/src/htslib/cram/cram_index.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | Copyright (c) 2013-2020 Genome Research Ltd. |
3 | | Author: James Bonfield <jkb@sanger.ac.uk> |
4 | | |
5 | | Redistribution and use in source and binary forms, with or without |
6 | | modification, are permitted provided that the following conditions are met: |
7 | | |
8 | | 1. Redistributions of source code must retain the above copyright notice, |
9 | | this list of conditions and the following disclaimer. |
10 | | |
11 | | 2. Redistributions in binary form must reproduce the above copyright notice, |
12 | | this list of conditions and the following disclaimer in the documentation |
13 | | and/or other materials provided with the distribution. |
14 | | |
15 | | 3. Neither the names Genome Research Ltd and Wellcome Trust Sanger |
16 | | Institute nor the names of its contributors may be used to endorse or promote |
17 | | products derived from this software without specific prior written permission. |
18 | | |
19 | | THIS SOFTWARE IS PROVIDED BY GENOME RESEARCH LTD AND CONTRIBUTORS "AS IS" AND |
20 | | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
21 | | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
22 | | DISCLAIMED. IN NO EVENT SHALL GENOME RESEARCH LTD OR CONTRIBUTORS BE LIABLE |
23 | | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
24 | | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
25 | | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
26 | | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
27 | | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | | */ |
30 | | |
31 | | /* |
32 | | * The index is a gzipped tab-delimited text file with one line per slice. |
33 | | * The columns are: |
34 | | * 1: reference number (0 to N-1, as per BAM ref_id) |
35 | | * 2: reference position of 1st read in slice (1..?) |
36 | | * 3: number of reads in slice |
37 | | * 4: offset of container start (relative to end of SAM header, so 1st |
38 | | * container is offset 0). |
39 | | * 5: slice number within container (ie which landmark). |
40 | | * |
41 | | * In memory, we hold this in a nested containment list. Each list element is |
42 | | * a cram_index struct. Each element in turn can contain its own list of |
43 | | * cram_index structs. |
44 | | * |
45 | | * Any start..end range which is entirely contained within another (and |
46 | | * earlier as it is sorted) range will be held within it. This ensures that |
47 | | * the outer list will never have containments and we can safely do a |
48 | | * binary search to find the first range which overlaps any given coordinate. |
49 | | */ |
50 | | |
51 | | #define HTS_BUILDING_LIBRARY // Enables HTSLIB_EXPORT, see htslib/hts_defs.h |
52 | | #include <config.h> |
53 | | |
54 | | #include <stdio.h> |
55 | | #include <errno.h> |
56 | | #include <assert.h> |
57 | | #include <inttypes.h> |
58 | | #include <stdlib.h> |
59 | | #include <string.h> |
60 | | #include <zlib.h> |
61 | | #include <sys/types.h> |
62 | | #include <sys/stat.h> |
63 | | #include <math.h> |
64 | | |
65 | | #include "../htslib/bgzf.h" |
66 | | #include "../htslib/hfile.h" |
67 | | #include "../hts_internal.h" |
68 | | #include "cram.h" |
69 | | #include "os.h" |
70 | | |
71 | | #if 0 |
72 | | static void dump_index_(cram_index *e, int level) { |
73 | | int i, n; |
