/src/hostap/src/crypto/md5-internal.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * MD5 hash implementation and interface functions |
3 | | * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi> |
4 | | * |
5 | | * This software may be distributed under the terms of the BSD license. |
6 | | * See README for more details. |
7 | | */ |
8 | | |
9 | | #include "includes.h" |
10 | | |
11 | | #include "common.h" |
12 | | #include "md5.h" |
13 | | #include "md5_i.h" |
14 | | #include "crypto.h" |
15 | | |
16 | | |
17 | | static void MD5Transform(u32 buf[4], u32 const in[16]); |
18 | | |
19 | | |
20 | | typedef struct MD5Context MD5_CTX; |
21 | | |
22 | | |
23 | | /** |
24 | | * md5_vector - MD5 hash for data vector |
25 | | * @num_elem: Number of elements in the data vector |
26 | | * @addr: Pointers to the data areas |
27 | | * @len: Lengths of the data blocks |
28 | | * @mac: Buffer for the hash |
29 | | * Returns: 0 on success, -1 of failure |
30 | | */ |
31 | | int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) |
32 | 1.98k | { |
33 | 1.98k | MD5_CTX ctx; |
34 | 1.98k | size_t i; |
35 | | |
36 | 1.98k | if (TEST_FAIL()) |
37 | 0 | return -1; |
38 | | |
39 | 1.98k | MD5Init(&ctx); |
40 | 5.96k | for (i = 0; i < num_elem; i++) |
41 | 3.98k | MD5Update(&ctx, addr[i], len[i]); |
42 | 1.98k | MD5Final(mac, &ctx); |
43 | 1.98k | return 0; |
44 | 1.98k | } |
45 | | |
46 | | |
47 | | /* ===== start - public domain MD5 implementation ===== */ |
48 | | /* |
49 | | * This code implements the MD5 message-digest algorithm. |
50 | | * The algorithm is due to Ron Rivest. This code was |
51 | | * written by Colin Plumb in 1993, no copyright is claimed. |
52 | | * This code is in the public domain; do with it what you wish. |
53 | | * |
54 | | * Equivalent code is available from RSA Data Security, Inc. |
55 | | * This code has been tested against that, and is equivalent, |
56 | | * except that you don't need to include two pages of legalese |
57 | | * with every copy. |
58 | | * |
59 | | * To compute the message digest of a chunk of bytes, declare an |
60 | | * MD5Context structure, pass it to MD5Init, call MD5Update as |
61 | | * needed on buffers full of bytes, and then call MD5Final, which |
62 | | * will fill a supplied 16-byte array with the digest. |
63 | | */ |
64 | | |
65 | | #ifndef WORDS_BIGENDIAN |
66 | | #define byteReverse(buf, len) /* Nothing */ |
67 | | #else |
68 | | /* |
69 | | * Note: this code is harmless on little-endian machines. |
70 | | */ |
71 | | static void byteReverse(unsigned char *buf, unsigned longs) |
72 | | { |
73 | | u32 t; |
74 | | do { |
75 | | t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 | |
76 | | ((unsigned) buf[1] << 8 | buf[0]); |
77 | | *(u32 *) buf = t; |
78 | | buf += 4; |
79 | | } while (--longs); |
80 | | } |
81 | | #endif |
82 | | |
83 | | /* |
84 | | * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
85 | | * initialization constants. |
86 | | */ |
87 | | void MD5Init(struct MD5Context *ctx) |
88 | 1.98k | { |
89 | 1.98k | ctx->buf[0] = 0x67452301; |
90 | 1.98k | ctx->buf[1] = 0xefcdab89; |
91 | 1.98k | ctx->buf[2] = 0x98badcfe; |
92 | 1.98k | ctx->buf[3] = 0x10325476; |
93 | | |
94 | 1.98k | ctx->bits[0] = 0; |
95 | 1.98k | ctx->bits[1] = 0; |
96 | 1.98k | } |
97 | | |
98 | | /* |
99 | | * Update context to reflect the concatenation of another buffer full |
100 | | * of bytes. |
101 | | */ |
102 | | void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len) |
103 | 3.98k | { |
104 | 3.98k | u32 t; |
105 | | |
106 | | /* Update bitcount */ |
107 | | |
108 | 3.98k | t = ctx->bits[0]; |
109 | 3.98k | if ((ctx->bits[0] = t + ((u32) len << 3)) < t) |
110 | 0 | ctx->bits[1]++; /* Carry from low to high */ |
111 | 3.98k | ctx->bits[1] += len >> 29; |
112 | | |
113 | 3.98k | t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ |
114 | | |
115 | | /* Handle any leading odd-sized chunks */ |
116 | | |
117 | 3.98k | if (t) { |
118 | 135 | unsigned char *p = (unsigned char *) ctx->in + t; |
119 | | |
120 | 135 | t = 64 - t; |
121 | 135 | if (len < t) { |
122 | 135 | os_memcpy(p, buf, len); |
123 | 135 | return; |
124 | 135 | } |
