Line | Count | Source |
1 | | /* $OpenBSD: umac.c,v 1.27 2025/09/05 10:34:35 dtucker Exp $ */ |
2 | | /* ----------------------------------------------------------------------- |
3 | | * |
4 | | * umac.c -- C Implementation UMAC Message Authentication |
5 | | * |
6 | | * Version 0.93b of rfc4418.txt -- 2006 July 18 |
7 | | * |
8 | | * For a full description of UMAC message authentication see the UMAC |
9 | | * world-wide-web page at https://fastcrypto.org/umac/ |
10 | | * Please report bugs and suggestions to the UMAC webpage. |
11 | | * |
12 | | * Copyright (c) 1999-2006 Ted Krovetz |
13 | | * |
14 | | * Permission to use, copy, modify, and distribute this software and |
15 | | * its documentation for any purpose and with or without fee, is hereby |
16 | | * granted provided that the above copyright notice appears in all copies |
17 | | * and in supporting documentation, and that the name of the copyright |
18 | | * holder not be used in advertising or publicity pertaining to |
19 | | * distribution of the software without specific, written prior permission. |
20 | | * |
21 | | * Comments should be directed to Ted Krovetz (tdk@acm.org) |
22 | | * |
23 | | * ---------------------------------------------------------------------- */ |
24 | | |
25 | | /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// |
26 | | * |
27 | | * 1) This version does not work properly on messages larger than 16MB |
28 | | * |
29 | | * 2) If you set the switch to use SSE2, then all data must be 16-byte |
30 | | * aligned |
31 | | * |
32 | | * 3) When calling the function umac(), it is assumed that msg is in |
33 | | * a writable buffer of length divisible by 32 bytes. The message itself |
34 | | * does not have to fill the entire buffer, but bytes beyond msg may be |
35 | | * zeroed. |
36 | | * |
37 | | * 4) Three free AES implementations are supported by this implementation of |
38 | | * UMAC. Paulo Barreto's version is in the public domain and can be found |
39 | | * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for |
40 | | * "Barreto"). The only two files needed are rijndael-alg-fst.c and |
41 | | * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU |
42 | | * Public license at http://fp.gladman.plus.com/AES/index.htm. It |
43 | | * includes a fast IA-32 assembly version. The OpenSSL crypo library is |
44 | | * the third. |
45 | | * |
46 | | * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes |
47 | | * produced under gcc with optimizations set -O3 or higher. Dunno why. |
48 | | * |
49 | | /////////////////////////////////////////////////////////////////////// */ |
50 | | |
51 | | /* ---------------------------------------------------------------------- */ |
52 | | /* --- User Switches ---------------------------------------------------- */ |
53 | | /* ---------------------------------------------------------------------- */ |
54 | | |
55 | | #ifndef UMAC_OUTPUT_LEN |
56 | 0 | #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ |
57 | | #endif |
58 | | |
59 | | #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \ |
60 | | UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16 |
61 | | # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16 |
62 | | #endif |
63 | | |
64 | | /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ |
65 | | /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ |
66 | | /* #define SSE2 0 Is SSE2 is available? */ |
67 | | /* #define RUN_TESTS 0 Run basic correctness/speed tests */ |
68 | | /* #define UMAC_AE_SUPPORT 0 Enable authenticated encryption */ |
69 | | |
70 | | /* ---------------------------------------------------------------------- */ |
71 | | /* -- Global Includes --------------------------------------------------- */ |
72 | | /* ---------------------------------------------------------------------- */ |
73 | | |
74 | | #include "includes.h" |
75 | | |
76 | | #include <sys/types.h> |
77 | | #include <endian.h> |
78 | | #include <string.h> |
79 | | #include <stdarg.h> |
80 | | #include <stdio.h> |
81 | | #include <stdint.h> |
82 | | #include <stdlib.h> |
83 | | #include <stddef.h> |
84 | | |
85 | | #include "xmalloc.h" |
86 | | #include "umac.h" |
87 | | #include "misc.h" |
88 | | |
89 | | /* ---------------------------------------------------------------------- */ |
90 | | /* --- Primitive Data Types --- */ |
91 | | /* ---------------------------------------------------------------------- */ |
92 | | |
93 | | /* The following assumptions may need change on your system */ |
94 | | typedef u_int8_t UINT8; /* 1 byte */ |
95 | | typedef u_int16_t UINT16; /* 2 byte */ |
96 | | typedef u_int32_t UINT32; /* 4 byte */ |
97 | | typedef u_int64_t UINT64; /* 8 bytes */ |
98 | | typedef unsigned int UWORD; /* Register */ |
99 | | |
100 | | /* ---------------------------------------------------------------------- */ |
101 | | /* --- Constants -------------------------------------------------------- */ |
102 | | /* ---------------------------------------------------------------------- */ |
103 | | |
104 | 0 | #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ |
105 | | |
106 | | /* Message "words" are read from memory in an endian-specific manner. */ |
107 | | /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ |
108 | | /* be set true if the host computer is little-endian. */ |
109 | | |
110 | | #if BYTE_ORDER == LITTLE_ENDIAN |
111 | | #define __LITTLE_ENDIAN__ 1 |
112 | | #else |
113 | | #define __LITTLE_ENDIAN__ 0 |
114 | | #endif |
115 | | |
116 | | /* ---------------------------------------------------------------------- */ |
117 | | /* ---------------------------------------------------------------------- */ |
118 | | /* ----- Architecture Specific ------------------------------------------ */ |
119 | | /* ---------------------------------------------------------------------- */ |
120 | | /* ---------------------------------------------------------------------- */ |
121 | | |
122 | | |
123 | | /* ---------------------------------------------------------------------- */ |
124 | | /* ---------------------------------------------------------------------- */ |
125 | | /* ----- Primitive Routines --------------------------------------------- */ |
126 | | /* ---------------------------------------------------------------------- */ |
127 | | /* ---------------------------------------------------------------------- */ |
128 | | |
129 | | |
130 | | /* ---------------------------------------------------------------------- */ |
131 | | /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ |
132 | | /* ---------------------------------------------------------------------- */ |
133 | | |
134 | 0 | #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) |
135 | | |
136 | | /* ---------------------------------------------------------------------- */ |
137 | | /* --- Endian Conversion --- Forcing assembly on some platforms */ |
138 | | /* ---------------------------------------------------------------------- */ |
139 | | |
140 | | |
141 | | /* Using local statically defined versions of the get/put functions |
142 | | * found in misc.c allows them to be inlined. This improves throughput |
143 | | * performance by 10% to 15% on well connected (10Gb/s+) systems. |
