage) { |
354 | 0 | PrecisionUnion union_; |
355 | 0 | union_.currencyUsage = usage; |
356 | 0 | return {RND_CURRENCY, union_}; |
357 | 0 | } |
358 | | |
359 | | |
360 | | RoundingImpl::RoundingImpl(const Precision& precision, UNumberFormatRoundingMode roundingMode, |
361 | | const CurrencyUnit& currency, UErrorCode& status) |
362 | 0 | : fPrecision(precision), fRoundingMode(roundingMode), fPassThrough(false) { |
363 | 0 | if (precision.fType == Precision::RND_CURRENCY) { |
364 | 0 | fPrecision = precision.withCurrency(currency, status); |
365 | 0 | } |
366 | 0 | } |
367 | | |
368 | 0 | RoundingImpl RoundingImpl::passThrough() { |
369 | 0 | return {}; |
370 | 0 | } |
371 | | |
372 | 0 | bool RoundingImpl::isSignificantDigits() const { |
373 | 0 | return fPrecision.fType == Precision::RND_SIGNIFICANT; |
374 | 0 | } |
375 | | |
376 | | int32_t |
377 | | RoundingImpl::chooseMultiplierAndApply(impl::DecimalQuantity &input, const impl::MultiplierProducer &producer, |
378 | 0 | UErrorCode &status) { |
379 | | // Do not call this method with zero, NaN, or infinity. |
380 | 0 | U_ASSERT(!input.isZeroish()); |
381 | | |
382 | | // Perform the first attempt at rounding. |
383 | 0 | int magnitude = input.getMagnitude(); |
384 | 0 | int multiplier = producer.getMultiplier(magnitude); |
385 | 0 | input.adjustMagnitude(multiplier); |
386 | 0 | apply(input, status); |
387 | | |
388 | | // If the number rounded to zero, exit. |
389 | 0 | if (input.isZeroish() || U_FAILURE(status)) { |
390 | 0 | return multiplier; |
391 | 0 | } |
392 | | |
393 | | // If the new magnitude after rounding is the same as it was before rounding, then we are done. |
394 | | // This case applies to most numbers. |
395 | 0 | if (input.getMagnitude() == magnitude + multiplier) { |
396 | 0 | return multiplier; |
397 | 0 | } |
398 | | |
399 | | // If the above case DIDN'T apply, then we have a case like 99.9 -> 100 or 999.9 -> 1000: |
400 | | // The number rounded up to the next magnitude. Check if the multiplier changes; if it doesn't, |
401 | | // we do not need to make any more adjustments. |
402 | 0 | int _multiplier = producer.getMultiplier(magnitude + 1); |
403 | 0 | if (multiplier == _multiplier) { |
404 | 0 | return multiplier; |
405 | 0 | } |
406 | | |
407 | | // We have a case like 999.9 -> 1000, where the correct output is "1K", not "1000". |
408 | | // Fix the magnitude and re-apply the rounding strategy. |
409 | 0 | input.adjustMagnitude(_multiplier - multiplier); |
410 | 0 | apply(input, status); |
411 | 0 | return _multiplier; |
412 | 0 | } |
413 | | |
414 | | /** This is the method that contains the actual rounding logic. */ |
415 | 0 | void RoundingImpl::apply(impl::DecimalQuantity &value, UErrorCode& status) const { |
416 | 0 | if (U_FAILURE(status)) { |
417 | 0 | return; |
418 | 0 | } |
419 | 0 | if (fPassThrough) { |
420 | 0 | return; |
421 | 0 | } |
422 | 0 | int32_t resolvedMinFraction = 0; |
423 | 0 | switch (fPrecision.fType) { |
424 | 0 | case Precision::RND_BOGUS: |
425 | 0 | case Precision::RND_ERROR: |
426 | | // Errors should be caught before the apply() method is called |
427 | 0 | status = U_INTERNAL_PROGRAM_ERROR; |
428 | 0 | break; |
429 | | |
430 | 0 | case Precision::RND_NONE: |
431 | 0 | value.roundToInfinity(); |
432 | 0 | break; |
433 | | |
434 | 0 | case Precision::RND_FRACTION: |
435 | 0 | value.roundToMagnitude( |
436 | 0 | getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac), |
437 | 0 | fRoundingMode, |
438 | 0 | status); |
439 | 0 | resolvedMinFraction = |