125 | 0 | os_memcpy(p, buf, t); |
126 | 0 | byteReverse(ctx->in, 16); |
127 | 0 | MD5Transform(ctx->buf, (u32 *) ctx->in); |
128 | 0 | buf += t; |
129 | 0 | len -= t; |
130 | 0 | } |
131 | | /* Process data in 64-byte chunks */ |
132 | | |
133 | 5.71k | while (len >= 64) { |
134 | 1.86k | os_memcpy(ctx->in, buf, 64); |
135 | 1.86k | byteReverse(ctx->in, 16); |
136 | 1.86k | MD5Transform(ctx->buf, (u32 *) ctx->in); |
137 | 1.86k | buf += 64; |
138 | 1.86k | len -= 64; |
139 | 1.86k | } |
140 | | |
141 | | /* Handle any remaining bytes of data. */ |
142 | | |
143 | 3.84k | os_memcpy(ctx->in, buf, len); |
144 | 3.84k | } |
145 | | |
146 | | /* |
147 | | * Final wrapup - pad to 64-byte boundary with the bit pattern |
148 | | * 1 0* (64-bit count of bits processed, MSB-first) |
149 | | */ |
150 | | void MD5Final(unsigned char digest[16], struct MD5Context *ctx) |
151 | 1.98k | { |
152 | 1.98k | unsigned count; |
153 | 1.98k | unsigned char *p; |
154 | | |
155 | | /* Compute number of bytes mod 64 */ |
156 | 1.98k | count = (ctx->bits[0] >> 3) & 0x3F; |
157 | | |
158 | | /* Set the first char of padding to 0x80. This is safe since there is |
159 | | always at least one byte free */ |
160 | 1.98k | p = ctx->in + count; |
161 | 1.98k | *p++ = 0x80; |
162 | | |
163 | | /* Bytes of padding needed to make 64 bytes */ |
164 | 1.98k | count = 64 - 1 - count; |
165 | | |
166 | | /* Pad out to 56 mod 64 */ |
167 | 1.98k | if (count < 8) { |
168 | | /* Two lots of padding: Pad the first block to 64 bytes */ |
169 | 0 | os_memset(p, 0, count); |
170 | 0 | byteReverse(ctx->in, 16); |
171 | 0 | MD5Transform(ctx->buf, (u32 *) ctx->in); |
172 | | |
173 | | /* Now fill the next block with 56 bytes */ |
174 | 0 | os_memset(ctx->in, 0, 56); |
175 | 1.98k | } else { |
176 | | /* Pad block to 56 bytes */ |
177 | 1.98k | os_memset(p, 0, count - 8); |
178 | 1.98k | } |
179 | 1.98k | byteReverse(ctx->in, 14); |
180 | | |
181 | | /* Append length in bits and transform */ |
182 | 1.98k | ((u32 *) aliasing_hide_typecast(ctx->in, u32))[14] = ctx->bits[0]; |
183 | 1.98k | ((u32 *) aliasing_hide_typecast(ctx->in, u32))[15] = ctx->bits[1]; |
184 | | |
185 | 1.98k | MD5Transform(ctx->buf, (u32 *) ctx->in); |
186 | 1.98k | byteReverse((unsigned char *) ctx->buf, 4); |
187 | 1.98k | os_memcpy(digest, ctx->buf, 16); |
188 | 1.98k | os_memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ |
189 | 1.98k | } |
190 | | |
191 | | /* The four core functions - F1 is optimized somewhat */ |
192 | | |
193 | | /* #define F1(x, y, z) (x & y | ~x & z) */ |
194 | 123k | #define F1(x, y, z) (z ^ (x & (y ^ z))) |
195 | 61.5k | #define F2(x, y, z) F1(z, x, y) |
196 | 61.5k | #define F3(x, y, z) (x ^ y ^ z) |
197 | 61.5k | #define F4(x, y, z) (y ^ (x | ~z)) |
198 | | |
199 | | /* This is the central step in the MD5 algorithm. */ |
200 | | #define MD5STEP(f, w, x, y, z, data, s) \ |
201 | 246k | ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) |
202 | | |
203 | | /* |
204 | | * The core of the MD5 algorithm, this alters an existing MD5 hash to |
205 | | * reflect the addition of 16 longwords of new data. MD5Update blocks |
206 | | * the data and converts bytes into longwords for this routine. |
207 | | */ |
208 | | static void MD5Transform(u32 buf[4], u32 const in[16]) |
209 | 3.84k | { |
210 | 3.84k | register u32 a, b, c, d; |
211 | | |
212 | 3.84k | a = buf[0]; |
213 | 3.84k | b = buf[1]; |
214 | 3.84k | c = buf[2]; |
215 | 3.84k | d = buf[3]; |
216 | | |
217 | 3.84k | MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); |
218 | 3.84k | MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); |
219 | 3.84k | MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); |
220 | 3.84k | MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); |
221 | 3.84k | MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); |
222 | 3.84k | MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); |
223 | 3.84k | MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); |
224 | 3.84k | MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); |
225 | 3.84k | MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); |