74 | | n = printf("%*s%d / %d .. %d, ", level*4, "", e->refid, e->start, e->end); |
75 | | printf("%*soffset %"PRId64"\n", MAX(0,50-n), "", e->offset); |
76 | | for (i = 0; i < e->nslice; i++) { |
77 | | dump_index_(&e->e[i], level+1); |
78 | | } |
79 | | } |
80 | | |
81 | | static void dump_index(cram_fd *fd) { |
82 | | int i; |
83 | | for (i = 0; i < fd->index_sz; i++) { |
84 | | dump_index_(&fd->index[i], 0); |
85 | | } |
86 | | } |
87 | | #endif |
88 | | |
89 | 0 | static int kget_int32(kstring_t *k, size_t *pos, int32_t *val_p) { |
90 | 0 | int sign = 1; |
91 | 0 | int32_t val = 0; |
92 | 0 | size_t p = *pos; |
93 | |
|
94 | 0 | while (p < k->l && (k->s[p] == ' ' || k->s[p] == '\t')) |
95 | 0 | p++; |
96 | |
|
97 | 0 | if (p < k->l && k->s[p] == '-') |
98 | 0 | sign = -1, p++; |
99 | |
|
100 | 0 | if (p >= k->l || !(k->s[p] >= '0' && k->s[p] <= '9')) |
101 | 0 | return -1; |
102 | | |
103 | 0 | while (p < k->l && k->s[p] >= '0' && k->s[p] <= '9') { |
104 | 0 | int digit = k->s[p++]-'0'; |
105 | 0 | val = val*10 + digit; |
106 | 0 | } |
107 | |
|
108 | 0 | *pos = p; |
109 | 0 | *val_p = sign*val; |
110 | |
|
111 | 0 | return 0; |
112 | 0 | } |
113 | | |
114 | 0 | static int kget_int64(kstring_t *k, size_t *pos, int64_t *val_p) { |
115 | 0 | int sign = 1; |
116 | 0 | int64_t val = 0; |
117 | 0 | size_t p = *pos; |
118 | |
|
119 | 0 | while (p < k->l && (k->s[p] == ' ' || k->s[p] == '\t')) |
120 | 0 | p++; |
121 | |
|
122 | 0 | if (p < k->l && k->s[p] == '-') |
123 | 0 | sign = -1, p++; |
124 | |
|
125 | 0 | if (p >= k->l || !(k->s[p] >= '0' && k->s[p] <= '9')) |
126 | 0 | return -1; |
127 | | |
128 | 0 | while (p < k->l && k->s[p] >= '0' && k->s[p] <= '9') { |
129 | 0 | int digit = k->s[p++]-'0'; |
130 | 0 | val = val*10 + digit; |
131 | 0 | } |
132 | |
|
133 | 0 | *pos = p; |
134 | 0 | *val_p = sign*val; |
135 | |
|
136 | 0 | return 0; |
137 | 0 | } |
138 | | |
139 | | /* |
140 | | * Loads a CRAM .crai index into memory. |
141 | | * |
142 | | * Returns 0 for success |
143 | | * -1 for failure |
144 | | */ |
145 | 0 | int cram_index_load(cram_fd *fd, const char *fn, const char *fn_idx) { |
146 | |
|
147 | 0 | char *tfn_idx = NULL; |
148 | 0 | char buf[65536]; |
149 | 0 | ssize_t len; |
150 | 0 | kstring_t kstr = {0}; |
151 | 0 | hFILE *fp; |
152 | 0 | cram_index *idx; |
153 | 0 | cram_index **idx_stack = NULL, *ep, e; |
154 | 0 | int idx_stack_alloc = 0, idx_stack_ptr = 0; |
155 | 0 | size_t pos = 0; |
156 | | |
157 | | /* Check if already loaded */ |
158 | 0 | if (fd->index) |
159 | 0 | return 0; |
160 | | |
161 | 0 | fd->index = calloc((fd->index_sz = 1), sizeof(*fd->index)); |
162 | 0 | if (!fd->index) |
163 | 0 | return -1; |
164 | | |
165 | 0 | idx = &fd->index[0]; |
166 | 0 | idx->refid = -1; |
167 | 0 | idx->start = INT_MIN; |
168 | 0 | idx->end = INT_MAX; |
169 | |
|
170 | 0 | idx_stack = calloc(++idx_stack_alloc, sizeof(*idx_stack)); |
171 | 0 | if (!idx_stack) |
172 | 0 | goto fail; |
173 | | |
174 | 0 | idx_stack[idx_stack_ptr] = idx; |
175 | | |
176 | | // Support pathX.cram##idx##pathY.crai |
177 | 0 | const char *fn_delim = strstr(fn, HTS_IDX_DELIM); |
178 | 0 | if (fn_delim && !fn_idx) |
179 | 0 | fn_idx = fn_delim + strlen(HTS_IDX_DELIM); |
180 | |
|
181 | 0 | if (!fn_idx) { |
182 | 0 | if (hts_idx_check_local(fn, HTS_FMT_CRAI, &tfn_idx) == 0 && hisremote(fn)) |
183 | 0 | tfn_idx = hts_idx_getfn(fn, ".crai"); |
184 | |
|
