Coverage Report

Created: 2025-08-26 07:09

/rust/registry/src/index.crates.io-6f17d22bba15001f/indexmap-2.11.0/src/set.rs
Line
Count
Source (jump to first uncovered line)
1
//! A hash set implemented using [`IndexMap`]
2
3
mod iter;
4
mod mutable;
5
mod slice;
6
7
#[cfg(test)]
8
mod tests;
9
10
pub use self::iter::{
11
    Difference, Drain, ExtractIf, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union,
12
};
13
pub use self::mutable::MutableValues;
14
pub use self::slice::Slice;
15
16
#[cfg(feature = "rayon")]
17
pub use crate::rayon::set as rayon;
18
use crate::TryReserveError;
19
20
#[cfg(feature = "std")]
21
use std::collections::hash_map::RandomState;
22
23
use crate::util::try_simplify_range;
24
use alloc::boxed::Box;
25
use alloc::vec::Vec;
26
use core::cmp::Ordering;
27
use core::fmt;
28
use core::hash::{BuildHasher, Hash};
29
use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub};
30
31
use super::{Equivalent, IndexMap};
32
33
type Bucket<T> = super::Bucket<T, ()>;
34
35
/// A hash set where the iteration order of the values is independent of their
36
/// hash values.
37
///
38
/// The interface is closely compatible with the standard
39
/// [`HashSet`][std::collections::HashSet],
40
/// but also has additional features.
41
///
42
/// # Order
43
///
44
/// The values have a consistent order that is determined by the sequence of
45
/// insertion and removal calls on the set. The order does not depend on the
46
/// values or the hash function at all. Note that insertion order and value
47
/// are not affected if a re-insertion is attempted once an element is
48
/// already present.
49
///
50
/// All iterators traverse the set *in order*.  Set operation iterators like
51
/// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise"
52
/// operators.  See their documentation for specifics.
53
///
54
/// The insertion order is preserved, with **notable exceptions** like the
55
/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
56
/// Methods such as [`.sort_by()`][Self::sort_by] of
57
/// course result in a new order, depending on the sorting order.
58
///
59
/// # Indices
60
///
61
/// The values are indexed in a compact range without holes in the range
62
/// `0..self.len()`. For example, the method `.get_full` looks up the index for
63
/// a value, and the method `.get_index` looks up the value by index.
64
///
65
/// # Complexity
66
///
67
/// Internally, `IndexSet<T, S>` just holds an [`IndexMap<T, (), S>`](IndexMap). Thus the complexity
68
/// of the two are the same for most methods.
69
///
70
/// # Examples
71
///
72
/// ```
73
/// use indexmap::IndexSet;
74
///
75
/// // Collects which letters appear in a sentence.
76
/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect();
77
///
78
/// assert!(letters.contains(&'s'));
79
/// assert!(letters.contains(&'t'));
80
/// assert!(letters.contains(&'u'));
81
/// assert!(!letters.contains(&'y'));
82
/// ```
83
#[cfg(feature = "std")]
84
pub struct IndexSet<T, S = RandomState> {
85
    pub(crate) map: IndexMap<T, (), S>,
86
}
87
#[cfg(not(feature = "std"))]
88
pub struct IndexSet<T, S> {
89
    pub(crate) map: IndexMap<T, (), S>,
90
}
91
92
impl<T, S> Clone for IndexSet<T, S>
93
where
94
    T: Clone,
95
    S: Clone,
96
{
97
0
    fn clone(&self) -> Self {
98
0
        IndexSet {
99
0
            map: self.map.clone(),
100
0
        }
101
0
    }
102
103
0
    fn clone_from(&mut self, other: &Self) {
104
0
        self.map.clone_from(&other.map);
105
0
    }
106
}
107
108
impl<T, S> fmt::Debug for IndexSet<T, S>
109
where
110
    T: fmt::Debug,
111
{
112
    #[cfg(not(feature = "test_debug"))]
113
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
114
0
        f.debug_set().entries(self.iter()).finish()
115
0
    }
116
117
    #[cfg(feature = "test_debug")]
118
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
119
        // Let the inner `IndexMap` print all of its details
120
        f.debug_struct("IndexSet").field("map", &self.map).finish()
121
    }
122
}
123
124
#[cfg(feature = "std")]
125
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
126
impl<T> IndexSet<T> {
127
    /// Create a new set. (Does not allocate.)
128
0
    pub fn new() -> Self {
129
0
        IndexSet {
130
0
            map: IndexMap::new(),
131
0
        }
132
0
    }
133
134
    /// Create a new set with capacity for `n` elements.
135
    /// (Does not allocate if `n` is zero.)
136
    ///
137
    /// Computes in **O(n)** time.
138
0
    pub fn with_capacity(n: usize) -> Self {
139
0
        IndexSet {
140
0
            map: IndexMap::with_capacity(n),
141
0
        }
142
0
    }
143
}
144
145
impl<T, S> IndexSet<T, S> {
146
    /// Create a new set with capacity for `n` elements.
147
    /// (Does not allocate if `n` is zero.)
148
    ///
149
    /// Computes in **O(n)** time.
150
0
    pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
151
0
        IndexSet {
152
0
            map: IndexMap::with_capacity_and_hasher(n, hash_builder),
153
0
        }
154
0
    }
155
156
    /// Create a new set with `hash_builder`.
157
    ///
158
    /// This function is `const`, so it
159
    /// can be called in `static` contexts.
160
0
    pub const fn with_hasher(hash_builder: S) -> Self {
161
0
        IndexSet {
162
0
            map: IndexMap::with_hasher(hash_builder),
163
0
        }
164
0
    }
165
166
    #[inline]
167
0
    pub(crate) fn into_entries(self) -> Vec<Bucket<T>> {
168
0
        self.map.into_entries()
169
0
    }
170
171
    #[inline]
172
0
    pub(crate) fn as_entries(&self) -> &[Bucket<T>] {
173
0
        self.map.as_entries()
174
0
    }
175
176
0
    pub(crate) fn with_entries<F>(&mut self, f: F)
177
0
    where
178
0
        F: FnOnce(&mut [Bucket<T>]),
179
0
    {
180
0
        self.map.with_entries(f);
181
0
    }
182
183
    /// Return the number of elements the set can hold without reallocating.
184
    ///
185
    /// This number is a lower bound; the set might be able to hold more,
186
    /// but is guaranteed to be able to hold at least this many.
187
    ///
188
    /// Computes in **O(1)** time.
189
0
    pub fn capacity(&self) -> usize {
190
0
        self.map.capacity()
191
0
    }
192
193
    /// Return a reference to the set's `BuildHasher`.
194
0
    pub fn hasher(&self) -> &S {
195
0
        self.map.hasher()
196
0
    }
197
198
    /// Return the number of elements in the set.
199
    ///
200
    /// Computes in **O(1)** time.
201
0
    pub fn len(&self) -> usize {
202
0
        self.map.len()
203
0
    }
204
205
    /// Returns true if the set contains no elements.
