/rust/registry/src/index.crates.io-6f17d22bba15001f/indexmap-2.11.0/src/set.rs
Line | Count | Source (jump to first uncovered line) |
1 | | //! A hash set implemented using [`IndexMap`] |
2 | | |
3 | | mod iter; |
4 | | mod mutable; |
5 | | mod slice; |
6 | | |
7 | | #[cfg(test)] |
8 | | mod tests; |
9 | | |
10 | | pub use self::iter::{ |
11 | | Difference, Drain, ExtractIf, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union, |
12 | | }; |
13 | | pub use self::mutable::MutableValues; |
14 | | pub use self::slice::Slice; |
15 | | |
16 | | #[cfg(feature = "rayon")] |
17 | | pub use crate::rayon::set as rayon; |
18 | | use crate::TryReserveError; |
19 | | |
20 | | #[cfg(feature = "std")] |
21 | | use std::collections::hash_map::RandomState; |
22 | | |
23 | | use crate::util::try_simplify_range; |
24 | | use alloc::boxed::Box; |
25 | | use alloc::vec::Vec; |
26 | | use core::cmp::Ordering; |
27 | | use core::fmt; |
28 | | use core::hash::{BuildHasher, Hash}; |
29 | | use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub}; |
30 | | |
31 | | use super::{Equivalent, IndexMap}; |
32 | | |
33 | | type Bucket<T> = super::Bucket<T, ()>; |
34 | | |
35 | | /// A hash set where the iteration order of the values is independent of their |
36 | | /// hash values. |
37 | | /// |
38 | | /// The interface is closely compatible with the standard |
39 | | /// [`HashSet`][std::collections::HashSet], |
40 | | /// but also has additional features. |
41 | | /// |
42 | | /// # Order |
43 | | /// |
44 | | /// The values have a consistent order that is determined by the sequence of |
45 | | /// insertion and removal calls on the set. The order does not depend on the |
46 | | /// values or the hash function at all. Note that insertion order and value |
47 | | /// are not affected if a re-insertion is attempted once an element is |
48 | | /// already present. |
49 | | /// |
50 | | /// All iterators traverse the set *in order*. Set operation iterators like |
51 | | /// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise" |
52 | | /// operators. See their documentation for specifics. |
53 | | /// |
54 | | /// The insertion order is preserved, with **notable exceptions** like the |
55 | | /// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods. |
56 | | /// Methods such as [`.sort_by()`][Self::sort_by] of |
57 | | /// course result in a new order, depending on the sorting order. |
58 | | /// |
59 | | /// # Indices |
60 | | /// |
61 | | /// The values are indexed in a compact range without holes in the range |
62 | | /// `0..self.len()`. For example, the method `.get_full` looks up the index for |
63 | | /// a value, and the method `.get_index` looks up the value by index. |
64 | | /// |
65 | | /// # Complexity |
66 | | /// |
67 | | /// Internally, `IndexSet<T, S>` just holds an [`IndexMap<T, (), S>`](IndexMap). Thus the complexity |
68 | | /// of the two are the same for most methods. |
69 | | /// |
70 | | /// # Examples |
71 | | /// |
72 | | /// ``` |
73 | | /// use indexmap::IndexSet; |
74 | | /// |
75 | | /// // Collects which letters appear in a sentence. |
76 | | /// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect(); |
77 | | /// |
78 | | /// assert!(letters.contains(&'s')); |
79 | | /// assert!(letters.contains(&'t')); |
80 | | /// assert!(letters.contains(&'u')); |
81 | | /// assert!(!letters.contains(&'y')); |
82 | | /// ``` |
83 | | #[cfg(feature = "std")] |
84 | | pub struct IndexSet<T, S = RandomState> { |
85 | | pub(crate) map: IndexMap<T, (), S>, |
86 | | } |
87 | | #[cfg(not(feature = "std"))] |
88 | | pub struct IndexSet<T, S> { |
89 | | pub(crate) map: IndexMap<T, (), S>, |
90 | | } |
91 | | |
92 | | impl<T, S> Clone for IndexSet<T, S> |
93 | | where |
94 | | T: Clone, |
95 | | S: Clone, |
96 | | { |
97 | 0 | fn clone(&self) -> Self { |
98 | 0 | IndexSet { |
99 | 0 | map: self.map.clone(), |
100 | 0 | } |
101 | 0 | } |
102 | | |
103 | 0 | fn clone_from(&mut self, other: &Self) { |
104 | 0 | self.map.clone_from(&other.map); |
105 | 0 | } |
106 | | } |
107 | | |
108 | | impl<T, S> fmt::Debug for IndexSet<T, S> |
109 | | where |
110 | | T: fmt::Debug, |
111 | | { |
112 | | #[cfg(not(feature = "test_debug"))] |
113 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
114 | 0 | f.debug_set().entries(self.iter()).finish() |
115 | 0 | } |
116 | | |
117 | | #[cfg(feature = "test_debug")] |
118 | | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
119 | | // Let the inner `IndexMap` print all of its details |
120 | | f.debug_struct("IndexSet").field("map", &self.map).finish() |
121 | | } |
122 | | } |
123 | | |
124 | | #[cfg(feature = "std")] |
125 | | #[cfg_attr(docsrs, doc(cfg(feature = "std")))] |
126 | | impl<T> IndexSet<T> { |
127 | | /// Create a new set. (Does not allocate.) |
128 | 0 | pub fn new() -> Self { |
129 | 0 | IndexSet { |
130 | 0 | map: IndexMap::new(), |
131 | 0 | } |
132 | 0 | } |
133 | | |
134 | | /// Create a new set with capacity for `n` elements. |
135 | | /// (Does not allocate if `n` is zero.) |
136 | | /// |
137 | | /// Computes in **O(n)** time. |
138 | 0 | pub fn with_capacity(n: usize) -> Self { |
139 | 0 | IndexSet { |
140 | 0 | map: IndexMap::with_capacity(n), |
141 | 0 | } |
142 | 0 | } |
143 | | } |
144 | | |
145 | | impl<T, S> IndexSet<T, S> { |
146 | | /// Create a new set with capacity for `n` elements. |
147 | | /// (Does not allocate if `n` is zero.) |
148 | | /// |
149 | | /// Computes in **O(n)** time. |
150 | 0 | pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self { |
151 | 0 | IndexSet { |
152 | 0 | map: IndexMap::with_capacity_and_hasher(n, hash_builder), |
153 | 0 | } |
154 | 0 | } |
155 | | |
156 | | /// Create a new set with `hash_builder`. |
157 | | /// |
158 | | /// This function is `const`, so it |
159 | | /// can be called in `static` contexts. |
160 | 0 | pub const fn with_hasher(hash_builder: S) -> Self { |
161 | 0 | IndexSet { |
162 | 0 | map: IndexMap::with_hasher(hash_builder), |
163 | 0 | } |
164 | 0 | } |
165 | | |
166 | | #[inline] |
167 | 0 | pub(crate) fn into_entries(self) -> Vec<Bucket<T>> { |
168 | 0 | self.map.into_entries() |
169 | 0 | } |
170 | | |
171 | | #[inline] |
172 | 0 | pub(crate) fn as_entries(&self) -> &[Bucket<T>] { |
173 | 0 | self.map.as_entries() |
174 | 0 | } |
175 | | |
176 | 0 | pub(crate) fn with_entries<F>(&mut self, f: F) |
177 | 0 | where |
178 | 0 | F: FnOnce(&mut [Bucket<T>]), |
179 | 0 | { |
180 | 0 | self.map.with_entries(f); |
181 | 0 | } |
182 | | |
183 | | /// Return the number of elements the set can hold without reallocating. |
184 | | /// |
185 | | /// This number is a lower bound; the set might be able to hold more, |
186 | | /// but is guaranteed to be able to hold at least this many. |
187 | | /// |
188 | | /// Computes in **O(1)** time. |
189 | 0 | pub fn capacity(&self) -> usize { |
190 | 0 | self.map.capacity() |
191 | 0 | } |
192 | | |
193 | | /// Return a reference to the set's `BuildHasher`. |
194 | 0 | pub fn hasher(&self) -> &S { |
195 | 0 | self.map.hasher() |
196 | 0 | } |
197 | | |
198 | | /// Return the number of elements in the set. |
199 | | /// |
200 | | /// Computes in **O(1)** time. |
201 | 0 | pub fn len(&self) -> usize { |
202 | 0 | self.map.len() |
203 | 0 | } |
204 | | |
205 | | /// Returns true if the set contains no elements. |