185 | 0 | if (!tfn_idx) { |
186 | 0 | hts_log_error("Could not retrieve index file for '%s'", fn); |
187 | 0 | goto fail; |
188 | 0 | } |
189 | 0 | fn_idx = tfn_idx; |
190 | 0 | } |
191 | | |
192 | 0 | if (!(fp = hopen(fn_idx, "r"))) { |
193 | 0 | hts_log_error("Could not open index file '%s'", fn_idx); |
194 | 0 | goto fail; |
195 | 0 | } |
196 | | |
197 | | // Load the file into memory |
198 | 0 | while ((len = hread(fp, buf, sizeof(buf))) > 0) { |
199 | 0 | if (kputsn(buf, len, &kstr) < 0) |
200 | 0 | goto fail; |
201 | 0 | } |
202 | | |
203 | 0 | if (len < 0 || kstr.l < 2) |
204 | 0 | goto fail; |
205 | | |
206 | 0 | if (hclose(fp) < 0) |
207 | 0 | goto fail; |
208 | | |
209 | | // Uncompress if required |
210 | 0 | if (kstr.s[0] == 31 && (uc)kstr.s[1] == 139) { |
211 | 0 | size_t l = 0; |
212 | 0 | char *s = zlib_mem_inflate(kstr.s, kstr.l, &l); |
213 | 0 | if (!s) |
214 | 0 | goto fail; |
215 | | |
216 | 0 | free(kstr.s); |
217 | 0 | kstr.s = s; |
218 | 0 | kstr.l = l; |
219 | 0 | kstr.m = l; // conservative estimate of the size allocated |
220 | 0 | if (kputsn("", 0, &kstr) < 0) // ensure kstr.s is NUL-terminated |
221 | 0 | goto fail; |
222 | 0 | } |
223 | | |
224 | | |
225 | | // Parse it line at a time |
226 | 0 | while (pos < kstr.l) { |
227 | | /* 1.1 layout */ |
228 | 0 | if (kget_int32(&kstr, &pos, &e.refid) == -1) |
229 | 0 | goto fail; |
230 | | |
231 | 0 | if (kget_int32(&kstr, &pos, &e.start) == -1) |
232 | 0 | goto fail; |
233 | | |
234 | 0 | if (kget_int32(&kstr, &pos, &e.end) == -1) |
235 | 0 | goto fail; |
236 | | |
237 | 0 | if (kget_int64(&kstr, &pos, &e.offset) == -1) |
238 | 0 | goto fail; |
239 | | |
240 | 0 | if (kget_int32(&kstr, &pos, &e.slice) == -1) |
241 | 0 | goto fail; |
242 | | |
243 | 0 | if (kget_int32(&kstr, &pos, &e.len) == -1) |
244 | 0 | goto fail; |
245 | | |
246 | 0 | e.end += e.start-1; |
247 | | //printf("%d/%d..%d-offset=%" PRIu64 ",len=%d,slice=%d\n", e.refid, e.start, e.end, e.offset, e.len, e.slice); |
248 | |
|
249 | 0 | if (e.refid < -1) { |
250 | 0 | hts_log_error("Malformed index file, refid %d", e.refid); |
251 | 0 | goto fail; |
252 | 0 | } |
253 | | |
254 | 0 | if (e.refid != idx->refid) { |
255 | 0 | if (fd->index_sz < e.refid+2) { |
256 | 0 | cram_index *new_idx; |
257 | 0 | int new_sz = e.refid+2; |
258 | 0 | size_t index_end = fd->index_sz * sizeof(*fd->index); |
259 | 0 | new_idx = realloc(fd->index, |
260 | 0 | new_sz * sizeof(*fd->index)); |
261 | 0 | if (!new_idx) |
262 | 0 | goto fail; |
263 | | |
264 | 0 | fd->index = new_idx; |
265 | 0 | fd->index_sz = new_sz; |
266 | 0 | memset(((char *)fd->index) + index_end, 0, |
267 | 0 | fd->index_sz * sizeof(*fd->index) - index_end); |
268 | 0 | } |
269 | 0 | idx = &fd->index[e.refid+1]; |
270 | 0 | idx->refid = e.refid; |
271 | 0 | idx->start = INT_MIN; |
272 | 0 | idx->end = INT_MAX; |
273 | 0 | idx->nslice = idx->nalloc = 0; |
274 | 0 | idx->e = NULL; |
275 | 0 | idx_stack[(idx_stack_ptr = 0)] = idx; |
276 | 0 | } |
277 | | |
278 | 0 | while (!(e.start >= idx->start && e.end <= idx->end) || idx->end == 0) { |
279 | 0 | idx = idx_stack[--idx_stack_ptr]; |
280 | 0 | } |
281 | | |
282 | | // Now contains, so append |
283 | 0 | if (idx->nslice+1 >= idx->nalloc) { |
284 | 0 | cram_index *new_e; |
285 | 0 | idx->nalloc = idx->nalloc ? idx->nalloc*2 : 16; |
286 | 0 | new_e = realloc(idx->e, idx->nalloc * sizeof(*idx->e)); |