206
    ///
207
    /// Computes in **O(1)** time.
208
0
    pub fn is_empty(&self) -> bool {
209
0
        self.map.is_empty()
210
0
    }
211
212
    /// Return an iterator over the values of the set, in their order
213
0
    pub fn iter(&self) -> Iter<'_, T> {
214
0
        Iter::new(self.as_entries())
215
0
    }
216
217
    /// Remove all elements in the set, while preserving its capacity.
218
    ///
219
    /// Computes in **O(n)** time.
220
0
    pub fn clear(&mut self) {
221
0
        self.map.clear();
222
0
    }
223
224
    /// Shortens the set, keeping the first `len` elements and dropping the rest.
225
    ///
226
    /// If `len` is greater than the set's current length, this has no effect.
227
0
    pub fn truncate(&mut self, len: usize) {
228
0
        self.map.truncate(len);
229
0
    }
230
231
    /// Clears the `IndexSet` in the given index range, returning those values
232
    /// as a drain iterator.
233
    ///
234
    /// The range may be any type that implements [`RangeBounds<usize>`],
235
    /// including all of the `std::ops::Range*` types, or even a tuple pair of
236
    /// `Bound` start and end values. To drain the set entirely, use `RangeFull`
237
    /// like `set.drain(..)`.
238
    ///
239
    /// This shifts down all entries following the drained range to fill the
240
    /// gap, and keeps the allocated memory for reuse.
241
    ///
242
    /// ***Panics*** if the starting point is greater than the end point or if
243
    /// the end point is greater than the length of the set.
244
    #[track_caller]
245
0
    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
246
0
    where
247
0
        R: RangeBounds<usize>,
248
0
    {
249
0
        Drain::new(self.map.core.drain(range))
250
0
    }
251
252
    /// Creates an iterator which uses a closure to determine if a value should be removed,
253
    /// for all values in the given range.
254
    ///
255
    /// If the closure returns true, then the value is removed and yielded.
256
    /// If the closure returns false, the value will remain in the list and will not be yielded
257
    /// by the iterator.
258
    ///
259
    /// The range may be any type that implements [`RangeBounds<usize>`],
260
    /// including all of the `std::ops::Range*` types, or even a tuple pair of
261
    /// `Bound` start and end values. To check the entire set, use `RangeFull`
262
    /// like `set.extract_if(.., predicate)`.
263
    ///
264
    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
265
    /// or the iteration short-circuits, then the remaining elements will be retained.
266
    /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
267
    ///
268
    /// [`retain`]: IndexSet::retain
269
    ///
270
    /// ***Panics*** if the starting point is greater than the end point or if
271
    /// the end point is greater than the length of the set.
272
    ///
273
    /// # Examples
274
    ///
275
    /// Splitting a set into even and odd values, reusing the original set:
276
    ///
277
    /// ```
278
    /// use indexmap::IndexSet;
279
    ///
280
    /// let mut set: IndexSet<i32> = (0..8).collect();
281
    /// let extracted: IndexSet<i32> = set.extract_if(.., |v| v % 2 == 0).collect();
282
    ///
283
    /// let evens = extracted.into_iter().collect::<Vec<_>>();
284
    /// let odds = set.into_iter().collect::<Vec<_>>();
285
    ///
286
    /// assert_eq!(evens, vec![0, 2, 4, 6]);
287
    /// assert_eq!(odds, vec![1, 3, 5, 7]);
288
    /// ```
289
    #[track_caller]
290
0
    pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, T, F>
291
0
    where
292
0
        F: FnMut(&T) -> bool,
293
0
        R: RangeBounds<usize>,
294
0
    {
295
0
        ExtractIf::new(&mut self.map.core, range, pred)
296
0
    }
297
298
    /// Splits the collection into two at the given index.
299
    ///
300
    /// Returns a newly allocated set containing the elements in the range
301
    /// `[at, len)`. After the call, the original set will be left containing
302
    /// the elements `[0, at)` with its previous capacity unchanged.
303
    ///
304
    /// ***Panics*** if `at > len`.
305
    #[track_caller]
306
0
    pub fn split_off(&mut self, at: usize) -> Self
307
0
    where
308
0
        S: Clone,
309
0
    {
310
0
        Self {
311
0
            map: self.map.split_off(at),
312
0
        }
313
0
    }
314
315
    /// Reserve capacity for `additional` more values.
316
    ///
317
    /// Computes in **O(n)** time.
318
0
    pub fn reserve(&mut self, additional: usize) {
319
0
        self.map.reserve(additional);
320
0
    }
321
322
    /// Reserve capacity for `additional` more values, without over-allocating.
323
    ///
324
    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
325
    /// frequent re-allocations. However, the underlying data structures may still have internal
326
    /// capacity requirements, and the allocator itself may give more space than requested, so this
327
    /// cannot be relied upon to be precisely minimal.
328
    ///
329
    /// Computes in **O(n)** time.
330
0
    pub fn reserve_exact(&mut self, additional: usize) {
331
0
        self.map.reserve_exact(additional);
332
0
    }
333
334
    /// Try to reserve capacity for `additional` more values.
335
    ///
336
    /// Computes in **O(n)** time.
337
0
    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
338
0
        self.map.try_reserve(additional)
339
0
    }
340
341
    /// Try to reserve capacity for `additional` more values, without over-allocating.
342
    ///
343
    /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
344
    /// frequent re-allocations. However, the underlying data structures may still have internal
345
    /// capacity requirements, and the allocator itself may give more space than requested, so this
346
    /// cannot be relied upon to be precisely minimal.
347
    ///
348
    /// Computes in **O(n)** time.
349
0
    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
350
0
        self.map.try_reserve_exact(additional)
351
0
    }
352
353
    /// Shrink the capacity of the set as much as possible.
354
    ///
355
    /// Computes in **O(n)** time.
356
0
    pub fn shrink_to_fit(&mut self) {
357
0
        self.map.shrink_to_fit();
358
0
    }
359
360
    /// Shrink the capacity of the set with a lower limit.
361
    ///
362
    /// Computes in **O(n)** time.
363
0
    pub fn shrink_to(&mut self, min_capacity: usize) {
364
0
        self.map.shrink_to(min_capacity);
365
0
    }
366
}
367
368
impl<T, S> IndexSet<T, S>
369
where
370
    T: Hash + Eq,
371
    S: BuildHasher,
372
{
373
    /// Insert the value into the set.
374
    ///
375
    /// If an equivalent item already exists in the set, it returns
376
    /// `false` leaving the original value in the set and without
377
    /// altering its insertion order. Otherwise, it inserts the new
378
    /// item and returns `true`.
379
    ///
380
    /// Computes in **O(1)** time (amortized average).
381
0
    pub fn insert(&mut self, value: T) -> bool {
382
0
        self.map.insert(value, ()).is_none()
383
0
    }
384
385
    /// Insert the value into the set, and get its index.