206 | | /// |
207 | | /// Computes in **O(1)** time. |
208 | 0 | pub fn is_empty(&self) -> bool { |
209 | 0 | self.map.is_empty() |
210 | 0 | } |
211 | | |
212 | | /// Return an iterator over the values of the set, in their order |
213 | 0 | pub fn iter(&self) -> Iter<'_, T> { |
214 | 0 | Iter::new(self.as_entries()) |
215 | 0 | } |
216 | | |
217 | | /// Remove all elements in the set, while preserving its capacity. |
218 | | /// |
219 | | /// Computes in **O(n)** time. |
220 | 0 | pub fn clear(&mut self) { |
221 | 0 | self.map.clear(); |
222 | 0 | } |
223 | | |
224 | | /// Shortens the set, keeping the first `len` elements and dropping the rest. |
225 | | /// |
226 | | /// If `len` is greater than the set's current length, this has no effect. |
227 | 0 | pub fn truncate(&mut self, len: usize) { |
228 | 0 | self.map.truncate(len); |
229 | 0 | } |
230 | | |
231 | | /// Clears the `IndexSet` in the given index range, returning those values |
232 | | /// as a drain iterator. |
233 | | /// |
234 | | /// The range may be any type that implements [`RangeBounds<usize>`], |
235 | | /// including all of the `std::ops::Range*` types, or even a tuple pair of |
236 | | /// `Bound` start and end values. To drain the set entirely, use `RangeFull` |
237 | | /// like `set.drain(..)`. |
238 | | /// |
239 | | /// This shifts down all entries following the drained range to fill the |
240 | | /// gap, and keeps the allocated memory for reuse. |
241 | | /// |
242 | | /// ***Panics*** if the starting point is greater than the end point or if |
243 | | /// the end point is greater than the length of the set. |
244 | | #[track_caller] |
245 | 0 | pub fn drain<R>(&mut self, range: R) -> Drain<'_, T> |
246 | 0 | where |
247 | 0 | R: RangeBounds<usize>, |
248 | 0 | { |
249 | 0 | Drain::new(self.map.core.drain(range)) |
250 | 0 | } |
251 | | |
252 | | /// Creates an iterator which uses a closure to determine if a value should be removed, |
253 | | /// for all values in the given range. |
254 | | /// |
255 | | /// If the closure returns true, then the value is removed and yielded. |
256 | | /// If the closure returns false, the value will remain in the list and will not be yielded |
257 | | /// by the iterator. |
258 | | /// |
259 | | /// The range may be any type that implements [`RangeBounds<usize>`], |
260 | | /// including all of the `std::ops::Range*` types, or even a tuple pair of |
261 | | /// `Bound` start and end values. To check the entire set, use `RangeFull` |
262 | | /// like `set.extract_if(.., predicate)`. |
263 | | /// |
264 | | /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating |
265 | | /// or the iteration short-circuits, then the remaining elements will be retained. |
266 | | /// Use [`retain`] with a negated predicate if you do not need the returned iterator. |
267 | | /// |
268 | | /// [`retain`]: IndexSet::retain |
269 | | /// |
270 | | /// ***Panics*** if the starting point is greater than the end point or if |
271 | | /// the end point is greater than the length of the set. |
272 | | /// |
273 | | /// # Examples |
274 | | /// |
275 | | /// Splitting a set into even and odd values, reusing the original set: |
276 | | /// |
277 | | /// ``` |
278 | | /// use indexmap::IndexSet; |
279 | | /// |
280 | | /// let mut set: IndexSet<i32> = (0..8).collect(); |
281 | | /// let extracted: IndexSet<i32> = set.extract_if(.., |v| v % 2 == 0).collect(); |
282 | | /// |
283 | | /// let evens = extracted.into_iter().collect::<Vec<_>>(); |
284 | | /// let odds = set.into_iter().collect::<Vec<_>>(); |
285 | | /// |
286 | | /// assert_eq!(evens, vec![0, 2, 4, 6]); |
287 | | /// assert_eq!(odds, vec![1, 3, 5, 7]); |
288 | | /// ``` |
289 | | #[track_caller] |
290 | 0 | pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, T, F> |
291 | 0 | where |
292 | 0 | F: FnMut(&T) -> bool, |
293 | 0 | R: RangeBounds<usize>, |
294 | 0 | { |
295 | 0 | ExtractIf::new(&mut self.map.core, range, pred) |
296 | 0 | } |
297 | | |
298 | | /// Splits the collection into two at the given index. |
299 | | /// |
300 | | /// Returns a newly allocated set containing the elements in the range |
301 | | /// `[at, len)`. After the call, the original set will be left containing |
302 | | /// the elements `[0, at)` with its previous capacity unchanged. |
303 | | /// |
304 | | /// ***Panics*** if `at > len`. |
305 | | #[track_caller] |
306 | 0 | pub fn split_off(&mut self, at: usize) -> Self |
307 | 0 | where |
308 | 0 | S: Clone, |
309 | 0 | { |
310 | 0 | Self { |
311 | 0 | map: self.map.split_off(at), |
312 | 0 | } |
313 | 0 | } |
314 | | |
315 | | /// Reserve capacity for `additional` more values. |
316 | | /// |
317 | | /// Computes in **O(n)** time. |
318 | 0 | pub fn reserve(&mut self, additional: usize) { |
319 | 0 | self.map.reserve(additional); |
320 | 0 | } |
321 | | |
322 | | /// Reserve capacity for `additional` more values, without over-allocating. |
323 | | /// |
324 | | /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid |
325 | | /// frequent re-allocations. However, the underlying data structures may still have internal |
326 | | /// capacity requirements, and the allocator itself may give more space than requested, so this |
327 | | /// cannot be relied upon to be precisely minimal. |
328 | | /// |
329 | | /// Computes in **O(n)** time. |
330 | 0 | pub fn reserve_exact(&mut self, additional: usize) { |
331 | 0 | self.map.reserve_exact(additional); |
332 | 0 | } |
333 | | |
334 | | /// Try to reserve capacity for `additional` more values. |
335 | | /// |
336 | | /// Computes in **O(n)** time. |
337 | 0 | pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { |
338 | 0 | self.map.try_reserve(additional) |
339 | 0 | } |
340 | | |
341 | | /// Try to reserve capacity for `additional` more values, without over-allocating. |
342 | | /// |
343 | | /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid |
344 | | /// frequent re-allocations. However, the underlying data structures may still have internal |
345 | | /// capacity requirements, and the allocator itself may give more space than requested, so this |
346 | | /// cannot be relied upon to be precisely minimal. |
347 | | /// |
348 | | /// Computes in **O(n)** time. |
349 | 0 | pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { |
350 | 0 | self.map.try_reserve_exact(additional) |
351 | 0 | } |
352 | | |
353 | | /// Shrink the capacity of the set as much as possible. |
354 | | /// |
355 | | /// Computes in **O(n)** time. |
356 | 0 | pub fn shrink_to_fit(&mut self) { |
357 | 0 | self.map.shrink_to_fit(); |
358 | 0 | } |
359 | | |
360 | | /// Shrink the capacity of the set with a lower limit. |
361 | | /// |
362 | | /// Computes in **O(n)** time. |
363 | 0 | pub fn shrink_to(&mut self, min_capacity: usize) { |
364 | 0 | self.map.shrink_to(min_capacity); |
365 | 0 | } |
366 | | } |
367 | | |
368 | | impl<T, S> IndexSet<T, S> |
369 | | where |
370 | | T: Hash + Eq, |
371 | | S: BuildHasher, |
372 | | { |
373 | | /// Insert the value into the set. |
374 | | /// |
375 | | /// If an equivalent item already exists in the set, it returns |
376 | | /// `false` leaving the original value in the set and without |
377 | | /// altering its insertion order. Otherwise, it inserts the new |
378 | | /// item and returns `true`. |