287 | 0 | if (!new_e) |
288 | 0 | goto fail; |
289 | | |
290 | 0 | idx->e = new_e; |
291 | 0 | } |
292 | | |
293 | 0 | e.nalloc = e.nslice = 0; e.e = NULL; |
294 | 0 | *(ep = &idx->e[idx->nslice++]) = e; |
295 | 0 | idx = ep; |
296 | |
|
297 | 0 | if (++idx_stack_ptr >= idx_stack_alloc) { |
298 | 0 | cram_index **new_stack; |
299 | 0 | idx_stack_alloc *= 2; |
300 | 0 | new_stack = realloc(idx_stack, idx_stack_alloc*sizeof(*idx_stack)); |
301 | 0 | if (!new_stack) |
302 | 0 | goto fail; |
303 | 0 | idx_stack = new_stack; |
304 | 0 | } |
305 | 0 | idx_stack[idx_stack_ptr] = idx; |
306 | |
|
307 | 0 | while (pos < kstr.l && kstr.s[pos] != '\n') |
308 | 0 | pos++; |
309 | 0 | pos++; |
310 | 0 | } |
311 | | |
312 | 0 | free(idx_stack); |
313 | 0 | free(kstr.s); |
314 | 0 | free(tfn_idx); |
315 | | |
316 | | // dump_index(fd); |
317 | |
|
318 | 0 | return 0; |
319 | | |
320 | 0 | fail: |
321 | 0 | free(kstr.s); |
322 | 0 | free(idx_stack); |
323 | 0 | free(tfn_idx); |
324 | 0 | cram_index_free(fd); // Also sets fd->index = NULL |
325 | 0 | return -1; |
326 | 0 | } |
327 | | |
328 | 0 | static void cram_index_free_recurse(cram_index *e) { |
329 | 0 | if (e->e) { |
330 | 0 | int i; |
331 | 0 | for (i = 0; i < e->nslice; i++) { |
332 | 0 | cram_index_free_recurse(&e->e[i]); |
333 | 0 | } |
334 | 0 | free(e->e); |
335 | 0 | } |
336 | 0 | } |
337 | | |
338 | 0 | void cram_index_free(cram_fd *fd) { |
339 | 0 | int i; |
340 | |
|
341 | 0 | if (!fd->index) |
342 | 0 | return; |
343 | | |
344 | 0 | for (i = 0; i < fd->index_sz; i++) { |
345 | 0 | cram_index_free_recurse(&fd->index[i]); |
346 | 0 | } |
347 | 0 | free(fd->index); |
348 | |
|
349 | 0 | fd->index = NULL; |
350 | 0 | } |
351 | | |
352 | | /* |
353 | | * Searches the index for the first slice overlapping a reference ID |
354 | | * and position, or one immediately preceding it if none is found in |
355 | | * the index to overlap this position. (Our index may have missing |
356 | | * entries, but we require at least one per reference.) |
357 | | * |
358 | | * If the index finds multiple slices overlapping this position we |
359 | | * return the first one only. Subsequent calls should specifying |
360 | | * "from" as the last slice we checked to find the next one. Otherwise |
361 | | * set "from" to be NULL to find the first one. |
362 | | * |
363 | | * Refid can also be any of the special HTS_IDX_ values. |
364 | | * For backwards compatibility, refid -1 is equivalent to HTS_IDX_NOCOOR. |
365 | | * |
366 | | * Returns the cram_index pointer on success |
367 | | * NULL on failure |
368 | | */ |
369 | | cram_index *cram_index_query(cram_fd *fd, int refid, hts_pos_t pos, |
370 | 0 | cram_index *from) { |
371 | 0 | int i, j, k; |
372 | 0 | cram_index *e; |
373 | |
|
374 | 0 | switch(refid) { |
375 | 0 | case HTS_IDX_NONE: |
376 | 0 | case HTS_IDX_REST: |
377 | | // fail, or already there, dealt with elsewhere. |
378 | 0 | return NULL; |
379 | | |
380 | 0 | case HTS_IDX_NOCOOR: |
381 | 0 | refid = -1; |
382 | 0 | pos = 0; |
383 | 0 | break; |
384 | | |
385 | 0 | case HTS_IDX_START: { |
386 | 0 | int64_t min_idx = INT64_MAX; |
387 | 0 | for (i = 0, j = -1; i < fd->index_sz; i++) { |
388 | 0 | if (fd->index[i].e && fd->index[i].e[0].offset < min_idx) { |
389 | 0 | min_idx = fd->index[i].e[0].offset; |
390 | 0 | j = i; |
391 | 0 | } |
392 | 0 | } |
393 | 0 | if (j < 0) |