386
    ///
387
    /// If an equivalent item already exists in the set, it returns
388
    /// the index of the existing item and `false`, leaving the
389
    /// original value in the set and without altering its insertion
390
    /// order. Otherwise, it inserts the new item and returns the index
391
    /// of the inserted item and `true`.
392
    ///
393
    /// Computes in **O(1)** time (amortized average).
394
0
    pub fn insert_full(&mut self, value: T) -> (usize, bool) {
395
0
        let (index, existing) = self.map.insert_full(value, ());
396
0
        (index, existing.is_none())
397
0
    }
398
399
    /// Insert the value into the set at its ordered position among sorted values.
400
    ///
401
    /// This is equivalent to finding the position with
402
    /// [`binary_search`][Self::binary_search], and if needed calling
403
    /// [`insert_before`][Self::insert_before] for a new value.
404
    ///
405
    /// If the sorted item is found in the set, it returns the index of that
406
    /// existing item and `false`, without any change. Otherwise, it inserts the
407
    /// new item and returns its sorted index and `true`.
408
    ///
409
    /// If the existing items are **not** already sorted, then the insertion
410
    /// index is unspecified (like [`slice::binary_search`]), but the value
411
    /// is moved to or inserted at that position regardless.
412
    ///
413
    /// Computes in **O(n)** time (average). Instead of repeating calls to
414
    /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
415
    /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or
416
    /// [`sort_unstable`][Self::sort_unstable] once.
417
0
    pub fn insert_sorted(&mut self, value: T) -> (usize, bool)
418
0
    where
419
0
        T: Ord,
420
0
    {
421
0
        let (index, existing) = self.map.insert_sorted(value, ());
422
0
        (index, existing.is_none())
423
0
    }
424
425
    /// Insert the value into the set at its ordered position among values
426
    /// sorted by `cmp`.
427
    ///
428
    /// This is equivalent to finding the position with
429
    /// [`binary_search_by`][Self::binary_search_by], then calling
430
    /// [`insert_before`][Self::insert_before].
431
    ///
432
    /// If the existing items are **not** already sorted, then the insertion
433
    /// index is unspecified (like [`slice::binary_search`]), but the value
434
    /// is moved to or inserted at that position regardless.
435
    ///
436
    /// Computes in **O(n)** time (average).
437
0
    pub fn insert_sorted_by<F>(&mut self, value: T, mut cmp: F) -> (usize, bool)
438
0
    where
439
0
        T: Ord,
440
0
        F: FnMut(&T, &T) -> Ordering,
441
0
    {
442
0
        let (index, existing) = self
443
0
            .map
444
0
            .insert_sorted_by(value, (), |a, (), b, ()| cmp(a, b));
445
0
        (index, existing.is_none())
446
0
    }
447
448
    /// Insert the value into the set at its ordered position among values
449
    /// using a sort-key extraction function.
450
    ///
451
    /// This is equivalent to finding the position with
452
    /// [`binary_search_by_key`][Self::binary_search_by_key] with `sort_key(key)`,
453
    /// then calling [`insert_before`][Self::insert_before].
454
    ///
455
    /// If the existing items are **not** already sorted, then the insertion
456
    /// index is unspecified (like [`slice::binary_search`]), but the value
457
    /// is moved to or inserted at that position regardless.
458
    ///
459
    /// Computes in **O(n)** time (average).
460
0
    pub fn insert_sorted_by_key<B, F>(&mut self, value: T, mut sort_key: F) -> (usize, bool)
461
0
    where
462
0
        B: Ord,
463
0
        F: FnMut(&T) -> B,
464
0
    {
465
0
        let (index, existing) = self.map.insert_sorted_by_key(value, (), |k, _| sort_key(k));
466
0
        (index, existing.is_none())
467
0
    }
468
469
    /// Insert the value into the set before the value at the given index, or at the end.
470
    ///
471
    /// If an equivalent item already exists in the set, it returns `false` leaving the
472
    /// original value in the set, but moved to the new position. The returned index
473
    /// will either be the given index or one less, depending on how the value moved.
474
    /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
475
    ///
476
    /// Otherwise, it inserts the new value exactly at the given index and returns `true`.
477
    ///
478
    /// ***Panics*** if `index` is out of bounds.
479
    /// Valid indices are `0..=set.len()` (inclusive).
480
    ///
481
    /// Computes in **O(n)** time (average).
482
    ///
483
    /// # Examples
484
    ///
485
    /// ```
486
    /// use indexmap::IndexSet;
487
    /// let mut set: IndexSet<char> = ('a'..='z').collect();
488
    ///
489
    /// // The new value '*' goes exactly at the given index.
490
    /// assert_eq!(set.get_index_of(&'*'), None);
491
    /// assert_eq!(set.insert_before(10, '*'), (10, true));
492
    /// assert_eq!(set.get_index_of(&'*'), Some(10));
493
    ///
494
    /// // Moving the value 'a' up will shift others down, so this moves *before* 10 to index 9.
495
    /// assert_eq!(set.insert_before(10, 'a'), (9, false));
496
    /// assert_eq!(set.get_index_of(&'a'), Some(9));
497
    /// assert_eq!(set.get_index_of(&'*'), Some(10));
498
    ///
499
    /// // Moving the value 'z' down will shift others up, so this moves to exactly 10.
500
    /// assert_eq!(set.insert_before(10, 'z'), (10, false));
501
    /// assert_eq!(set.get_index_of(&'z'), Some(10));
502
    /// assert_eq!(set.get_index_of(&'*'), Some(11));
503
    ///
504
    /// // Moving or inserting before the endpoint is also valid.
505
    /// assert_eq!(set.len(), 27);
506
    /// assert_eq!(set.insert_before(set.len(), '*'), (26, false));
507
    /// assert_eq!(set.get_index_of(&'*'), Some(26));
508
    /// assert_eq!(set.insert_before(set.len(), '+'), (27, true));
509
    /// assert_eq!(set.get_index_of(&'+'), Some(27));
510
    /// assert_eq!(set.len(), 28);
511
    /// ```
512
    #[track_caller]
513
0
    pub fn insert_before(&mut self, index: usize, value: T) -> (usize, bool) {
514
0
        let (index, existing) = self.map.insert_before(index, value, ());
515
0
        (index, existing.is_none())
516
0
    }
517
518
    /// Insert the value into the set at the given index.
519
    ///
520
    /// If an equivalent item already exists in the set, it returns `false` leaving
521
    /// the original value in the set, but moved to the given index.
522
    /// Note that existing values **cannot** be moved to `index == set.len()`!
523
    /// (See [`insert_before`](Self::insert_before) for different behavior here.)
524
    ///
525
    /// Otherwise, it inserts the new value at the given index and returns `true`.
526
    ///
527
    /// ***Panics*** if `index` is out of bounds.
528
    /// Valid indices are `0..set.len()` (exclusive) when moving an existing value, or
529
    /// `0..=set.len()` (inclusive) when inserting a new value.