144 | | * Chris Rapier <rapier@psc.edu> 2022-03-09 */ |
145 | | |
146 | | static __attribute__((__bounded__(__minbytes__, 1, 4))) |
147 | | u_int32_t umac_get_u32_le(const void *vp) |
148 | 0 | { |
149 | 0 | const u_char *p = (const u_char *)vp; |
150 | 0 | u_int32_t v; |
151 | |
|
152 | 0 | v = (u_int32_t)p[0]; |
153 | 0 | v |= (u_int32_t)p[1] << 8; |
154 | 0 | v |= (u_int32_t)p[2] << 16; |
155 | 0 | v |= (u_int32_t)p[3] << 24; |
156 | |
|
157 | 0 | return (v); |
158 | 0 | } Unexecuted instantiation: umac.c:umac_get_u32_le Unexecuted instantiation: umac128.c:umac_get_u32_le |
159 | | |
160 | | #if 0 /* compile time warning thrown otherwise */ |
161 | | static __attribute__((__bounded__(__minbytes__, 1, 4))); |
162 | | void umac_put_u32_le(void *vp, u_int32_t v) |
163 | | { |
164 | | u_char *p = (u_char *)vp; |
165 | | |
166 | | p[0] = (u_char)v & 0xff; |
167 | | p[1] = (u_char)(v >> 8) & 0xff; |
168 | | p[2] = (u_char)(v >> 16) & 0xff; |
169 | | p[3] = (u_char)(v >> 24) & 0xff; |
170 | | } |
171 | | #endif |
172 | | |
173 | | #if (__LITTLE_ENDIAN__) |
174 | 0 | #define LOAD_UINT32_REVERSED(p) get_u32(p) |
175 | | #define STORE_UINT32_REVERSED(p,v) put_u32(p,v) |
176 | | #else |
177 | | #define LOAD_UINT32_REVERSED(p) umac_get_u32_le(p) |
178 | | #define STORE_UINT32_REVERSED(p,v) umac_put_u32_le(p,v) |
179 | | #endif |
180 | | |
181 | 0 | #define LOAD_UINT32_LITTLE(p) (umac_get_u32_le(p)) |
182 | 0 | #define STORE_UINT32_BIG(p,v) put_u32(p, v) |
183 | | |
184 | | /* ---------------------------------------------------------------------- */ |
185 | | /* ---------------------------------------------------------------------- */ |
186 | | /* ----- Begin KDF & PDF Section ---------------------------------------- */ |
187 | | /* ---------------------------------------------------------------------- */ |
188 | | /* ---------------------------------------------------------------------- */ |
189 | | |
190 | | /* UMAC uses AES with 16 byte block and key lengths */ |
191 | 0 | #define AES_BLOCK_LEN 16 |
192 | | |
193 | | /* OpenSSL's AES */ |
194 | | #ifdef WITH_OPENSSL |
195 | | #include "openbsd-compat/openssl-compat.h" |
196 | | #ifndef USE_BUILTIN_RIJNDAEL |
197 | | # include <openssl/aes.h> |
198 | | #endif |
199 | | typedef AES_KEY aes_int_key[1]; |
200 | | #define aes_encryption(in,out,int_key) \ |
201 | 0 | AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) |
202 | | #define aes_key_setup(key,int_key) \ |
203 | 0 | AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key) |
204 | | #else |
205 | | #include "rijndael.h" |
206 | | #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6) |
207 | | typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */ |
208 | | #define aes_encryption(in,out,int_key) \ |
209 | | rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out)) |
210 | | #define aes_key_setup(key,int_key) \ |
211 | | rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \ |
212 | | UMAC_KEY_LEN*8) |
213 | | #endif |
214 | | |
215 | | /* The user-supplied UMAC key is stretched using AES in a counter |
216 | | * mode to supply all random bits needed by UMAC. The kdf function takes |
217 | | * an AES internal key representation 'key' and writes a stream of |
218 | | * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct |
219 | | * 'ndx' causes a distinct byte stream. |
220 | | */ |
221 | | static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes) |
222 | 0 | { |
223 | 0 | UINT8 in_buf[AES_BLOCK_LEN] = {0}; |
224 | 0 | UINT8 out_buf[AES_BLOCK_LEN]; |
225 | 0 | UINT8 *dst_buf = (UINT8 *)bufp; |
226 | 0 | int i; |
227 | | |
228 | | /* Setup the initial value */ |
229 | 0 | in_buf[AES_BLOCK_LEN-9] = ndx; |
230 | 0 | in_buf[AES_BLOCK_LEN-1] = i = 1; |
231 | |
|
232 | 0 | while (nbytes >= AES_BLOCK_LEN) { |
233 | 0 | aes_encryption(in_buf, out_buf, key); |
234 | 0 | memcpy(dst_buf,out_buf,AES_BLOCK_LEN); |
235 | 0 | in_buf[AES_BLOCK_LEN-1] = ++i; |
236 | 0 | nbytes -= AES_BLOCK_LEN; |
237 | 0 | dst_buf += AES_BLOCK_LEN; |
238 | 0 | } |
239 | 0 | if (nbytes) { |
240 | 0 | aes_encryption(in_buf, out_buf, key); |
241 | 0 | memcpy(dst_buf,out_buf,nbytes); |
242 | 0 | } |
243 | 0 | explicit_bzero(in_buf, sizeof(in_buf)); |
244 | 0 | explicit_bzero(out_buf, sizeof(out_buf)); |
245 | 0 | } Unexecuted instantiation: umac.c:kdf Unexecuted instantiation: umac128.c:kdf |
246 | | |
247 | | /* The final UHASH result is XOR'd with the output of a pseudorandom |
248 | | * function. Here, we use AES to generate random output and |
249 | | * xor the appropriate bytes depending on the last bits of nonce. |
250 | | * This scheme is optimized for sequential, increasing big-endian nonces. |
251 | | */ |
252 | | |
253 | | typedef struct { |
254 | | UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ |
255 | | UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ |
256 | | aes_int_key prf_key; /* Expanded AES key for PDF */ |
257 | | } pdf_ctx; |
258 | | |
259 | | static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) |
260 | 0 | { |
261 | 0 | UINT8 buf[UMAC_KEY_LEN]; |
262 | |
|
263 | 0 | kdf(buf, prf_key, 0, UMAC_KEY_LEN); |
264 | 0 | aes_key_setup(buf, pc->prf_key); |
265 | | |
266 | | /* Initialize pdf and cache */ |
267 | 0 | memset(pc->nonce, 0, sizeof(pc->nonce)); |
268 | 0 | aes_encryption(pc->nonce, pc->cache, pc->prf_key); |
269 | 0 | explicit_bzero(buf, sizeof(buf)); |
270 | 0 | } Unexecuted instantiation: umac.c:pdf_init Unexecuted instantiation: umac128.c:pdf_init |
271 | | |
272 | | static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], |
273 | | UINT8 buf[UMAC_OUTPUT_LEN]) |
274 | 0 | { |
275 | | /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes |
276 | | * of the AES output. If last time around we returned the ndx-1st |
277 | | * element, then we may have the result in the cache already. |
278 | | */ |
279 | |
|
280 | | #if (UMAC_OUTPUT_LEN == 4) |
281 | | #define LOW_BIT_MASK 3 |
282 | | #elif (UMAC_OUTPUT_LEN == 8) |
283 | 0 | #define LOW_BIT_MASK 1 |
284 | | #elif (UMAC_OUTPUT_LEN > 8) |
285 | 0 | #define LOW_BIT_MASK 0 |
286 | | #endif |
287 | 0 | union { |
288 | 0 | UINT8 tmp_nonce_lo[4]; |
289 | 0 | UINT32 align; |
290 | 0 | } t; |
291 | | #if LOW_BIT_MASK != 0 |
292 | 0 | int ndx = nonce[7] & LOW_BIT_MASK; |
293 | | #endif |
294 | 0 | *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; |
295 | 0 | t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ |
296 | |
|
297 | 0 | if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || |
298 | 0 | (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) |
299 | 0 | { |
300 | 0 | ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; |
301 | 0 | ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; |
302 | 0 | aes_encryption(pc->nonce, pc->cache, pc->prf_key); |
303 | 0 | } |
304 | |
|
305 | | #if (UMAC_OUTPUT_LEN == 4) |
306 | | *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; |
307 | | #elif (UMAC_OUTPUT_LEN == 8) |
308 | | *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; |
309 | | #elif (UMAC_OUTPUT_LEN == 12) |
310 | | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; |
311 | | ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; |
312 | | #elif (UMAC_OUTPUT_LEN == 16) |