394 | 0 | return NULL; |
395 | 0 | return fd->index[j].e; |
396 | 0 | } |
397 | | |
398 | 0 | default: |
399 | 0 | if (refid < HTS_IDX_NONE || refid+1 >= fd->index_sz) |
400 | 0 | return NULL; |
401 | 0 | } |
402 | | |
403 | 0 | if (!from) |
404 | 0 | from = &fd->index[refid+1]; |
405 | | |
406 | | // Ref with nothing aligned against it. |
407 | 0 | if (!from->e) |
408 | 0 | return NULL; |
409 | | |
410 | | // This sequence is covered by the index, so binary search to find |
411 | | // the optimal starting block. |
412 | 0 | i = 0, j = fd->index[refid+1].nslice-1; |
413 | 0 | for (k = j/2; k != i; k = (j-i)/2 + i) { |
414 | 0 | if (from->e[k].refid > refid) { |
415 | 0 | j = k; |
416 | 0 | continue; |
417 | 0 | } |
418 | | |
419 | 0 | if (from->e[k].refid < refid) { |
420 | 0 | i = k; |
421 | 0 | continue; |
422 | 0 | } |
423 | | |
424 | 0 | if (from->e[k].start >= pos) { |
425 | 0 | j = k; |
426 | 0 | continue; |
427 | 0 | } |
428 | | |
429 | 0 | if (from->e[k].start < pos) { |
430 | 0 | i = k; |
431 | 0 | continue; |
432 | 0 | } |
433 | 0 | } |
434 | | // i==j or i==j-1. Check if j is better. |
435 | 0 | if (j >= 0 && from->e[j].start < pos && from->e[j].refid == refid) |
436 | 0 | i = j; |
437 | | |
438 | | /* The above found *a* bin overlapping, but not necessarily the first */ |
439 | 0 | while (i > 0 && from->e[i-1].end >= pos) |
440 | 0 | i--; |
441 | | |
442 | | /* We may be one bin before the optimum, so check */ |
443 | 0 | while (i+1 < from->nslice && |
444 | 0 | (from->e[i].refid < refid || |
445 | 0 | from->e[i].end < pos)) |
446 | 0 | i++; |
447 | |
|
448 | 0 | e = &from->e[i]; |
449 | |
|
450 | 0 | return e; |
451 | 0 | } |
452 | | |
453 | | // Return the index entry for last slice on a specific reference. |
454 | 0 | cram_index *cram_index_last(cram_fd *fd, int refid, cram_index *from) { |
455 | 0 | int slice; |
456 | |
|
457 | 0 | if (refid+1 < 0 || refid+1 >= fd->index_sz) |
458 | 0 | return NULL; |
459 | | |
460 | 0 | if (!from) |
461 | 0 | from = &fd->index[refid+1]; |
462 | | |
463 | | // Ref with nothing aligned against it. |
464 | 0 | if (!from->e) |
465 | 0 | return NULL; |
466 | | |
467 | 0 | slice = fd->index[refid+1].nslice - 1; |
468 | |
|
469 | 0 | return &from->e[slice]; |
470 | 0 | } |
471 | | |
472 | 0 | cram_index *cram_index_query_last(cram_fd *fd, int refid, hts_pos_t end) { |
473 | 0 | cram_index *first = cram_index_query(fd, refid, end, NULL); |
474 | 0 | cram_index *last = cram_index_last(fd, refid, NULL); |
475 | 0 | if (!first || !last) |
476 | 0 | return NULL; |
477 | | |
478 | 0 | while (first < last && (first+1)->start <= end) |
479 | 0 | first++; |
480 | |
|
481 | 0 | while (first->e) { |
482 | 0 | int count = 0; |
483 | 0 | int nslices = first->nslice; |
484 | 0 | first = first->e; |
485 | 0 | while (++count < nslices && (first+1)->start <= end) |
486 | 0 | first++; |
487 | 0 | } |
488 | | |
489 | | // Compute the start location of next container. |
490 | | // |
491 | | // This is useful for stitching containers together in the multi-region |
492 | | // iterator. Sadly we can't compute this from the single index line. |
493 | | // |
494 | | // Note we can have neighbouring index entries at the same location |
495 | | // for when we have multi-reference mode and/or multiple slices per |
496 | | // container. |
497 | 0 | cram_index *next = first; |
498 | 0 | do { |