530
    ///
531
    /// Computes in **O(n)** time (average).
532
    ///
533
    /// # Examples
534
    ///
535
    /// ```
536
    /// use indexmap::IndexSet;
537
    /// let mut set: IndexSet<char> = ('a'..='z').collect();
538
    ///
539
    /// // The new value '*' goes exactly at the given index.
540
    /// assert_eq!(set.get_index_of(&'*'), None);
541
    /// assert_eq!(set.shift_insert(10, '*'), true);
542
    /// assert_eq!(set.get_index_of(&'*'), Some(10));
543
    ///
544
    /// // Moving the value 'a' up to 10 will shift others down, including the '*' that was at 10.
545
    /// assert_eq!(set.shift_insert(10, 'a'), false);
546
    /// assert_eq!(set.get_index_of(&'a'), Some(10));
547
    /// assert_eq!(set.get_index_of(&'*'), Some(9));
548
    ///
549
    /// // Moving the value 'z' down to 9 will shift others up, including the '*' that was at 9.
550
    /// assert_eq!(set.shift_insert(9, 'z'), false);
551
    /// assert_eq!(set.get_index_of(&'z'), Some(9));
552
    /// assert_eq!(set.get_index_of(&'*'), Some(10));
553
    ///
554
    /// // Existing values can move to len-1 at most, but new values can insert at the endpoint.
555
    /// assert_eq!(set.len(), 27);
556
    /// assert_eq!(set.shift_insert(set.len() - 1, '*'), false);
557
    /// assert_eq!(set.get_index_of(&'*'), Some(26));
558
    /// assert_eq!(set.shift_insert(set.len(), '+'), true);
559
    /// assert_eq!(set.get_index_of(&'+'), Some(27));
560
    /// assert_eq!(set.len(), 28);
561
    /// ```
562
    ///
563
    /// ```should_panic
564
    /// use indexmap::IndexSet;
565
    /// let mut set: IndexSet<char> = ('a'..='z').collect();
566
    ///
567
    /// // This is an invalid index for moving an existing value!
568
    /// set.shift_insert(set.len(), 'a');
569
    /// ```
570
    #[track_caller]
571
0
    pub fn shift_insert(&mut self, index: usize, value: T) -> bool {
572
0
        self.map.shift_insert(index, value, ()).is_none()
573
0
    }
574
575
    /// Adds a value to the set, replacing the existing value, if any, that is
576
    /// equal to the given one, without altering its insertion order. Returns
577
    /// the replaced value.
578
    ///
579
    /// Computes in **O(1)** time (average).
580
0
    pub fn replace(&mut self, value: T) -> Option<T> {
581
0
        self.replace_full(value).1
582
0
    }
583
584
    /// Adds a value to the set, replacing the existing value, if any, that is
585
    /// equal to the given one, without altering its insertion order. Returns
586
    /// the index of the item and its replaced value.
587
    ///
588
    /// Computes in **O(1)** time (average).
589
0
    pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) {
590
0
        let hash = self.map.hash(&value);
591
0
        match self.map.core.replace_full(hash, value, ()) {
592
0
            (i, Some((replaced, ()))) => (i, Some(replaced)),
593
0
            (i, None) => (i, None),
594
        }
595
0
    }
596
597
    /// Replaces the value at the given index. The new value does not need to be
598
    /// equivalent to the one it is replacing, but it must be unique to the rest
599
    /// of the set.
600
    ///
601
    /// Returns `Ok(old_value)` if successful, or `Err((other_index, value))` if
602
    /// an equivalent value already exists at a different index. The set will be
603
    /// unchanged in the error case.
604
    ///
605
    /// ***Panics*** if `index` is out of bounds.
606
    ///
607
    /// Computes in **O(1)** time (average).
608
    #[track_caller]
609
0
    pub fn replace_index(&mut self, index: usize, value: T) -> Result<T, (usize, T)> {
610
0
        self.map.replace_index(index, value)
611
0
    }
612
613
    /// Return an iterator over the values that are in `self` but not `other`.
614
    ///
615
    /// Values are produced in the same order that they appear in `self`.
616
0
    pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2>
617
0
    where
618
0
        S2: BuildHasher,
619
0
    {
620
0
        Difference::new(self, other)
621
0
    }
622
623
    /// Return an iterator over the values that are in `self` or `other`,
624
    /// but not in both.
625
    ///
626
    /// Values from `self` are produced in their original order, followed by
627
    /// values from `other` in their original order.
628
0
    pub fn symmetric_difference<'a, S2>(
629
0
        &'a self,
630
0
        other: &'a IndexSet<T, S2>,
631
0
    ) -> SymmetricDifference<'a, T, S, S2>
632
0
    where
633
0
        S2: BuildHasher,
634
0
    {
635
0
        SymmetricDifference::new(self, other)
636
0
    }
637
638
    /// Return an iterator over the values that are in both `self` and `other`.
639
    ///
640
    /// Values are produced in the same order that they appear in `self`.
641
0
    pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2>
642
0
    where
643
0
        S2: BuildHasher,
644
0
    {
645
0
        Intersection::new(self, other)
646
0
    }
647
648
    /// Return an iterator over all values that are in `self` or `other`.
649
    ///
650
    /// Values from `self` are produced in their original order, followed by
651
    /// values that are unique to `other` in their original order.
652
0
    pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S>
653
0
    where
654
0
        S2: BuildHasher,
655
0
    {
656
0
        Union::new(self, other)
657
0
    }
658
659
    /// Creates a splicing iterator that replaces the specified range in the set
660
    /// with the given `replace_with` iterator and yields the removed items.
661
    /// `replace_with` does not need to be the same length as `range`.
662
    ///
663
    /// The `range` is removed even if the iterator is not consumed until the
664
    /// end. It is unspecified how many elements are removed from the set if the
665
    /// `Splice` value is leaked.
666
    ///
667
    /// The input iterator `replace_with` is only consumed when the `Splice`
668
    /// value is dropped. If a value from the iterator matches an existing entry
669
    /// in the set (outside of `range`), then the original will be unchanged.
670
    /// Otherwise, the new value will be inserted in the replaced `range`.
671
    ///
672
    /// ***Panics*** if the starting point is greater than the end point or if
673
    /// the end point is greater than the length of the set.
674
    ///
675
    /// # Examples
676
    ///
677
    /// ```
678
    /// use indexmap::IndexSet;
679
    ///
680
    /// let mut set = IndexSet::from([0, 1, 2, 3, 4]);
681
    /// let new = [5, 4, 3, 2, 1];
682
    /// let removed: Vec<_> = set.splice(2..4, new).collect();
683
    ///
684
    /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted.
685
    /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4]));
686
    /// assert_eq!(removed, &[2, 3]);
687
    /// ```
688
    #[track_caller]
689
0
    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S>
690
0
    where
691
0
        R: RangeBounds<usize>,
692
0
        I: IntoIterator<Item = T>,
693
0
    {
694
0
        Splice::new(self, range, replace_with.into_iter())
695
0
    }
696
697
    /// Moves all values from `other` into `self`, leaving `other` empty.