379 | | /// |
380 | | /// Computes in **O(1)** time (amortized average). |
381 | 0 | pub fn insert(&mut self, value: T) -> bool { |
382 | 0 | self.map.insert(value, ()).is_none() |
383 | 0 | } |
384 | | |
385 | | /// Insert the value into the set, and get its index. |
386 | | /// |
387 | | /// If an equivalent item already exists in the set, it returns |
388 | | /// the index of the existing item and `false`, leaving the |
389 | | /// original value in the set and without altering its insertion |
390 | | /// order. Otherwise, it inserts the new item and returns the index |
391 | | /// of the inserted item and `true`. |
392 | | /// |
393 | | /// Computes in **O(1)** time (amortized average). |
394 | 0 | pub fn insert_full(&mut self, value: T) -> (usize, bool) { |
395 | 0 | let (index, existing) = self.map.insert_full(value, ()); |
396 | 0 | (index, existing.is_none()) |
397 | 0 | } |
398 | | |
399 | | /// Insert the value into the set at its ordered position among sorted values. |
400 | | /// |
401 | | /// This is equivalent to finding the position with |
402 | | /// [`binary_search`][Self::binary_search], and if needed calling |
403 | | /// [`insert_before`][Self::insert_before] for a new value. |
404 | | /// |
405 | | /// If the sorted item is found in the set, it returns the index of that |
406 | | /// existing item and `false`, without any change. Otherwise, it inserts the |
407 | | /// new item and returns its sorted index and `true`. |
408 | | /// |
409 | | /// If the existing items are **not** already sorted, then the insertion |
410 | | /// index is unspecified (like [`slice::binary_search`]), but the value |
411 | | /// is moved to or inserted at that position regardless. |
412 | | /// |
413 | | /// Computes in **O(n)** time (average). Instead of repeating calls to |
414 | | /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert] |
415 | | /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or |
416 | | /// [`sort_unstable`][Self::sort_unstable] once. |
417 | 0 | pub fn insert_sorted(&mut self, value: T) -> (usize, bool) |
418 | 0 | where |
419 | 0 | T: Ord, |
420 | 0 | { |
421 | 0 | let (index, existing) = self.map.insert_sorted(value, ()); |
422 | 0 | (index, existing.is_none()) |
423 | 0 | } |
424 | | |
425 | | /// Insert the value into the set at its ordered position among values |
426 | | /// sorted by `cmp`. |
427 | | /// |
428 | | /// This is equivalent to finding the position with |
429 | | /// [`binary_search_by`][Self::binary_search_by], then calling |
430 | | /// [`insert_before`][Self::insert_before]. |
431 | | /// |
432 | | /// If the existing items are **not** already sorted, then the insertion |
433 | | /// index is unspecified (like [`slice::binary_search`]), but the value |
434 | | /// is moved to or inserted at that position regardless. |
435 | | /// |
436 | | /// Computes in **O(n)** time (average). |
437 | 0 | pub fn insert_sorted_by<F>(&mut self, value: T, mut cmp: F) -> (usize, bool) |
438 | 0 | where |
439 | 0 | T: Ord, |
440 | 0 | F: FnMut(&T, &T) -> Ordering, |
441 | 0 | { |
442 | 0 | let (index, existing) = self |
443 | 0 | .map |
444 | 0 | .insert_sorted_by(value, (), |a, (), b, ()| cmp(a, b)); |
445 | 0 | (index, existing.is_none()) |
446 | 0 | } |
447 | | |
448 | | /// Insert the value into the set at its ordered position among values |
449 | | /// using a sort-key extraction function. |
450 | | /// |
451 | | /// This is equivalent to finding the position with |
452 | | /// [`binary_search_by_key`][Self::binary_search_by_key] with `sort_key(key)`, |
453 | | /// then calling [`insert_before`][Self::insert_before]. |
454 | | /// |
455 | | /// If the existing items are **not** already sorted, then the insertion |
456 | | /// index is unspecified (like [`slice::binary_search`]), but the value |
457 | | /// is moved to or inserted at that position regardless. |
458 | | /// |
459 | | /// Computes in **O(n)** time (average). |
460 | 0 | pub fn insert_sorted_by_key<B, F>(&mut self, value: T, mut sort_key: F) -> (usize, bool) |
461 | 0 | where |
462 | 0 | B: Ord, |
463 | 0 | F: FnMut(&T) -> B, |
464 | 0 | { |
465 | 0 | let (index, existing) = self.map.insert_sorted_by_key(value, (), |k, _| sort_key(k)); |
466 | 0 | (index, existing.is_none()) |
467 | 0 | } |
468 | | |
469 | | /// Insert the value into the set before the value at the given index, or at the end. |
470 | | /// |
471 | | /// If an equivalent item already exists in the set, it returns `false` leaving the |
472 | | /// original value in the set, but moved to the new position. The returned index |
473 | | /// will either be the given index or one less, depending on how the value moved. |
474 | | /// (See [`shift_insert`](Self::shift_insert) for different behavior here.) |
475 | | /// |
476 | | /// Otherwise, it inserts the new value exactly at the given index and returns `true`. |
477 | | /// |
478 | | /// ***Panics*** if `index` is out of bounds. |
479 | | /// Valid indices are `0..=set.len()` (inclusive). |
480 | | /// |
481 | | /// Computes in **O(n)** time (average). |
482 | | /// |
483 | | /// # Examples |
484 | | /// |
485 | | /// ``` |
486 | | /// use indexmap::IndexSet; |
487 | | /// let mut set: IndexSet<char> = ('a'..='z').collect(); |
488 | | /// |
489 | | /// // The new value '*' goes exactly at the given index. |
490 | | /// assert_eq!(set.get_index_of(&'*'), None); |
491 | | /// assert_eq!(set.insert_before(10, '*'), (10, true)); |
492 | | /// assert_eq!(set.get_index_of(&'*'), Some(10)); |
493 | | /// |
494 | | /// // Moving the value 'a' up will shift others down, so this moves *before* 10 to index 9. |
495 | | /// assert_eq!(set.insert_before(10, 'a'), (9, false)); |
496 | | /// assert_eq!(set.get_index_of(&'a'), Some(9)); |
497 | | /// assert_eq!(set.get_index_of(&'*'), Some(10)); |
498 | | /// |
499 | | /// // Moving the value 'z' down will shift others up, so this moves to exactly 10. |
500 | | /// assert_eq!(set.insert_before(10, 'z'), (10, false)); |
501 | | /// assert_eq!(set.get_index_of(&'z'), Some(10)); |
502 | | /// assert_eq!(set.get_index_of(&'*'), Some(11)); |
503 | | /// |
504 | | /// // Moving or inserting before the endpoint is also valid. |
505 | | /// assert_eq!(set.len(), 27); |
506 | | /// assert_eq!(set.insert_before(set.len(), '*'), (26, false)); |
507 | | /// assert_eq!(set.get_index_of(&'*'), Some(26)); |
508 | | /// assert_eq!(set.insert_before(set.len(), '+'), (27, true)); |
509 | | /// assert_eq!(set.get_index_of(&'+'), Some(27)); |
510 | | /// assert_eq!(set.len(), 28); |
511 | | /// ``` |
512 | | #[track_caller] |
513 | 0 | pub fn insert_before(&mut self, index: usize, value: T) -> (usize, bool) { |
514 | 0 | let (index, existing) = self.map.insert_before(index, value, ()); |
515 | 0 | (index, existing.is_none()) |
516 | 0 | } |
517 | | |
518 | | /// Insert the value into the set at the given index. |
519 | | /// |
520 | | /// If an equivalent item already exists in the set, it returns `false` leaving |
521 | | /// the original value in the set, but moved to the given index. |
522 | | /// Note that existing values **cannot** be moved to `index == set.len()`! |
523 | | /// (See [`insert_before`](Self::insert_before) for different behavior here.) |
524 | | /// |
525 | | /// Otherwise, it inserts the new value at the given index and returns `true`. |