499 | 0 | if (next >= last) { |
500 | | // Next non-empty reference |
501 | 0 | while (++refid+1 < fd->index_sz) |
502 | 0 | if (fd->index[refid+1].nslice) |
503 | 0 | break; |
504 | 0 | if (refid+1 >= fd->index_sz) { |
505 | 0 | next = NULL; |
506 | 0 | } else { |
507 | 0 | next = fd->index[refid+1].e; |
508 | 0 | last = fd->index[refid+1].e + fd->index[refid+1].nslice; |
509 | 0 | } |
510 | 0 | } else { |
511 | 0 | next++; |
512 | 0 | } |
513 | 0 | } while (next && next->offset == first->offset); |
514 | |
|
515 | 0 | first->next = next ? next->offset : 0; |
516 | |
|
517 | 0 | return first; |
518 | 0 | } |
519 | | |
520 | | /* |
521 | | * Skips to a container overlapping the start coordinate listed in |
522 | | * cram_range. |
523 | | * |
524 | | * In theory we call cram_index_query multiple times, once per slice |
525 | | * overlapping the range. However slices may be absent from the index |
526 | | * which makes this problematic. Instead we find the left-most slice |
527 | | * and then read from then on, skipping decoding of slices and/or |
528 | | * whole containers when they don't overlap the specified cram_range. |
529 | | * |
530 | | * This function also updates the cram_fd range field. |
531 | | * |
532 | | * Returns 0 on success |
533 | | * -1 on general failure |
534 | | * -2 on no-data (empty chromosome) |
535 | | */ |
536 | 0 | int cram_seek_to_refpos(cram_fd *fd, cram_range *r) { |
537 | 0 | int ret = 0; |
538 | 0 | cram_index *e; |
539 | |
|
540 | 0 | if (r->refid == HTS_IDX_NONE) { |
541 | 0 | ret = -2; goto err; |
542 | 0 | } |
543 | | |
544 | | // Ideally use an index, so see if we have one. |
545 | 0 | if ((e = cram_index_query(fd, r->refid, r->start, NULL))) { |
546 | 0 | if (0 != cram_seek(fd, e->offset, SEEK_SET)) { |
547 | 0 | if (0 != cram_seek(fd, e->offset - fd->first_container, SEEK_CUR)) { |
548 | 0 | ret = -1; goto err; |
549 | 0 | } |
550 | 0 | } |
551 | 0 | } else { |
552 | | // Absent from index, but this most likely means it simply has no data. |
553 | 0 | ret = -2; goto err; |
554 | 0 | } |
555 | | |
556 | 0 | pthread_mutex_lock(&fd->range_lock); |
557 | 0 | fd->range = *r; |
558 | 0 | if (r->refid == HTS_IDX_NOCOOR) { |
559 | 0 | fd->range.refid = -1; |
560 | 0 | fd->range.start = 0; |
561 | 0 | } else if (r->refid == HTS_IDX_START || r->refid == HTS_IDX_REST) { |
562 | 0 | fd->range.refid = -2; // special case in cram_next_slice |
563 | 0 | } |
564 | 0 | pthread_mutex_unlock(&fd->range_lock); |
565 | |
|
566 | 0 | if (fd->ctr) { |
567 | 0 | cram_free_container(fd->ctr); |
568 | 0 | if (fd->ctr_mt && fd->ctr_mt != fd->ctr) |
569 | 0 | cram_free_container(fd->ctr_mt); |
570 | 0 | fd->ctr = NULL; |
571 | 0 | fd->ctr_mt = NULL; |
572 | 0 | fd->ooc = 0; |
573 | 0 | fd->eof = 0; |
574 | 0 | } |
575 | |
|
576 | 0 | return 0; |
577 | | |
578 | 0 | err: |
579 | | // It's unlikely fd->range will be accessed after EOF or error, |
580 | | // but this maintains identical behaviour to the previous code. |
581 | 0 | pthread_mutex_lock(&fd->range_lock); |
582 | 0 | fd->range = *r; |
583 | 0 | pthread_mutex_unlock(&fd->range_lock); |
584 | 0 | return ret; |
585 | 0 | } |
586 | | |
587 | | |
588 | | /* |
589 | | * A specialised form of cram_index_build (below) that deals with slices |
590 | | * having multiple references in this (ref_id -2). In this scenario we |
591 | | * decode the slice to look at the RI data series instead. |