698
    ///
699
    /// This is equivalent to calling [`insert`][Self::insert] for each value
700
    /// from `other` in order, which means that values that already exist
701
    /// in `self` are unchanged in their current position.
702
    ///
703
    /// See also [`union`][Self::union] to iterate the combined values by
704
    /// reference, without modifying `self` or `other`.
705
    ///
706
    /// # Examples
707
    ///
708
    /// ```
709
    /// use indexmap::IndexSet;
710
    ///
711
    /// let mut a = IndexSet::from([3, 2, 1]);
712
    /// let mut b = IndexSet::from([3, 4, 5]);
713
    /// let old_capacity = b.capacity();
714
    ///
715
    /// a.append(&mut b);
716
    ///
717
    /// assert_eq!(a.len(), 5);
718
    /// assert_eq!(b.len(), 0);
719
    /// assert_eq!(b.capacity(), old_capacity);
720
    ///
721
    /// assert!(a.iter().eq(&[3, 2, 1, 4, 5]));
722
    /// ```
723
0
    pub fn append<S2>(&mut self, other: &mut IndexSet<T, S2>) {
724
0
        self.map.append(&mut other.map);
725
0
    }
726
}
727
728
impl<T, S> IndexSet<T, S>
729
where
730
    S: BuildHasher,
731
{
732
    /// Return `true` if an equivalent to `value` exists in the set.
733
    ///
734
    /// Computes in **O(1)** time (average).
735
0
    pub fn contains<Q>(&self, value: &Q) -> bool
736
0
    where
737
0
        Q: ?Sized + Hash + Equivalent<T>,
738
0
    {
739
0
        self.map.contains_key(value)
740
0
    }
741
742
    /// Return a reference to the value stored in the set, if it is present,
743
    /// else `None`.
744
    ///
745
    /// Computes in **O(1)** time (average).
746
0
    pub fn get<Q>(&self, value: &Q) -> Option<&T>
747
0
    where
748
0
        Q: ?Sized + Hash + Equivalent<T>,
749
0
    {
750
0
        self.map.get_key_value(value).map(|(x, &())| x)
751
0
    }
752
753
    /// Return item index and value
754
0
    pub fn get_full<Q>(&self, value: &Q) -> Option<(usize, &T)>
755
0
    where
756
0
        Q: ?Sized + Hash + Equivalent<T>,
757
0
    {
758
0
        self.map.get_full(value).map(|(i, x, &())| (i, x))
759
0
    }
760
761
    /// Return item index, if it exists in the set
762
    ///
763
    /// Computes in **O(1)** time (average).
764
0
    pub fn get_index_of<Q>(&self, value: &Q) -> Option<usize>
765
0
    where
766
0
        Q: ?Sized + Hash + Equivalent<T>,
767
0
    {
768
0
        self.map.get_index_of(value)
769
0
    }
770
771
    /// Remove the value from the set, and return `true` if it was present.
772
    ///
773
    /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this
774
    /// value's position with the last element, and it is deprecated in favor of calling that
775
    /// explicitly. If you need to preserve the relative order of the values in the set, use
776
    /// [`.shift_remove(value)`][Self::shift_remove] instead.
777
    #[deprecated(note = "`remove` disrupts the set order -- \
778
        use `swap_remove` or `shift_remove` for explicit behavior.")]
779
0
    pub fn remove<Q>(&mut self, value: &Q) -> bool
780
0
    where
781
0
        Q: ?Sized + Hash + Equivalent<T>,
782
0
    {
783
0
        self.swap_remove(value)
784
0
    }
785
786
    /// Remove the value from the set, and return `true` if it was present.
787
    ///
788
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
789
    /// last element of the set and popping it off. **This perturbs
790
    /// the position of what used to be the last element!**
791
    ///
792
    /// Return `false` if `value` was not in the set.
793
    ///
794
    /// Computes in **O(1)** time (average).
795
0
    pub fn swap_remove<Q>(&mut self, value: &Q) -> bool
796
0
    where
797
0
        Q: ?Sized + Hash + Equivalent<T>,
798
0
    {
799
0
        self.map.swap_remove(value).is_some()
800
0
    }
801
802
    /// Remove the value from the set, and return `true` if it was present.
803
    ///
804
    /// Like [`Vec::remove`], the value is removed by shifting all of the
805
    /// elements that follow it, preserving their relative order.
806
    /// **This perturbs the index of all of those elements!**
807
    ///
808
    /// Return `false` if `value` was not in the set.
809
    ///
810
    /// Computes in **O(n)** time (average).
811
0
    pub fn shift_remove<Q>(&mut self, value: &Q) -> bool
812
0
    where
813
0
        Q: ?Sized + Hash + Equivalent<T>,
814
0
    {
815
0
        self.map.shift_remove(value).is_some()
816
0
    }
817
818
    /// Removes and returns the value in the set, if any, that is equal to the
819
    /// given one.
820
    ///
821
    /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this
822
    /// value's position with the last element, and it is deprecated in favor of calling that
823
    /// explicitly. If you need to preserve the relative order of the values in the set, use
824
    /// [`.shift_take(value)`][Self::shift_take] instead.
825
    #[deprecated(note = "`take` disrupts the set order -- \
826
        use `swap_take` or `shift_take` for explicit behavior.")]
827
0
    pub fn take<Q>(&mut self, value: &Q) -> Option<T>
828
0
    where
829
0
        Q: ?Sized + Hash + Equivalent<T>,
830
0
    {
831
0
        self.swap_take(value)
832
0
    }
833
834
    /// Removes and returns the value in the set, if any, that is equal to the
835
    /// given one.
836
    ///
837
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
838
    /// last element of the set and popping it off. **This perturbs
839
    /// the position of what used to be the last element!**
840
    ///
841
    /// Return `None` if `value` was not in the set.
842
    ///
843
    /// Computes in **O(1)** time (average).
844
0
    pub fn swap_take<Q>(&mut self, value: &Q) -> Option<T>
845
0
    where
846
0
        Q: ?Sized + Hash + Equivalent<T>,
847
0
    {
848
0
        self.map.swap_remove_entry(value).map(|(x, ())| x)
849
0
    }
850
851
    /// Removes and returns the value in the set, if any, that is equal to the
852
    /// given one.
853
    ///
854
    /// Like [`Vec::remove`], the value is removed by shifting all of the
855
    /// elements that follow it, preserving their relative order.
856
    /// **This perturbs the index of all of those elements!**
857
    ///
858
    /// Return `None` if `value` was not in the set.
859
    ///
860
    /// Computes in **O(n)** time (average).
861
0
    pub fn shift_take<Q>(&mut self, value: &Q) -> Option<T>
862
0
    where
863
0
        Q: ?Sized + Hash + Equivalent<T>,
864
0
    {
865
0
        self.map.shift_remove_entry(value).map(|(x, ())| x)
866
0
    }
867
868
    /// Remove the value from the set return it and the index it had.
