/src/hostap/src/crypto/sha1-tlsprf.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * TLS PRF (SHA1 + MD5) |
3 | | * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi> |
4 | | * |
5 | | * This software may be distributed under the terms of the BSD license. |
6 | | * See README for more details. |
7 | | */ |
8 | | |
9 | | #include "includes.h" |
10 | | |
11 | | #include "common.h" |
12 | | #include "sha1.h" |
13 | | #include "md5.h" |
14 | | |
15 | | |
16 | | /** |
17 | | * tls_prf_sha1_md5 - Pseudo-Random Function for TLS (TLS-PRF, RFC 2246) |
18 | | * @secret: Key for PRF |
19 | | * @secret_len: Length of the key in bytes |
20 | | * @label: A unique label for each purpose of the PRF |
21 | | * @seed: Seed value to bind into the key |
22 | | * @seed_len: Length of the seed |
23 | | * @out: Buffer for the generated pseudo-random key |
24 | | * @outlen: Number of bytes of key to generate |
25 | | * Returns: 0 on success, -1 on failure. |
26 | | * |
27 | | * This function is used to derive new, cryptographically separate keys from a |
28 | | * given key in TLS. This PRF is defined in RFC 2246, Chapter 5. |
29 | | */ |
30 | | int tls_prf_sha1_md5(const u8 *secret, size_t secret_len, const char *label, |
31 | | const u8 *seed, size_t seed_len, u8 *out, size_t outlen) |
32 | 0 | { |
33 | 0 | size_t L_S1, L_S2, i; |
34 | 0 | const u8 *S1, *S2; |
35 | 0 | u8 A_MD5[MD5_MAC_LEN], A_SHA1[SHA1_MAC_LEN]; |
36 | 0 | u8 P_MD5[MD5_MAC_LEN], P_SHA1[SHA1_MAC_LEN]; |
37 | 0 | int MD5_pos, SHA1_pos; |
38 | 0 | const u8 *MD5_addr[3]; |
39 | 0 | size_t MD5_len[3]; |
40 | 0 | const unsigned char *SHA1_addr[3]; |
41 | 0 | size_t SHA1_len[3]; |
42 | |
|
43 | 0 | MD5_addr[0] = A_MD5; |
44 | 0 | MD5_len[0] = MD5_MAC_LEN; |
45 | 0 | MD5_addr[1] = (unsigned char *) label; |
46 | 0 | MD5_len[1] = os_strlen(label); |
47 | 0 | MD5_addr[2] = seed; |
48 | 0 | MD5_len[2] = seed_len; |
49 | |
|
50 | 0 | SHA1_addr[0] = A_SHA1; |
51 | 0 | SHA1_len[0] = SHA1_MAC_LEN; |
52 | 0 | SHA1_addr[1] = (unsigned char *) label; |
53 | 0 | SHA1_len[1] = os_strlen(label); |
54 | 0 | SHA1_addr[2] = seed; |
55 | 0 | SHA1_len[2] = seed_len; |
56 | | |
57 | | /* RFC 2246, Chapter 5 |
58 | | * A(0) = seed, A(i) = HMAC(secret, A(i-1)) |
59 | | * P_hash = HMAC(secret, A(1) + seed) + HMAC(secret, A(2) + seed) + .. |
60 | | * PRF = P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed) |
61 | | */ |
62 | |
|
63 | 0 | L_S1 = L_S2 = (secret_len + 1) / 2; |
64 | 0 | S1 = secret; |
65 | 0 | S2 = secret + L_S1; |
66 | 0 | if (secret_len & 1) { |
67 | | /* The last byte of S1 will be shared with S2 */ |
68 | 0 | S2--; |
69 | 0 | } |
70 | |
|
71 | 0 | hmac_md5_vector(S1, L_S1, 2, &MD5_addr[1], &MD5_len[1], A_MD5); |
72 | 0 | hmac_sha1_vector(S2, L_S2, 2, &SHA1_addr[1], &SHA1_len[1], A_SHA1); |
73 | |
|
74 | 0 | MD5_pos = MD5_MAC_LEN; |
75 | 0 | SHA1_pos = SHA1_MAC_LEN; |
76 | 0 | for (i = 0; i < outlen; i++) { |
77 | 0 | if (MD5_pos == MD5_MAC_LEN) { |
78 | 0 | hmac_md5_vector(S1, L_S1, 3, MD5_addr, MD5_len, P_MD5); |
79 | 0 | MD5_pos = 0; |
80 | 0 | hmac_md5(S1, L_S1, A_MD5, MD5_MAC_LEN, A_MD5); |
81 | 0 | } |
82 | 0 | if (SHA1_pos == SHA1_MAC_LEN) { |
83 | 0 | hmac_sha1_vector(S2, L_S2, 3, SHA1_addr, SHA1_len, |
84 | 0 | P_SHA1); |
85 | 0 | SHA1_pos = 0; |
86 | 0 | hmac_sha1(S2, L_S2, A_SHA1, SHA1_MAC_LEN, A_SHA1); |
87 | 0 | } |
88 | |
|
89 | 0 | out[i] = P_MD5[MD5_pos] ^ P_SHA1[SHA1_pos]; |
90 | |
|
91 | 0 | MD5_pos++; |
92 | 0 | SHA1_pos++; |
93 | 0 | } |
94 | |
|
95 | 0 | forced_memzero(A_MD5, MD5_MAC_LEN); |
96 | 0 | forced_memzero(P_MD5, MD5_MAC_LEN); |
97 | 0 | forced_memzero(A_SHA1, SHA1_MAC_LEN); |
98 | 0 | forced_memzero(P_SHA1, SHA1_MAC_LEN); |
99 | |
|
100 | 0 | return 0; |
101 | 0 | } |