Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /* $OpenBSD: xmss_fast.c,v 1.3 2018/03/22 07:06:11 markus Exp $ */  | 
2  |  | /*  | 
3  |  | xmss_fast.c version 20160722  | 
4  |  | Andreas Hülsing  | 
5  |  | Joost Rijneveld  | 
6  |  | Public domain.  | 
7  |  | */  | 
8  |  |  | 
9  |  | #include "includes.h"  | 
10  |  | #ifdef WITH_XMSS  | 
11  |  |  | 
12  |  | #include <stdlib.h>  | 
13  |  | #include <string.h>  | 
14  |  | #ifdef HAVE_STDINT_H  | 
15  |  | # include <stdint.h>  | 
16  |  | #endif  | 
17  |  |  | 
18  |  | #include "xmss_fast.h"  | 
19  |  | #include "crypto_api.h"  | 
20  |  | #include "xmss_wots.h"  | 
21  |  | #include "xmss_hash.h"  | 
22  |  |  | 
23  |  | #include "xmss_commons.h"  | 
24  |  | #include "xmss_hash_address.h"  | 
25  |  | // For testing  | 
26  |  | #include "stdio.h"  | 
27  |  |  | 
28  |  |  | 
29  |  |  | 
30  |  | /**  | 
31  |  |  * Used for pseudorandom keygeneration,  | 
32  |  |  * generates the seed for the WOTS keypair at address addr  | 
33  |  |  *  | 
34  |  |  * takes n byte sk_seed and returns n byte seed using 32 byte address addr.  | 
35  |  |  */  | 
36  |  | static void get_seed(unsigned char *seed, const unsigned char *sk_seed, int n, uint32_t addr[8])  | 
37  | 0  | { | 
38  | 0  |   unsigned char bytes[32];  | 
39  |  |   // Make sure that chain addr, hash addr, and key bit are 0!  | 
40  | 0  |   setChainADRS(addr,0);  | 
41  | 0  |   setHashADRS(addr,0);  | 
42  | 0  |   setKeyAndMask(addr,0);  | 
43  |  |   // Generate pseudorandom value  | 
44  | 0  |   addr_to_byte(bytes, addr);  | 
45  | 0  |   prf(seed, bytes, sk_seed, n);  | 
46  | 0  | }  | 
47  |  |  | 
48  |  | /**  | 
49  |  |  * Initialize xmss params struct  | 
50  |  |  * parameter names are the same as in the draft  | 
51  |  |  * parameter k is K as used in the BDS algorithm  | 
52  |  |  */  | 
53  |  | int xmss_set_params(xmss_params *params, int n, int h, int w, int k)  | 
54  | 0  | { | 
55  | 0  |   if (k >= h || k < 2 || (h - k) % 2) { | 
56  | 0  |     fprintf(stderr, "For BDS traversal, H - K must be even, with H > K >= 2!\n");  | 
57  | 0  |     return 1;  | 
58  | 0  |   }  | 
59  | 0  |   params->h = h;  | 
60  | 0  |   params->n = n;  | 
61  | 0  |   params->k = k;  | 
62  | 0  |   wots_params wots_par;  | 
63  | 0  |   wots_set_params(&wots_par, n, w);  | 
64  | 0  |   params->wots_par = wots_par;  | 
65  | 0  |   return 0;  | 
66  | 0  | }  | 
67  |  |  | 
68  |  | /**  | 
69  |  |  * Initialize BDS state struct  | 
70  |  |  * parameter names are the same as used in the description of the BDS traversal  | 
71  |  |  */  | 
72  |  | void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset, unsigned char *stacklevels, unsigned char *auth, unsigned char *keep, treehash_inst *treehash, unsigned char *retain, int next_leaf)  | 
73  | 0  | { | 
74  | 0  |   state->stack = stack;  | 
75  | 0  |   state->stackoffset = stackoffset;  | 
76  | 0  |   state->stacklevels = stacklevels;  | 
77  | 0  |   state->auth = auth;  | 
78  | 0  |   state->keep = keep;  | 
79  | 0  |   state->treehash = treehash;  | 
80  | 0  |   state->retain = retain;  | 
81  | 0  |   state->next_leaf = next_leaf;  | 
82  | 0  | }  | 
83  |  |  | 
84  |  | /**  | 
85  |  |  * Initialize xmssmt_params struct  | 
86  |  |  * parameter names are the same as in the draft  | 
87  |  |  *  | 
88  |  |  * Especially h is the total tree height, i.e. the XMSS trees have height h/d  | 
89  |  |  */  | 
90  |  | int xmssmt_set_params(xmssmt_params *params, int n, int h, int d, int w, int k)  | 
91  | 0  | { | 
92  | 0  |   if (h % d) { | 
93  | 0  |     fprintf(stderr, "d must divide h without remainder!\n");  | 
94  | 0  |     return 1;  | 
95  | 0  |   }  | 
96  | 0  |   params->h = h;  | 
97  | 0  |   params->d = d;  | 
98  | 0  |   params->n = n;  | 
99  | 0  |   params->index_len = (h + 7) / 8;  | 
100  | 0  |   xmss_params xmss_par;  | 
101  | 0  |   if (xmss_set_params(&xmss_par, n, (h/d), w, k)) { | 
102  | 0  |     return 1;  | 
103  | 0  |   }  | 
104  | 0  |   params->xmss_par = xmss_par;  | 
105  | 0  |   return 0;  | 
106  | 0  | }  | 
107  |  |  | 
108  |  | /**  | 
109  |  |  * Computes a leaf from a WOTS public key using an L-tree.  | 
110  |  |  */  | 
111  |  | static void l_tree(unsigned char *leaf, unsigned char *wots_pk, const xmss_params *params, const unsigned char *pub_seed, uint32_t addr[8])  | 
112  | 0  | { | 
113  | 0  |   unsigned int l = params->wots_par.len;  | 
114  | 0  |   unsigned int n = params->n;  | 
115  | 0  |   uint32_t i = 0;  | 
116  | 0  |   uint32_t height = 0;  | 
117  | 0  |   uint32_t bound;  | 
118  |  |  | 
119  |  |   //ADRS.setTreeHeight(0);  | 
120  | 0  |   setTreeHeight(addr, height);  | 
121  |  |     | 
122  | 0  |   while (l > 1) { | 
123  | 0  |      bound = l >> 1; //floor(l / 2);  | 
124  | 0  |      for (i = 0; i < bound; i++) { | 
125  |  |        //ADRS.setTreeIndex(i);  | 
126  | 0  |        setTreeIndex(addr, i);  | 
127  |  |        //wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS);  | 
128  | 0  |        hash_h(wots_pk+i*n, wots_pk+i*2*n, pub_seed, addr, n);  | 
129  | 0  |      }  | 
130  |  |      //if ( l % 2 == 1 ) { | 
131  | 0  |      if (l & 1) { | 
132  |  |        //pk[floor(l / 2) + 1] = pk[l];  | 
133  | 0  |        memcpy(wots_pk+(l>>1)*n, wots_pk+(l-1)*n, n);  | 
134  |  |        //l = ceil(l / 2);  | 
135  | 0  |        l=(l>>1)+1;  | 
136  | 0  |      }  | 
137  | 0  |      else { | 
138  |  |        //l = ceil(l / 2);  | 
139  | 0  |        l=(l>>1);  | 
140  | 0  |      }  | 
141  |  |      //ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);  | 
142  | 0  |      height++;  | 
143  | 0  |      setTreeHeight(addr, height);  | 
144  | 0  |    }  | 
145  |  |    //return pk[0];  | 
146  | 0  |    memcpy(leaf, wots_pk, n);  | 
147  | 0  | }  | 
148  |  |  | 
149  |  | /**  | 
150  |  |  * Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address.  | 
151  |  |  */  | 
152  |  | static void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8])  | 