313 | | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; |
314 | | ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; |
315 | | #endif |
316 | 0 | } Unexecuted instantiation: umac.c:pdf_gen_xor Unexecuted instantiation: umac128.c:pdf_gen_xor |
317 | | |
318 | | /* ---------------------------------------------------------------------- */ |
319 | | /* ---------------------------------------------------------------------- */ |
320 | | /* ----- Begin NH Hash Section ------------------------------------------ */ |
321 | | /* ---------------------------------------------------------------------- */ |
322 | | /* ---------------------------------------------------------------------- */ |
323 | | |
324 | | /* The NH-based hash functions used in UMAC are described in the UMAC paper |
325 | | * and specification, both of which can be found at the UMAC website. |
326 | | * The interface to this implementation has two |
327 | | * versions, one expects the entire message being hashed to be passed |
328 | | * in a single buffer and returns the hash result immediately. The second |
329 | | * allows the message to be passed in a sequence of buffers. In the |
330 | | * multiple-buffer interface, the client calls the routine nh_update() as |
331 | | * many times as necessary. When there is no more data to be fed to the |
332 | | * hash, the client calls nh_final() which calculates the hash output. |
333 | | * Before beginning another hash calculation the nh_reset() routine |
334 | | * must be called. The single-buffer routine, nh(), is equivalent to |
335 | | * the sequence of calls nh_update() and nh_final(); however it is |
336 | | * optimized and should be preferred whenever the multiple-buffer interface |
337 | | * is not necessary. When using either interface, it is the client's |
338 | | * responsibility to pass no more than L1_KEY_LEN bytes per hash result. |
339 | | * |
340 | | * The routine nh_init() initializes the nh_ctx data structure and |
341 | | * must be called once, before any other PDF routine. |
342 | | */ |
343 | | |
344 | | /* The "nh_aux" routines do the actual NH hashing work. They |
345 | | * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines |
346 | | * produce output for all STREAMS NH iterations in one call, |
347 | | * allowing the parallel implementation of the streams. |
348 | | */ |
349 | | |
350 | 0 | #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ |
351 | 0 | #define L1_KEY_LEN 1024 /* Internal key bytes */ |
352 | | #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ |
353 | 0 | #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ |
354 | 0 | #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ |
355 | 0 | #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ |
356 | | |
357 | | typedef struct { |
358 | | UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ |
359 | | UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */ |
360 | | int next_data_empty; /* Bookkeeping variable for data buffer. */ |
361 | | int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorporated. */ |
362 | | UINT64 state[STREAMS]; /* on-line state */ |
363 | | } nh_ctx; |
364 | | |
365 | | |
366 | | #if (UMAC_OUTPUT_LEN == 4) |
367 | | |
368 | | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
369 | | /* NH hashing primitive. Previous (partial) hash result is loaded and |
370 | | * then stored via hp pointer. The length of the data pointed at by "dp", |
371 | | * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key |
372 | | * is expected to be endian compensated in memory at key setup. |
373 | | */ |
374 | | { |
375 | | UINT64 h; |
376 | | UWORD c = dlen / 32; |
377 | | UINT32 *k = (UINT32 *)kp; |
378 | | const UINT32 *d = (const UINT32 *)dp; |
379 | | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
380 | | UINT32 k0,k1,k2,k3,k4,k5,k6,k7; |
381 | | |
382 | | h = *((UINT64 *)hp); |
383 | | do { |
384 | | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
385 | | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
386 | | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
387 | | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
388 | | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
389 | | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
390 | | h += MUL64((k0 + d0), (k4 + d4)); |
391 | | h += MUL64((k1 + d1), (k5 + d5)); |
392 | | h += MUL64((k2 + d2), (k6 + d6)); |
393 | | h += MUL64((k3 + d3), (k7 + d7)); |
394 | | |
395 | | d += 8; |
396 | | k += 8; |
397 | | } while (--c); |
398 | | *((UINT64 *)hp) = h; |
399 | | } |
400 | | |
401 | | #elif (UMAC_OUTPUT_LEN == 8) |
402 | | |
403 | | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
404 | | /* Same as previous nh_aux, but two streams are handled in one pass, |
405 | | * reading and writing 16 bytes of hash-state per call. |
406 | | */ |
407 | 0 | { |
408 | 0 | UINT64 h1,h2; |
409 | 0 | UWORD c = dlen / 32; |
410 | 0 | UINT32 *k = (UINT32 *)kp; |
411 | 0 | const UINT32 *d = (const UINT32 *)dp; |
412 | 0 | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
413 | 0 | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
414 | 0 | k8,k9,k10,k11; |
415 | |
|
416 | 0 | h1 = *((UINT64 *)hp); |
417 | 0 | h2 = *((UINT64 *)hp + 1); |
418 | 0 | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
419 | 0 | do { |
420 | 0 | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
421 | 0 | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
422 | 0 | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
423 | 0 | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
424 | 0 | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
425 | 0 | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
426 | |
|
427 | 0 | h1 += MUL64((k0 + d0), (k4 + d4)); |
428 | 0 | h2 += MUL64((k4 + d0), (k8 + d4)); |
429 | |
|
430 | 0 | h1 += MUL64((k1 + d1), (k5 + d5)); |
431 | 0 | h2 += MUL64((k5 + d1), (k9 + d5)); |
432 | |
|
433 | 0 | h1 += MUL64((k2 + d2), (k6 + d6)); |
434 | 0 | h2 += MUL64((k6 + d2), (k10 + d6)); |
435 | |
|
436 | 0 | h1 += MUL64((k3 + d3), (k7 + d7)); |
437 | 0 | h2 += MUL64((k7 + d3), (k11 + d7)); |
438 | |
|
439 | 0 | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
440 | |
|
441 | 0 | d += 8; |
442 | 0 | k += 8; |
443 | 0 | } while (--c); |
444 | 0 | ((UINT64 *)hp)[0] = h1; |
445 | 0 | ((UINT64 *)hp)[1] = h2; |
446 | 0 | } |
447 | | |
448 | | #elif (UMAC_OUTPUT_LEN == 12) |
449 | | |
450 | | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
451 | | /* Same as previous nh_aux, but two streams are handled in one pass, |
452 | | * reading and writing 24 bytes of hash-state per call. |
453 | | */ |
454 | | { |
455 | | UINT64 h1,h2,h3; |
456 | | UWORD c = dlen / 32; |
457 | | UINT32 *k = (UINT32 *)kp; |
458 | | const UINT32 *d = (const UINT32 *)dp; |
459 | | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
460 | | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
461 | | k8,k9,k10,k11,k12,k13,k14,k15; |
462 | | |
463 | | h1 = *((UINT64 *)hp); |
464 | | h2 = *((UINT64 *)hp + 1); |
465 | | h3 = *((UINT64 *)hp + 2); |
466 | | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
467 | | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
468 | | do { |