526 | | /// |
527 | | /// ***Panics*** if `index` is out of bounds. |
528 | | /// Valid indices are `0..set.len()` (exclusive) when moving an existing value, or |
529 | | /// `0..=set.len()` (inclusive) when inserting a new value. |
530 | | /// |
531 | | /// Computes in **O(n)** time (average). |
532 | | /// |
533 | | /// # Examples |
534 | | /// |
535 | | /// ``` |
536 | | /// use indexmap::IndexSet; |
537 | | /// let mut set: IndexSet<char> = ('a'..='z').collect(); |
538 | | /// |
539 | | /// // The new value '*' goes exactly at the given index. |
540 | | /// assert_eq!(set.get_index_of(&'*'), None); |
541 | | /// assert_eq!(set.shift_insert(10, '*'), true); |
542 | | /// assert_eq!(set.get_index_of(&'*'), Some(10)); |
543 | | /// |
544 | | /// // Moving the value 'a' up to 10 will shift others down, including the '*' that was at 10. |
545 | | /// assert_eq!(set.shift_insert(10, 'a'), false); |
546 | | /// assert_eq!(set.get_index_of(&'a'), Some(10)); |
547 | | /// assert_eq!(set.get_index_of(&'*'), Some(9)); |
548 | | /// |
549 | | /// // Moving the value 'z' down to 9 will shift others up, including the '*' that was at 9. |
550 | | /// assert_eq!(set.shift_insert(9, 'z'), false); |
551 | | /// assert_eq!(set.get_index_of(&'z'), Some(9)); |
552 | | /// assert_eq!(set.get_index_of(&'*'), Some(10)); |
553 | | /// |
554 | | /// // Existing values can move to len-1 at most, but new values can insert at the endpoint. |
555 | | /// assert_eq!(set.len(), 27); |
556 | | /// assert_eq!(set.shift_insert(set.len() - 1, '*'), false); |
557 | | /// assert_eq!(set.get_index_of(&'*'), Some(26)); |
558 | | /// assert_eq!(set.shift_insert(set.len(), '+'), true); |
559 | | /// assert_eq!(set.get_index_of(&'+'), Some(27)); |
560 | | /// assert_eq!(set.len(), 28); |
561 | | /// ``` |
562 | | /// |
563 | | /// ```should_panic |
564 | | /// use indexmap::IndexSet; |
565 | | /// let mut set: IndexSet<char> = ('a'..='z').collect(); |
566 | | /// |
567 | | /// // This is an invalid index for moving an existing value! |
568 | | /// set.shift_insert(set.len(), 'a'); |
569 | | /// ``` |
570 | | #[track_caller] |
571 | 0 | pub fn shift_insert(&mut self, index: usize, value: T) -> bool { |
572 | 0 | self.map.shift_insert(index, value, ()).is_none() |
573 | 0 | } |
574 | | |
575 | | /// Adds a value to the set, replacing the existing value, if any, that is |
576 | | /// equal to the given one, without altering its insertion order. Returns |
577 | | /// the replaced value. |
578 | | /// |
579 | | /// Computes in **O(1)** time (average). |
580 | 0 | pub fn replace(&mut self, value: T) -> Option<T> { |
581 | 0 | self.replace_full(value).1 |
582 | 0 | } |
583 | | |
584 | | /// Adds a value to the set, replacing the existing value, if any, that is |
585 | | /// equal to the given one, without altering its insertion order. Returns |
586 | | /// the index of the item and its replaced value. |
587 | | /// |
588 | | /// Computes in **O(1)** time (average). |
589 | 0 | pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) { |
590 | 0 | let hash = self.map.hash(&value); |
591 | 0 | match self.map.core.replace_full(hash, value, ()) { |
592 | 0 | (i, Some((replaced, ()))) => (i, Some(replaced)), |
593 | 0 | (i, None) => (i, None), |
594 | | } |
595 | 0 | } |
596 | | |
597 | | /// Replaces the value at the given index. The new value does not need to be |
598 | | /// equivalent to the one it is replacing, but it must be unique to the rest |
599 | | /// of the set. |
600 | | /// |
601 | | /// Returns `Ok(old_value)` if successful, or `Err((other_index, value))` if |
602 | | /// an equivalent value already exists at a different index. The set will be |
603 | | /// unchanged in the error case. |
604 | | /// |
605 | | /// ***Panics*** if `index` is out of bounds. |
606 | | /// |
607 | | /// Computes in **O(1)** time (average). |
608 | | #[track_caller] |
609 | 0 | pub fn replace_index(&mut self, index: usize, value: T) -> Result<T, (usize, T)> { |
610 | 0 | self.map.replace_index(index, value) |
611 | 0 | } |
612 | | |
613 | | /// Return an iterator over the values that are in `self` but not `other`. |
614 | | /// |
615 | | /// Values are produced in the same order that they appear in `self`. |
616 | 0 | pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2> |
617 | 0 | where |
618 | 0 | S2: BuildHasher, |
619 | 0 | { |
620 | 0 | Difference::new(self, other) |
621 | 0 | } |
622 | | |
623 | | /// Return an iterator over the values that are in `self` or `other`, |
624 | | /// but not in both. |
625 | | /// |
626 | | /// Values from `self` are produced in their original order, followed by |
627 | | /// values from `other` in their original order. |
628 | 0 | pub fn symmetric_difference<'a, S2>( |
629 | 0 | &'a self, |
630 | 0 | other: &'a IndexSet<T, S2>, |
631 | 0 | ) -> SymmetricDifference<'a, T, S, S2> |
632 | 0 | where |
633 | 0 | S2: BuildHasher, |
634 | 0 | { |
635 | 0 | SymmetricDifference::new(self, other) |
636 | 0 | } |
637 | | |
638 | | /// Return an iterator over the values that are in both `self` and `other`. |
639 | | /// |
640 | | /// Values are produced in the same order that they appear in `self`. |
641 | 0 | pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2> |
642 | 0 | where |
643 | 0 | S2: BuildHasher, |
644 | 0 | { |
645 | 0 | Intersection::new(self, other) |
646 | 0 | } |
647 | | |
648 | | /// Return an iterator over all values that are in `self` or `other`. |
649 | | /// |
650 | | /// Values from `self` are produced in their original order, followed by |
651 | | /// values that are unique to `other` in their original order. |
652 | 0 | pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S> |
653 | 0 | where |
654 | 0 | S2: BuildHasher, |
655 | 0 | { |
656 | 0 | Union::new(self, other) |
657 | 0 | } |
658 | | |
659 | | /// Creates a splicing iterator that replaces the specified range in the set |
660 | | /// with the given `replace_with` iterator and yields the removed items. |
661 | | /// `replace_with` does not need to be the same length as `range`. |
662 | | /// |
663 | | /// The `range` is removed even if the iterator is not consumed until the |
664 | | /// end. It is unspecified how many elements are removed from the set if the |
665 | | /// `Splice` value is leaked. |
666 | | /// |
667 | | /// The input iterator `replace_with` is only consumed when the `Splice` |
668 | | /// value is dropped. If a value from the iterator matches an existing entry |
669 | | /// in the set (outside of `range`), then the original will be unchanged. |
670 | | /// Otherwise, the new value will be inserted in the replaced `range`. |
671 | | /// |
672 | | /// ***Panics*** if the starting point is greater than the end point or if |
673 | | /// the end point is greater than the length of the set. |
674 | | /// |
675 | | /// # Examples |
676 | | /// |
677 | | /// ``` |
678 | | /// use indexmap::IndexSet; |
679 | | /// |
680 | | /// let mut set = IndexSet::from([0, 1, 2, 3, 4]); |
681 | | /// let new = [5, 4, 3, 2, 1]; |
682 | | /// let removed: Vec<_> = set.splice(2..4, new).collect(); |
683 | | /// |
684 | | /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted. |
685 | | /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4])); |
