Coverage Report

Created: 2025-07-12 06:22

/rust/registry/src/index.crates.io-6f17d22bba15001f/tokio-1.46.1/src/lib.rs
Line
Count
Source (jump to first uncovered line)
1
#![allow(
2
    clippy::cognitive_complexity,
3
    clippy::large_enum_variant,
4
    clippy::module_inception,
5
    clippy::needless_doctest_main
6
)]
7
#![warn(
8
    missing_debug_implementations,
9
    missing_docs,
10
    rust_2018_idioms,
11
    unreachable_pub
12
)]
13
#![deny(unused_must_use)]
14
#![doc(test(
15
    no_crate_inject,
16
    attr(deny(warnings, rust_2018_idioms), allow(dead_code, unused_variables))
17
))]
18
#![cfg_attr(docsrs, feature(doc_cfg))]
19
#![cfg_attr(docsrs, allow(unused_attributes))]
20
#![cfg_attr(loom, allow(dead_code, unreachable_pub))]
21
#![cfg_attr(windows, allow(rustdoc::broken_intra_doc_links))]
22
23
//! A runtime for writing reliable network applications without compromising speed.
24
//!
25
//! Tokio is an event-driven, non-blocking I/O platform for writing asynchronous
26
//! applications with the Rust programming language. At a high level, it
27
//! provides a few major components:
28
//!
29
//! * Tools for [working with asynchronous tasks][tasks], including
30
//!   [synchronization primitives and channels][sync] and [timeouts, sleeps, and
31
//!   intervals][time].
32
//! * APIs for [performing asynchronous I/O][io], including [TCP and UDP][net] sockets,
33
//!   [filesystem][fs] operations, and [process] and [signal] management.
34
//! * A [runtime] for executing asynchronous code, including a task scheduler,
35
//!   an I/O driver backed by the operating system's event queue (`epoll`, `kqueue`,
36
//!   `IOCP`, etc...), and a high performance timer.
37
//!
38
//! Guide level documentation is found on the [website].
39
//!
40
//! [tasks]: #working-with-tasks
41
//! [sync]: crate::sync
42
//! [time]: crate::time
43
//! [io]: #asynchronous-io
44
//! [net]: crate::net
45
//! [fs]: crate::fs
46
//! [process]: crate::process
47
//! [signal]: crate::signal
48
//! [fs]: crate::fs
49
//! [runtime]: crate::runtime
50
//! [website]: https://tokio.rs/tokio/tutorial
51
//!
52
//! # A Tour of Tokio
53
//!
54
//! Tokio consists of a number of modules that provide a range of functionality
55
//! essential for implementing asynchronous applications in Rust. In this
56
//! section, we will take a brief tour of Tokio, summarizing the major APIs and
57
//! their uses.
58
//!
59
//! The easiest way to get started is to enable all features. Do this by
60
//! enabling the `full` feature flag:
61
//!
62
//! ```toml
63
//! tokio = { version = "1", features = ["full"] }
64
//! ```
65
//!
66
//! ### Authoring applications
67
//!
68
//! Tokio is great for writing applications and most users in this case shouldn't
69
//! worry too much about what features they should pick. If you're unsure, we suggest
70
//! going with `full` to ensure that you don't run into any road blocks while you're
71
//! building your application.
72
//!
73
//! #### Example
74
//!
75
//! This example shows the quickest way to get started with Tokio.
76
//!
77
//! ```toml
78
//! tokio = { version = "1", features = ["full"] }
79
//! ```
80
//!
81
//! ### Authoring libraries
82
//!
83
//! As a library author your goal should be to provide the lightest weight crate
84
//! that is based on Tokio. To achieve this you should ensure that you only enable
85
//! the features you need. This allows users to pick up your crate without having
86
//! to enable unnecessary features.
87
//!
88
//! #### Example
89
//!
90
//! This example shows how you may want to import features for a library that just
91
//! needs to `tokio::spawn` and use a `TcpStream`.
92
//!
93
//! ```toml
94
//! tokio = { version = "1", features = ["rt", "net"] }
95
//! ```
96
//!
97
//! ## Working With Tasks
98
//!