469 | | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
470 | | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
471 | | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
472 | | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
473 | | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
474 | | k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); |
475 | | |
476 | | h1 += MUL64((k0 + d0), (k4 + d4)); |
477 | | h2 += MUL64((k4 + d0), (k8 + d4)); |
478 | | h3 += MUL64((k8 + d0), (k12 + d4)); |
479 | | |
480 | | h1 += MUL64((k1 + d1), (k5 + d5)); |
481 | | h2 += MUL64((k5 + d1), (k9 + d5)); |
482 | | h3 += MUL64((k9 + d1), (k13 + d5)); |
483 | | |
484 | | h1 += MUL64((k2 + d2), (k6 + d6)); |
485 | | h2 += MUL64((k6 + d2), (k10 + d6)); |
486 | | h3 += MUL64((k10 + d2), (k14 + d6)); |
487 | | |
488 | | h1 += MUL64((k3 + d3), (k7 + d7)); |
489 | | h2 += MUL64((k7 + d3), (k11 + d7)); |
490 | | h3 += MUL64((k11 + d3), (k15 + d7)); |
491 | | |
492 | | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
493 | | k4 = k12; k5 = k13; k6 = k14; k7 = k15; |
494 | | |
495 | | d += 8; |
496 | | k += 8; |
497 | | } while (--c); |
498 | | ((UINT64 *)hp)[0] = h1; |
499 | | ((UINT64 *)hp)[1] = h2; |
500 | | ((UINT64 *)hp)[2] = h3; |
501 | | } |
502 | | |
503 | | #elif (UMAC_OUTPUT_LEN == 16) |
504 | | |
505 | | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
506 | | /* Same as previous nh_aux, but two streams are handled in one pass, |
507 | | * reading and writing 24 bytes of hash-state per call. |
508 | | */ |
509 | 0 | { |
510 | 0 | UINT64 h1,h2,h3,h4; |
511 | 0 | UWORD c = dlen / 32; |
512 | 0 | UINT32 *k = (UINT32 *)kp; |
513 | 0 | const UINT32 *d = (const UINT32 *)dp; |
514 | 0 | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
515 | 0 | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
516 | 0 | k8,k9,k10,k11,k12,k13,k14,k15, |
517 | 0 | k16,k17,k18,k19; |
518 | |
|
519 | 0 | h1 = *((UINT64 *)hp); |
520 | 0 | h2 = *((UINT64 *)hp + 1); |
521 | 0 | h3 = *((UINT64 *)hp + 2); |
522 | 0 | h4 = *((UINT64 *)hp + 3); |
523 | 0 | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
524 | 0 | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
525 | 0 | do { |
526 | 0 | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
527 | 0 | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
528 | 0 | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
529 | 0 | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
530 | 0 | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
531 | 0 | k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); |
532 | 0 | k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); |
533 | |
|
534 | 0 | h1 += MUL64((k0 + d0), (k4 + d4)); |
535 | 0 | h2 += MUL64((k4 + d0), (k8 + d4)); |
536 | 0 | h3 += MUL64((k8 + d0), (k12 + d4)); |
537 | 0 | h4 += MUL64((k12 + d0), (k16 + d4)); |
538 | |
|
539 | 0 | h1 += MUL64((k1 + d1), (k5 + d5)); |
540 | 0 | h2 += MUL64((k5 + d1), (k9 + d5)); |
541 | 0 | h3 += MUL64((k9 + d1), (k13 + d5)); |
542 | 0 | h4 += MUL64((k13 + d1), (k17 + d5)); |
543 | |
|
544 | 0 | h1 += MUL64((k2 + d2), (k6 + d6)); |
545 | 0 | h2 += MUL64((k6 + d2), (k10 + d6)); |
546 | 0 | h3 += MUL64((k10 + d2), (k14 + d6)); |
547 | 0 | h4 += MUL64((k14 + d2), (k18 + d6)); |
548 | |
|
549 | 0 | h1 += MUL64((k3 + d3), (k7 + d7)); |
550 | 0 | h2 += MUL64((k7 + d3), (k11 + d7)); |
551 | 0 | h3 += MUL64((k11 + d3), (k15 + d7)); |
552 | 0 | h4 += MUL64((k15 + d3), (k19 + d7)); |
553 | |
|
554 | 0 | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
555 | 0 | k4 = k12; k5 = k13; k6 = k14; k7 = k15; |
556 | 0 | k8 = k16; k9 = k17; k10 = k18; k11 = k19; |
557 | |
|
558 | 0 | d += 8; |
559 | 0 | k += 8; |
560 | 0 | } while (--c); |
561 | 0 | ((UINT64 *)hp)[0] = h1; |
562 | 0 | ((UINT64 *)hp)[1] = h2; |
563 | 0 | ((UINT64 *)hp)[2] = h3; |
564 | 0 | ((UINT64 *)hp)[3] = h4; |
565 | 0 | } |
566 | | |
567 | | /* ---------------------------------------------------------------------- */ |
568 | | #endif /* UMAC_OUTPUT_LENGTH */ |
569 | | /* ---------------------------------------------------------------------- */ |
570 | | |
571 | | |
572 | | /* ---------------------------------------------------------------------- */ |
573 | | |
574 | | static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) |
575 | | /* This function is a wrapper for the primitive NH hash functions. It takes |
576 | | * as argument "hc" the current hash context and a buffer which must be a |
577 | | * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset |
578 | | * appropriately according to how much message has been hashed already. |
579 | | */ |
580 | 0 | { |
581 | 0 | UINT8 *key; |
582 | |
|
583 | 0 | key = hc->nh_key + hc->bytes_hashed; |
584 | 0 | nh_aux(key, buf, hc->state, nbytes); |
585 | 0 | } Unexecuted instantiation: umac.c:nh_transform Unexecuted instantiation: umac128.c:nh_transform |
586 | | |
587 | | /* ---------------------------------------------------------------------- */ |
588 | | |
589 | | #if (__LITTLE_ENDIAN__) |
590 | | static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) |
591 | | /* We endian convert the keys on little-endian computers to */ |
592 | | /* compensate for the lack of big-endian memory reads during hashing. */ |
593 | 0 | { |
594 | 0 | UWORD iters = num_bytes / bpw; |
595 | 0 | if (bpw == 4) { |
596 | 0 | UINT32 *p = (UINT32 *)buf; |
597 | 0 | do { |
598 | 0 | *p = LOAD_UINT32_REVERSED(p); |
599 | 0 | p++; |
600 | 0 | } while (--iters); |
601 | 0 | } else if (bpw == 8) { |
602 | 0 | UINT32 *p = (UINT32 *)buf; |
603 | 0 | UINT32 t; |
604 | 0 | do { |
605 | 0 | t = LOAD_UINT32_REVERSED(p+1); |
606 | 0 | p[1] = LOAD_UINT32_REVERSED(p); |
607 | 0 | p[0] = t; |
608 | 0 | p += 2; |
609 | 0 | } while (--iters); |
610 | 0 | } |
611 | 0 | } Unexecuted instantiation: umac.c:endian_convert Unexecuted instantiation: umac128.c:endian_convert |
612 | 0 | #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) |
613 | | #else |
614 | | #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ |
615 | | #endif |
616 | | |
617 | | /* ---------------------------------------------------------------------- */ |
618 | | |
619 | | static void nh_reset(nh_ctx *hc) |
620 | | /* Reset nh_ctx to ready for hashing of new data */ |
621 | 0 | { |
622 | 0 | hc->bytes_hashed = 0; |
623 | 0 | hc->next_data_empty = 0; |
624 | 0 | hc->state[0] = 0; |
625 | 0 | #if (UMAC_OUTPUT_LEN >= 8) |
626 | 0 | hc->state[1] = 0; |
627 | 0 | #endif |
628 | | #if (UMAC_OUTPUT_LEN >= 12) |
629 | | hc->state[2] = 0; |
630 | | #endif |
631 | | #if (UMAC_OUTPUT_LEN == 16) |
632 | | hc->state[3] = 0; |
633 | | #endif |
634 | |
|
635 | 0 | } Unexecuted instantiation: umac.c:nh_reset Unexecuted instantiation: umac128.c:nh_reset |
636 | | |
637 | | /* ---------------------------------------------------------------------- */ |
638 | | |
639 | | static void nh_init(nh_ctx *hc, aes_int_key prf_key) |
640 | | /* Generate nh_key, endian convert and reset to be ready for hashing. */ |
641 | 0 | { |
642 | 0 | kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); |
643 | 0 | endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); |
644 | 0 | nh_reset(hc); |
645 | 0 | } Unexecuted instantiation: umac.c:nh_init Unexecuted instantiation: umac128.c:nh_init |