686 | | /// assert_eq!(removed, &[2, 3]); |
687 | | /// ``` |
688 | | #[track_caller] |
689 | 0 | pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S> |
690 | 0 | where |
691 | 0 | R: RangeBounds<usize>, |
692 | 0 | I: IntoIterator<Item = T>, |
693 | 0 | { |
694 | 0 | Splice::new(self, range, replace_with.into_iter()) |
695 | 0 | } |
696 | | |
697 | | /// Moves all values from `other` into `self`, leaving `other` empty. |
698 | | /// |
699 | | /// This is equivalent to calling [`insert`][Self::insert] for each value |
700 | | /// from `other` in order, which means that values that already exist |
701 | | /// in `self` are unchanged in their current position. |
702 | | /// |
703 | | /// See also [`union`][Self::union] to iterate the combined values by |
704 | | /// reference, without modifying `self` or `other`. |
705 | | /// |
706 | | /// # Examples |
707 | | /// |
708 | | /// ``` |
709 | | /// use indexmap::IndexSet; |
710 | | /// |
711 | | /// let mut a = IndexSet::from([3, 2, 1]); |
712 | | /// let mut b = IndexSet::from([3, 4, 5]); |
713 | | /// let old_capacity = b.capacity(); |
714 | | /// |
715 | | /// a.append(&mut b); |
716 | | /// |
717 | | /// assert_eq!(a.len(), 5); |
718 | | /// assert_eq!(b.len(), 0); |
719 | | /// assert_eq!(b.capacity(), old_capacity); |
720 | | /// |
721 | | /// assert!(a.iter().eq(&[3, 2, 1, 4, 5])); |
722 | | /// ``` |
723 | 0 | pub fn append<S2>(&mut self, other: &mut IndexSet<T, S2>) { |
724 | 0 | self.map.append(&mut other.map); |
725 | 0 | } |
726 | | } |
727 | | |
728 | | impl<T, S> IndexSet<T, S> |
729 | | where |
730 | | S: BuildHasher, |
731 | | { |
732 | | /// Return `true` if an equivalent to `value` exists in the set. |
733 | | /// |
734 | | /// Computes in **O(1)** time (average). |
735 | 0 | pub fn contains<Q>(&self, value: &Q) -> bool |
736 | 0 | where |
737 | 0 | Q: ?Sized + Hash + Equivalent<T>, |
738 | 0 | { |
739 | 0 | self.map.contains_key(value) |
740 | 0 | } |
741 | | |
742 | | /// Return a reference to the value stored in the set, if it is present, |
743 | | /// else `None`. |
744 | | /// |
745 | | /// Computes in **O(1)** time (average). |
746 | 0 | pub fn get<Q>(&self, value: &Q) -> Option<&T> |
747 | 0 | where |
748 | 0 | Q: ?Sized + Hash + Equivalent<T>, |
749 | 0 | { |
750 | 0 | self.map.get_key_value(value).map(|(x, &())| x) |
751 | 0 | } |
752 | | |
753 | | /// Return item index and value |
754 | 0 | pub fn get_full<Q>(&self, value: &Q) -> Option<(usize, &T)> |
755 | 0 | where |
756 | 0 | Q: ?Sized + Hash + Equivalent<T>, |
757 | 0 | { |
758 | 0 | self.map.get_full(value).map(|(i, x, &())| (i, x)) |
759 | 0 | } |
760 | | |
761 | | /// Return item index, if it exists in the set |
762 | | /// |
763 | | /// Computes in **O(1)** time (average). |
764 | 0 | pub fn get_index_of<Q>(&self, value: &Q) -> Option<usize> |
765 | 0 | where |
766 | 0 | Q: ?Sized + Hash + Equivalent<T>, |
767 | 0 | { |
768 | 0 | self.map.get_index_of(value) |
769 | 0 | } |
770 | | |
771 | | /// Remove the value from the set, and return `true` if it was present. |
772 | | /// |
773 | | /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this |
774 | | /// value's position with the last element, and it is deprecated in favor of calling that |
775 | | /// explicitly. If you need to preserve the relative order of the values in the set, use |
776 | | /// [`.shift_remove(value)`][Self::shift_remove] instead. |
777 | | #[deprecated(note = "`remove` disrupts the set order -- \ |
778 | | use `swap_remove` or `shift_remove` for explicit behavior.")] |
779 | 0 | pub fn remove<Q>(&mut self, value: &Q) -> bool |
780 | 0 | where |
781 | 0 | Q: ?Sized + Hash + Equivalent<T>, |
782 | 0 | { |
783 | 0 | self.swap_remove(value) |
784 | 0 | } |
785 | | |
786 | | /// Remove the value from the set, and return `true` if it was present. |
787 | | /// |
788 | | /// Like [`Vec::swap_remove`], the value is removed by swapping it with the |
789 | | /// last element of the set and popping it off. **This perturbs |
790 | | /// the position of what used to be the last element!** |
791 | | /// |
792 | | /// Return `false` if `value` was not in the set. |
793 | | /// |
794 | | /// Computes in **O(1)** time (average). |
795 | 0 | pub fn swap_remove<Q>(&mut self, value: &Q) -> bool |
796 | 0 | where |
797 | 0 | Q: ?Sized + Hash + Equivalent<T>, |
798 | 0 | { |
799 | 0 | self.map.swap_remove(value).is_some() |
800 | 0 | } |
801 | | |
802 | | /// Remove the value from the set, and return `true` if it was present. |
803 | | /// |
804 | | /// Like [`Vec::remove`], the value is removed by shifting all of the |
805 | | /// elements that follow it, preserving their relative order. |
806 | | /// **This perturbs the index of all of those elements!** |
807 | | /// |
808 | | /// Return `false` if `value` was not in the set. |
809 | | /// |
810 | | /// Computes in **O(n)** time (average). |
811 | 0 | pub fn shift_remove<Q>(&mut self, value: &Q) -> bool |
812 | 0 | where |
813 | 0 | Q: ?Sized + Hash + Equivalent<T>, |
814 | 0 | { |
815 | 0 | self.map.shift_remove(value).is_some() |
816 | 0 | } |
817 | | |
818 | | /// Removes and returns the value in the set, if any, that is equal to the |
819 | | /// given one. |
820 | | /// |
821 | | /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this |
822 | | /// value's position with the last element, and it is deprecated in favor of calling that |
823 | | /// explicitly. If you need to preserve the relative order of the values in the set, use |
824 | | /// [`.shift_take(value)`][Self::shift_take] instead. |
825 | | #[deprecated(note = "`take` disrupts the set order -- \ |
826 | | use `swap_take` or `shift_take` for explicit behavior.")] |
827 | 0 | pub fn take<Q>(&mut self, value: &Q) -> Option<T> |
828 | 0 | where |
829 | 0 | Q: ?Sized + Hash + Equivalent<T>, |
830 | 0 | { |
831 | 0 | self.swap_take(value) |
832 | 0 | } |
833 | | |
834 | | /// Removes and returns the value in the set, if any, that is equal to the |
835 | | /// given one. |
836 | | /// |
837 | | /// Like [`Vec::swap_remove`], the value is removed by swapping it with the |
838 | | /// last element of the set and popping it off. **This perturbs |
839 | | /// the position of what used to be the last element!** |
840 | | /// |
841 | | /// Return `None` if `value` was not in the set. |
842 | | /// |
843 | | /// Computes in **O(1)** time (average). |
844 | 0 | pub fn swap_take<Q>(&mut self, value: &Q) -> Option<T> |
845 | 0 | where |
846 | 0 | Q: ?Sized + Hash + Equivalent<T>, |
847 | 0 | { |
848 | 0 | self.map.swap_remove_entry(value).map(|(x, ())| x) |
849 | 0 | } |
850 | | |
851 | | /// Removes and returns the value in the set, if any, that is equal to the |
852 | | /// given one. |
853 | | /// |
854 | | /// Like [`Vec::remove`], the value is removed by shifting all of the |
855 | | /// elements that follow it, preserving their relative order. |
856 | | /// **This perturbs the index of all of those elements!** |
857 | | /// |
858 | | /// Return `None` if `value` was not in the set. |
859 | | /// |
860 | | /// Computes in **O(n)** time (average). |
861 | 0 | pub fn shift_take<Q>(&mut self, value: &Q) -> Option<T> |
862 | 0 | where |
863 | 0 | Q: ?Sized + Hash + Equivalent<T>, |
864 | 0 | { |
865 | 0 | self.map.shift_remove_entry(value).map(|(x, ())| x) |