99
//! Asynchronous programs in Rust are based around lightweight, non-blocking
100
//! units of execution called [_tasks_][tasks]. The [`tokio::task`] module provides
101
//! important tools for working with tasks:
102
//!
103
//! * The [`spawn`] function and [`JoinHandle`] type, for scheduling a new task
104
//!   on the Tokio runtime and awaiting the output of a spawned task, respectively,
105
//! * Functions for [running blocking operations][blocking] in an asynchronous
106
//!   task context.
107
//!
108
//! The [`tokio::task`] module is present only when the "rt" feature flag
109
//! is enabled.
110
//!
111
//! [tasks]: task/index.html#what-are-tasks
112
//! [`tokio::task`]: crate::task
113
//! [`spawn`]: crate::task::spawn()
114
//! [`JoinHandle`]: crate::task::JoinHandle
115
//! [blocking]: task/index.html#blocking-and-yielding
116
//!
117
//! The [`tokio::sync`] module contains synchronization primitives to use when
118
//! needing to communicate or share data. These include:
119
//!
120
//! * channels ([`oneshot`], [`mpsc`], [`watch`], and [`broadcast`]), for sending values
121
//!   between tasks,
122
//! * a non-blocking [`Mutex`], for controlling access to a shared, mutable
123
//!   value,
124
//! * an asynchronous [`Barrier`] type, for multiple tasks to synchronize before
125
//!   beginning a computation.
126
//!
127
//! The `tokio::sync` module is present only when the "sync" feature flag is
128
//! enabled.
129
//!
130
//! [`tokio::sync`]: crate::sync
131
//! [`Mutex`]: crate::sync::Mutex
132
//! [`Barrier`]: crate::sync::Barrier
133
//! [`oneshot`]: crate::sync::oneshot
134
//! [`mpsc`]: crate::sync::mpsc
135
//! [`watch`]: crate::sync::watch
136
//! [`broadcast`]: crate::sync::broadcast
137
//!
138
//! The [`tokio::time`] module provides utilities for tracking time and
139
//! scheduling work. This includes functions for setting [timeouts][timeout] for
140
//! tasks, [sleeping][sleep] work to run in the future, or [repeating an operation at an
141
//! interval][interval].
142
//!
143
//! In order to use `tokio::time`, the "time" feature flag must be enabled.
144
//!
145
//! [`tokio::time`]: crate::time
146
//! [sleep]: crate::time::sleep()
147
//! [interval]: crate::time::interval()
148
//! [timeout]: crate::time::timeout()
149
//!
150
//! Finally, Tokio provides a _runtime_ for executing asynchronous tasks. Most
151
//! applications can use the [`#[tokio::main]`][main] macro to run their code on the
152
//! Tokio runtime. However, this macro provides only basic configuration options. As
153
//! an alternative, the [`tokio::runtime`] module provides more powerful APIs for configuring
154
//! and managing runtimes. You should use that module if the `#[tokio::main]` macro doesn't
155
//! provide the functionality you need.
156
//!
157
//! Using the runtime requires the "rt" or "rt-multi-thread" feature flags, to
158
//! enable the current-thread [single-threaded scheduler][rt] and the [multi-thread
159
//! scheduler][rt-multi-thread], respectively. See the [`runtime` module
160
//! documentation][rt-features] for details. In addition, the "macros" feature
161
//! flag enables the `#[tokio::main]` and `#[tokio::test]` attributes.
162
//!
163
//! [main]: attr.main.html
164
//! [`tokio::runtime`]: crate::runtime
165
//! [`Builder`]: crate::runtime::Builder
166
//! [`Runtime`]: crate::runtime::Runtime
167
//! [rt]: runtime/index.html#current-thread-scheduler
168
//! [rt-multi-thread]: runtime/index.html#multi-thread-scheduler
169
//! [rt-features]: runtime/index.html#runtime-scheduler
170
//!
171
//! ## CPU-bound tasks and blocking code
172
//!
173
//! Tokio is able to concurrently run many tasks on a few threads by repeatedly
174
//! swapping the currently running task on each thread. However, this kind of
175
//! swapping can only happen at `.await` points, so code that spends a long time
176
//! without reaching an `.await` will prevent other tasks from running. To
177
//! combat this, Tokio provides two kinds of threads: Core threads and blocking threads.