646 | | |
647 | | /* ---------------------------------------------------------------------- */ |
648 | | |
649 | | static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) |
650 | | /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ |
651 | | /* even multiple of HASH_BUF_BYTES. */ |
652 | 0 | { |
653 | 0 | UINT32 i,j; |
654 | |
|
655 | 0 | j = hc->next_data_empty; |
656 | 0 | if ((j + nbytes) >= HASH_BUF_BYTES) { |
657 | 0 | if (j) { |
658 | 0 | i = HASH_BUF_BYTES - j; |
659 | 0 | memcpy(hc->data+j, buf, i); |
660 | 0 | nh_transform(hc,hc->data,HASH_BUF_BYTES); |
661 | 0 | nbytes -= i; |
662 | 0 | buf += i; |
663 | 0 | hc->bytes_hashed += HASH_BUF_BYTES; |
664 | 0 | } |
665 | 0 | if (nbytes >= HASH_BUF_BYTES) { |
666 | 0 | i = nbytes & ~(HASH_BUF_BYTES - 1); |
667 | 0 | nh_transform(hc, buf, i); |
668 | 0 | nbytes -= i; |
669 | 0 | buf += i; |
670 | 0 | hc->bytes_hashed += i; |
671 | 0 | } |
672 | 0 | j = 0; |
673 | 0 | } |
674 | 0 | memcpy(hc->data + j, buf, nbytes); |
675 | 0 | hc->next_data_empty = j + nbytes; |
676 | 0 | } Unexecuted instantiation: umac.c:nh_update Unexecuted instantiation: umac128.c:nh_update |
677 | | |
678 | | /* ---------------------------------------------------------------------- */ |
679 | | |
680 | | static void zero_pad(UINT8 *p, int nbytes) |
681 | 0 | { |
682 | | /* Write "nbytes" of zeroes, beginning at "p" */ |
683 | 0 | if (nbytes >= (int)sizeof(UWORD)) { |
684 | 0 | while ((ptrdiff_t)p % sizeof(UWORD)) { |
685 | 0 | *p = 0; |
686 | 0 | nbytes--; |
687 | 0 | p++; |
688 | 0 | } |
689 | 0 | while (nbytes >= (int)sizeof(UWORD)) { |
690 | 0 | *(UWORD *)p = 0; |
691 | 0 | nbytes -= sizeof(UWORD); |
692 | 0 | p += sizeof(UWORD); |
693 | 0 | } |
694 | 0 | } |
695 | 0 | while (nbytes) { |
696 | 0 | *p = 0; |
697 | 0 | nbytes--; |
698 | 0 | p++; |
699 | 0 | } |
700 | 0 | } Unexecuted instantiation: umac.c:zero_pad Unexecuted instantiation: umac128.c:zero_pad |
701 | | |
702 | | /* ---------------------------------------------------------------------- */ |
703 | | |
704 | | static void nh_final(nh_ctx *hc, UINT8 *result) |
705 | | /* After passing some number of data buffers to nh_update() for integration |
706 | | * into an NH context, nh_final is called to produce a hash result. If any |
707 | | * bytes are in the buffer hc->data, incorporate them into the |
708 | | * NH context. Finally, add into the NH accumulation "state" the total number |
709 | | * of bits hashed. The resulting numbers are written to the buffer "result". |
710 | | * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. |
711 | | */ |
712 | 0 | { |
713 | 0 | int nh_len, nbits; |
714 | |
|
715 | 0 | if (hc->next_data_empty != 0) { |
716 | 0 | nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & |
717 | 0 | ~(L1_PAD_BOUNDARY - 1)); |
718 | 0 | zero_pad(hc->data + hc->next_data_empty, |
719 | 0 | nh_len - hc->next_data_empty); |
720 | 0 | nh_transform(hc, hc->data, nh_len); |
721 | 0 | hc->bytes_hashed += hc->next_data_empty; |
722 | 0 | } else if (hc->bytes_hashed == 0) { |
723 | 0 | nh_len = L1_PAD_BOUNDARY; |
724 | 0 | zero_pad(hc->data, L1_PAD_BOUNDARY); |
725 | 0 | nh_transform(hc, hc->data, nh_len); |
726 | 0 | } |
727 | |
|
728 | 0 | nbits = (hc->bytes_hashed << 3); |
729 | 0 | ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; |
730 | 0 | #if (UMAC_OUTPUT_LEN >= 8) |
731 | 0 | ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; |
732 | 0 | #endif |
733 | | #if (UMAC_OUTPUT_LEN >= 12) |
734 | | ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; |
735 | | #endif |
736 | | #if (UMAC_OUTPUT_LEN == 16) |
737 | | ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; |
738 | | #endif |
739 | 0 | nh_reset(hc); |
740 | 0 | } Unexecuted instantiation: umac.c:nh_final Unexecuted instantiation: umac128.c:nh_final |
741 | | |
742 | | /* ---------------------------------------------------------------------- */ |
743 | | |
744 | | static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len, |
745 | | UINT32 unpadded_len, UINT8 *result) |
746 | | /* All-in-one nh_update() and nh_final() equivalent. |
747 | | * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is |
748 | | * well aligned |
749 | | */ |
750 | 0 | { |
751 | 0 | UINT32 nbits; |
752 | | |
753 | | /* Initialize the hash state */ |
754 | 0 | nbits = (unpadded_len << 3); |
755 | |
|
756 | 0 | ((UINT64 *)result)[0] = nbits; |
757 | 0 | #if (UMAC_OUTPUT_LEN >= 8) |
758 | 0 | ((UINT64 *)result)[1] = nbits; |
759 | 0 | #endif |
760 | | #if (UMAC_OUTPUT_LEN >= 12) |
761 | | ((UINT64 *)result)[2] = nbits; |
762 | | #endif |
763 | | #if (UMAC_OUTPUT_LEN == 16) |
764 | | ((UINT64 *)result)[3] = nbits; |
765 | | #endif |
766 | |
|
767 | 0 | nh_aux(hc->nh_key, buf, result, padded_len); |
768 | 0 | } Unexecuted instantiation: umac.c:nh Unexecuted instantiation: umac128.c:nh |
769 | | |
770 | | /* ---------------------------------------------------------------------- */ |
771 | | /* ---------------------------------------------------------------------- */ |
772 | | /* ----- Begin UHASH Section -------------------------------------------- */ |
773 | | /* ---------------------------------------------------------------------- */ |
774 | | /* ---------------------------------------------------------------------- */ |
775 | | |
776 | | /* UHASH is a multi-layered algorithm. Data presented to UHASH is first |
777 | | * hashed by NH. The NH output is then hashed by a polynomial-hash layer |
778 | | * unless the initial data to be hashed is short. After the polynomial- |
779 | | * layer, an inner-product hash is used to produce the final UHASH output. |
780 | | * |
781 | | * UHASH provides two interfaces, one all-at-once and another where data |
782 | | * buffers are presented sequentially. In the sequential interface, the |
783 | | * UHASH client calls the routine uhash_update() as many times as necessary. |
784 | | * When there is no more data to be fed to UHASH, the client calls |
785 | | * uhash_final() which |
786 | | * calculates the UHASH output. Before beginning another UHASH calculation |
787 | | * the uhash_reset() routine must be called. The all-at-once UHASH routine, |
788 | | * uhash(), is equivalent to the sequence of calls uhash_update() and |
789 | | * uhash_final(); however it is optimized and should be |
790 | | * used whenever the sequential interface is not necessary. |
791 | | * |
792 | | * The routine uhash_init() initializes the uhash_ctx data structure and |
793 | | * must be called once, before any other UHASH routine. |
794 | | */ |
795 | | |
796 | | /* ---------------------------------------------------------------------- */ |
797 | | /* ----- Constants and uhash_ctx ---------------------------------------- */ |
798 | | /* ---------------------------------------------------------------------- */ |
799 | | |
800 | | /* ---------------------------------------------------------------------- */ |
801 | | /* ----- Poly hash and Inner-Product hash Constants --------------------- */ |
802 | | /* ---------------------------------------------------------------------- */ |
803 | | |
804 | | /* Primes and masks */ |
805 | 0 | #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ |
806 | 0 | #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ |
807 | 0 | #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ |
808 | | |
809 | | |
810 | | /* ---------------------------------------------------------------------- */ |
811 | | |
812 | | typedef struct uhash_ctx { |
813 | | nh_ctx hash; /* Hash context for L1 NH hash */ |
814 | | UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ |
815 | | UINT64 poly_accum[STREAMS]; /* poly hash result */ |
816 | | UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ |
817 | | UINT32 ip_trans[STREAMS]; /* Inner-product translation */ |
818 | | UINT32 msg_len; /* Total length of data passed */ |
819 | | /* to uhash */ |
820 | | } uhash_ctx; |
821 | | typedef struct uhash_ctx *uhash_ctx_t; |
822 | | |
823 | | /* ---------------------------------------------------------------------- */ |
824 | | |
825 | | |
826 | | /* The polynomial hashes use Horner's rule to evaluate a polynomial one |
827 | | * word at a time. As described in the specification, poly32 and poly64 |
828 | | * require keys from special domains. The following implementations exploit |
829 | | * the special domains to avoid overflow. The results are not guaranteed to |
830 | | * be within Z_p32 and Z_p64, but the Inner-Product hash implementation |
831 | | * patches any errant values. |
832 | | */ |
833 | | |
834 | | static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) |
835 | 0 | { |
836 | 0 | UINT32 key_hi = (UINT32)(key >> 32), |
837 | 0 | key_lo = (UINT32)key, |
838 | 0 | cur_hi = (UINT32)(cur >> 32), |
839 | 0 | cur_lo = (UINT32)cur, |
840 | 0 | x_lo, |
841 | 0 | x_hi; |
842 | 0 | UINT64 X,T,res; |
843 | |
|
844 | 0 | X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); |
845 | 0 | x_lo = (UINT32)X; |
846 | 0 | x_hi = (UINT32)(X >> 32); |
847 | |
|
848 | 0 | res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); |
849 | |
|
850 | 0 | T = ((UINT64)x_lo << 32); |
851 | 0 | res += T; |
852 | 0 | if (res < T) |
853 | 0 | res += 59; |
854 | |
|
855 | 0 | res += data; |
856 | 0 | if (res < data) |
857 | 0 | res += 59; |
858 | |
|
859 | 0 | return res; |
860 | 0 | } Unexecuted instantiation: umac.c:poly64 Unexecuted instantiation: umac128.c:poly64 |
861 | | |
862 | | |
863 | | /* Although UMAC is specified to use a ramped polynomial hash scheme, this |
864 | | * implementation does not handle all ramp levels. Because we don't handle |
865 | | * the ramp up to p128 modulus in this implementation, we are limited to |
866 | | * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 |
867 | | * bytes input to UMAC per tag, ie. 16MB). |
868 | | */ |
869 | | static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) |
870 | 0 | { |
871 | 0 | int i; |
872 | 0 | UINT64 *data=(UINT64*)data_in; |
873 | |
|
874 | 0 | for (i = 0; i < STREAMS; i++) { |
875 | 0 | if ((UINT32)(data[i] >> 32) == 0xfffffffful) { |
876 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
877 | 0 | hc->poly_key_8[i], p64 - 1); |
878 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
879 | 0 | hc->poly_key_8[i], (data[i] - 59)); |
880 | 0 | } else { |
881 | 0 | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
882 | 0 | hc->poly_key_8[i], data[i]); |
883 | 0 | } |
884 | 0 | } |
885 | 0 | } Unexecuted instantiation: umac.c:poly_hash Unexecuted instantiation: umac128.c:poly_hash |
886 | | |
887 | | |
888 | | /* ---------------------------------------------------------------------- */ |
889 | | |
890 | | |
891 | | /* The final step in UHASH is an inner-product hash. The poly hash |
892 | | * produces a result not necessarily WORD_LEN bytes long. The inner- |
893 | | * product hash breaks the polyhash output into 16-bit chunks and |
894 | | * multiplies each with a 36 bit key. |
895 | | */ |
896 | | |
897 | | static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) |
898 | 0 | { |
899 | 0 | t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); |
900 | 0 | t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); |
901 | 0 | t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); |
902 | 0 | t = t + ipkp[3] * (UINT64)(UINT16)(data); |
903 | |
|
904 | 0 | return t; |
905 | 0 | } Unexecuted instantiation: umac.c:ip_aux Unexecuted instantiation: umac128.c:ip_aux |
906 | | |
907 | | static UINT32 ip_reduce_p36(UINT64 t) |
908 | 0 | { |
909 | | /* Divisionless modular reduction */ |
910 | 0 | UINT64 ret; |
911 | |
|
912 | 0 | ret = (t & m36) + 5 * (t >> 36); |
913 | 0 | if (ret >= p36) |
914 | 0 | ret -= p36; |
915 | | |
916 | | /* return least significant 32 bits */ |
917 | 0 | return (UINT32)(ret); |
918 | 0 | } Unexecuted instantiation: umac.c:ip_reduce_p36 Unexecuted instantiation: umac128.c:ip_reduce_p36 |
919 | | |
920 | | |
921 | | /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then |
922 | | * the polyhash stage is skipped and ip_short is applied directly to the |
923 | | * NH output. |
924 | | */ |
925 | | static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) |
926 | 0 | { |
927 | 0 | UINT64 t; |
928 | 0 | UINT64 *nhp = (UINT64 *)nh_res; |
929 | |
|
930 | 0 | t = ip_aux(0,ahc->ip_keys, nhp[0]); |
931 | 0 | STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); |
932 | 0 | #if (UMAC_OUTPUT_LEN >= 8) |
933 | 0 | t = ip_aux(0,ahc->ip_keys+4, nhp[1]); |
934 | 0 | STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); |
935 | 0 | #endif |
936 | | #if (UMAC_OUTPUT_LEN >= 12) |
937 | | t = ip_aux(0,ahc->ip_keys+8, nhp[2]); |
938 | 0 | STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); |
939 | | #endif |
940 | | #if (UMAC_OUTPUT_LEN == 16) |
941 | | t = ip_aux(0,ahc->ip_keys+12, nhp[3]); |
942 | 0 | STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); |
943 | | #endif |
944 | 0 | } Unexecuted instantiation: umac.c:ip_short Unexecuted instantiation: umac128.c:ip_short |
945 | | |
946 | | /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then |
947 | | * the polyhash stage is not skipped and ip_long is applied to the |
948 | | * polyhash output. |
949 | | */ |
950 | | static void ip_long(uhash_ctx_t ahc, u_char *res) |
951 | 0 | { |
952 | 0 | int i; |
953 | 0 | UINT64 t; |
954 | |
|
955 | 0 | for (i = 0; i < STREAMS; i++) { |
956 | | /* fix polyhash output not in Z_p64 */ |
957 | 0 | if (ahc->poly_accum[i] >= p64) |
958 | 0 | ahc->poly_accum[i] -= p64; |
959 | 0 | t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); |
960 | 0 | STORE_UINT32_BIG((UINT32 *)res+i, |
961 | 0 | ip_reduce_p36(t) ^ ahc->ip_trans[i]); |
962 | 0 | } |
963 | 0 | } Unexecuted instantiation: umac.c:ip_long Unexecuted instantiation: umac128.c:ip_long |
964 | | |
965 | | |
966 | | /* ---------------------------------------------------------------------- */ |
967 | | |
968 | | /* ---------------------------------------------------------------------- */ |
969 | | |
970 | | /* Reset uhash context for next hash session */ |
971 | | static int uhash_reset(uhash_ctx_t pc) |
972 | 0 | { |
973 | 0 | nh_reset(&pc->hash); |
974 | 0 | pc->msg_len = 0; |
975 | 0 | pc->poly_accum[0] = 1; |
976 | 0 | #if (UMAC_OUTPUT_LEN >= 8) |
977 | 0 | pc->poly_accum[1] = 1; |
978 | 0 | #endif |
979 | | #if (UMAC_OUTPUT_LEN >= 12) |
980 | | pc->poly_accum[2] = 1; |
981 | | #endif |
