Coverage Report

Created: 2025-07-11 06:14

/src/hostap/src/crypto/sha1-tlsprf.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * TLS PRF (SHA1 + MD5)
3
 * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
4
 *
5
 * This software may be distributed under the terms of the BSD license.
6
 * See README for more details.
7
 */
8
9
#include "includes.h"
10
11
#include "common.h"
12
#include "sha1.h"
13
#include "md5.h"
14
15
16
/**
17
 * tls_prf_sha1_md5 - Pseudo-Random Function for TLS (TLS-PRF, RFC 2246)
18
 * @secret: Key for PRF
19
 * @secret_len: Length of the key in bytes
20
 * @label: A unique label for each purpose of the PRF
21
 * @seed: Seed value to bind into the key
22
 * @seed_len: Length of the seed
23
 * @out: Buffer for the generated pseudo-random key
24
 * @outlen: Number of bytes of key to generate
25
 * Returns: 0 on success, -1 on failure.
26
 *
27
 * This function is used to derive new, cryptographically separate keys from a
28
 * given key in TLS. This PRF is defined in RFC 2246, Chapter 5.
29
 */
30
int tls_prf_sha1_md5(const u8 *secret, size_t secret_len, const char *label,
31
         const u8 *seed, size_t seed_len, u8 *out, size_t outlen)
32
0
{
33
0
  size_t L_S1, L_S2, i;
34
0
  const u8 *S1, *S2;
35
0
  u8 A_MD5[MD5_MAC_LEN], A_SHA1[SHA1_MAC_LEN];
36
0
  u8 P_MD5[MD5_MAC_LEN], P_SHA1[SHA1_MAC_LEN];
37
0
  int MD5_pos, SHA1_pos;
38
0
  const u8 *MD5_addr[3];
39
0
  size_t MD5_len[3];
40
0
  const unsigned char *SHA1_addr[3];
41
0
  size_t SHA1_len[3];
42
43
0
  MD5_addr[0] = A_MD5;
44
0
  MD5_len[0] = MD5_MAC_LEN;
45
0
  MD5_addr[1] = (unsigned char *) label;
46
0
  MD5_len[1] = os_strlen(label);
47
0
  MD5_addr[2] = seed;
48
0
  MD5_len[2] = seed_len;
49
50
0
  SHA1_addr[0] = A_SHA1;
51
0
  SHA1_len[0] = SHA1_MAC_LEN;
52
0
  SHA1_addr[1] = (unsigned char *) label;
53
0
  SHA1_len[1] = os_strlen(label);
54
0
  SHA1_addr[2] = seed;
55
0
  SHA1_len[2] = seed_len;
56
57
  /* RFC 2246, Chapter 5
58
   * A(0) = seed, A(i) = HMAC(secret, A(i-1))
59
   * P_hash = HMAC(secret, A(1) + seed) + HMAC(secret, A(2) + seed) + ..
60
   * PRF = P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed)
61
   */
62
63
0
  L_S1 = L_S2 = (secret_len + 1) / 2;
64
0
  S1 = secret;
65
0
  S2 = secret + L_S1;
66
0
  if (secret_len & 1) {
67
    /* The last byte of S1 will be shared with S2 */
68
0
    S2--;
69
0
  }
70
71
0
  hmac_md5_vector(S1, L_S1, 2, &MD5_addr[1], &MD5_len[1], A_MD5);
72
0
  hmac_sha1_vector(S2, L_S2, 2, &SHA1_addr[1], &SHA1_len[1], A_SHA1);
73
74
0
  MD5_pos = MD5_MAC_LEN;
75
0
  SHA1_pos = SHA1_MAC_LEN;
76
0
  for (i = 0; i < outlen; i++) {
77
0
    if (MD5_pos == MD5_MAC_LEN) {
78
0
      hmac_md5_vector(S1, L_S1, 3, MD5_addr, MD5_len, P_MD5);
79
0
      MD5_pos = 0;
80
0
      hmac_md5(S1, L_S1, A_MD5, MD5_MAC_LEN, A_MD5);
81
0
    }
82
0
    if (SHA1_pos == SHA1_MAC_LEN) {
83
0
      hmac_sha1_vector(S2, L_S2, 3, SHA1_addr, SHA1_len,
84
0
           P_SHA1);
85
0
      SHA1_pos = 0;
86
0
      hmac_sha1(S2, L_S2, A_SHA1, SHA1_MAC_LEN, A_SHA1);
87
0
    }
88
89
0
    out[i] = P_MD5[MD5_pos] ^ P_SHA1[SHA1_pos];
90
91
0
    MD5_pos++;
92
0
    SHA1_pos++;
93
0
  }
94
95
0
  forced_memzero(A_MD5, MD5_MAC_LEN);
96
0
  forced_memzero(P_MD5, MD5_MAC_LEN);
97
0
  forced_memzero(A_SHA1, SHA1_MAC_LEN);
98
0
  forced_memzero(P_SHA1, SHA1_MAC_LEN);
99
100
0
  return 0;
101
0
}