153  | 0  | { | 
154  | 0  |   unsigned char seed[params->n];  | 
155  | 0  |   unsigned char pk[params->wots_par.keysize];  | 
156  |  | 
  | 
157  | 0  |   get_seed(seed, sk_seed, params->n, ots_addr);  | 
158  | 0  |   wots_pkgen(pk, seed, &(params->wots_par), pub_seed, ots_addr);  | 
159  |  | 
  | 
160  | 0  |   l_tree(leaf, pk, params, pub_seed, ltree_addr);  | 
161  | 0  | }  | 
162  |  |  | 
163  | 0  | static int treehash_minheight_on_stack(bds_state* state, const xmss_params *params, const treehash_inst *treehash) { | 
164  | 0  |   unsigned int r = params->h, i;  | 
165  | 0  |   for (i = 0; i < treehash->stackusage; i++) { | 
166  | 0  |     if (state->stacklevels[state->stackoffset - i - 1] < r) { | 
167  | 0  |       r = state->stacklevels[state->stackoffset - i - 1];  | 
168  | 0  |     }  | 
169  | 0  |   }  | 
170  | 0  |   return r;  | 
171  | 0  | }  | 
172  |  |  | 
173  |  | /**  | 
174  |  |  * Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash.  | 
175  |  |  * Currently only used for key generation.  | 
176  |  |  *  | 
177  |  |  */  | 
178  |  | static void treehash_setup(unsigned char *node, int height, int index, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const uint32_t addr[8])  | 
179  | 0  | { | 
180  | 0  |   unsigned int idx = index;  | 
181  | 0  |   unsigned int n = params->n;  | 
182  | 0  |   unsigned int h = params->h;  | 
183  | 0  |   unsigned int k = params->k;  | 
184  |  |   // use three different addresses because at this point we use all three formats in parallel  | 
185  | 0  |   uint32_t ots_addr[8];  | 
186  | 0  |   uint32_t ltree_addr[8];  | 
187  | 0  |   uint32_t  node_addr[8];  | 
188  |  |   // only copy layer and tree address parts  | 
189  | 0  |   memcpy(ots_addr, addr, 12);  | 
190  |  |   // type = ots  | 
191  | 0  |   setType(ots_addr, 0);  | 
192  | 0  |   memcpy(ltree_addr, addr, 12);  | 
193  | 0  |   setType(ltree_addr, 1);  | 
194  | 0  |   memcpy(node_addr, addr, 12);  | 
195  | 0  |   setType(node_addr, 2);  | 
196  |  | 
  | 
197  | 0  |   uint32_t lastnode, i;  | 
198  | 0  |   unsigned char stack[(height+1)*n];  | 
199  | 0  |   unsigned int stacklevels[height+1];  | 
200  | 0  |   unsigned int stackoffset=0;  | 
201  | 0  |   unsigned int nodeh;  | 
202  |  | 
  | 
203  | 0  |   lastnode = idx+(1<<height);  | 
204  |  | 
  | 
205  | 0  |   for (i = 0; i < h-k; i++) { | 
206  | 0  |     state->treehash[i].h = i;  | 
207  | 0  |     state->treehash[i].completed = 1;  | 
208  | 0  |     state->treehash[i].stackusage = 0;  | 
209  | 0  |   }  | 
210  |  | 
  | 
211  | 0  |   i = 0;  | 
212  | 0  |   for (; idx < lastnode; idx++) { | 
213  | 0  |     setLtreeADRS(ltree_addr, idx);  | 
214  | 0  |     setOTSADRS(ots_addr, idx);  | 
215  | 0  |     gen_leaf_wots(stack+stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr);  | 
216  | 0  |     stacklevels[stackoffset] = 0;  | 
217  | 0  |     stackoffset++;  | 
218  | 0  |     if (h - k > 0 && i == 3) { | 
219  | 0  |       memcpy(state->treehash[0].node, stack+stackoffset*n, n);  | 
220  | 0  |     }  | 
221  | 0  |     while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2])  | 
222  | 0  |     { | 
223  | 0  |       nodeh = stacklevels[stackoffset-1];  | 
224  | 0  |       if (i >> nodeh == 1) { | 
225  | 0  |         memcpy(state->auth + nodeh*n, stack+(stackoffset-1)*n, n);  | 
226  | 0  |       }  | 
227  | 0  |       else { | 
228  | 0  |         if (nodeh < h - k && i >> nodeh == 3) { | 
229  | 0  |           memcpy(state->treehash[nodeh].node, stack+(stackoffset-1)*n, n);  | 
230  | 0  |         }  | 
231  | 0  |         else if (nodeh >= h - k) { | 
232  | 0  |           memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((i >> nodeh) - 3) >> 1)) * n, stack+(stackoffset-1)*n, n);  | 
233  | 0  |         }  | 
234  | 0  |       }  | 
235  | 0  |       setTreeHeight(node_addr, stacklevels[stackoffset-1]);  | 
236  | 0  |       setTreeIndex(node_addr, (idx >> (stacklevels[stackoffset-1]+1)));  | 
237  | 0  |       hash_h(stack+(stackoffset-2)*n, stack+(stackoffset-2)*n, pub_seed,  | 
238  | 0  |           node_addr, n);  | 
239  | 0  |       stacklevels[stackoffset-2]++;  | 
240  | 0  |       stackoffset--;  | 
241  | 0  |     }  | 
242  | 0  |     i++;  | 
243  | 0  |   }  | 
244  |  | 
  | 
245  | 0  |   for (i = 0; i < n; i++)  | 
246  | 0  |     node[i] = stack[i];  | 
247  | 0  | }  | 
248  |  |  | 
249  | 0  | static void treehash_update(treehash_inst *treehash, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const uint32_t addr[8]) { | 
250  | 0  |   int n = params->n;  | 
251  |  | 
  | 
252  | 0  |   uint32_t ots_addr[8];  | 
253  | 0  |   uint32_t ltree_addr[8];  | 
254  | 0  |   uint32_t  node_addr[8];  | 
255  |  |   // only copy layer and tree address parts  | 
256  | 0  |   memcpy(ots_addr, addr, 12);  | 
257  |  |   // type = ots  | 
258  | 0  |   setType(ots_addr, 0);  | 
259  | 0  |   memcpy(ltree_addr, addr, 12);  | 
260  | 0  |   setType(ltree_addr, 1);  | 
261  | 0  |   memcpy(node_addr, addr, 12);  | 
262  | 0  |   setType(node_addr, 2);  | 
263  |  | 
  | 
264  | 0  |   setLtreeADRS(ltree_addr, treehash->next_idx);  | 
265  | 0  |   setOTSADRS(ots_addr, treehash->next_idx);  | 
266  |  | 
  | 
267  | 0  |   unsigned char nodebuffer[2 * n];  | 
268  | 0  |   unsigned int nodeheight = 0;  | 
269  | 0  |   gen_leaf_wots(nodebuffer, sk_seed, params, pub_seed, ltree_addr, ots_addr);  | 
270  | 0  |   while (treehash->stackusage > 0 && state->stacklevels[state->stackoffset-1] == nodeheight) { | 
271  | 0  |     memcpy(nodebuffer + n, nodebuffer, n);  | 
272  | 0  |     memcpy(nodebuffer, state->stack + (state->stackoffset-1)*n, n);  | 
273  | 0  |     setTreeHeight(node_addr, nodeheight);  | 
274  | 0  |     setTreeIndex(node_addr, (treehash->next_idx >> (nodeheight+1)));  | 
275  | 0  |     hash_h(nodebuffer, nodebuffer, pub_seed, node_addr, n);  | 
276  | 0  |     nodeheight++;  | 
277  | 0  |     treehash->stackusage--;  | 