866 | 0 | } |
867 | | |
868 | | /// Remove the value from the set return it and the index it had. |
869 | | /// |
870 | | /// Like [`Vec::swap_remove`], the value is removed by swapping it with the |
871 | | /// last element of the set and popping it off. **This perturbs |
872 | | /// the position of what used to be the last element!** |
873 | | /// |
874 | | /// Return `None` if `value` was not in the set. |
875 | 0 | pub fn swap_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)> |
876 | 0 | where |
877 | 0 | Q: ?Sized + Hash + Equivalent<T>, |
878 | 0 | { |
879 | 0 | self.map.swap_remove_full(value).map(|(i, x, ())| (i, x)) |
880 | 0 | } |
881 | | |
882 | | /// Remove the value from the set return it and the index it had. |
883 | | /// |
884 | | /// Like [`Vec::remove`], the value is removed by shifting all of the |
885 | | /// elements that follow it, preserving their relative order. |
886 | | /// **This perturbs the index of all of those elements!** |
887 | | /// |
888 | | /// Return `None` if `value` was not in the set. |
889 | 0 | pub fn shift_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)> |
890 | 0 | where |
891 | 0 | Q: ?Sized + Hash + Equivalent<T>, |
892 | 0 | { |
893 | 0 | self.map.shift_remove_full(value).map(|(i, x, ())| (i, x)) |
894 | 0 | } |
895 | | } |
896 | | |
897 | | impl<T, S> IndexSet<T, S> { |
898 | | /// Remove the last value |
899 | | /// |
900 | | /// This preserves the order of the remaining elements. |
901 | | /// |
902 | | /// Computes in **O(1)** time (average). |
903 | | #[doc(alias = "pop_last")] // like `BTreeSet` |
904 | 0 | pub fn pop(&mut self) -> Option<T> { |
905 | 0 | self.map.pop().map(|(x, ())| x) |
906 | 0 | } |
907 | | |
908 | | /// Scan through each value in the set and keep those where the |
909 | | /// closure `keep` returns `true`. |
910 | | /// |
911 | | /// The elements are visited in order, and remaining elements keep their |
912 | | /// order. |
913 | | /// |
914 | | /// Computes in **O(n)** time (average). |
915 | 0 | pub fn retain<F>(&mut self, mut keep: F) |
916 | 0 | where |
917 | 0 | F: FnMut(&T) -> bool, |
918 | 0 | { |
919 | 0 | self.map.retain(move |x, &mut ()| keep(x)) |
920 | 0 | } |
921 | | |
922 | | /// Sort the set's values by their default ordering. |
923 | | /// |
924 | | /// This is a stable sort -- but equivalent values should not normally coexist in |
925 | | /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred |
926 | | /// because it is generally faster and doesn't allocate auxiliary memory. |
927 | | /// |
928 | | /// See [`sort_by`](Self::sort_by) for details. |
929 | 0 | pub fn sort(&mut self) |
930 | 0 | where |
931 | 0 | T: Ord, |
932 | 0 | { |
933 | 0 | self.map.sort_keys() |
934 | 0 | } |
935 | | |
936 | | /// Sort the set's values in place using the comparison function `cmp`. |
937 | | /// |
938 | | /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable. |
939 | 0 | pub fn sort_by<F>(&mut self, mut cmp: F) |
940 | 0 | where |
941 | 0 | F: FnMut(&T, &T) -> Ordering, |
942 | 0 | { |
943 | 0 | self.map.sort_by(move |a, (), b, ()| cmp(a, b)); |
944 | 0 | } |
945 | | |
946 | | /// Sort the values of the set and return a by-value iterator of |
947 | | /// the values with the result. |
948 | | /// |
949 | | /// The sort is stable. |
950 | 0 | pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T> |
951 | 0 | where |
952 | 0 | F: FnMut(&T, &T) -> Ordering, |
953 | 0 | { |
954 | 0 | let mut entries = self.into_entries(); |
955 | 0 | entries.sort_by(move |a, b| cmp(&a.key, &b.key)); |
956 | 0 | IntoIter::new(entries) |
957 | 0 | } |
958 | | |
959 | | /// Sort the set's values in place using a key extraction function. |
960 | | /// |
961 | | /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable. |
962 | 0 | pub fn sort_by_key<K, F>(&mut self, mut sort_key: F) |
963 | 0 | where |
964 | 0 | K: Ord, |
965 | 0 | F: FnMut(&T) -> K, |
966 | 0 | { |
967 | 0 | self.with_entries(move |entries| { |
968 | 0 | entries.sort_by_key(move |a| sort_key(&a.key)); |
969 | 0 | }); |
970 | 0 | } |
971 | | |
972 | | /// Sort the set's values by their default ordering. |
973 | | /// |
974 | | /// See [`sort_unstable_by`](Self::sort_unstable_by) for details. |
975 | 0 | pub fn sort_unstable(&mut self) |
976 | 0 | where |
977 | 0 | T: Ord, |
978 | 0 | { |
979 | 0 | self.map.sort_unstable_keys() |
980 | 0 | } |
981 | | |
982 | | /// Sort the set's values in place using the comparison function `cmp`. |
983 | | /// |
984 | | /// Computes in **O(n log n)** time. The sort is unstable. |
985 | 0 | pub fn sort_unstable_by<F>(&mut self, mut cmp: F) |
986 | 0 | where |
987 | 0 | F: FnMut(&T, &T) -> Ordering, |
988 | 0 | { |
989 | 0 | self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b)) |
990 | 0 | } |
991 | | |
992 | | /// Sort the values of the set and return a by-value iterator of |
993 | | /// the values with the result. |
994 | 0 | pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T> |
995 | 0 | where |
996 | 0 | F: FnMut(&T, &T) -> Ordering, |
997 | 0 | { |
998 | 0 | let mut entries = self.into_entries(); |
999 | 0 | entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key)); |
1000 | 0 | IntoIter::new(entries) |
1001 | 0 | } |
1002 | | |
1003 | | /// Sort the set's values in place using a key extraction function. |
1004 | | /// |
1005 | | /// Computes in **O(n log n)** time. The sort is unstable. |
1006 | 0 | pub fn sort_unstable_by_key<K, F>(&mut self, mut sort_key: F) |
1007 | 0 | where |
1008 | 0 | K: Ord, |
1009 | 0 | F: FnMut(&T) -> K, |
1010 | 0 | { |
1011 | 0 | self.with_entries(move |entries| { |
1012 | 0 | entries.sort_unstable_by_key(move |a| sort_key(&a.key)); |
1013 | 0 | }); |
1014 | 0 | } |
1015 | | |
1016 | | /// Sort the set's values in place using a key extraction function. |
1017 | | /// |
1018 | | /// During sorting, the function is called at most once per entry, by using temporary storage |
1019 | | /// to remember the results of its evaluation. The order of calls to the function is |
1020 | | /// unspecified and may change between versions of `indexmap` or the standard library. |
1021 | | /// |
1022 | | /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is |
1023 | | /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable. |
1024 | 0 | pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F) |
1025 | 0 | where |
1026 | 0 | K: Ord, |
1027 | 0 | F: FnMut(&T) -> K, |
1028 | 0 | { |
1029 | 0 | self.with_entries(move |entries| { |
1030 | 0 | entries.sort_by_cached_key(move |a| sort_key(&a.key)); |
1031 | 0 | }); |
1032 | 0 | } |
1033 | | |
1034 | | /// Search over a sorted set for a value. |
1035 | | /// |
1036 | | /// Returns the position where that value is present, or the position where it can be inserted |
1037 | | /// to maintain the sort. See [`slice::binary_search`] for more details. |
1038 | | /// |
1039 | | /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up |
1040 | | /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values. |
1041 | 0 | pub fn binary_search(&self, x: &T) -> Result<usize, usize> |
1042 | 0 | where |
1043 | 0 | T: Ord, |
1044 | 0 | { |
1045 | 0 | self.as_slice().binary_search(x) |
1046 | 0 | } |
1047 | | |
1048 | | /// Search over a sorted set with a comparator function. |
1049 | | /// |