592 | | * |
593 | | * Returns 0 on success |
594 | | * -1 on read failure |
595 | | * -2 on wrong sort order |
596 | | * -4 on write failure |
597 | | */ |
598 | | static int cram_index_build_multiref(cram_fd *fd, |
599 | | cram_container *c, |
600 | | cram_slice *s, |
601 | | BGZF *fp, |
602 | | off_t cpos, |
603 | | int32_t landmark, |
604 | 0 | int sz) { |
605 | 0 | int i, ref = -2; |
606 | 0 | int64_t ref_start = 0, ref_end; |
607 | 0 | char buf[1024]; |
608 | |
|
609 | 0 | if (fd->mode != 'w') { |
610 | 0 | if (0 != cram_decode_slice(fd, c, s, fd->header)) |
611 | 0 | return -1; |
612 | 0 | } |
613 | | |
614 | 0 | ref_end = INT_MIN; |
615 | |
|
616 | 0 | int32_t last_ref = -9; |
617 | 0 | int32_t last_pos = -9; |
618 | 0 | for (i = 0; i < s->hdr->num_records; i++) { |
619 | 0 | if (s->crecs[i].ref_id == last_ref && s->crecs[i].apos < last_pos) { |
620 | 0 | hts_log_error("CRAM file is not sorted by chromosome / position"); |
621 | 0 | return -2; |
622 | 0 | } |
623 | 0 | last_ref = s->crecs[i].ref_id; |
624 | 0 | last_pos = s->crecs[i].apos; |
625 | |
|
626 | 0 | if (s->crecs[i].ref_id == ref) { |
627 | 0 | if (ref_end < s->crecs[i].aend) |
628 | 0 | ref_end = s->crecs[i].aend; |
629 | 0 | continue; |
630 | 0 | } |
631 | | |
632 | 0 | if (ref != -2) { |
633 | 0 | sprintf(buf, "%d\t%"PRId64"\t%"PRId64"\t%"PRId64"\t%d\t%d\n", |
634 | 0 | ref, ref_start, ref_end - ref_start + 1, |
635 | 0 | (int64_t)cpos, landmark, sz); |
636 | 0 | if (bgzf_write(fp, buf, strlen(buf)) < 0) |
637 | 0 | return -4; |
638 | 0 | } |
639 | | |
640 | 0 | ref = s->crecs[i].ref_id; |
641 | 0 | ref_start = s->crecs[i].apos; |
642 | 0 | ref_end = s->crecs[i].aend; |
643 | 0 | } |
644 | | |
645 | 0 | if (ref != -2) { |
646 | 0 | sprintf(buf, "%d\t%"PRId64"\t%"PRId64"\t%"PRId64"\t%d\t%d\n", |
647 | 0 | ref, ref_start, ref_end - ref_start + 1, |
648 | 0 | (int64_t)cpos, landmark, sz); |
649 | 0 | if (bgzf_write(fp, buf, strlen(buf)) < 0) |
650 | 0 | return -4; |
651 | 0 | } |
652 | | |
653 | 0 | return 0; |
654 | 0 | } |
655 | | |
656 | | /* |
657 | | * Adds a single slice to the index. |
658 | | */ |
659 | | int cram_index_slice(cram_fd *fd, |
660 | | cram_container *c, |
661 | | cram_slice *s, |
662 | | BGZF *fp, |
663 | | off_t cpos, |
664 | | off_t spos, // relative to cpos |
665 | 0 | off_t sz) { |
666 | 0 | int ret; |
667 | 0 | char buf[1024]; |
668 | |
|
669 | 0 | if (sz > INT_MAX) { |
670 | 0 | hts_log_error("CRAM slice is too big (%"PRId64" bytes)", |
671 | 0 | (int64_t) sz); |
672 | 0 | return -1; |
673 | 0 | } |
674 | | |
675 | 0 | if (s->hdr->ref_seq_id == -2) { |
676 | 0 | ret = cram_index_build_multiref(fd, c, s, fp, cpos, spos, sz); |
677 | 0 | } else { |
678 | 0 | sprintf(buf, "%d\t%"PRId64"\t%"PRId64"\t%"PRId64"\t%d\t%d\n", |
679 | 0 | s->hdr->ref_seq_id, s->hdr->ref_seq_start, |
680 | 0 | s->hdr->ref_seq_span, (int64_t)cpos, (int)spos, (int)sz); |
681 | 0 | ret = (bgzf_write(fp, buf, strlen(buf)) >= 0)? 0 : -4; |
682 | 0 | } |
683 | |
|
684 | 0 | return ret; |
685 | 0 | } |
686 | | |
687 | | /* |
688 | | * Adds a single container to the index. |
689 | | */ |
690 | | static |
691 | | int cram_index_container(cram_fd *fd, |
692 | | cram_container *c, |
693 | | BGZF *fp, |
694 | 0 | off_t cpos) { |
695 | 0 | int j; |
696 | 0 | off_t spos; |
697 | | |
698 | | // 2.0 format |
699 | 0 | for (j = 0; j < c->num_landmarks; j++) { |