178
//!
179
//! The core threads are where all asynchronous code runs, and Tokio will by default
180
//! spawn one for each CPU core. You can use the environment variable `TOKIO_WORKER_THREADS`
181
//! to override the default value.
182
//!
183
//! The blocking threads are spawned on demand, can be used to run blocking code
184
//! that would otherwise block other tasks from running and are kept alive when
185
//! not used for a certain amount of time which can be configured with [`thread_keep_alive`].
186
//! Since it is not possible for Tokio to swap out blocking tasks, like it
187
//! can do with asynchronous code, the upper limit on the number of blocking
188
//! threads is very large. These limits can be configured on the [`Builder`].
189
//!
190
//! To spawn a blocking task, you should use the [`spawn_blocking`] function.
191
//!
192
//! [`Builder`]: crate::runtime::Builder
193
//! [`spawn_blocking`]: crate::task::spawn_blocking()
194
//! [`thread_keep_alive`]: crate::runtime::Builder::thread_keep_alive()
195
//!
196
//! ```
197
//! #[tokio::main]
198
//! async fn main() {
199
//!     // This is running on a core thread.
200
//!
201
//!     let blocking_task = tokio::task::spawn_blocking(|| {
202
//!         // This is running on a blocking thread.
203
//!         // Blocking here is ok.
204
//!     });
205
//!
206
//!     // We can wait for the blocking task like this:
207
//!     // If the blocking task panics, the unwrap below will propagate the
208
//!     // panic.
209
//!     blocking_task.await.unwrap();
210
//! }
211
//! ```
212
//!
213
//! If your code is CPU-bound and you wish to limit the number of threads used
214
//! to run it, you should use a separate thread pool dedicated to CPU bound tasks.
215
//! For example, you could consider using the [rayon] library for CPU-bound
216
//! tasks. It is also possible to create an extra Tokio runtime dedicated to
217
//! CPU-bound tasks, but if you do this, you should be careful that the extra
218
//! runtime runs _only_ CPU-bound tasks, as IO-bound tasks on that runtime
219
//! will behave poorly.
220
//!
221
//! Hint: If using rayon, you can use a [`oneshot`] channel to send the result back
222
//! to Tokio when the rayon task finishes.
223
//!
224
//! [rayon]: https://docs.rs/rayon
225
//! [`oneshot`]: crate::sync::oneshot
226
//!
227
//! ## Asynchronous IO
228
//!
229
//! As well as scheduling and running tasks, Tokio provides everything you need
230
//! to perform input and output asynchronously.
231
//!
232
//! The [`tokio::io`] module provides Tokio's asynchronous core I/O primitives,
233
//! the [`AsyncRead`], [`AsyncWrite`], and [`AsyncBufRead`] traits. In addition,
234
//! when the "io-util" feature flag is enabled, it also provides combinators and
235
//! functions for working with these traits, forming as an asynchronous
236
//! counterpart to [`std::io`].
237
//!
238
//! Tokio also includes APIs for performing various kinds of I/O and interacting
239
//! with the operating system asynchronously. These include:
240
//!
241
//! * [`tokio::net`], which contains non-blocking versions of [TCP], [UDP], and
242
//!   [Unix Domain Sockets][UDS] (enabled by the "net" feature flag),
243
//! * [`tokio::fs`], similar to [`std::fs`] but for performing filesystem I/O
244
//!   asynchronously (enabled by the "fs" feature flag),
245
//! * [`tokio::signal`], for asynchronously handling Unix and Windows OS signals
246
//!   (enabled by the "signal" feature flag),
247
//! * [`tokio::process`], for spawning and managing child processes (enabled by
248
//!   the "process" feature flag).
249
//!
250
//! [`tokio::io`]: crate::io
251
//! [`AsyncRead`]: crate::io::AsyncRead
252
//! [`AsyncWrite`]: crate::io::AsyncWrite
253
//! [`AsyncBufRead`]: crate::io::AsyncBufRead
254
//! [`std::io`]: std::io
255
//! [`tokio::net`]: crate::net
256
//! [TCP]: crate::net::tcp
257
//! [UDP]: crate::net::UdpSocket
258
//! [UDS]: crate::net::unix
259
//! [`tokio::fs`]: crate::fs
260
//! [`std::fs`]: std::fs
261
//! [`tokio::signal`]: crate::signal
262
//! [`tokio::process`]: crate::process
263
//!