1050 | | /// Returns the position where that value is present, or the position where it can be inserted |
1051 | | /// to maintain the sort. See [`slice::binary_search_by`] for more details. |
1052 | | /// |
1053 | | /// Computes in **O(log(n))** time. |
1054 | | #[inline] |
1055 | 0 | pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> |
1056 | 0 | where |
1057 | 0 | F: FnMut(&'a T) -> Ordering, |
1058 | 0 | { |
1059 | 0 | self.as_slice().binary_search_by(f) |
1060 | 0 | } |
1061 | | |
1062 | | /// Search over a sorted set with an extraction function. |
1063 | | /// |
1064 | | /// Returns the position where that value is present, or the position where it can be inserted |
1065 | | /// to maintain the sort. See [`slice::binary_search_by_key`] for more details. |
1066 | | /// |
1067 | | /// Computes in **O(log(n))** time. |
1068 | | #[inline] |
1069 | 0 | pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> |
1070 | 0 | where |
1071 | 0 | F: FnMut(&'a T) -> B, |
1072 | 0 | B: Ord, |
1073 | 0 | { |
1074 | 0 | self.as_slice().binary_search_by_key(b, f) |
1075 | 0 | } |
1076 | | |
1077 | | /// Checks if the values of this set are sorted. |
1078 | | #[inline] |
1079 | 0 | pub fn is_sorted(&self) -> bool |
1080 | 0 | where |
1081 | 0 | T: PartialOrd, |
1082 | 0 | { |
1083 | 0 | self.as_slice().is_sorted() |
1084 | 0 | } |
1085 | | |
1086 | | /// Checks if this set is sorted using the given comparator function. |
1087 | | #[inline] |
1088 | 0 | pub fn is_sorted_by<'a, F>(&'a self, cmp: F) -> bool |
1089 | 0 | where |
1090 | 0 | F: FnMut(&'a T, &'a T) -> bool, |
1091 | 0 | { |
1092 | 0 | self.as_slice().is_sorted_by(cmp) |
1093 | 0 | } |
1094 | | |
1095 | | /// Checks if this set is sorted using the given sort-key function. |
1096 | | #[inline] |
1097 | 0 | pub fn is_sorted_by_key<'a, F, K>(&'a self, sort_key: F) -> bool |
1098 | 0 | where |
1099 | 0 | F: FnMut(&'a T) -> K, |
1100 | 0 | K: PartialOrd, |
1101 | 0 | { |
1102 | 0 | self.as_slice().is_sorted_by_key(sort_key) |
1103 | 0 | } |
1104 | | |
1105 | | /// Returns the index of the partition point of a sorted set according to the given predicate |
1106 | | /// (the index of the first element of the second partition). |
1107 | | /// |
1108 | | /// See [`slice::partition_point`] for more details. |
1109 | | /// |
1110 | | /// Computes in **O(log(n))** time. |
1111 | | #[must_use] |
1112 | 0 | pub fn partition_point<P>(&self, pred: P) -> usize |
1113 | 0 | where |
1114 | 0 | P: FnMut(&T) -> bool, |
1115 | 0 | { |
1116 | 0 | self.as_slice().partition_point(pred) |
1117 | 0 | } |
1118 | | |
1119 | | /// Reverses the order of the set's values in place. |
1120 | | /// |
1121 | | /// Computes in **O(n)** time and **O(1)** space. |
1122 | 0 | pub fn reverse(&mut self) { |
1123 | 0 | self.map.reverse() |
1124 | 0 | } |
1125 | | |
1126 | | /// Returns a slice of all the values in the set. |
1127 | | /// |
1128 | | /// Computes in **O(1)** time. |
1129 | 0 | pub fn as_slice(&self) -> &Slice<T> { |
1130 | 0 | Slice::from_slice(self.as_entries()) |
1131 | 0 | } |
1132 | | |
1133 | | /// Converts into a boxed slice of all the values in the set. |
1134 | | /// |
1135 | | /// Note that this will drop the inner hash table and any excess capacity. |
1136 | 0 | pub fn into_boxed_slice(self) -> Box<Slice<T>> { |
1137 | 0 | Slice::from_boxed(self.into_entries().into_boxed_slice()) |
1138 | 0 | } |
1139 | | |
1140 | | /// Get a value by index |
1141 | | /// |
1142 | | /// Valid indices are `0 <= index < self.len()`. |
1143 | | /// |
1144 | | /// Computes in **O(1)** time. |
1145 | 0 | pub fn get_index(&self, index: usize) -> Option<&T> { |
1146 | 0 | self.as_entries().get(index).map(Bucket::key_ref) |
1147 | 0 | } |
1148 | | |
1149 | | /// Returns a slice of values in the given range of indices. |
1150 | | /// |
1151 | | /// Valid indices are `0 <= index < self.len()`. |
1152 | | /// |
1153 | | /// Computes in **O(1)** time. |
1154 | 0 | pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> { |
1155 | 0 | let entries = self.as_entries(); |
1156 | 0 | let range = try_simplify_range(range, entries.len())?; |
1157 | 0 | entries.get(range).map(Slice::from_slice) |
1158 | 0 | } |
1159 | | |
1160 | | /// Get the first value |
1161 | | /// |
1162 | | /// Computes in **O(1)** time. |
1163 | 0 | pub fn first(&self) -> Option<&T> { |
1164 | 0 | self.as_entries().first().map(Bucket::key_ref) |
1165 | 0 | } |
1166 | | |
1167 | | /// Get the last value |
1168 | | /// |
1169 | | /// Computes in **O(1)** time. |
1170 | 0 | pub fn last(&self) -> Option<&T> { |
1171 | 0 | self.as_entries().last().map(Bucket::key_ref) |
1172 | 0 | } |
1173 | | |
1174 | | /// Remove the value by index |
1175 | | /// |
1176 | | /// Valid indices are `0 <= index < self.len()`. |
1177 | | /// |
1178 | | /// Like [`Vec::swap_remove`], the value is removed by swapping it with the |
1179 | | /// last element of the set and popping it off. **This perturbs |
1180 | | /// the position of what used to be the last element!** |
1181 | | /// |
1182 | | /// Computes in **O(1)** time (average). |
1183 | 0 | pub fn swap_remove_index(&mut self, index: usize) -> Option<T> { |
1184 | 0 | self.map.swap_remove_index(index).map(|(x, ())| x) |
1185 | 0 | } |
1186 | | |
1187 | | /// Remove the value by index |
1188 | | /// |
1189 | | /// Valid indices are `0 <= index < self.len()`. |
1190 | | /// |
1191 | | /// Like [`Vec::remove`], the value is removed by shifting all of the |
1192 | | /// elements that follow it, preserving their relative order. |
1193 | | /// **This perturbs the index of all of those elements!** |
1194 | | /// |
1195 | | /// Computes in **O(n)** time (average). |
1196 | 0 | pub fn shift_remove_index(&mut self, index: usize) -> Option<T> { |
1197 | 0 | self.map.shift_remove_index(index).map(|(x, ())| x) |
1198 | 0 | } |
1199 | | |
1200 | | /// Moves the position of a value from one index to another |
1201 | | /// by shifting all other values in-between. |
1202 | | /// |
1203 | | /// * If `from < to`, the other values will shift down while the targeted value moves up. |
1204 | | /// * If `from > to`, the other values will shift up while the targeted value moves down. |
1205 | | /// |
1206 | | /// ***Panics*** if `from` or `to` are out of bounds. |
1207 | | /// |
1208 | | /// Computes in **O(n)** time (average). |
1209 | | #[track_caller] |
1210 | 0 | pub fn move_index(&mut self, from: usize, to: usize) { |
1211 | 0 | self.map.move_index(from, to) |
1212 | 0 | } |
1213 | | |
1214 | | /// Swaps the position of two values in the set. |
1215 | | /// |
1216 | | /// ***Panics*** if `a` or `b` are out of bounds. |
1217 | | /// |
1218 | | /// Computes in **O(1)** time (average). |
1219 | | #[track_caller] |
1220 | 0 | pub fn swap_indices(&mut self, a: usize, b: usize) { |
1221 | 0 | self.map.swap_indices(a, b) |
1222 | 0 | } |
1223 | | } |
1224 | | |
1225 | | /// Access [`IndexSet`] values at indexed positions. |
1226 | | /// |
1227 | | /// # Examples |
1228 | | /// |
1229 | | /// ``` |
1230 | | /// use indexmap::IndexSet; |
1231 | | /// |
1232 | | /// let mut set = IndexSet::new(); |
1233 | | /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { |
1234 | | /// set.insert(word.to_string()); |
1235 | | /// } |
1236 | | /// assert_eq!(set[0], "Lorem"); |
1237 | | /// assert_eq!(set[1], "ipsum"); |