278  | 0  |     state->stackoffset--;  | 
279  | 0  |   }  | 
280  | 0  |   if (nodeheight == treehash->h) { // this also implies stackusage == 0 | 
281  | 0  |     memcpy(treehash->node, nodebuffer, n);  | 
282  | 0  |     treehash->completed = 1;  | 
283  | 0  |   }  | 
284  | 0  |   else { | 
285  | 0  |     memcpy(state->stack + state->stackoffset*n, nodebuffer, n);  | 
286  | 0  |     treehash->stackusage++;  | 
287  | 0  |     state->stacklevels[state->stackoffset] = nodeheight;  | 
288  | 0  |     state->stackoffset++;  | 
289  | 0  |     treehash->next_idx++;  | 
290  | 0  |   }  | 
291  | 0  | }  | 
292  |  |  | 
293  |  | /**  | 
294  |  |  * Computes a root node given a leaf and an authapth  | 
295  |  |  */  | 
296  |  | static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const xmss_params *params, const unsigned char *pub_seed, uint32_t addr[8])  | 
297  | 0  | { | 
298  | 0  |   unsigned int n = params->n;  | 
299  |  | 
  | 
300  | 0  |   uint32_t i, j;  | 
301  | 0  |   unsigned char buffer[2*n];  | 
302  |  |  | 
303  |  |   // If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left.  | 
304  |  |   // Otherwise, it is the other way around  | 
305  | 0  |   if (leafidx & 1) { | 
306  | 0  |     for (j = 0; j < n; j++)  | 
307  | 0  |       buffer[n+j] = leaf[j];  | 
308  | 0  |     for (j = 0; j < n; j++)  | 
309  | 0  |       buffer[j] = authpath[j];  | 
310  | 0  |   }  | 
311  | 0  |   else { | 
312  | 0  |     for (j = 0; j < n; j++)  | 
313  | 0  |       buffer[j] = leaf[j];  | 
314  | 0  |     for (j = 0; j < n; j++)  | 
315  | 0  |       buffer[n+j] = authpath[j];  | 
316  | 0  |   }  | 
317  | 0  |   authpath += n;  | 
318  |  | 
  | 
319  | 0  |   for (i=0; i < params->h-1; i++) { | 
320  | 0  |     setTreeHeight(addr, i);  | 
321  | 0  |     leafidx >>= 1;  | 
322  | 0  |     setTreeIndex(addr, leafidx);  | 
323  | 0  |     if (leafidx&1) { | 
324  | 0  |       hash_h(buffer+n, buffer, pub_seed, addr, n);  | 
325  | 0  |       for (j = 0; j < n; j++)  | 
326  | 0  |         buffer[j] = authpath[j];  | 
327  | 0  |     }  | 
328  | 0  |     else { | 
329  | 0  |       hash_h(buffer, buffer, pub_seed, addr, n);  | 
330  | 0  |       for (j = 0; j < n; j++)  | 
331  | 0  |         buffer[j+n] = authpath[j];  | 
332  | 0  |     }  | 
333  | 0  |     authpath += n;  | 
334  | 0  |   }  | 
335  | 0  |   setTreeHeight(addr, (params->h-1));  | 
336  | 0  |   leafidx >>= 1;  | 
337  | 0  |   setTreeIndex(addr, leafidx);  | 
338  | 0  |   hash_h(root, buffer, pub_seed, addr, n);  | 
339  | 0  | }  | 
340  |  |  | 
341  |  | /**  | 
342  |  |  * Performs one treehash update on the instance that needs it the most.  | 
343  |  |  * Returns 1 if such an instance was not found  | 
344  |  |  **/  | 
345  | 0  | static char bds_treehash_update(bds_state *state, unsigned int updates, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const uint32_t addr[8]) { | 
346  | 0  |   uint32_t i, j;  | 
347  | 0  |   unsigned int level, l_min, low;  | 
348  | 0  |   unsigned int h = params->h;  | 
349  | 0  |   unsigned int k = params->k;  | 
350  | 0  |   unsigned int used = 0;  | 
351  |  | 
  | 
352  | 0  |   for (j = 0; j < updates; j++) { | 
353  | 0  |     l_min = h;  | 
354  | 0  |     level = h - k;  | 
355  | 0  |     for (i = 0; i < h - k; i++) { | 
356  | 0  |       if (state->treehash[i].completed) { | 
357  | 0  |         low = h;  | 
358  | 0  |       }  | 
359  | 0  |       else if (state->treehash[i].stackusage == 0) { | 
360  | 0  |         low = i;  | 
361  | 0  |       }  | 
362  | 0  |       else { | 
363  | 0  |         low = treehash_minheight_on_stack(state, params, &(state->treehash[i]));  | 
364  | 0  |       }  | 
365  | 0  |       if (low < l_min) { | 
366  | 0  |         level = i;  | 
367  | 0  |         l_min = low;  | 
368  | 0  |       }  | 
369  | 0  |     }  | 
370  | 0  |     if (level == h - k) { | 
371  | 0  |       break;  | 
372  | 0  |     }  | 
373  | 0  |     treehash_update(&(state->treehash[level]), state, sk_seed, params, pub_seed, addr);  | 
374  | 0  |     used++;  | 
375  | 0  |   }  | 
376  | 0  |   return updates - used;  | 
377  | 0  | }  | 
378  |  |  | 
379  |  | /**  | 
380  |  |  * Updates the state (typically NEXT_i) by adding a leaf and updating the stack  | 
381  |  |  * Returns 1 if all leaf nodes have already been processed  | 
382  |  |  **/  | 
383  | 0  | static char bds_state_update(bds_state *state, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const uint32_t addr[8]) { | 
384  | 0  |   uint32_t ltree_addr[8];  | 
385  | 0  |   uint32_t node_addr[8];  | 
386  | 0  |   uint32_t ots_addr[8];  | 
387  |  | 
  | 
388  | 0  |   int n = params->n;  | 
389  | 0  |   int h = params->h;  | 
390  | 0  |   int k = params->k;  | 
391  |  | 
  | 
392  | 0  |   int nodeh;  | 
393  | 0  |   int idx = state->next_leaf;  | 
394  | 0  |   if (idx == 1 << h) { | 
395  | 0  |     return 1;  | 
396  | 0  |   }  | 
397  |  |  | 
398  |  |   // only copy layer and tree address parts  | 
399  | 0  |   memcpy(ots_addr, addr, 12);  | 
400  |  |   // type = ots  | 
401  | 0  |   setType(ots_addr, 0);  | 
402  | 0  |   memcpy(ltree_addr, addr, 12);  | 
403  | 0  |   setType(ltree_addr, 1);  | 
404  | 0  |   memcpy(node_addr, addr, 12);  | 
405  | 0  |   setType(node_addr, 2);  | 
406  |  |     | 
407  | 0  |   setOTSADRS(ots_addr, idx);  | 
408  | 0  |   setLtreeADRS(ltree_addr, idx);  | 
409  |  | 
  | 
410  | 0  |   gen_leaf_wots(state->stack+state->stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr);  | 
411  |  | 
  | 
412  | 0  |   state->stacklevels[state->stackoffset] = 0;  | 
413  | 0  |   state->stackoffset++;  | 
414  | 0  |   if (h - k > 0 && idx == 3) { | 
415  | 0  |     memcpy(state->treehash[0].node, state->stack+state->stackoffset*n, n);  | 
416  | 0  |   }  | 
417  | 0  |   while (state->stackoffset>1 && state->stacklevels[state->stackoffset-1] == state->stacklevels[state->stackoffset-2]) { | 
418  | 0  |     nodeh = state->stacklevels[state->stackoffset-1];  | 