264
//! # Examples
265
//!
266
//! A simple TCP echo server:
267
//!
268
//! ```no_run
269
//! use tokio::net::TcpListener;
270
//! use tokio::io::{AsyncReadExt, AsyncWriteExt};
271
//!
272
//! #[tokio::main]
273
//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
274
//!     let listener = TcpListener::bind("127.0.0.1:8080").await?;
275
//!
276
//!     loop {
277
//!         let (mut socket, _) = listener.accept().await?;
278
//!
279
//!         tokio::spawn(async move {
280
//!             let mut buf = [0; 1024];
281
//!
282
//!             // In a loop, read data from the socket and write the data back.
283
//!             loop {
284
//!                 let n = match socket.read(&mut buf).await {
285
//!                     // socket closed
286
//!                     Ok(0) => return,
287
//!                     Ok(n) => n,
288
//!                     Err(e) => {
289
//!                         eprintln!("failed to read from socket; err = {:?}", e);
290
//!                         return;
291
//!                     }
292
//!                 };
293
//!
294
//!                 // Write the data back
295
//!                 if let Err(e) = socket.write_all(&buf[0..n]).await {
296
//!                     eprintln!("failed to write to socket; err = {:?}", e);
297
//!                     return;
298
//!                 }
299
//!             }
300
//!         });
301
//!     }
302
//! }
303
//! ```
304
//!
305
//! # Feature flags
306
//!
307
//! Tokio uses a set of [feature flags] to reduce the amount of compiled code. It
308
//! is possible to just enable certain features over others. By default, Tokio
309
//! does not enable any features but allows one to enable a subset for their use
310
//! case. Below is a list of the available feature flags. You may also notice
311
//! above each function, struct and trait there is listed one or more feature flags
312
//! that are required for that item to be used. If you are new to Tokio it is
313
//! recommended that you use the `full` feature flag which will enable all public APIs.
314
//! Beware though that this will pull in many extra dependencies that you may not
315
//! need.
316
//!
317
//! - `full`: Enables all features listed below except `test-util` and `tracing`.
318
//! - `rt`: Enables `tokio::spawn`, the current-thread scheduler,
319
//!         and non-scheduler utilities.
320
//! - `rt-multi-thread`: Enables the heavier, multi-threaded, work-stealing scheduler.
321
//! - `io-util`: Enables the IO based `Ext` traits.
322
//! - `io-std`: Enable `Stdout`, `Stdin` and `Stderr` types.
323
//! - `net`: Enables `tokio::net` types such as `TcpStream`, `UnixStream` and
324
//!          `UdpSocket`, as well as (on Unix-like systems) `AsyncFd` and (on
325
//!          FreeBSD) `PollAio`.
326
//! - `time`: Enables `tokio::time` types and allows the schedulers to enable
327
//!           the built in timer.
328
//! - `process`: Enables `tokio::process` types.
329
//! - `macros`: Enables `#[tokio::main]` and `#[tokio::test]` macros.
330
//! - `sync`: Enables all `tokio::sync` types.
331
//! - `signal`: Enables all `tokio::signal` types.
332
//! - `fs`: Enables `tokio::fs` types.
333
//! - `test-util`: Enables testing based infrastructure for the Tokio runtime.
334
//! - `parking_lot`: As a potential optimization, use the `_parking_lot_` crate's
335
//!                  synchronization primitives internally. Also, this
336
//!                  dependency is necessary to construct some of our primitives
337
//!                  in a `const` context. `MSRV` may increase according to the
338
//!                  `_parking_lot_` release in use.
339
//!
340
//! _Note: `AsyncRead` and `AsyncWrite` traits do not require any features and are
341
//! always available._
342
//!
343
//! ## Unstable features
344
//!
345
//! Some feature flags are only available when specifying the `tokio_unstable` flag:
346
//!