1238 | | /// set.reverse(); |
1239 | | /// assert_eq!(set[0], "amet"); |
1240 | | /// assert_eq!(set[1], "sit"); |
1241 | | /// set.sort(); |
1242 | | /// assert_eq!(set[0], "Lorem"); |
1243 | | /// assert_eq!(set[1], "amet"); |
1244 | | /// ``` |
1245 | | /// |
1246 | | /// ```should_panic |
1247 | | /// use indexmap::IndexSet; |
1248 | | /// |
1249 | | /// let mut set = IndexSet::new(); |
1250 | | /// set.insert("foo"); |
1251 | | /// println!("{:?}", set[10]); // panics! |
1252 | | /// ``` |
1253 | | impl<T, S> Index<usize> for IndexSet<T, S> { |
1254 | | type Output = T; |
1255 | | |
1256 | | /// Returns a reference to the value at the supplied `index`. |
1257 | | /// |
1258 | | /// ***Panics*** if `index` is out of bounds. |
1259 | 0 | fn index(&self, index: usize) -> &T { |
1260 | 0 | if let Some(value) = self.get_index(index) { |
1261 | 0 | value |
1262 | | } else { |
1263 | 0 | panic!( |
1264 | 0 | "index out of bounds: the len is {len} but the index is {index}", |
1265 | 0 | len = self.len() |
1266 | 0 | ); |
1267 | | } |
1268 | 0 | } |
1269 | | } |
1270 | | |
1271 | | impl<T, S> FromIterator<T> for IndexSet<T, S> |
1272 | | where |
1273 | | T: Hash + Eq, |
1274 | | S: BuildHasher + Default, |
1275 | | { |
1276 | 0 | fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self { |
1277 | 0 | let iter = iterable.into_iter().map(|x| (x, ())); |
1278 | 0 | IndexSet { |
1279 | 0 | map: IndexMap::from_iter(iter), |
1280 | 0 | } |
1281 | 0 | } |
1282 | | } |
1283 | | |
1284 | | #[cfg(feature = "std")] |
1285 | | #[cfg_attr(docsrs, doc(cfg(feature = "std")))] |
1286 | | impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState> |
1287 | | where |
1288 | | T: Eq + Hash, |
1289 | | { |
1290 | | /// # Examples |
1291 | | /// |
1292 | | /// ``` |
1293 | | /// use indexmap::IndexSet; |
1294 | | /// |
1295 | | /// let set1 = IndexSet::from([1, 2, 3, 4]); |
1296 | | /// let set2: IndexSet<_> = [1, 2, 3, 4].into(); |
1297 | | /// assert_eq!(set1, set2); |
1298 | | /// ``` |
1299 | 0 | fn from(arr: [T; N]) -> Self { |
1300 | 0 | Self::from_iter(arr) |
1301 | 0 | } |
1302 | | } |
1303 | | |
1304 | | impl<T, S> Extend<T> for IndexSet<T, S> |
1305 | | where |
1306 | | T: Hash + Eq, |
1307 | | S: BuildHasher, |
1308 | | { |
1309 | 0 | fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) { |
1310 | 0 | let iter = iterable.into_iter().map(|x| (x, ())); |
1311 | 0 | self.map.extend(iter); |
1312 | 0 | } |
1313 | | } |
1314 | | |
1315 | | impl<'a, T, S> Extend<&'a T> for IndexSet<T, S> |
1316 | | where |
1317 | | T: Hash + Eq + Copy + 'a, |
1318 | | S: BuildHasher, |
1319 | | { |
1320 | 0 | fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) { |
1321 | 0 | let iter = iterable.into_iter().copied(); |
1322 | 0 | self.extend(iter); |
1323 | 0 | } |
1324 | | } |
1325 | | |
1326 | | impl<T, S> Default for IndexSet<T, S> |
1327 | | where |
1328 | | S: Default, |
1329 | | { |
1330 | | /// Return an empty [`IndexSet`] |
1331 | 0 | fn default() -> Self { |
1332 | 0 | IndexSet { |
1333 | 0 | map: IndexMap::default(), |
1334 | 0 | } |
1335 | 0 | } |
1336 | | } |
1337 | | |
1338 | | impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1> |
1339 | | where |
1340 | | T: Hash + Eq, |
1341 | | S1: BuildHasher, |
1342 | | S2: BuildHasher, |
1343 | | { |
1344 | 0 | fn eq(&self, other: &IndexSet<T, S2>) -> bool { |
1345 | 0 | self.len() == other.len() && self.is_subset(other) |
1346 | 0 | } |
1347 | | } |
1348 | | |
1349 | | impl<T, S> Eq for IndexSet<T, S> |
1350 | | where |
1351 | | T: Eq + Hash, |
1352 | | S: BuildHasher, |
1353 | | { |
1354 | | } |
1355 | | |
1356 | | impl<T, S> IndexSet<T, S> |
1357 | | where |
1358 | | T: Eq + Hash, |
1359 | | S: BuildHasher, |
1360 | | { |
1361 | | /// Returns `true` if `self` has no elements in common with `other`. |
1362 | 0 | pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool |
1363 | 0 | where |
1364 | 0 | S2: BuildHasher, |
1365 | 0 | { |
1366 | 0 | if self.len() <= other.len() { |
1367 | 0 | self.iter().all(move |value| !other.contains(value)) |
1368 | | } else { |
1369 | 0 | other.iter().all(move |value| !self.contains(value)) |
1370 | | } |
1371 | 0 | } |
1372 | | |
1373 | | /// Returns `true` if all elements of `self` are contained in `other`. |
1374 | 0 | pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool |
1375 | 0 | where |
1376 | 0 | S2: BuildHasher, |
1377 | 0 | { |
1378 | 0 | self.len() <= other.len() && self.iter().all(move |value| other.contains(value)) |
1379 | 0 | } |
1380 | | |
1381 | | /// Returns `true` if all elements of `other` are contained in `self`. |
1382 | 0 | pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool |
1383 | 0 | where |
1384 | 0 | S2: BuildHasher, |
1385 | 0 | { |
1386 | 0 | other.is_subset(self) |
1387 | 0 | } |
1388 | | } |
1389 | | |
1390 | | impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1> |
1391 | | where |
1392 | | T: Eq + Hash + Clone, |
1393 | | S1: BuildHasher + Default, |
1394 | | S2: BuildHasher, |
1395 | | { |
1396 | | type Output = IndexSet<T, S1>; |
1397 | | |
1398 | | /// Returns the set intersection, cloned into a new set. |
1399 | | /// |
1400 | | /// Values are collected in the same order that they appear in `self`. |
1401 | 0 | fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output { |
1402 | 0 | self.intersection(other).cloned().collect() |
1403 | 0 | } |
1404 | | } |
1405 | | |
1406 | | impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1> |
1407 | | where |
1408 | | T: Eq + Hash + Clone, |
1409 | | S1: BuildHasher + Default, |
1410 | | S2: BuildHasher, |
1411 | | { |
1412 | | type Output = IndexSet<T, S1>; |
1413 | | |
1414 | | /// Returns the set union, cloned into a new set. |
1415 | | /// |
1416 | | /// Values from `self` are collected in their original order, followed by |
1417 | | /// values that are unique to `other` in their original order. |
1418 | 0 | fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output { |
1419 | 0 | self.union(other).cloned().collect() |
1420 | 0 | } |
1421 | | } |
1422 | | |
1423 | | impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1> |
1424 | | where |
1425 | | T: Eq + Hash + Clone, |
1426 | | S1: BuildHasher + Default, |
1427 | | S2: BuildHasher, |
1428 | | { |
1429 | | type Output = IndexSet<T, S1>; |
1430 | | |
1431 | | /// Returns the set symmetric-difference, cloned into a new set. |
1432 | | /// |
1433 | | /// Values from `self` are collected in their original order, followed by |
1434 | | /// values from `other` in their original order. |
1435 | 0 | fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output { |
1436 | 0 | self.symmetric_difference(other).cloned().collect() |
1437 | 0 | } |
1438 | | } |
1439 | | |
1440 | | impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1> |
1441 | | where |
1442 | | T: Eq + Hash + Clone, |
1443 | | S1: BuildHasher + Default, |
1444 | | S2: BuildHasher, |
1445 | | { |
1446 | | type Output = IndexSet<T, S1>; |
1447 | | |
1448 | | /// Returns the set difference, cloned into a new set. |
1449 | | /// |
1450 | | /// Values are collected in the same order that they appear in `self`. |
1451 | 0 | fn sub(self, other: &IndexSet<T, S2>) -> Self::Output { |
1452 | 0 | self.difference(other).cloned().collect() |
1453 | 0 | } |
1454 | | } |