419  | 0  |     if (idx >> nodeh == 1) { | 
420  | 0  |       memcpy(state->auth + nodeh*n, state->stack+(state->stackoffset-1)*n, n);  | 
421  | 0  |     }  | 
422  | 0  |     else { | 
423  | 0  |       if (nodeh < h - k && idx >> nodeh == 3) { | 
424  | 0  |         memcpy(state->treehash[nodeh].node, state->stack+(state->stackoffset-1)*n, n);  | 
425  | 0  |       }  | 
426  | 0  |       else if (nodeh >= h - k) { | 
427  | 0  |         memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((idx >> nodeh) - 3) >> 1)) * n, state->stack+(state->stackoffset-1)*n, n);  | 
428  | 0  |       }  | 
429  | 0  |     }  | 
430  | 0  |     setTreeHeight(node_addr, state->stacklevels[state->stackoffset-1]);  | 
431  | 0  |     setTreeIndex(node_addr, (idx >> (state->stacklevels[state->stackoffset-1]+1)));  | 
432  | 0  |     hash_h(state->stack+(state->stackoffset-2)*n, state->stack+(state->stackoffset-2)*n, pub_seed, node_addr, n);  | 
433  |  | 
  | 
434  | 0  |     state->stacklevels[state->stackoffset-2]++;  | 
435  | 0  |     state->stackoffset--;  | 
436  | 0  |   }  | 
437  | 0  |   state->next_leaf++;  | 
438  | 0  |   return 0;  | 
439  | 0  | }  | 
440  |  |  | 
441  |  | /**  | 
442  |  |  * Returns the auth path for node leaf_idx and computes the auth path for the  | 
443  |  |  * next leaf node, using the algorithm described by Buchmann, Dahmen and Szydlo  | 
444  |  |  * in "Post Quantum Cryptography", Springer 2009.  | 
445  |  |  */  | 
446  |  | static void bds_round(bds_state *state, const unsigned long leaf_idx, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, uint32_t addr[8])  | 
447  | 0  | { | 
448  | 0  |   unsigned int i;  | 
449  | 0  |   unsigned int n = params->n;  | 
450  | 0  |   unsigned int h = params->h;  | 
451  | 0  |   unsigned int k = params->k;  | 
452  |  | 
  | 
453  | 0  |   unsigned int tau = h;  | 
454  | 0  |   unsigned int startidx;  | 
455  | 0  |   unsigned int offset, rowidx;  | 
456  | 0  |   unsigned char buf[2 * n];  | 
457  |  | 
  | 
458  | 0  |   uint32_t ots_addr[8];  | 
459  | 0  |   uint32_t ltree_addr[8];  | 
460  | 0  |   uint32_t  node_addr[8];  | 
461  |  |   // only copy layer and tree address parts  | 
462  | 0  |   memcpy(ots_addr, addr, 12);  | 
463  |  |   // type = ots  | 
464  | 0  |   setType(ots_addr, 0);  | 
465  | 0  |   memcpy(ltree_addr, addr, 12);  | 
466  | 0  |   setType(ltree_addr, 1);  | 
467  | 0  |   memcpy(node_addr, addr, 12);  | 
468  | 0  |   setType(node_addr, 2);  | 
469  |  | 
  | 
470  | 0  |   for (i = 0; i < h; i++) { | 
471  | 0  |     if (! ((leaf_idx >> i) & 1)) { | 
472  | 0  |       tau = i;  | 
473  | 0  |       break;  | 
474  | 0  |     }  | 
475  | 0  |   }  | 
476  |  | 
  | 
477  | 0  |   if (tau > 0) { | 
478  | 0  |     memcpy(buf,     state->auth + (tau-1) * n, n);  | 
479  |  |     // we need to do this before refreshing state->keep to prevent overwriting  | 
480  | 0  |     memcpy(buf + n, state->keep + ((tau-1) >> 1) * n, n);  | 
481  | 0  |   }  | 
482  | 0  |   if (!((leaf_idx >> (tau + 1)) & 1) && (tau < h - 1)) { | 
483  | 0  |     memcpy(state->keep + (tau >> 1)*n, state->auth + tau*n, n);  | 
484  | 0  |   }  | 
485  | 0  |   if (tau == 0) { | 
486  | 0  |     setLtreeADRS(ltree_addr, leaf_idx);  | 
487  | 0  |     setOTSADRS(ots_addr, leaf_idx);  | 
488  | 0  |     gen_leaf_wots(state->auth, sk_seed, params, pub_seed, ltree_addr, ots_addr);  | 
489  | 0  |   }  | 
490  | 0  |   else { | 
491  | 0  |     setTreeHeight(node_addr, (tau-1));  | 
492  | 0  |     setTreeIndex(node_addr, leaf_idx >> tau);  | 
493  | 0  |     hash_h(state->auth + tau * n, buf, pub_seed, node_addr, n);  | 
494  | 0  |     for (i = 0; i < tau; i++) { | 
495  | 0  |       if (i < h - k) { | 
496  | 0  |         memcpy(state->auth + i * n, state->treehash[i].node, n);  | 
497  | 0  |       }  | 
498  | 0  |       else { | 
499  | 0  |         offset = (1 << (h - 1 - i)) + i - h;  | 
500  | 0  |         rowidx = ((leaf_idx >> i) - 1) >> 1;  | 
501  | 0  |         memcpy(state->auth + i * n, state->retain + (offset + rowidx) * n, n);  | 
502  | 0  |       }  | 
503  | 0  |     }  | 
504  |  | 
  | 
505  | 0  |     for (i = 0; i < ((tau < h - k) ? tau : (h - k)); i++) { | 
506  | 0  |       startidx = leaf_idx + 1 + 3 * (1 << i);  | 
507  | 0  |       if (startidx < 1U << h) { | 
508  | 0  |         state->treehash[i].h = i;  | 
509  | 0  |         state->treehash[i].next_idx = startidx;  | 
510  | 0  |         state->treehash[i].completed = 0;  | 
511  | 0  |         state->treehash[i].stackusage = 0;  | 
512  | 0  |       }  | 
513  | 0  |     }  | 
514  | 0  |   }  | 
515  | 0  | }  | 
516  |  |  | 
517  |  | /*  | 
518  |  |  * Generates a XMSS key pair for a given parameter set.  | 
519  |  |  * Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED || root]  | 
520  |  |  * Format pk: [root || PUB_SEED] omitting algo oid.  | 
521  |  |  */  | 
522  |  | int xmss_keypair(unsigned char *pk, unsigned char *sk, bds_state *state, xmss_params *params)  | 
523  | 0  | { | 
524  | 0  |   unsigned int n = params->n;  | 
525  |  |   // Set idx = 0  | 
526  | 0  |   sk[0] = 0;  | 
527  | 0  |   sk[1] = 0;  | 
528  | 0  |   sk[2] = 0;  | 
529  | 0  |   sk[3] = 0;  | 
530  |  |   // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte)  | 
531  | 0  |   randombytes(sk+4, 3*n);  | 
532  |  |   // Copy PUB_SEED to public key  | 
533  | 0  |   memcpy(pk+n, sk+4+2*n, n);  | 
534  |  | 
  | 
535  | 0  |   uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | 
536  |  |  | 
537  |  |   // Compute root  | 
538  | 0  |   treehash_setup(pk, params->h, 0, state, sk+4, params, sk+4+2*n, addr);  | 
539  |  |   // copy root to sk  | 
540  | 0  |   memcpy(sk+4+3*n, pk, n);  | 
541  | 0  |   return 0;  | 
542  | 0  | }  | 
543  |  |  | 
544  |  | /**  | 
545  |  |  * Signs a message.  | 
546  |  |  * Returns  | 
547  |  |  * 1. an array containing the signature followed by the message AND  | 
548  |  |  * 2. an updated secret key!  | 
549  |  |  *  | 
550  |  |  */  | 