869
    ///
870
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
871
    /// last element of the set and popping it off. **This perturbs
872
    /// the position of what used to be the last element!**
873
    ///
874
    /// Return `None` if `value` was not in the set.
875
0
    pub fn swap_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
876
0
    where
877
0
        Q: ?Sized + Hash + Equivalent<T>,
878
0
    {
879
0
        self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
880
0
    }
881
882
    /// Remove the value from the set return it and the index it had.
883
    ///
884
    /// Like [`Vec::remove`], the value is removed by shifting all of the
885
    /// elements that follow it, preserving their relative order.
886
    /// **This perturbs the index of all of those elements!**
887
    ///
888
    /// Return `None` if `value` was not in the set.
889
0
    pub fn shift_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
890
0
    where
891
0
        Q: ?Sized + Hash + Equivalent<T>,
892
0
    {
893
0
        self.map.shift_remove_full(value).map(|(i, x, ())| (i, x))
894
0
    }
895
}
896
897
impl<T, S> IndexSet<T, S> {
898
    /// Remove the last value
899
    ///
900
    /// This preserves the order of the remaining elements.
901
    ///
902
    /// Computes in **O(1)** time (average).
903
    #[doc(alias = "pop_last")] // like `BTreeSet`
904
0
    pub fn pop(&mut self) -> Option<T> {
905
0
        self.map.pop().map(|(x, ())| x)
906
0
    }
907
908
    /// Scan through each value in the set and keep those where the
909
    /// closure `keep` returns `true`.
910
    ///
911
    /// The elements are visited in order, and remaining elements keep their
912
    /// order.
913
    ///
914
    /// Computes in **O(n)** time (average).
915
0
    pub fn retain<F>(&mut self, mut keep: F)
916
0
    where
917
0
        F: FnMut(&T) -> bool,
918
0
    {
919
0
        self.map.retain(move |x, &mut ()| keep(x))
920
0
    }
921
922
    /// Sort the set's values by their default ordering.
923
    ///
924
    /// This is a stable sort -- but equivalent values should not normally coexist in
925
    /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred
926
    /// because it is generally faster and doesn't allocate auxiliary memory.
927
    ///
928
    /// See [`sort_by`](Self::sort_by) for details.
929
0
    pub fn sort(&mut self)
930
0
    where
931
0
        T: Ord,
932
0
    {
933
0
        self.map.sort_keys()
934
0
    }
935
936
    /// Sort the set's values in place using the comparison function `cmp`.
937
    ///
938
    /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
939
0
    pub fn sort_by<F>(&mut self, mut cmp: F)
940
0
    where
941
0
        F: FnMut(&T, &T) -> Ordering,
942
0
    {
943
0
        self.map.sort_by(move |a, (), b, ()| cmp(a, b));
944
0
    }
945
946
    /// Sort the values of the set and return a by-value iterator of
947
    /// the values with the result.
948
    ///
949
    /// The sort is stable.
950
0
    pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
951
0
    where
952
0
        F: FnMut(&T, &T) -> Ordering,
953
0
    {
954
0
        let mut entries = self.into_entries();
955
0
        entries.sort_by(move |a, b| cmp(&a.key, &b.key));
956
0
        IntoIter::new(entries)
957
0
    }
958
959
    /// Sort the set's values in place using a key extraction function.
960
    ///
961
    /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
962
0
    pub fn sort_by_key<K, F>(&mut self, mut sort_key: F)
963
0
    where
964
0
        K: Ord,
965
0
        F: FnMut(&T) -> K,
966
0
    {
967
0
        self.with_entries(move |entries| {
968
0
            entries.sort_by_key(move |a| sort_key(&a.key));
969
0
        });
970
0
    }
971
972
    /// Sort the set's values by their default ordering.
973
    ///
974
    /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
975
0
    pub fn sort_unstable(&mut self)
976
0
    where
977
0
        T: Ord,
978
0
    {
979
0
        self.map.sort_unstable_keys()
980
0
    }
981
982
    /// Sort the set's values in place using the comparison function `cmp`.
983
    ///
984
    /// Computes in **O(n log n)** time. The sort is unstable.
985
0
    pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
986
0
    where
987
0
        F: FnMut(&T, &T) -> Ordering,
988
0
    {
989
0
        self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b))
990
0
    }
991
992
    /// Sort the values of the set and return a by-value iterator of
993
    /// the values with the result.
994
0
    pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T>
995
0
    where
996
0
        F: FnMut(&T, &T) -> Ordering,
997
0
    {
998
0
        let mut entries = self.into_entries();
999
0
        entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
1000
0
        IntoIter::new(entries)
1001
0
    }
1002
1003
    /// Sort the set's values in place using a key extraction function.
1004
    ///
1005
    /// Computes in **O(n log n)** time. The sort is unstable.
1006
0
    pub fn sort_unstable_by_key<K, F>(&mut self, mut sort_key: F)
1007
0
    where
1008
0
        K: Ord,
1009
0
        F: FnMut(&T) -> K,
1010
0
    {
1011
0
        self.with_entries(move |entries| {
1012
0
            entries.sort_unstable_by_key(move |a| sort_key(&a.key));
1013
0
        });
1014
0
    }
1015
1016
    /// Sort the set's values in place using a key extraction function.
1017
    ///
1018
    /// During sorting, the function is called at most once per entry, by using temporary storage
1019
    /// to remember the results of its evaluation. The order of calls to the function is
1020
    /// unspecified and may change between versions of `indexmap` or the standard library.
1021
    ///
1022
    /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
1023
    /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
1024
0
    pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F)
1025
0
    where
1026
0
        K: Ord,
1027
0
        F: FnMut(&T) -> K,
1028
0
    {
1029
0
        self.with_entries(move |entries| {
1030
0
            entries.sort_by_cached_key(move |a| sort_key(&a.key));
1031
0
        });
1032
0
    }
1033
1034
    /// Search over a sorted set for a value.
1035
    ///
1036
    /// Returns the position where that value is present, or the position where it can be inserted
1037
    /// to maintain the sort. See [`slice::binary_search`] for more details.
1038
    ///
1039
    /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up
1040
    /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values.
1041
0
    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
1042
0
    where
1043
0
        T: Ord,
1044
0
    {
1045
0
        self.as_slice().binary_search(x)
1046
0
    }
1047
1048
    /// Search over a sorted set with a comparator function.
1049
    ///
1050
    /// Returns the position where that value is present, or the position where it can be inserted
1051
    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
1052
    ///
1053
    /// Computes in **O(log(n))** time.
1054
    #[inline]
1055
0
    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1056
0
    where
1057
0
        F: FnMut(&'a T) -> Ordering,
1058
0
    {
1059
0
        self.as_slice().binary_search_by(f)
1060
0
    }
1061
1062
    /// Search over a sorted set with an extraction function.