226 | 3.84k | MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); |
227 | 3.84k | MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
228 | 3.84k | MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
229 | 3.84k | MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
230 | 3.84k | MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
231 | 3.84k | MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
232 | 3.84k | MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
233 | | |
234 | 3.84k | MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); |
235 | 3.84k | MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); |
236 | 3.84k | MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
237 | 3.84k | MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); |
238 | 3.84k | MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); |
239 | 3.84k | MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
240 | 3.84k | MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
241 | 3.84k | MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); |
242 | 3.84k | MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); |
243 | 3.84k | MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
244 | 3.84k | MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); |
245 | 3.84k | MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); |
246 | 3.84k | MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
247 | 3.84k | MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); |
248 | 3.84k | MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); |
249 | 3.84k | MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
250 | | |
251 | 3.84k | MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); |
252 | 3.84k | MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); |
253 | 3.84k | MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
254 | 3.84k | MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
255 | 3.84k | MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); |
256 | 3.84k | MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); |
257 | 3.84k | MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); |
258 | 3.84k | MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
259 | 3.84k | MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
260 | 3.84k | MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); |
261 | 3.84k | MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); |
262 | 3.84k | MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); |
263 | 3.84k | MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); |
264 | 3.84k | MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
265 | 3.84k | MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
266 | 3.84k | MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); |
267 | | |
268 | 3.84k | MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); |
269 | 3.84k | MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); |
270 | 3.84k | MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
271 | 3.84k | MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); |
272 | 3.84k | MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
273 | 3.84k | MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); |
274 | 3.84k | MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
275 | 3.84k | MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); |
276 | 3.84k | MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); |
277 | 3.84k | MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
278 | 3.84k | MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); |
279 | 3.84k | MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
280 | 3.84k | MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); |
281 | 3.84k | MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
282 | 3.84k | MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); |
283 | 3.84k | MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); |
284 | | |
285 | 3.84k | buf[0] += a; |
286 | 3.84k | buf[1] += b; |
287 | 3.84k | buf[2] += c; |
288 | 3.84k | buf[3] += d; |
289 | 3.84k | } |
290 | | /* ===== end - public domain MD5 implementation ===== */ |