551  |  | int xmss_sign(unsigned char *sk, bds_state *state, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmss_params *params)  | 
552  | 0  | { | 
553  | 0  |   unsigned int h = params->h;  | 
554  | 0  |   unsigned int n = params->n;  | 
555  | 0  |   unsigned int k = params->k;  | 
556  | 0  |   uint16_t i = 0;  | 
557  |  |  | 
558  |  |   // Extract SK  | 
559  | 0  |   unsigned long idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3];  | 
560  | 0  |   unsigned char sk_seed[n];  | 
561  | 0  |   memcpy(sk_seed, sk+4, n);  | 
562  | 0  |   unsigned char sk_prf[n];  | 
563  | 0  |   memcpy(sk_prf, sk+4+n, n);  | 
564  | 0  |   unsigned char pub_seed[n];  | 
565  | 0  |   memcpy(pub_seed, sk+4+2*n, n);  | 
566  |  |     | 
567  |  |   // index as 32 bytes string  | 
568  | 0  |   unsigned char idx_bytes_32[32];  | 
569  | 0  |   to_byte(idx_bytes_32, idx, 32);  | 
570  |  |     | 
571  | 0  |   unsigned char hash_key[3*n];   | 
572  |  |     | 
573  |  |   // Update SK  | 
574  | 0  |   sk[0] = ((idx + 1) >> 24) & 255;  | 
575  | 0  |   sk[1] = ((idx + 1) >> 16) & 255;  | 
576  | 0  |   sk[2] = ((idx + 1) >> 8) & 255;  | 
577  | 0  |   sk[3] = (idx + 1) & 255;  | 
578  |  |   // -- Secret key for this non-forward-secure version is now updated.  | 
579  |  |   // -- A productive implementation should use a file handle instead and write the updated secret key at this point!  | 
580  |  |  | 
581  |  |   // Init working params  | 
582  | 0  |   unsigned char R[n];  | 
583  | 0  |   unsigned char msg_h[n];  | 
584  | 0  |   unsigned char ots_seed[n];  | 
585  | 0  |   uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | 
586  |  |  | 
587  |  |   // ---------------------------------  | 
588  |  |   // Message Hashing  | 
589  |  |   // ---------------------------------  | 
590  |  |  | 
591  |  |   // Message Hash:  | 
592  |  |   // First compute pseudorandom value  | 
593  | 0  |   prf(R, idx_bytes_32, sk_prf, n);  | 
594  |  |   // Generate hash key (R || root || idx)  | 
595  | 0  |   memcpy(hash_key, R, n);  | 
596  | 0  |   memcpy(hash_key+n, sk+4+3*n, n);  | 
597  | 0  |   to_byte(hash_key+2*n, idx, n);  | 
598  |  |   // Then use it for message digest  | 
599  | 0  |   h_msg(msg_h, msg, msglen, hash_key, 3*n, n);  | 
600  |  |  | 
601  |  |   // Start collecting signature  | 
602  | 0  |   *sig_msg_len = 0;  | 
603  |  |  | 
604  |  |   // Copy index to signature  | 
605  | 0  |   sig_msg[0] = (idx >> 24) & 255;  | 
606  | 0  |   sig_msg[1] = (idx >> 16) & 255;  | 
607  | 0  |   sig_msg[2] = (idx >> 8) & 255;  | 
608  | 0  |   sig_msg[3] = idx & 255;  | 
609  |  | 
  | 
610  | 0  |   sig_msg += 4;  | 
611  | 0  |   *sig_msg_len += 4;  | 
612  |  |  | 
613  |  |   // Copy R to signature  | 
614  | 0  |   for (i = 0; i < n; i++)  | 
615  | 0  |     sig_msg[i] = R[i];  | 
616  |  | 
  | 
617  | 0  |   sig_msg += n;  | 
618  | 0  |   *sig_msg_len += n;  | 
619  |  |  | 
620  |  |   // ----------------------------------  | 
621  |  |   // Now we start to "really sign"  | 
622  |  |   // ----------------------------------  | 
623  |  |  | 
624  |  |   // Prepare Address  | 
625  | 0  |   setType(ots_addr, 0);  | 
626  | 0  |   setOTSADRS(ots_addr, idx);  | 
627  |  |  | 
628  |  |   // Compute seed for OTS key pair  | 
629  | 0  |   get_seed(ots_seed, sk_seed, n, ots_addr);  | 
630  |  |  | 
631  |  |   // Compute WOTS signature  | 
632  | 0  |   wots_sign(sig_msg, msg_h, ots_seed, &(params->wots_par), pub_seed, ots_addr);  | 
633  |  | 
  | 
634  | 0  |   sig_msg += params->wots_par.keysize;  | 
635  | 0  |   *sig_msg_len += params->wots_par.keysize;  | 
636  |  |  | 
637  |  |   // the auth path was already computed during the previous round  | 
638  | 0  |   memcpy(sig_msg, state->auth, h*n);  | 
639  |  | 
  | 
640  | 0  |   if (idx < (1U << h) - 1) { | 
641  | 0  |     bds_round(state, idx, sk_seed, params, pub_seed, ots_addr);  | 
642  | 0  |     bds_treehash_update(state, (h - k) >> 1, sk_seed, params, pub_seed, ots_addr);  | 
643  | 0  |   }  | 
644  |  |  | 
645  |  | /* TODO: save key/bds state here! */  | 
646  |  | 
  | 
647  | 0  |   sig_msg += params->h*n;  | 
648  | 0  |   *sig_msg_len += params->h*n;  | 
649  |  |  | 
650  |  |   //Whipe secret elements?  | 
651  |  |   //zerobytes(tsk, CRYPTO_SECRETKEYBYTES);  | 
652  |  |  | 
653  |  | 
  | 
654  | 0  |   memcpy(sig_msg, msg, msglen);  | 
655  | 0  |   *sig_msg_len += msglen;  | 
656  |  | 
  | 
657  | 0  |   return 0;  | 
658  | 0  | }  | 
659  |  |  | 
660  |  | /**  | 
661  |  |  * Verifies a given message signature pair under a given public key.  | 
662  |  |  */  | 
663  |  | int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmss_params *params)  | 
664  | 0  | { | 
665  | 0  |   unsigned int n = params->n;  | 
666  |  | 
  | 
667  | 0  |   unsigned long long i, m_len;  | 
668  | 0  |   unsigned long idx=0;  | 
669  | 0  |   unsigned char wots_pk[params->wots_par.keysize];  | 
670  | 0  |   unsigned char pkhash[n];  | 
671  | 0  |   unsigned char root[n];  | 
672  | 0  |   unsigned char msg_h[n];  | 
673  | 0  |   unsigned char hash_key[3*n];  | 
674  |  | 
  | 
675  | 0  |   unsigned char pub_seed[n];  | 
676  | 0  |   memcpy(pub_seed, pk+n, n);  | 
677  |  |  | 
678  |  |   // Init addresses  | 
679  | 0  |   uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | 
680  | 0  |   uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | 
681  | 0  |   uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | 
682  |  | 
  | 
683  | 0  |   setType(ots_addr, 0);  | 
684  | 0  |   setType(ltree_addr, 1);  | 
685  | 0  |   setType(node_addr, 2);  | 
686  |  |  | 
687  |  |   // Extract index  | 
688  | 0  |   idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3];  | 
689  | 0  |   printf("verify:: idx = %lu\n", idx); | 
690  |  |     | 
691  |  |   // Generate hash key (R || root || idx)  | 
692  | 0  |   memcpy(hash_key, sig_msg+4,n);  | 
693  | 0  |   memcpy(hash_key+n, pk, n);  | 
694  | 0  |   to_byte(hash_key+2*n, idx, n);  | 
695  |  |     | 