700 | 0 | cram_slice *s; |
701 | 0 | off_t sz; |
702 | 0 | int ret; |
703 | |
|
704 | 0 | spos = htell(fd->fp); |
705 | 0 | if (spos - cpos - c->offset != c->landmark[j]) { |
706 | 0 | hts_log_error("CRAM slice offset %"PRId64" does not match" |
707 | 0 | " landmark %d in container header (%d)", |
708 | 0 | spos - cpos - c->offset, j, c->landmark[j]); |
709 | 0 | return -1; |
710 | 0 | } |
711 | | |
712 | 0 | if (!(s = cram_read_slice(fd))) { |
713 | 0 | return -1; |
714 | 0 | } |
715 | | |
716 | 0 | sz = htell(fd->fp) - spos; |
717 | 0 | ret = cram_index_slice(fd, c, s, fp, cpos, c->landmark[j], sz); |
718 | |
|
719 | 0 | cram_free_slice(s); |
720 | |
|
721 | 0 | if (ret < 0) { |
722 | 0 | return ret; |
723 | 0 | } |
724 | 0 | } |
725 | | |
726 | 0 | return 0; |
727 | 0 | } |
728 | | |
729 | | |
730 | | /* |
731 | | * Builds an index file. |
732 | | * |
733 | | * fd is a newly opened cram file that we wish to index. |
734 | | * fn_base is the filename of the associated CRAM file. |
735 | | * fn_idx is the filename of the index file to be written; |
736 | | * if NULL, we add ".crai" to fn_base to get the index filename. |
737 | | * |
738 | | * Returns 0 on success, |
739 | | * negative on failure (-1 for read failure, -4 for write failure) |
740 | | */ |
741 | 0 | int cram_index_build(cram_fd *fd, const char *fn_base, const char *fn_idx) { |
742 | 0 | cram_container *c; |
743 | 0 | off_t cpos, hpos; |
744 | 0 | BGZF *fp; |
745 | 0 | kstring_t fn_idx_str = {0}; |
746 | 0 | int64_t last_ref = -9, last_start = -9; |
747 | | |
748 | | // Useful for cram_index_build_multiref |
749 | 0 | cram_set_option(fd, CRAM_OPT_REQUIRED_FIELDS, SAM_RNAME | SAM_POS | SAM_CIGAR); |
750 | |
|
751 | 0 | if (! fn_idx) { |
752 | 0 | kputs(fn_base, &fn_idx_str); |
753 | 0 | kputs(".crai", &fn_idx_str); |
754 | 0 | fn_idx = fn_idx_str.s; |
755 | 0 | } |
756 | |
|
757 | 0 | if (!(fp = bgzf_open(fn_idx, "wg"))) { |
758 | 0 | perror(fn_idx); |
759 | 0 | free(fn_idx_str.s); |
760 | 0 | return -4; |
761 | 0 | } |
762 | | |
763 | 0 | free(fn_idx_str.s); |
764 | |
|
765 | 0 | cpos = htell(fd->fp); |
766 | 0 | while ((c = cram_read_container(fd))) { |
767 | 0 | if (fd->err) { |
768 | 0 | perror("Cram container read"); |
769 | 0 | return -1; |
770 | 0 | } |
771 | | |
772 | 0 | hpos = htell(fd->fp); |
773 | |
|
774 | 0 | if (!(c->comp_hdr_block = cram_read_block(fd))) |
775 | 0 | return -1; |
776 | 0 | assert(c->comp_hdr_block->content_type == COMPRESSION_HEADER); |
777 | | |
778 | 0 | c->comp_hdr = cram_decode_compression_header(fd, c->comp_hdr_block); |
779 | 0 | if (!c->comp_hdr) |
780 | 0 | return -1; |
781 | | |
782 | 0 | if (c->ref_seq_id == last_ref && c->ref_seq_start < last_start) { |
783 | 0 | hts_log_error("CRAM file is not sorted by chromosome / position"); |
784 | 0 | return -2; |
785 | 0 | } |
786 | 0 | last_ref = c->ref_seq_id; |
787 | 0 | last_start = c->ref_seq_start; |
788 | |
|
789 | 0 | if (cram_index_container(fd, c, fp, cpos) < 0) { |
790 | 0 | bgzf_close(fp); |
791 | 0 | return -1; |
792 | 0 | } |
793 | | |
794 | 0 | cpos = htell(fd->fp); |
795 | 0 | assert(cpos == hpos + c->length); |
796 | | |
797 | 0 | cram_free_container(c); |
798 | 0 | } |
799 | 0 | if (fd->err) { |
800 | 0 | bgzf_close(fp); |
801 | 0 | return -1; |
802 | 0 | } |
803 | | |
804 | 0 | return (bgzf_close(fp) >= 0)? 0 : -4; |
805 | 0 | } |