982 | | #if (UMAC_OUTPUT_LEN == 16) |
983 | | pc->poly_accum[3] = 1; |
984 | | #endif |
985 | 0 | return 1; |
986 | 0 | } Unexecuted instantiation: umac.c:uhash_reset Unexecuted instantiation: umac128.c:uhash_reset |
987 | | |
988 | | /* ---------------------------------------------------------------------- */ |
989 | | |
990 | | /* Given a pointer to the internal key needed by kdf() and a uhash context, |
991 | | * initialize the NH context and generate keys needed for poly and inner- |
992 | | * product hashing. All keys are endian adjusted in memory so that native |
993 | | * loads cause correct keys to be in registers during calculation. |
994 | | */ |
995 | | static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) |
996 | 0 | { |
997 | 0 | int i; |
998 | 0 | UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; |
999 | | |
1000 | | /* Zero the entire uhash context */ |
1001 | 0 | memset(ahc, 0, sizeof(uhash_ctx)); |
1002 | | |
1003 | | /* Initialize the L1 hash */ |
1004 | 0 | nh_init(&ahc->hash, prf_key); |
1005 | | |
1006 | | /* Setup L2 hash variables */ |
1007 | 0 | kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ |
1008 | 0 | for (i = 0; i < STREAMS; i++) { |
1009 | | /* Fill keys from the buffer, skipping bytes in the buffer not |
1010 | | * used by this implementation. Endian reverse the keys if on a |
1011 | | * little-endian computer. |
1012 | | */ |
1013 | 0 | memcpy(ahc->poly_key_8+i, buf+24*i, 8); |
1014 | 0 | endian_convert_if_le(ahc->poly_key_8+i, 8, 8); |
1015 | | /* Mask the 64-bit keys to their special domain */ |
1016 | 0 | ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; |
1017 | 0 | ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ |
1018 | 0 | } |
1019 | | |
1020 | | /* Setup L3-1 hash variables */ |
1021 | 0 | kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ |
1022 | 0 | for (i = 0; i < STREAMS; i++) |
1023 | 0 | memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), |
1024 | 0 | 4*sizeof(UINT64)); |
1025 | 0 | endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), |
1026 | 0 | sizeof(ahc->ip_keys)); |
1027 | 0 | for (i = 0; i < STREAMS*4; i++) |
1028 | 0 | ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ |
1029 | | |
1030 | | /* Setup L3-2 hash variables */ |
1031 | | /* Fill buffer with index 4 key */ |
1032 | 0 | kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); |
1033 | 0 | endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), |
1034 | 0 | STREAMS * sizeof(UINT32)); |
1035 | 0 | explicit_bzero(buf, sizeof(buf)); |
1036 | 0 | } Unexecuted instantiation: umac.c:uhash_init Unexecuted instantiation: umac128.c:uhash_init |
1037 | | |
1038 | | /* ---------------------------------------------------------------------- */ |
1039 | | |
1040 | | #if 0 |
1041 | | static uhash_ctx_t uhash_alloc(u_char key[]) |
1042 | | { |
1043 | | /* Allocate memory and force to a 16-byte boundary. */ |
1044 | | uhash_ctx_t ctx; |
1045 | | u_char bytes_to_add; |
1046 | | aes_int_key prf_key; |
1047 | | |
1048 | | ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); |
1049 | | if (ctx) { |
1050 | | if (ALLOC_BOUNDARY) { |
1051 | | bytes_to_add = ALLOC_BOUNDARY - |
1052 | | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); |
1053 | | ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); |
1054 | | *((u_char *)ctx - 1) = bytes_to_add; |
1055 | | } |
1056 | | aes_key_setup(key,prf_key); |
1057 | | uhash_init(ctx, prf_key); |
1058 | | } |
1059 | | return (ctx); |
1060 | | } |
1061 | | #endif |
1062 | | |
1063 | | /* ---------------------------------------------------------------------- */ |
1064 | | |
1065 | | #if 0 |
1066 | | static int uhash_free(uhash_ctx_t ctx) |
1067 | | { |
1068 | | /* Free memory allocated by uhash_alloc */ |
1069 | | u_char bytes_to_sub; |
1070 | | |
1071 | | if (ctx) { |
1072 | | if (ALLOC_BOUNDARY) { |
1073 | | bytes_to_sub = *((u_char *)ctx - 1); |
1074 | | ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); |
1075 | | } |
1076 | | free(ctx); |
1077 | | } |
1078 | | return (1); |
1079 | | } |
1080 | | #endif |
1081 | | /* ---------------------------------------------------------------------- */ |
1082 | | |
1083 | | static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len) |
1084 | | /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and |
1085 | | * hash each one with NH, calling the polyhash on each NH output. |
1086 | | */ |
1087 | 0 | { |
1088 | 0 | UWORD bytes_hashed, bytes_remaining; |
1089 | 0 | UINT64 result_buf[STREAMS]; |
1090 | 0 | UINT8 *nh_result = (UINT8 *)&result_buf; |
1091 | |
|
1092 | 0 | if (ctx->msg_len + len <= L1_KEY_LEN) { |
1093 | 0 | nh_update(&ctx->hash, (const UINT8 *)input, len); |
1094 | 0 | ctx->msg_len += len; |
1095 | 0 | } else { |
1096 | |
|
1097 | 0 | bytes_hashed = ctx->msg_len % L1_KEY_LEN; |
1098 | 0 | if (ctx->msg_len == L1_KEY_LEN) |
1099 | 0 | bytes_hashed = L1_KEY_LEN; |
1100 | |
|
1101 | 0 | if (bytes_hashed + len >= L1_KEY_LEN) { |
1102 | | |
1103 | | /* If some bytes have been passed to the hash function */ |
1104 | | /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ |
1105 | | /* bytes to complete the current nh_block. */ |
1106 | 0 | if (bytes_hashed) { |
1107 | 0 | bytes_remaining = (L1_KEY_LEN - bytes_hashed); |
1108 | 0 | nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); |
1109 | 0 | nh_final(&ctx->hash, nh_result); |
1110 | 0 | ctx->msg_len += bytes_remaining; |
1111 | 0 | poly_hash(ctx,(UINT32 *)nh_result); |
1112 | 0 | len -= bytes_remaining; |
1113 | 0 | input += bytes_remaining; |
1114 | 0 | } |
1115 | | |
1116 | | /* Hash directly from input stream if enough bytes */ |
1117 | 0 | while (len >= L1_KEY_LEN) { |
1118 | 0 | nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, |
1119 | 0 | L1_KEY_LEN, nh_result); |
1120 | 0 | ctx->msg_len += L1_KEY_LEN; |
1121 | 0 | len -= L1_KEY_LEN; |
1122 | 0 | input += L1_KEY_LEN; |
1123 | 0 | poly_hash(ctx,(UINT32 *)nh_result); |
1124 | 0 | } |
1125 | 0 | } |
1126 | | |
1127 | | /* pass remaining < L1_KEY_LEN bytes of input data to NH */ |
1128 | 0 | if (len > 0 && (unsigned long)len <= UINT32_MAX) { |
1129 | 0 | nh_update(&ctx->hash, (const UINT8 *)input, len); |
1130 | 0 | ctx->msg_len += len; |
1131 | 0 | } |
1132 | 0 | } |
1133 | |
|
1134 | 0 | return (1); |
1135 | 0 | } Unexecuted instantiation: umac.c:uhash_update Unexecuted instantiation: umac128.c:uhash_update |
1136 | | |
1137 | | /* ---------------------------------------------------------------------- */ |
1138 | | |
1139 | | static int uhash_final(uhash_ctx_t ctx, u_char *res) |
1140 | | /* Incorporate any pending data, pad, and generate tag */ |
1141 | 0 | { |
1142 | 0 | UINT64 result_buf[STREAMS]; |
1143 | 0 | UINT8 *nh_result = (UINT8 *)&result_buf; |
1144 | |
|
1145 | 0 | if (ctx->msg_len > L1_KEY_LEN) { |
1146 | 0 | if (ctx->msg_len % L1_KEY_LEN) { |
1147 | 0 | nh_final(&ctx->hash, nh_result); |
1148 | 0 | poly_hash(ctx,(UINT32 *)nh_result); |
1149 | 0 | } |
1150 | 0 | ip_long(ctx, res); |
1151 | 0 | } else { |
1152 | 0 | nh_final(&ctx->hash, nh_result); |
1153 | 0 | ip_short(ctx,nh_result, res); |
1154 | 0 | } |
1155 | 0 | uhash_reset(ctx); |
1156 | 0 | return (1); |