696  | 0  |   sig_msg += (n+4);  | 
697  | 0  |   sig_msg_len -= (n+4);  | 
698  |  |  | 
699  |  |   // hash message   | 
700  | 0  |   unsigned long long tmp_sig_len = params->wots_par.keysize+params->h*n;  | 
701  | 0  |   m_len = sig_msg_len - tmp_sig_len;  | 
702  | 0  |   h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*n, n);  | 
703  |  |  | 
704  |  |   //-----------------------  | 
705  |  |   // Verify signature  | 
706  |  |   //-----------------------  | 
707  |  |  | 
708  |  |   // Prepare Address  | 
709  | 0  |   setOTSADRS(ots_addr, idx);  | 
710  |  |   // Check WOTS signature  | 
711  | 0  |   wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->wots_par), pub_seed, ots_addr);  | 
712  |  | 
  | 
713  | 0  |   sig_msg += params->wots_par.keysize;  | 
714  | 0  |   sig_msg_len -= params->wots_par.keysize;  | 
715  |  |  | 
716  |  |   // Compute Ltree  | 
717  | 0  |   setLtreeADRS(ltree_addr, idx);  | 
718  | 0  |   l_tree(pkhash, wots_pk, params, pub_seed, ltree_addr);  | 
719  |  |  | 
720  |  |   // Compute root  | 
721  | 0  |   validate_authpath(root, pkhash, idx, sig_msg, params, pub_seed, node_addr);  | 
722  |  | 
  | 
723  | 0  |   sig_msg += params->h*n;  | 
724  | 0  |   sig_msg_len -= params->h*n;  | 
725  |  | 
  | 
726  | 0  |   for (i = 0; i < n; i++)  | 
727  | 0  |     if (root[i] != pk[i])  | 
728  | 0  |       goto fail;  | 
729  |  |  | 
730  | 0  |   *msglen = sig_msg_len;  | 
731  | 0  |   for (i = 0; i < *msglen; i++)  | 
732  | 0  |     msg[i] = sig_msg[i];  | 
733  |  | 
  | 
734  | 0  |   return 0;  | 
735  |  |  | 
736  |  |  | 
737  | 0  | fail:  | 
738  | 0  |   *msglen = sig_msg_len;  | 
739  | 0  |   for (i = 0; i < *msglen; i++)  | 
740  | 0  |     msg[i] = 0;  | 
741  | 0  |   *msglen = -1;  | 
742  | 0  |   return -1;  | 
743  | 0  | }  | 
744  |  |  | 
745  |  | /*  | 
746  |  |  * Generates a XMSSMT key pair for a given parameter set.  | 
747  |  |  * Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED || root]  | 
748  |  |  * Format pk: [root || PUB_SEED] omitting algo oid.  | 
749  |  |  */  | 
750  |  | int xmssmt_keypair(unsigned char *pk, unsigned char *sk, bds_state *states, unsigned char *wots_sigs, xmssmt_params *params)  | 
751  | 0  | { | 
752  | 0  |   unsigned int n = params->n;  | 
753  | 0  |   unsigned int i;  | 
754  | 0  |   unsigned char ots_seed[params->n];  | 
755  |  |   // Set idx = 0  | 
756  | 0  |   for (i = 0; i < params->index_len; i++) { | 
757  | 0  |     sk[i] = 0;  | 
758  | 0  |   }  | 
759  |  |   // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte)  | 
760  | 0  |   randombytes(sk+params->index_len, 3*n);  | 
761  |  |   // Copy PUB_SEED to public key  | 
762  | 0  |   memcpy(pk+n, sk+params->index_len+2*n, n);  | 
763  |  |  | 
764  |  |   // Set address to point on the single tree on layer d-1  | 
765  | 0  |   uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | 
766  | 0  |   setLayerADRS(addr, (params->d-1));  | 
767  |  |   // Set up state and compute wots signatures for all but topmost tree root  | 
768  | 0  |   for (i = 0; i < params->d - 1; i++) { | 
769  |  |     // Compute seed for OTS key pair  | 
770  | 0  |     treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr);  | 
771  | 0  |     setLayerADRS(addr, (i+1));  | 
772  | 0  |     get_seed(ots_seed, sk+params->index_len, n, addr);  | 
773  | 0  |     wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, pk, ots_seed, &(params->xmss_par.wots_par), pk+n, addr);  | 
774  | 0  |   }  | 
775  | 0  |   treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr);  | 
776  | 0  |   memcpy(sk+params->index_len+3*n, pk, n);  | 
777  | 0  |   return 0;  | 
778  | 0  | }  | 
779  |  |  | 
780  |  | /**  | 
781  |  |  * Signs a message.  | 
782  |  |  * Returns  | 
783  |  |  * 1. an array containing the signature followed by the message AND  | 
784  |  |  * 2. an updated secret key!  | 
785  |  |  *  | 
786  |  |  */  | 
787  |  | int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmssmt_params *params)  | 
788  | 0  | { | 
789  | 0  |   unsigned int n = params->n;  | 
790  |  |     | 
791  | 0  |   unsigned int tree_h = params->xmss_par.h;  | 
792  | 0  |   unsigned int h = params->h;  | 
793  | 0  |   unsigned int k = params->xmss_par.k;  | 
794  | 0  |   unsigned int idx_len = params->index_len;  | 
795  | 0  |   uint64_t idx_tree;  | 
796  | 0  |   uint32_t idx_leaf;  | 
797  | 0  |   uint64_t i, j;  | 
798  | 0  |   int needswap_upto = -1;  | 
799  | 0  |   unsigned int updates;  | 
800  |  | 
  | 
801  | 0  |   unsigned char sk_seed[n];  | 
802  | 0  |   unsigned char sk_prf[n];  | 
803  | 0  |   unsigned char pub_seed[n];  | 
804  |  |   // Init working params  | 
805  | 0  |   unsigned char R[n];  | 
806  | 0  |   unsigned char msg_h[n];  | 
807  | 0  |   unsigned char hash_key[3*n];  | 
808  | 0  |   unsigned char ots_seed[n];  | 
809  | 0  |   uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | 
810  | 0  |   uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | 
811  | 0  |   unsigned char idx_bytes_32[32];  | 
812  | 0  |   bds_state tmp;  | 
813  |  |  | 
814  |  |   // Extract SK   | 
815  | 0  |   unsigned long long idx = 0;  | 
816  | 0  |   for (i = 0; i < idx_len; i++) { | 
817  | 0  |     idx |= ((unsigned long long)sk[i]) << 8*(idx_len - 1 - i);  | 
818  | 0  |   }  | 
819  |  | 
  | 
820  | 0  |   memcpy(sk_seed, sk+idx_len, n);  | 
821  | 0  |   memcpy(sk_prf, sk+idx_len+n, n);  | 
822  | 0  |   memcpy(pub_seed, sk+idx_len+2*n, n);  | 
823  |  |  | 
824  |  |   // Update SK  | 
825  | 0  |   for (i = 0; i < idx_len; i++) { | 
826  | 0  |     sk[i] = ((idx + 1) >> 8*(idx_len - 1 - i)) & 255;  | 
827  | 0  |   }  | 
828  |  |   // -- Secret key for this non-forward-secure version is now updated.  | 
829  |  |   // -- A productive implementation should use a file handle instead and write the updated secret key at this point!  | 
830  |  |  | 
831  |  |  | 
832  |  |   // ---------------------------------  | 
833  |  |   // Message Hashing  | 