1063
    ///
1064
    /// Returns the position where that value is present, or the position where it can be inserted
1065
    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
1066
    ///
1067
    /// Computes in **O(log(n))** time.
1068
    #[inline]
1069
0
    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1070
0
    where
1071
0
        F: FnMut(&'a T) -> B,
1072
0
        B: Ord,
1073
0
    {
1074
0
        self.as_slice().binary_search_by_key(b, f)
1075
0
    }
1076
1077
    /// Checks if the values of this set are sorted.
1078
    #[inline]
1079
0
    pub fn is_sorted(&self) -> bool
1080
0
    where
1081
0
        T: PartialOrd,
1082
0
    {
1083
0
        self.as_slice().is_sorted()
1084
0
    }
1085
1086
    /// Checks if this set is sorted using the given comparator function.
1087
    #[inline]
1088
0
    pub fn is_sorted_by<'a, F>(&'a self, cmp: F) -> bool
1089
0
    where
1090
0
        F: FnMut(&'a T, &'a T) -> bool,
1091
0
    {
1092
0
        self.as_slice().is_sorted_by(cmp)
1093
0
    }
1094
1095
    /// Checks if this set is sorted using the given sort-key function.
1096
    #[inline]
1097
0
    pub fn is_sorted_by_key<'a, F, K>(&'a self, sort_key: F) -> bool
1098
0
    where
1099
0
        F: FnMut(&'a T) -> K,
1100
0
        K: PartialOrd,
1101
0
    {
1102
0
        self.as_slice().is_sorted_by_key(sort_key)
1103
0
    }
1104
1105
    /// Returns the index of the partition point of a sorted set according to the given predicate
1106
    /// (the index of the first element of the second partition).
1107
    ///
1108
    /// See [`slice::partition_point`] for more details.
1109
    ///
1110
    /// Computes in **O(log(n))** time.
1111
    #[must_use]
1112
0
    pub fn partition_point<P>(&self, pred: P) -> usize
1113
0
    where
1114
0
        P: FnMut(&T) -> bool,
1115
0
    {
1116
0
        self.as_slice().partition_point(pred)
1117
0
    }
1118
1119
    /// Reverses the order of the set's values in place.
1120
    ///
1121
    /// Computes in **O(n)** time and **O(1)** space.
1122
0
    pub fn reverse(&mut self) {
1123
0
        self.map.reverse()
1124
0
    }
1125
1126
    /// Returns a slice of all the values in the set.
1127
    ///
1128
    /// Computes in **O(1)** time.
1129
0
    pub fn as_slice(&self) -> &Slice<T> {
1130
0
        Slice::from_slice(self.as_entries())
1131
0
    }
1132
1133
    /// Converts into a boxed slice of all the values in the set.
1134
    ///
1135
    /// Note that this will drop the inner hash table and any excess capacity.
1136
0
    pub fn into_boxed_slice(self) -> Box<Slice<T>> {
1137
0
        Slice::from_boxed(self.into_entries().into_boxed_slice())
1138
0
    }
1139
1140
    /// Get a value by index
1141
    ///
1142
    /// Valid indices are `0 <= index < self.len()`.
1143
    ///
1144
    /// Computes in **O(1)** time.
1145
0
    pub fn get_index(&self, index: usize) -> Option<&T> {
1146
0
        self.as_entries().get(index).map(Bucket::key_ref)
1147
0
    }
1148
1149
    /// Returns a slice of values in the given range of indices.
1150
    ///
1151
    /// Valid indices are `0 <= index < self.len()`.
1152
    ///
1153
    /// Computes in **O(1)** time.
1154
0
    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> {
1155
0
        let entries = self.as_entries();
1156
0
        let range = try_simplify_range(range, entries.len())?;
1157
0
        entries.get(range).map(Slice::from_slice)
1158
0
    }
1159
1160
    /// Get the first value
1161
    ///
1162
    /// Computes in **O(1)** time.
1163
0
    pub fn first(&self) -> Option<&T> {
1164
0
        self.as_entries().first().map(Bucket::key_ref)
1165
0
    }
1166
1167
    /// Get the last value
1168
    ///
1169
    /// Computes in **O(1)** time.
1170
0
    pub fn last(&self) -> Option<&T> {
1171
0
        self.as_entries().last().map(Bucket::key_ref)
1172
0
    }
1173
1174
    /// Remove the value by index
1175
    ///
1176
    /// Valid indices are `0 <= index < self.len()`.
1177
    ///
1178
    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
1179
    /// last element of the set and popping it off. **This perturbs
1180
    /// the position of what used to be the last element!**
1181
    ///
1182
    /// Computes in **O(1)** time (average).
1183
0
    pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
1184
0
        self.map.swap_remove_index(index).map(|(x, ())| x)
1185
0
    }
1186
1187
    /// Remove the value by index
1188
    ///
1189
    /// Valid indices are `0 <= index < self.len()`.
1190
    ///
1191
    /// Like [`Vec::remove`], the value is removed by shifting all of the
1192
    /// elements that follow it, preserving their relative order.
1193
    /// **This perturbs the index of all of those elements!**
1194
    ///
1195
    /// Computes in **O(n)** time (average).
1196
0
    pub fn shift_remove_index(&mut self, index: usize) -> Option<T> {
1197
0
        self.map.shift_remove_index(index).map(|(x, ())| x)
1198
0
    }
1199
1200
    /// Moves the position of a value from one index to another
1201
    /// by shifting all other values in-between.
1202
    ///
1203
    /// * If `from < to`, the other values will shift down while the targeted value moves up.
1204
    /// * If `from > to`, the other values will shift up while the targeted value moves down.
1205
    ///
1206
    /// ***Panics*** if `from` or `to` are out of bounds.
1207
    ///
1208
    /// Computes in **O(n)** time (average).
1209
    #[track_caller]
1210
0
    pub fn move_index(&mut self, from: usize, to: usize) {
1211
0
        self.map.move_index(from, to)
1212
0
    }
1213
1214
    /// Swaps the position of two values in the set.
1215
    ///
1216
    /// ***Panics*** if `a` or `b` are out of bounds.
1217
    ///
1218
    /// Computes in **O(1)** time (average).
1219
    #[track_caller]
1220
0
    pub fn swap_indices(&mut self, a: usize, b: usize) {
1221
0
        self.map.swap_indices(a, b)
1222
0
    }
1223
}
1224
1225
/// Access [`IndexSet`] values at indexed positions.
1226
///
1227
/// # Examples
1228
///
1229
/// ```
1230
/// use indexmap::IndexSet;
1231
///
1232
/// let mut set = IndexSet::new();
1233
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1234
///     set.insert(word.to_string());
1235
/// }
1236
/// assert_eq!(set[0], "Lorem");
1237
/// assert_eq!(set[1], "ipsum");
1238
/// set.reverse();
1239
/// assert_eq!(set[0], "amet");
1240
/// assert_eq!(set[1], "sit");
1241
/// set.sort();
1242
/// assert_eq!(set[0], "Lorem");
1243
/// assert_eq!(set[1], "amet");
1244
/// ```
1245
///
1246
/// ```should_panic
1247
/// use indexmap::IndexSet;
1248
///
1249
/// let mut set = IndexSet::new();
1250
/// set.insert("foo");
1251
/// println!("{:?}", set[10]); // panics!