1157 | 0 | } Unexecuted instantiation: umac.c:uhash_final Unexecuted instantiation: umac128.c:uhash_final |
1158 | | |
1159 | | /* ---------------------------------------------------------------------- */ |
1160 | | |
1161 | | #if 0 |
1162 | | static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) |
1163 | | /* assumes that msg is in a writable buffer of length divisible by */ |
1164 | | /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ |
1165 | | { |
1166 | | UINT8 nh_result[STREAMS*sizeof(UINT64)]; |
1167 | | UINT32 nh_len; |
1168 | | int extra_zeroes_needed; |
1169 | | |
1170 | | /* If the message to be hashed is no longer than L1_HASH_LEN, we skip |
1171 | | * the polyhash. |
1172 | | */ |
1173 | | if (len <= L1_KEY_LEN) { |
1174 | | if (len == 0) /* If zero length messages will not */ |
1175 | | nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ |
1176 | | else |
1177 | | nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); |
1178 | | extra_zeroes_needed = nh_len - len; |
1179 | | zero_pad((UINT8 *)msg + len, extra_zeroes_needed); |
1180 | | nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); |
1181 | | ip_short(ahc,nh_result, res); |
1182 | | } else { |
1183 | | /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH |
1184 | | * output to poly_hash(). |
1185 | | */ |
1186 | | do { |
1187 | | nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); |
1188 | | poly_hash(ahc,(UINT32 *)nh_result); |
1189 | | len -= L1_KEY_LEN; |
1190 | | msg += L1_KEY_LEN; |
1191 | | } while (len >= L1_KEY_LEN); |
1192 | | if (len) { |
1193 | | nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); |
1194 | | extra_zeroes_needed = nh_len - len; |
1195 | | zero_pad((UINT8 *)msg + len, extra_zeroes_needed); |
1196 | | nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); |
1197 | | poly_hash(ahc,(UINT32 *)nh_result); |
1198 | | } |
1199 | | |
1200 | | ip_long(ahc, res); |
1201 | | } |
1202 | | |
1203 | | uhash_reset(ahc); |
1204 | | return 1; |
1205 | | } |
1206 | | #endif |
1207 | | |
1208 | | /* ---------------------------------------------------------------------- */ |
1209 | | /* ---------------------------------------------------------------------- */ |
1210 | | /* ----- Begin UMAC Section --------------------------------------------- */ |
1211 | | /* ---------------------------------------------------------------------- */ |
1212 | | /* ---------------------------------------------------------------------- */ |
1213 | | |
1214 | | /* The UMAC interface has two interfaces, an all-at-once interface where |
1215 | | * the entire message to be authenticated is passed to UMAC in one buffer, |
1216 | | * and a sequential interface where the message is presented a little at a |
1217 | | * time. The all-at-once is more optimized than the sequential version and |
1218 | | * should be preferred when the sequential interface is not required. |
1219 | | */ |
1220 | | struct umac_ctx { |
1221 | | uhash_ctx hash; /* Hash function for message compression */ |
1222 | | pdf_ctx pdf; /* PDF for hashed output */ |
1223 | | void *free_ptr; /* Address to free this struct via */ |
1224 | | } umac_ctx; |
1225 | | |
1226 | | /* ---------------------------------------------------------------------- */ |
1227 | | |
1228 | | #if 0 |
1229 | | int umac_reset(struct umac_ctx *ctx) |
1230 | | /* Reset the hash function to begin a new authentication. */ |
1231 | | { |
1232 | | uhash_reset(&ctx->hash); |
1233 | | return (1); |
1234 | | } |
1235 | | #endif |
1236 | | |
1237 | | /* ---------------------------------------------------------------------- */ |
1238 | | |
1239 | | int umac_delete(struct umac_ctx *ctx) |
1240 | | /* Deallocate the ctx structure */ |
1241 | 0 | { |
1242 | 0 | if (ctx) { |
1243 | 0 | if (ALLOC_BOUNDARY) |
1244 | 0 | ctx = (struct umac_ctx *)ctx->free_ptr; |
1245 | 0 | freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY); |
1246 | 0 | } |
1247 | 0 | return (1); |
1248 | 0 | } Unexecuted instantiation: umac_delete Unexecuted instantiation: umac128_delete |
1249 | | |
1250 | | /* ---------------------------------------------------------------------- */ |
1251 | | |
1252 | | struct umac_ctx *umac_new(const u_char key[]) |
1253 | | /* Dynamically allocate a umac_ctx struct, initialize variables, |
1254 | | * generate subkeys from key. Align to 16-byte boundary. |
1255 | | */ |
1256 | 0 | { |
1257 | 0 | struct umac_ctx *ctx, *octx; |
1258 | 0 | size_t bytes_to_add; |
1259 | 0 | aes_int_key prf_key; |
1260 | |
|
1261 | 0 | octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); |
1262 | 0 | if (ctx) { |
1263 | 0 | if (ALLOC_BOUNDARY) { |
1264 | 0 | bytes_to_add = ALLOC_BOUNDARY - |
1265 | 0 | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); |
1266 | 0 | ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); |
1267 | 0 | } |
1268 | 0 | ctx->free_ptr = octx; |
1269 | 0 | aes_key_setup(key, prf_key); |
1270 | 0 | pdf_init(&ctx->pdf, prf_key); |
1271 | 0 | uhash_init(&ctx->hash, prf_key); |
1272 | 0 | explicit_bzero(prf_key, sizeof(prf_key)); |
1273 | 0 | } |
1274 | |
|
1275 | 0 | return (ctx); |
1276 | 0 | } Unexecuted instantiation: umac_new Unexecuted instantiation: umac128_new |
1277 | | |
1278 | | /* ---------------------------------------------------------------------- */ |
1279 | | |
1280 | | int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8]) |
1281 | | /* Incorporate any pending data, pad, and generate tag */ |
1282 | 0 | { |
1283 | 0 | uhash_final(&ctx->hash, (u_char *)tag); |
1284 | 0 | pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); |
1285 | |
|
1286 | 0 | return (1); |
1287 | 0 | } Unexecuted instantiation: umac_final Unexecuted instantiation: umac128_final |
1288 | | |
1289 | | /* ---------------------------------------------------------------------- */ |
1290 | | |
1291 | | int umac_update(struct umac_ctx *ctx, const u_char *input, long len) |
1292 | | /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ |
1293 | | /* hash each one, calling the PDF on the hashed output whenever the hash- */ |
1294 | | /* output buffer is full. */ |
1295 | 0 | { |
1296 | 0 | uhash_update(&ctx->hash, input, len); |
1297 | 0 | return (1); |
1298 | 0 | } Unexecuted instantiation: umac_update Unexecuted instantiation: umac128_update |
1299 | | |
1300 | | /* ---------------------------------------------------------------------- */ |
1301 | | |
1302 | | #if 0 |
1303 | | int umac(struct umac_ctx *ctx, u_char *input, |
1304 | | long len, u_char tag[], |
1305 | | u_char nonce[8]) |
1306 | | /* All-in-one version simply calls umac_update() and umac_final(). */ |
1307 | | { |
1308 | | uhash(&ctx->hash, input, len, (u_char *)tag); |
1309 | | pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); |
1310 | | |
1311 | | return (1); |
1312 | | } |
1313 | | #endif |
1314 | | |
1315 | | /* ---------------------------------------------------------------------- */ |
1316 | | /* ---------------------------------------------------------------------- */ |
1317 | | /* ----- End UMAC Section ----------------------------------------------- */ |
1318 | | /* ---------------------------------------------------------------------- */ |
1319 | | /* ---------------------------------------------------------------------- */ |