834  |  |   // ---------------------------------  | 
835  |  |  | 
836  |  |   // Message Hash:  | 
837  |  |   // First compute pseudorandom value  | 
838  | 0  |   to_byte(idx_bytes_32, idx, 32);  | 
839  | 0  |   prf(R, idx_bytes_32, sk_prf, n);  | 
840  |  |   // Generate hash key (R || root || idx)  | 
841  | 0  |   memcpy(hash_key, R, n);  | 
842  | 0  |   memcpy(hash_key+n, sk+idx_len+3*n, n);  | 
843  | 0  |   to_byte(hash_key+2*n, idx, n);  | 
844  |  |     | 
845  |  |   // Then use it for message digest  | 
846  | 0  |   h_msg(msg_h, msg, msglen, hash_key, 3*n, n);  | 
847  |  |  | 
848  |  |   // Start collecting signature  | 
849  | 0  |   *sig_msg_len = 0;  | 
850  |  |  | 
851  |  |   // Copy index to signature  | 
852  | 0  |   for (i = 0; i < idx_len; i++) { | 
853  | 0  |     sig_msg[i] = (idx >> 8*(idx_len - 1 - i)) & 255;  | 
854  | 0  |   }  | 
855  |  | 
  | 
856  | 0  |   sig_msg += idx_len;  | 
857  | 0  |   *sig_msg_len += idx_len;  | 
858  |  |  | 
859  |  |   // Copy R to signature  | 
860  | 0  |   for (i = 0; i < n; i++)  | 
861  | 0  |     sig_msg[i] = R[i];  | 
862  |  | 
  | 
863  | 0  |   sig_msg += n;  | 
864  | 0  |   *sig_msg_len += n;  | 
865  |  |  | 
866  |  |   // ----------------------------------  | 
867  |  |   // Now we start to "really sign"  | 
868  |  |   // ----------------------------------  | 
869  |  |  | 
870  |  |   // Handle lowest layer separately as it is slightly different...  | 
871  |  |  | 
872  |  |   // Prepare Address  | 
873  | 0  |   setType(ots_addr, 0);  | 
874  | 0  |   idx_tree = idx >> tree_h;  | 
875  | 0  |   idx_leaf = (idx & ((1 << tree_h)-1));  | 
876  | 0  |   setLayerADRS(ots_addr, 0);  | 
877  | 0  |   setTreeADRS(ots_addr, idx_tree);  | 
878  | 0  |   setOTSADRS(ots_addr, idx_leaf);  | 
879  |  |  | 
880  |  |   // Compute seed for OTS key pair  | 
881  | 0  |   get_seed(ots_seed, sk_seed, n, ots_addr);  | 
882  |  |  | 
883  |  |   // Compute WOTS signature  | 
884  | 0  |   wots_sign(sig_msg, msg_h, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr);  | 
885  |  | 
  | 
886  | 0  |   sig_msg += params->xmss_par.wots_par.keysize;  | 
887  | 0  |   *sig_msg_len += params->xmss_par.wots_par.keysize;  | 
888  |  | 
  | 
889  | 0  |   memcpy(sig_msg, states[0].auth, tree_h*n);  | 
890  | 0  |   sig_msg += tree_h*n;  | 
891  | 0  |   *sig_msg_len += tree_h*n;  | 
892  |  |  | 
893  |  |   // prepare signature of remaining layers  | 
894  | 0  |   for (i = 1; i < params->d; i++) { | 
895  |  |     // put WOTS signature in place  | 
896  | 0  |     memcpy(sig_msg, wots_sigs + (i-1)*params->xmss_par.wots_par.keysize, params->xmss_par.wots_par.keysize);  | 
897  |  | 
  | 
898  | 0  |     sig_msg += params->xmss_par.wots_par.keysize;  | 
899  | 0  |     *sig_msg_len += params->xmss_par.wots_par.keysize;  | 
900  |  |  | 
901  |  |     // put AUTH nodes in place  | 
902  | 0  |     memcpy(sig_msg, states[i].auth, tree_h*n);  | 
903  | 0  |     sig_msg += tree_h*n;  | 
904  | 0  |     *sig_msg_len += tree_h*n;  | 
905  | 0  |   }  | 
906  |  | 
  | 
907  | 0  |   updates = (tree_h - k) >> 1;  | 
908  |  | 
  | 
909  | 0  |   setTreeADRS(addr, (idx_tree + 1));  | 
910  |  |   // mandatory update for NEXT_0 (does not count towards h-k/2) if NEXT_0 exists  | 
911  | 0  |   if ((1 + idx_tree) * (1 << tree_h) + idx_leaf < (1ULL << h)) { | 
912  | 0  |     bds_state_update(&states[params->d], sk_seed, &(params->xmss_par), pub_seed, addr);  | 
913  | 0  |   }  | 
914  |  | 
  | 
915  | 0  |   for (i = 0; i < params->d; i++) { | 
916  |  |     // check if we're not at the end of a tree  | 
917  | 0  |     if (! (((idx + 1) & ((1ULL << ((i+1)*tree_h)) - 1)) == 0)) { | 
918  | 0  |       idx_leaf = (idx >> (tree_h * i)) & ((1 << tree_h)-1);  | 
919  | 0  |       idx_tree = (idx >> (tree_h * (i+1)));  | 
920  | 0  |       setLayerADRS(addr, i);  | 
921  | 0  |       setTreeADRS(addr, idx_tree);  | 
922  | 0  |       if (i == (unsigned int) (needswap_upto + 1)) { | 
923  | 0  |         bds_round(&states[i], idx_leaf, sk_seed, &(params->xmss_par), pub_seed, addr);  | 
924  | 0  |       }  | 
925  | 0  |       updates = bds_treehash_update(&states[i], updates, sk_seed, &(params->xmss_par), pub_seed, addr);  | 
926  | 0  |       setTreeADRS(addr, (idx_tree + 1));  | 
927  |  |       // if a NEXT-tree exists for this level;  | 
928  | 0  |       if ((1 + idx_tree) * (1 << tree_h) + idx_leaf < (1ULL << (h - tree_h * i))) { | 
929  | 0  |         if (i > 0 && updates > 0 && states[params->d + i].next_leaf < (1ULL << h)) { | 
930  | 0  |           bds_state_update(&states[params->d + i], sk_seed, &(params->xmss_par), pub_seed, addr);  | 
931  | 0  |           updates--;  | 
932  | 0  |         }  | 
933  | 0  |       }  | 
934  | 0  |     }  | 
935  | 0  |     else if (idx < (1ULL << h) - 1) { | 
936  | 0  |       memcpy(&tmp, states+params->d + i, sizeof(bds_state));  | 
937  | 0  |       memcpy(states+params->d + i, states + i, sizeof(bds_state));  | 
938  | 0  |       memcpy(states + i, &tmp, sizeof(bds_state));  | 
939  |  | 
  | 
940  | 0  |       setLayerADRS(ots_addr, (i+1));  | 
941  | 0  |       setTreeADRS(ots_addr, ((idx + 1) >> ((i+2) * tree_h)));  | 
942  | 0  |       setOTSADRS(ots_addr, (((idx >> ((i+1) * tree_h)) + 1) & ((1 << tree_h)-1)));  | 
943  |  | 
  | 
944  | 0  |       get_seed(ots_seed, sk+params->index_len, n, ots_addr);  | 
945  | 0  |       wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, states[i].stack, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr);  | 
946  |  | 
  | 
947  | 0  |       states[params->d + i].stackoffset = 0;  | 
948  | 0  |       states[params->d + i].next_leaf = 0;  | 
949  |  | 
  | 
950  | 0  |       updates--; // WOTS-signing counts as one update  | 
951  | 0  |       needswap_upto = i;  | 
952  | 0  |       for (j = 0; j < tree_h-k; j++) { | 
953  | 0  |         states[i].treehash[j].completed = 1;  | 
954  | 0  |       }  | 
955  | 0  |     }  | 
956  | 0  |   }  | 
957  |  |  | 
958  |  |   //Whipe secret elements?  | 