1252
/// ```
1253
impl<T, S> Index<usize> for IndexSet<T, S> {
1254
    type Output = T;
1255
1256
    /// Returns a reference to the value at the supplied `index`.
1257
    ///
1258
    /// ***Panics*** if `index` is out of bounds.
1259
0
    fn index(&self, index: usize) -> &T {
1260
0
        if let Some(value) = self.get_index(index) {
1261
0
            value
1262
        } else {
1263
0
            panic!(
1264
0
                "index out of bounds: the len is {len} but the index is {index}",
1265
0
                len = self.len()
1266
0
            );
1267
        }
1268
0
    }
1269
}
1270
1271
impl<T, S> FromIterator<T> for IndexSet<T, S>
1272
where
1273
    T: Hash + Eq,
1274
    S: BuildHasher + Default,
1275
{
1276
0
    fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
1277
0
        let iter = iterable.into_iter().map(|x| (x, ()));
1278
0
        IndexSet {
1279
0
            map: IndexMap::from_iter(iter),
1280
0
        }
1281
0
    }
1282
}
1283
1284
#[cfg(feature = "std")]
1285
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1286
impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState>
1287
where
1288
    T: Eq + Hash,
1289
{
1290
    /// # Examples
1291
    ///
1292
    /// ```
1293
    /// use indexmap::IndexSet;
1294
    ///
1295
    /// let set1 = IndexSet::from([1, 2, 3, 4]);
1296
    /// let set2: IndexSet<_> = [1, 2, 3, 4].into();
1297
    /// assert_eq!(set1, set2);
1298
    /// ```
1299
0
    fn from(arr: [T; N]) -> Self {
1300
0
        Self::from_iter(arr)
1301
0
    }
1302
}
1303
1304
impl<T, S> Extend<T> for IndexSet<T, S>
1305
where
1306
    T: Hash + Eq,
1307
    S: BuildHasher,
1308
{
1309
0
    fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) {
1310
0
        let iter = iterable.into_iter().map(|x| (x, ()));
1311
0
        self.map.extend(iter);
1312
0
    }
1313
}
1314
1315
impl<'a, T, S> Extend<&'a T> for IndexSet<T, S>
1316
where
1317
    T: Hash + Eq + Copy + 'a,
1318
    S: BuildHasher,
1319
{
1320
0
    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) {
1321
0
        let iter = iterable.into_iter().copied();
1322
0
        self.extend(iter);
1323
0
    }
1324
}
1325
1326
impl<T, S> Default for IndexSet<T, S>
1327
where
1328
    S: Default,
1329
{
1330
    /// Return an empty [`IndexSet`]
1331
0
    fn default() -> Self {
1332
0
        IndexSet {
1333
0
            map: IndexMap::default(),
1334
0
        }
1335
0
    }
1336
}
1337
1338
impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1>
1339
where
1340
    T: Hash + Eq,
1341
    S1: BuildHasher,
1342
    S2: BuildHasher,
1343
{
1344
0
    fn eq(&self, other: &IndexSet<T, S2>) -> bool {
1345
0
        self.len() == other.len() && self.is_subset(other)
1346
0
    }
1347
}
1348
1349
impl<T, S> Eq for IndexSet<T, S>
1350
where
1351
    T: Eq + Hash,
1352
    S: BuildHasher,
1353
{
1354
}
1355
1356
impl<T, S> IndexSet<T, S>
1357
where
1358
    T: Eq + Hash,
1359
    S: BuildHasher,
1360
{
1361
    /// Returns `true` if `self` has no elements in common with `other`.
1362
0
    pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
1363
0
    where
1364
0
        S2: BuildHasher,
1365
0
    {
1366
0
        if self.len() <= other.len() {
1367
0
            self.iter().all(move |value| !other.contains(value))
1368
        } else {
1369
0
            other.iter().all(move |value| !self.contains(value))
1370
        }
1371
0
    }
1372
1373
    /// Returns `true` if all elements of `self` are contained in `other`.
1374
0
    pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1375
0
    where
1376
0
        S2: BuildHasher,
1377
0
    {
1378
0
        self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
1379
0
    }
1380
1381
    /// Returns `true` if all elements of `other` are contained in `self`.
1382
0
    pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1383
0
    where
1384
0
        S2: BuildHasher,
1385
0
    {
1386
0
        other.is_subset(self)
1387
0
    }
1388
}
1389
1390
impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1>
1391
where
1392
    T: Eq + Hash + Clone,
1393
    S1: BuildHasher + Default,
1394
    S2: BuildHasher,
1395
{
1396
    type Output = IndexSet<T, S1>;
1397
1398
    /// Returns the set intersection, cloned into a new set.
1399
    ///
1400
    /// Values are collected in the same order that they appear in `self`.
1401
0
    fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output {
1402
0
        self.intersection(other).cloned().collect()
1403
0
    }
1404
}
1405
1406
impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1>
1407
where
1408
    T: Eq + Hash + Clone,
1409
    S1: BuildHasher + Default,
1410
    S2: BuildHasher,
1411
{
1412
    type Output = IndexSet<T, S1>;
1413
1414
    /// Returns the set union, cloned into a new set.
1415
    ///
1416
    /// Values from `self` are collected in their original order, followed by
1417
    /// values that are unique to `other` in their original order.
1418
0
    fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output {
1419
0
        self.union(other).cloned().collect()
1420
0
    }
1421
}
1422
1423
impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1>
1424
where
1425
    T: Eq + Hash + Clone,
1426
    S1: BuildHasher + Default,
1427
    S2: BuildHasher,
1428
{
1429
    type Output = IndexSet<T, S1>;
1430
1431
    /// Returns the set symmetric-difference, cloned into a new set.
1432
    ///
1433
    /// Values from `self` are collected in their original order, followed by
1434
    /// values from `other` in their original order.
1435
0
    fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output {
1436
0
        self.symmetric_difference(other).cloned().collect()
1437
0
    }
1438
}
1439
1440
impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1>
1441
where
1442
    T: Eq + Hash + Clone,
1443
    S1: BuildHasher + Default,
1444
    S2: BuildHasher,
1445
{
1446
    type Output = IndexSet<T, S1>;
1447
1448
    /// Returns the set difference, cloned into a new set.
1449
    ///
1450
    /// Values are collected in the same order that they appear in `self`.
1451
0
    fn sub(self, other: &IndexSet<T, S2>) -> Self::Output {
1452
0
        self.difference(other).cloned().collect()
1453
0
    }
1454
}