440 | 0 | uprv_max(0, -getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac)); |
441 | 0 | break; |
442 | | |
443 | 0 | case Precision::RND_SIGNIFICANT: |
444 | 0 | value.roundToMagnitude( |
445 | 0 | getRoundingMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMaxSig), |
446 | 0 | fRoundingMode, |
447 | 0 | status); |
448 | 0 | resolvedMinFraction = |
449 | 0 | uprv_max(0, -getDisplayMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMinSig)); |
450 | | // Make sure that digits are displayed on zero. |
451 | 0 | if (value.isZeroish() && fPrecision.fUnion.fracSig.fMinSig > 0) { |
452 | 0 | value.setMinInteger(1); |
453 | 0 | } |
454 | 0 | break; |
455 | | |
456 | 0 | case Precision::RND_FRACTION_SIGNIFICANT: { |
457 | 0 | int32_t roundingMag1 = getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac); |
458 | 0 | int32_t roundingMag2 = getRoundingMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMaxSig); |
459 | 0 | int32_t roundingMag; |
460 | 0 | if (fPrecision.fUnion.fracSig.fPriority == UNUM_ROUNDING_PRIORITY_RELAXED) { |
461 | 0 | roundingMag = uprv_min(roundingMag1, roundingMag2); |
462 | 0 | } else { |
463 | 0 | roundingMag = uprv_max(roundingMag1, roundingMag2); |
464 | 0 | } |
465 | 0 | value.roundToMagnitude(roundingMag, fRoundingMode, status); |
466 | |
|
467 | 0 | int32_t displayMag1 = getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac); |
468 | 0 | int32_t displayMag2 = getDisplayMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMinSig); |
469 | 0 | int32_t displayMag = uprv_min(displayMag1, displayMag2); |
470 | 0 | resolvedMinFraction = uprv_max(0, -displayMag); |
471 | |
|
472 | 0 | break; |
473 | 0 | } |
474 | | |
475 | 0 | case Precision::RND_INCREMENT: |
476 | 0 | value.roundToIncrement( |
477 | 0 | fPrecision.fUnion.increment.fIncrement, |
478 | 0 | fRoundingMode, |
479 | 0 | status); |
480 | 0 | resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac; |
481 | 0 | break; |
482 | | |
483 | 0 | case Precision::RND_INCREMENT_ONE: |
484 | 0 | value.roundToMagnitude( |
485 | 0 | -fPrecision.fUnion.increment.fMaxFrac, |
486 | 0 | fRoundingMode, |
487 | 0 | status); |
488 | 0 | resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac; |
489 | 0 | break; |
490 | | |
491 | 0 | case Precision::RND_INCREMENT_FIVE: |
492 | 0 | value.roundToNickel( |
493 | 0 | -fPrecision.fUnion.increment.fMaxFrac, |
494 | 0 | fRoundingMode, |
495 | 0 | status); |
496 | 0 | resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac; |
497 | 0 | break; |
498 | | |
499 | 0 | case Precision::RND_CURRENCY: |
500 | | // Call .withCurrency() before .apply()! |
501 | 0 | UPRV_UNREACHABLE; |
502 | | |
503 | 0 | default: |
504 | 0 | UPRV_UNREACHABLE; |
505 | 0 | } |
506 | | |
507 | 0 | if (fPrecision.fTrailingZeroDisplay == UNUM_TRAILING_ZERO_AUTO || |
508 | | // PLURAL_OPERAND_T returns fraction digits as an integer |
509 | 0 | value.getPluralOperand(PLURAL_OPERAND_T) != 0) { |
510 | 0 | value.setMinFraction(resolvedMinFraction); |
511 | 0 | } |
512 | 0 | } |
513 | | |
514 | 0 | void RoundingImpl::apply(impl::DecimalQuantity &value, int32_t minInt, UErrorCode /*status*/) { |
515 | | // This method is intended for the one specific purpose of helping print "00.000E0". |
516 | | // Question: Is it useful to look at trailingZeroDisplay here? |
517 | 0 | U_ASSERT(isSignificantDigits()); |
518 | 0 | U_ASSERT(value.isZeroish()); |
519 | 0 | value.setMinFraction(fPrecision.fUnion.fracSig.fMinSig - minInt); |
520 | 0 | } |
521 | | |
522 | | #endif /* #if !UCONFIG_NO_FORMATTING */ |