347
//! - `tracing`: Enables tracing events.
348
//!
349
//! Likewise, some parts of the API are only available with the same flag:
350
//!
351
//! - [`task::Builder`]
352
//! - Some methods on [`task::JoinSet`]
353
//! - [`runtime::RuntimeMetrics`]
354
//! - [`runtime::Builder::on_task_spawn`]
355
//! - [`runtime::Builder::on_task_terminate`]
356
//! - [`runtime::Builder::unhandled_panic`]
357
//! - [`runtime::TaskMeta`]
358
//!
359
//! This flag enables **unstable** features. The public API of these features
360
//! may break in 1.x releases. To enable these features, the `--cfg
361
//! tokio_unstable` argument must be passed to `rustc` when compiling. This
362
//! serves to explicitly opt-in to features which may break semver conventions,
363
//! since Cargo [does not yet directly support such opt-ins][unstable features].
364
//!
365
//! You can specify it in your project's `.cargo/config.toml` file:
366
//!
367
//! ```toml
368
//! [build]
369
//! rustflags = ["--cfg", "tokio_unstable"]
370
//! ```
371
//!
372
//! <div class="warning">
373
//! The <code>[build]</code> section does <strong>not</strong> go in a
374
//! <code>Cargo.toml</code> file. Instead it must be placed in the Cargo config
375
//! file <code>.cargo/config.toml</code>.
376
//! </div>
377
//!
378
//! Alternatively, you can specify it with an environment variable:
379
//!
380
//! ```sh
381
//! ## Many *nix shells:
382
//! export RUSTFLAGS="--cfg tokio_unstable"
383
//! cargo build
384
//! ```
385
//!
386
//! ```powershell
387
//! ## Windows PowerShell:
388
//! $Env:RUSTFLAGS="--cfg tokio_unstable"
389
//! cargo build
390
//! ```
391
//!
392
//! [unstable features]: https://internals.rust-lang.org/t/feature-request-unstable-opt-in-non-transitive-crate-features/16193#why-not-a-crate-feature-2
393
//! [feature flags]: https://doc.rust-lang.org/cargo/reference/manifest.html#the-features-section
394
//!
395
//! # Supported platforms
396
//!
397
//! Tokio currently guarantees support for the following platforms:
398
//!
399
//!  * Linux
400
//!  * Windows
401
//!  * Android (API level 21)
402
//!  * macOS
403
//!  * iOS
404
//!  * FreeBSD
405
//!
406
//! Tokio will continue to support these platforms in the future. However,
407
//! future releases may change requirements such as the minimum required libc
408
//! version on Linux, the API level on Android, or the supported FreeBSD
409
//! release.
410
//!
411
//! Beyond the above platforms, Tokio is intended to work on all platforms
412
//! supported by the mio crate. You can find a longer list [in mio's
413
//! documentation][mio-supported]. However, these additional platforms may
414
//! become unsupported in the future.
415
//!
416
//! Note that Wine is considered to be a different platform from Windows. See
417
//! mio's documentation for more information on Wine support.
418
//!
419
//! [mio-supported]: https://crates.io/crates/mio#platforms
420
//!
421
//! ## `WASM` support
422
//!
423
//! Tokio has some limited support for the `WASM` platform. Without the
424
//! `tokio_unstable` flag, the following features are supported:
425
//!
426
//!  * `sync`
427
//!  * `macros`
428
//!  * `io-util`
429
//!  * `rt`
430
//!  * `time`
431
//!
432
//! Enabling any other feature (including `full`) will cause a compilation
433
//! failure.
434
//!
435
//! The `time` module will only work on `WASM` platforms that have support for
436
//! timers (e.g. wasm32-wasi). The timing functions will panic if used on a `WASM`
437
//! platform that does not support timers.
438
//!
439
//! Note also that if the runtime becomes indefinitely idle, it will panic
440
//! immediately instead of blocking forever. On platforms that don't support
441
//! time, this means that the runtime can never be idle in any way.
442
//!
443
//! ## Unstable `WASM` support
444
//!
445
//! Tokio also has unstable support for some additional `WASM` features. This
446
//! requires the use of the `tokio_unstable` flag.
447
//!