959  |  |   //zerobytes(tsk, CRYPTO_SECRETKEYBYTES);  | 
960  |  | 
  | 
961  | 0  |   memcpy(sig_msg, msg, msglen);  | 
962  | 0  |   *sig_msg_len += msglen;  | 
963  |  | 
  | 
964  | 0  |   return 0;  | 
965  | 0  | }  | 
966  |  |  | 
967  |  | /**  | 
968  |  |  * Verifies a given message signature pair under a given public key.  | 
969  |  |  */  | 
970  |  | int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmssmt_params *params)  | 
971  | 0  | { | 
972  | 0  |   unsigned int n = params->n;  | 
973  |  | 
  | 
974  | 0  |   unsigned int tree_h = params->xmss_par.h;  | 
975  | 0  |   unsigned int idx_len = params->index_len;  | 
976  | 0  |   uint64_t idx_tree;  | 
977  | 0  |   uint32_t idx_leaf;  | 
978  |  | 
  | 
979  | 0  |   unsigned long long i, m_len;  | 
980  | 0  |   unsigned long long idx=0;  | 
981  | 0  |   unsigned char wots_pk[params->xmss_par.wots_par.keysize];  | 
982  | 0  |   unsigned char pkhash[n];  | 
983  | 0  |   unsigned char root[n];  | 
984  | 0  |   unsigned char msg_h[n];  | 
985  | 0  |   unsigned char hash_key[3*n];  | 
986  |  | 
  | 
987  | 0  |   unsigned char pub_seed[n];  | 
988  | 0  |   memcpy(pub_seed, pk+n, n);  | 
989  |  |  | 
990  |  |   // Init addresses  | 
991  | 0  |   uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | 
992  | 0  |   uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | 
993  | 0  |   uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; | 
994  |  |  | 
995  |  |   // Extract index  | 
996  | 0  |   for (i = 0; i < idx_len; i++) { | 
997  | 0  |     idx |= ((unsigned long long)sig_msg[i]) << (8*(idx_len - 1 - i));  | 
998  | 0  |   }  | 
999  | 0  |   printf("verify:: idx = %llu\n", idx); | 
1000  | 0  |   sig_msg += idx_len;  | 
1001  | 0  |   sig_msg_len -= idx_len;  | 
1002  |  |     | 
1003  |  |   // Generate hash key (R || root || idx)  | 
1004  | 0  |   memcpy(hash_key, sig_msg,n);  | 
1005  | 0  |   memcpy(hash_key+n, pk, n);  | 
1006  | 0  |   to_byte(hash_key+2*n, idx, n);  | 
1007  |  | 
  | 
1008  | 0  |   sig_msg += n;  | 
1009  | 0  |   sig_msg_len -= n;  | 
1010  |  |     | 
1011  |  |  | 
1012  |  |   // hash message (recall, R is now on pole position at sig_msg  | 
1013  | 0  |   unsigned long long tmp_sig_len = (params->d * params->xmss_par.wots_par.keysize) + (params->h * n);  | 
1014  | 0  |   m_len = sig_msg_len - tmp_sig_len;  | 
1015  | 0  |   h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*n, n);  | 
1016  |  |  | 
1017  |  |     | 
1018  |  |   //-----------------------  | 
1019  |  |   // Verify signature  | 
1020  |  |   //-----------------------  | 
1021  |  |  | 
1022  |  |   // Prepare Address  | 
1023  | 0  |   idx_tree = idx >> tree_h;  | 
1024  | 0  |   idx_leaf = (idx & ((1 << tree_h)-1));  | 
1025  | 0  |   setLayerADRS(ots_addr, 0);  | 
1026  | 0  |   setTreeADRS(ots_addr, idx_tree);  | 
1027  | 0  |   setType(ots_addr, 0);  | 
1028  |  | 
  | 
1029  | 0  |   memcpy(ltree_addr, ots_addr, 12);  | 
1030  | 0  |   setType(ltree_addr, 1);  | 
1031  |  | 
  | 
1032  | 0  |   memcpy(node_addr, ltree_addr, 12);  | 
1033  | 0  |   setType(node_addr, 2);  | 
1034  |  |     | 
1035  | 0  |   setOTSADRS(ots_addr, idx_leaf);  | 
1036  |  |  | 
1037  |  |   // Check WOTS signature  | 
1038  | 0  |   wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->xmss_par.wots_par), pub_seed, ots_addr);  | 
1039  |  | 
  | 
1040  | 0  |   sig_msg += params->xmss_par.wots_par.keysize;  | 
1041  | 0  |   sig_msg_len -= params->xmss_par.wots_par.keysize;  | 
1042  |  |  | 
1043  |  |   // Compute Ltree  | 
1044  | 0  |   setLtreeADRS(ltree_addr, idx_leaf);  | 
1045  | 0  |   l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr);  | 
1046  |  |  | 
1047  |  |   // Compute root  | 
1048  | 0  |   validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr);  | 
1049  |  | 
  | 
1050  | 0  |   sig_msg += tree_h*n;  | 
1051  | 0  |   sig_msg_len -= tree_h*n;  | 
1052  |  | 
  | 
1053  | 0  |   for (i = 1; i < params->d; i++) { | 
1054  |  |     // Prepare Address  | 
1055  | 0  |     idx_leaf = (idx_tree & ((1 << tree_h)-1));  | 
1056  | 0  |     idx_tree = idx_tree >> tree_h;  | 
1057  |  | 
  | 
1058  | 0  |     setLayerADRS(ots_addr, i);  | 
1059  | 0  |     setTreeADRS(ots_addr, idx_tree);  | 
1060  | 0  |     setType(ots_addr, 0);  | 
1061  |  | 
  | 
1062  | 0  |     memcpy(ltree_addr, ots_addr, 12);  | 
1063  | 0  |     setType(ltree_addr, 1);  | 
1064  |  | 
  | 
1065  | 0  |     memcpy(node_addr, ltree_addr, 12);  | 
1066  | 0  |     setType(node_addr, 2);  | 
1067  |  | 
  | 
1068  | 0  |     setOTSADRS(ots_addr, idx_leaf);  | 
1069  |  |  | 
1070  |  |     // Check WOTS signature  | 
1071  | 0  |     wots_pkFromSig(wots_pk, sig_msg, root, &(params->xmss_par.wots_par), pub_seed, ots_addr);  | 
1072  |  | 
  | 
1073  | 0  |     sig_msg += params->xmss_par.wots_par.keysize;  | 
1074  | 0  |     sig_msg_len -= params->xmss_par.wots_par.keysize;  | 
1075  |  |  | 
1076  |  |     // Compute Ltree  | 
1077  | 0  |     setLtreeADRS(ltree_addr, idx_leaf);  | 
1078  | 0  |     l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr);  | 
1079  |  |  | 
1080  |  |     // Compute root  | 
1081  | 0  |     validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr);  | 
1082  |  | 
  | 
1083  | 0  |     sig_msg += tree_h*n;  | 
1084  | 0  |     sig_msg_len -= tree_h*n;  | 
1085  |  | 
  | 
1086  | 0  |   }  | 
1087  |  | 
  | 
1088  | 0  |   for (i = 0; i < n; i++)  | 
1089  | 0  |     if (root[i] != pk[i])  | 
1090  | 0  |       goto fail;  | 
1091  |  |  | 
1092  | 0  |   *msglen = sig_msg_len;  | 
1093  | 0  |   for (i = 0; i < *msglen; i++)  | 
1094  | 0  |     msg[i] = sig_msg[i];  | 
1095  |  | 
  | 
1096  | 0  |   return 0;  | 
1097  |  |  | 
1098  |  |  | 
1099  | 0  | fail:  | 
1100  | 0  |   *msglen = sig_msg_len;  | 
1101  | 0  |   for (i = 0; i < *msglen; i++)  | 
1102  | 0  |     msg[i] = 0;  | 
1103  | 0  |   *msglen = -1;  | 
1104  | 0  |   return -1;  | 
1105  | 0  | }  | 
1106  |  | #endif /* WITH_XMSS */  |