448
//! Using this flag enables the use of `tokio::net` on the wasm32-wasi target.
449
//! However, not all methods are available on the networking types as `WASI`
450
//! currently does not support the creation of new sockets from within `WASM`.
451
//! Because of this, sockets must currently be created via the `FromRawFd`
452
//! trait.
453
454
// Test that pointer width is compatible. This asserts that e.g. usize is at
455
// least 32 bits, which a lot of components in Tokio currently assumes.
456
//
457
// TODO: improve once we have MSRV access to const eval to make more flexible.
458
#[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
459
compile_error! {
460
    "Tokio requires the platform pointer width to be at least 32 bits"
461
}
462
463
#[cfg(all(
464
    not(tokio_unstable),
465
    target_family = "wasm",
466
    any(
467
        feature = "fs",
468
        feature = "io-std",
469
        feature = "net",
470
        feature = "process",
471
        feature = "rt-multi-thread",
472
        feature = "signal"
473
    )
474
))]
475
compile_error!("Only features sync,macros,io-util,rt,time are supported on wasm.");
476
477
#[cfg(all(not(tokio_unstable), tokio_taskdump))]
478
compile_error!("The `tokio_taskdump` feature requires `--cfg tokio_unstable`.");
479
480
#[cfg(all(
481
    tokio_taskdump,
482
    not(doc),
483
    not(all(
484
        target_os = "linux",
485
        any(target_arch = "aarch64", target_arch = "x86", target_arch = "x86_64")
486
    ))
487
))]
488
compile_error!(
489
    "The `tokio_taskdump` feature is only currently supported on \
490
linux, on `aarch64`, `x86` and `x86_64`."
491
);
492
493
// Includes re-exports used by macros.
494
//
495
// This module is not intended to be part of the public API. In general, any
496
// `doc(hidden)` code is not part of Tokio's public and stable API.
497
#[macro_use]
498
#[doc(hidden)]
499
pub mod macros;
500
501
cfg_fs! {
502
    pub mod fs;
503
}
504
505
mod future;
506
507
pub mod io;
508
pub mod net;
509
510
mod loom;
511
512
cfg_process! {
513
    pub mod process;
514
}
515
516
#[cfg(any(
517
    feature = "fs",
518
    feature = "io-std",
519
    feature = "net",
520
    all(windows, feature = "process"),
521
))]
522
mod blocking;
523
524
cfg_rt! {
525
    pub mod runtime;
526
}
527
cfg_not_rt! {
528
    pub(crate) mod runtime;
529
}
530
531
cfg_signal! {
532
    pub mod signal;
533
}
534
535
cfg_signal_internal! {
536
    #[cfg(not(feature = "signal"))]
537
    #[allow(dead_code)]
538
    #[allow(unreachable_pub)]
539
    pub(crate) mod signal;
540
}
541
542
cfg_sync! {
543
    pub mod sync;
544
}
545
cfg_not_sync! {
546
    mod sync;
547
}
548
549
pub mod task;
550
cfg_rt! {
551
    pub use task::spawn;
552
}
553
554
cfg_time! {
555
    pub mod time;
556
}
557
558
mod trace {
559
    use std::future::Future;
560
    use std::pin::Pin;
561
    use std::task::{Context, Poll};
562
563
    cfg_taskdump! {
564
        pub(crate) use crate::runtime::task::trace::trace_leaf;
565
    }
566
567
    cfg_not_taskdump! {
568
        #[inline(always)]
569
        #[allow(dead_code)]
570
35.8k
        pub(crate) fn trace_leaf(_: &mut std::task::Context<'_>) -> std::task::Poll<()> {
571
35.8k
            std::task::Poll::Ready(())
572
35.8k
        }
573
    }
574
575
    #[cfg_attr(not(feature = "sync"), allow(dead_code))]
576
0
    pub(crate) fn async_trace_leaf() -> impl Future<Output = ()> {
577
        struct Trace;
578
579
        impl Future for Trace {
580
            type Output = ();
581
582
            #[inline(always)]
583
0
            fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
584
0
                trace_leaf(cx)
585
0
            }
586
        }
587
588
0
        Trace
589
0
    }
590
}
591
592
mod util;
593
594
/// Due to the `Stream` trait's inclusion in `std` landing later than Tokio's 1.0
595
/// release, most of the Tokio stream utilities have been moved into the [`tokio-stream`]
596
/// crate.
597
///
598
/// # Why was `Stream` not included in Tokio 1.0?
599
///
600
/// Originally, we had planned to ship Tokio 1.0 with a stable `Stream` type
601
/// but unfortunately the [RFC] had not been merged in time for `Stream` to
602
/// reach `std` on a stable compiler in time for the 1.0 release of Tokio. For
603
/// this reason, the team has decided to move all `Stream` based utilities to
604
/// the [`tokio-stream`] crate. While this is not ideal, once `Stream` has made
605
/// it into the standard library and the `MSRV` period has passed, we will implement
606
/// stream for our different types.
607
///
608
/// While this may seem unfortunate, not all is lost as you can get much of the
609
/// `Stream` support with `async/await` and `while let` loops. It is also possible
610
/// to create a `impl Stream` from `async fn` using the [`async-stream`] crate.
611
///
612
/// [`tokio-stream`]: https://docs.rs/tokio-stream
613
/// [`async-stream`]: https://docs.rs/async-stream
614
/// [RFC]: https://github.com/rust-lang/rfcs/pull/2996
615
///
616
/// # Example
617
///
618
/// Convert a [`sync::mpsc::Receiver`] to an `impl Stream`.
619
///
620
/// ```rust,no_run
621
/// use tokio::sync::mpsc;
622
///
623
/// let (tx, mut rx) = mpsc::channel::<usize>(16);
624
///
625
/// let stream = async_stream::stream! {
626
///     while let Some(item) = rx.recv().await {
627
///         yield item;
628
///     }
629
/// };
630
/// ```
631
pub mod stream {}
632
633
// local re-exports of platform specific things, allowing for decent
634
// documentation to be shimmed in on docs.rs
635
636
#[cfg(all(docsrs, unix))]
637
pub mod doc;
638
639
#[cfg(any(feature = "net", feature = "fs"))]
640
#[cfg(all(docsrs, unix))]
641
#[allow(unused)]
642
pub(crate) use self::doc::os;
643
644
#[cfg(not(all(docsrs, unix)))]
645
#[allow(unused)]
646
pub(crate) use std::os;
647
648
cfg_macros! {
649
    /// Implementation detail of the `select!` macro. This macro is **not**
650
    /// intended to be used as part of the public API and is permitted to
651
    /// change.
652
    #[doc(hidden)]
653
    pub use tokio_macros::select_priv_declare_output_enum;
654
655
    /// Implementation detail of the `select!` macro. This macro is **not**
656
    /// intended to be used as part of the public API and is permitted to
657
    /// change.
658
    #[doc(hidden)]
659
    pub use tokio_macros::select_priv_clean_pattern;
660
661
    cfg_rt! {
662
        #[cfg(feature = "rt-multi-thread")]
663
        #[cfg_attr(docsrs, doc(cfg(feature = "macros")))]
664
        #[doc(inline)]
665
        pub use tokio_macros::main;
666
667
        #[cfg(feature = "rt-multi-thread")]
668
        #[cfg_attr(docsrs, doc(cfg(feature = "macros")))]
669
        #[doc(inline)]
670
        pub use tokio_macros::test;
671
672
        cfg_not_rt_multi_thread! {
673
            #[doc(inline)]
674
            pub use tokio_macros::main_rt as main;
675
676
            #[doc(inline)]
677
            pub use tokio_macros::test_rt as test;
678
        }
679
    }
680
681
    // Always fail if rt is not enabled.
682
    cfg_not_rt! {
683
        #[doc(inline)]
684
        pub use tokio_macros::main_fail as main;
685
686
        #[doc(inline)]
687
        pub use tokio_macros::test_fail as test;
688
    }
689
}
690
691
// TODO: rm
692
#[cfg(feature = "io-util")]
693
#[cfg(test)]
694
fn is_unpin<T: Unpin>() {}
695
696
/// fuzz test (`fuzz_linked_list`)
697
#[cfg(fuzzing)]
698
pub mod fuzz;